1
|
Wu ZB, Wang GY, Wang B, Peng X, Wang JS, Zhang MC, Geng W, Xie HT. IFNα2b/5-FU inhibits proliferation and cell cycle of squamous carcinoma cell line Cal27. Int J Ophthalmol 2025; 18:565-574. [PMID: 40256022 PMCID: PMC11947539 DOI: 10.18240/ijo.2025.04.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/18/2024] [Indexed: 04/22/2025] Open
Abstract
AIM To investigate the pathological features of ocular surface squamous neoplasia (OSSN) and evaluate the synergistic therapeutic effects of interferon-α2b (IFNα2b) and 5-fluorouracil (5-FU) on cellular proliferation, migration, apoptosis, and cell cycle of human oral squamous carcinoma cell line Cal27. METHODS Tissue specimens from OSSN were processed with hematoxylin-eosin (HE) and immunofluorescence (IF) staining to characterize pathological changes. We analyzed the expression levels of four pivotal proteins involved in 5-FU metabolism: interferon alpha receptor (IFNAR), thymidylate synthase (TS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD). Cal27 cell lines were treated with a spectrum of concentrations of IFNα2b and 5-FU, either in isolation or in combination. Then, cell activity was measured utilizing CCK-8 assay and dose-effect curves were calculated, while tumor cell migration was detected by cell scratch experiments. Cal27 cells were added with IFNα2b and 5-FU in a non-constant ratio drug combination design and the corresponding combination index (CI) and fraction affected (Fa) were calculated with CompuSyn software. Western blot assay was conducted to quantify the expression of TP, TS, and DPD. Cell cycle and apoptosis were measured with flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick and labeling (TUNEL) assay. RESULTS Treatment with both IFNα2b and 5-FU inhibited cell proliferation. Except for the lowest and highest doses of 5-FU, CI values for all other groups were below 1, suggesting a synergistic interaction. Low concentrations of IFNα2b and 5-FU both diminished the relative mobility of Cal27 cells, instead, a stronger inhibitory effect was observed when the two drugs were co-applied. The expression levels of TP and DPD in Cal27 cells were dose-dependently increased at a low concentration of IFNα2b. Low-dose IFNα2b combined with 5-FU significantly inhibited cell proliferation in G0/G1 phase compared to 5-FU monotherapy. Medium and high doses of IFNα2b and all concentrations of 5-FU could induce apoptosis in a concentration-dependent manner. The susceptibility to 5-FU treatment and apoptosis rates of tumor cells were elevated with low doses of IFNα2b. CONCLUSION Both IFNα2b and 5-FU, when administered individually or in combination, effectively suppress the proliferation and migration of Cal27 tumor cells, induce cell apoptosis and arrest cell cycle. Low doses of IFNα2b increase the antitumor effects of 5-FU on Cal27 potentially through up-regulating the expression of TP, demonstrating a synergistic effect between IFNα2b and 5-FU.
Collapse
Affiliation(s)
- Zong-Bo Wu
- Department of Ophthalmology, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Jingshan 431800, Hubei Province, China
| | - Gong-Yue Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Bei Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xi Peng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jia-Song Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wen Geng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
2
|
Zhang X, Zhang Y, Wei F. Research progress on the nonstructural protein 1 (NS1) of influenza a virus. Virulence 2024; 15:2359470. [PMID: 38918890 PMCID: PMC11210920 DOI: 10.1080/21505594.2024.2359470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Influenza A virus (IAV) is the leading cause of highly contagious respiratory infections, which poses a serious threat to public health. The non-structural protein 1 (NS1) is encoded by segment 8 of IAV genome and is expressed in high levels in host cells upon IAV infection. It is the determinant of virulence and has multiple functions by targeting type Ι interferon (IFN-I) and type III interferon (IFN-III) production, disrupting cell apoptosis and autophagy in IAV-infected cells, and regulating the host fitness of influenza viruses. This review will summarize the current research on the NS1 including the structure and related biological functions of the NS1 as well as the interaction between the NS1 and host cells. It is hoped that this will provide some scientific basis for the prevention and control of the influenza virus.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
3
|
Xie B, Wu Y, Wang S, Ruan L, Liu X. Expression profile of long noncoding RNAs and comprehensive analysis of lncRNA-cisTF-DGE regulation in condyloma acuminatum. BMC Med Genomics 2024; 17:167. [PMID: 38902760 PMCID: PMC11188504 DOI: 10.1186/s12920-024-01938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE To identify differentially expressed long noncoding RNAs (lncRNAs) in condyloma acuminatum (CA) and to explore their probable regulatory mechanisms by establishing coexpression networks. METHODS High-throughput RNA sequencing was performed to assess genome-wide lncRNA expression in CA and paired adjacent mucosal tissue. The expression of candidate lncRNAs and their target genes in larger CA specimens was validated using real-time quantitative reverse transcriptase polymerase chain reaction (RT‒qPCR). Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for the functional enrichment analysis of these candidate lncRNAs and differential mRNAs. The coexpressed mRNAs of the candidate lncRNAs, calculated by Pearson's correlation coefficient, were also analysed using GO and KEGG analysis. In addition, the interactions among differentially expressed lncRNAs (DElncRNAs)-cis-regulatory transcription factors (cisTFs)-differentially expressed genes (DEGs) were analysed and their network was constructed. RESULTS A total of 546 lncRNAs and 2553 mRNAs were found to be differentially expressed in CA compared to the paired control. Functional enrichment analysis revealed that the DEGs coexpressed with DElncRNAs were enriched in the terms of cell adhesion and keratinocyte differentiation, and the pathways of ECM-receptor interaction, local adhesion, PI3K/AKT and TGF-ß signaling. We further constructed the network among DElncRNAs-cisTFs-DEGs and found that these 95 DEGs were mainly enriched in GO terms of epithelial development, regulation of transcription or gene expression. Furthermore, the expression of 3 pairs of DElncRNAs and cisTFs, EVX1-AS and HOXA13, HOXA11-AS and EVX1, and DLX6-AS and DLX5, was validated with a larger number of specimens using RT‒qPCR. CONCLUSION CA has a specific lncRNA profile, and the differentially expressed lncRNAs play regulatory roles in mRNA expression through cis-acting TFs, which provides insight into their regulatory networks. It will be useful to understand the pathogenesis of CA to provide new directions for the prevention, clinical treatment and efficacy evaluation of CA.
Collapse
Affiliation(s)
- Bo Xie
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Yinhua Wu
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Su Wang
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Liming Ruan
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, Zhejiang Province, 310003, China.
- Department of Dermatology, Beilun People's Hospital of Ningbo City, 1288# Lushan East Road, Ningbo, Zhejiang Province, 310058, China.
| | - Xiaoyan Liu
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
4
|
Layton DS, Mara K, Dai M, Malaver-Ortega LF, Gough TJ, Bruce K, Jenkins KA, Bean AGD. Interferon Signaling in Chickens Plays a Crucial Role in Inhibiting Influenza Replication in DF1 Cells. Microorganisms 2022; 10:133. [PMID: 35056582 PMCID: PMC8781551 DOI: 10.3390/microorganisms10010133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023] Open
Abstract
Influenza A viruses (IAV) pose a constant threat to human and poultry health. Of particular interest are the infections caused by highly pathogenic avian influenza (HPAI) viruses, such as H5N1, which cause significant production issues. In response to influenza infection, cells activate immune mechanisms that lead to increased interferon (IFN) production. To investigate how alterations in the interferon signaling pathway affect the cellular response to infection in the chicken, we used CRISPR/Cas9 to generate a chicken cell line that lacks a functional the type I interferon receptor (IFNAR1). We then assessed viral infections with the WSN strain of influenza. Cells lacking a functional IFNAR1 receptor showed reduced expression of the interferon stimulated genes (ISG) such as Protein Kinase R (PKR) and Myxovirus resistance (Mx) and were more susceptible to viral infection with WSN. We further investigated the role or IFNAR1 on low pathogenicity avian influenza (LPAI) strains (H7N9) and a HPAI strain (H5N1). Intriguingly, Ifnar-/- cells appeared more resistant than WT cells when infected with HPAI virus, potentially indicating a different interaction between H5N1 and the IFN signaling pathway. Our findings support that ChIFNAR1 is a key component of the chicken IFN signaling pathway and these data add contributions to the field of host-avian pathogen interaction and innate immunity in chickens.
Collapse
Affiliation(s)
- Daniel S. Layton
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kostlend Mara
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Meiling Dai
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Luis Fernando Malaver-Ortega
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Clayton Campus, Monash University, Clayton, VIC 3800, Australia;
| | - Tamara J. Gough
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kerri Bruce
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kristie A. Jenkins
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Andrew G. D. Bean
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| |
Collapse
|
5
|
Ji ZX, Wang XQ, Liu XF. NS1: A Key Protein in the "Game" Between Influenza A Virus and Host in Innate Immunity. Front Cell Infect Microbiol 2021; 11:670177. [PMID: 34327148 PMCID: PMC8315046 DOI: 10.3389/fcimb.2021.670177] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Since the influenza pandemic occurred in 1918, people have recognized the perniciousness of this virus. It can cause mild to severe infections in animals and humans worldwide, with extremely high morbidity and mortality. Since the first day of human discovery of it, the “game” between the influenza virus and the host has never stopped. NS1 protein is the key protein of the influenza virus against host innate immunity. The interaction between viruses and organisms is a complex and dynamic process, in which they restrict each other, but retain their own advantages. In this review, we start by introducing the structure and biological characteristics of NS1, and then investigate the factors that affect pathogenicity of influenza which determined by NS1. In order to uncover the importance of NS1, we analyze the interaction of NS1 protein with interferon system in innate immunity and the molecular mechanism of host antagonism to NS1 protein, highlight the unique biological function of NS1 protein in cell cycle.
Collapse
Affiliation(s)
- Zhu-Xing Ji
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao-Quan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiu-Fan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Alfano V, Zeisel MB, Levrero M, Guerrieri F. The lncRNAs in HBV-Related HCCs: Targeting Chromatin Dynamics and Beyond. Cancers (Basel) 2021; 13:3115. [PMID: 34206504 PMCID: PMC8268133 DOI: 10.3390/cancers13133115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the fourth leading and fastest rising cause of cancer death (841,000 new cases and 782,000 deaths annually), and hepatitis B (HBV), with 250 million people chronically infected at risk of developing HCC, accounts for >50% of the cases worldwide. Long non-coding RNAs (lncRNAs), untranslated transcripts longer than 200 nucleotides, are implicated in gene regulation at the transcriptional and post-transcriptional levels, exerting their activities both in the nuclear and cytoplasmic compartments. Thanks to high-throughput sequencing techniques, several lncRNAs have been shown to favor the establishment of chronic HBV infection, to change the host transcriptome to establish a pro-carcinogenic environment, and to directly participate in HCC development and progression. In this review, we summarize current knowledge on the role of lncRNAs in HBV infection and HBV-related liver carcinogenesis and discuss the potential of lncRNAs as predictive or diagnostic biomarkers.
Collapse
Affiliation(s)
- Vincenzo Alfano
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
| | - Mirjam B. Zeisel
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
- Department of Medicine SCIAC, University of Rome La Sapienza, 00161 Rome, Italy
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
| |
Collapse
|
7
|
Moatasim Y, Kandeil A, Mostafa A, Kutkat O, Sayes ME, El Taweel AN, AlKhazindar M, AbdElSalam ET, El-Shesheny R, Kayali G, Ali MA. Impact of Individual Viral Gene Segments from Influenza A/H5N8 Virus on the Protective Efficacy of Inactivated Subtype-Specific Influenza Vaccine. Pathogens 2021; 10:pathogens10030368. [PMID: 33808583 PMCID: PMC8003407 DOI: 10.3390/pathogens10030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Since its emergence in 2014, the highly pathogenic avian influenza H5N8 virus has continuously and rapidly spread worldwide in the poultry sector resulting in huge economic losses. A typical inactivated H5N8 vaccine is prepared using the six internal genes from A/PR8/1934 (H1N1) and the two major antigenic proteins (HA and NA) from the circulating H5N8 strain with the HA modified to a low pathogenic form (PR8HA/NA-H5N8). The contribution of the other internal proteins from H5N8, either individually or in combination, to the overall protective efficacy of PR8-based H5N8 vaccine has not been investigated. Using reverse genetics, a set of PR8-based vaccines expressing the individual proteins from an H5N8 strain were rescued and compared to the parent PR8 and low pathogenic H5N8 strains and the commonly used PR8HA/NA-H5N8. Except for the PR8-based vaccine strains expressing the HA of H5N8, none of the rescued combinations could efficiently elicit virus-neutralizing antibodies. Compared to PR8, the non-HA viral proteins provided some protection to infected chickens six days post infection. We assume that this late protection was related to cell-based immunity rather than antibody-mediated immunity. This may explain the slight advantage of using full low pathogenic H5N8 instead of PR8HA/NA-H5N8 to improve protection by both the innate and the humoral arms of the immune system.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed N. El Taweel
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Maha AlKhazindar
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Elsayed T. AbdElSalam
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ghazi Kayali
- Human Link, Dubai, United Arab Emirates
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Correspondence: (G.K.); (M.A.A.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- Correspondence: (G.K.); (M.A.A.)
| |
Collapse
|
8
|
Zhao X, Fan H, Chen X, Zhao X, Wang X, Feng Y, Liu M, Li S, Tang H. Hepatitis B Virus DNA Polymerase Restrains Viral Replication Through the CREB1/HOXA Distal Transcript Antisense RNA Homeobox A13 Axis. Hepatology 2021; 73:503-519. [PMID: 32314410 DOI: 10.1002/hep.31284] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/20/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs (lncRNAs) have been associated with infection and hepatitis B virus (HBV)-related diseases, though the underlying mechanisms remain unclear. APPROACH AND RESULTS We obtained HBV-HCC lncRNA profiles by deep sequencing and found HOXA distal transcript antisense RNA (HOTTIP) to be significantly up-regulated. RT-qPCR indicated that HOTTIP is highly expressed in HBV-positive hepatoma tissue and induced by HBV in vitro. Virological experiments showed that HOTTIP significantly suppresses the generation of hepatitis B viral surface antigen, hepatitis B viral e antigen and HBV replication. Homeobox A13 (HOXA13), a downstream factor of HOTTIP, was found to bind to HBV enhancer I and X promotor to repress the production of HBV pregenome RNA (pgRNA) and total RNA as well as HBV replication, suggesting that HOXA13 mediates HOTTIP-induced suppression of HBV replication. More interestingly, HBV DNA polymerase (DNA pol) binds to and stabilizes cAMP-responsive element-binding protein 1 (CREB1) mRNA to facilitate translation of the protein, which, in turn, binds to the regulatory element of HOTTIP to promote its expression. CONCLUSIONS Our findings demonstrate that HBV DNA pol attenuates HBV replication through activation of the CREB1-HOTTIP-HOXA13 axis. These findings shed light on the mechanism by which HBV restrains replication to contribute to persistent infection.
Collapse
Affiliation(s)
- Xiaopei Zhao
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hongxia Fan
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xi Chen
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xiaoqing Zhao
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xu Wang
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yujie Feng
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Min Liu
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Shengping Li
- State Key Laboratory of Oncology in Southern ChinaDepartment of Hepatobiliary OncologySun Yat-sen UniversityCancer CenterGuangzhouChina
| | - Hua Tang
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
9
|
|
10
|
Manh DH, Mizukami S, Dumre SP, Raekiansyah M, Senju S, Nishimura Y, Karbwang J, Huy NT, Morita K, Hirayama K. iPS cell serves as a source of dendritic cells for in vitro dengue virus infection model. J Gen Virol 2018; 99:1239-1247. [PMID: 30058991 DOI: 10.1099/jgv.0.001119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lack of an appropriate model has been a serious concern in dengue research pertinent to immune response and vaccine development. It remains a matter of impediment in dengue virus (DENV) studies when it comes to an in vitro model, which requires adequate quantity of dendritic cells (DC) with uniform characters. Other sources of DC, mostly monocyte derived DC (moDC), have been used despite their limitations such as quantity, proliferation, and donor dependent characters. Recent development of human iPS cells with consistent proliferation for long, stable, functional characteristics and desired HLA background has certainly offered added advantages. Therefore, we hypothesised that iPS derived cells would be a reliable alternative to the traditional DCs to be used with an in vitro DENV system. To develop a DENV infection and T cell activation model, we utilised iPS cells (HLA-A*24) as the source of DC. iPS-ML-DC was prepared and DENV infectivity was assessed apart from the major surface markers expression and cytokine production potential. Our iPS-ML-DC had major DC markers expression, DENV infection efficiency and cytokine production properties similar to that of moDC. Moreover, DENV infected iPS-ML-DC demonstrated the ability to activate HLA-matched T cell (but not mismatched) in vitro as evidenced by significantly higher proportion of IFN-γ+ CD69+ T cells compared to non-infected iPS-ML-DC. This affirmed the antigen-specific T cell activation by iPS-ML-DC as a function of antigen presenting cells. To conclude, maturation potential, DENV infection efficiency and T cell activation ability collectively suggest that iPS-ML-DC serves as an attractive option of DC for use in DENV studies in vitro.
Collapse
Affiliation(s)
- Dao Huy Manh
- 1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,2Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shusaku Mizukami
- 3Department of Clinical Product Development, NEKKEN, Nagasaki University, Nagasaki, Japan.,1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Shyam Prakash Dumre
- 1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | | | - Satoru Senju
- 5Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yasuharu Nishimura
- 5Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Juntra Karbwang
- 3Department of Clinical Product Development, NEKKEN, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- 3Department of Clinical Product Development, NEKKEN, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- 4Department of Virology, NEKKEN, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- 1Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
11
|
Kim TH, Lee EJ, Choi JH, Yim SY, Lee S, Kang J, Lee YR, Lee HA, Choi HS, Kim ES, Keum B, Seo YS, Yim HJ, Jeen YT, Chun HJ, Lee HS, Kim CD, Woo HG, Um SH. Identification of novel susceptibility loci associated with hepatitis B surface antigen seroclearance in chronic hepatitis B. PLoS One 2018; 13:e0199094. [PMID: 29975729 PMCID: PMC6033413 DOI: 10.1371/journal.pone.0199094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS The seroclearance of hepatitis B virus (HBV) surface antigen (HBsAg) is regarded as a functional cure of chronic hepatitis B (CHB) although it occurs rarely. Recently, several genome-wide association studies (GWASs) revealed various genetic alterations related to the clinical course of HBV infection. However, all of these studies focused on the progression of HBV infection to chronicity and had limited application because of the heterogeneity of HBV genotypes. In the present study, we aimed to determine susceptibility genetic markers for seroclearance of HBsAg in CHB patients with a homogenous viral genotype. METHODS One hundred patients with CHB who had experienced HBsAg seroclearance before 60 years of age and another 100 with CHB showing high serum levels of HBsAg even after 60 years of age were enrolled. Extreme-phenotype GWAS was conducted using blood samples of participants. RESULTS We identified three single nucleotide polymorphisms, rs7944135 (P = 4.17 × 10-6, odds ratio [OR] = 4.16, 95% confidence interval [CI] = 2.27-7.63) at 11q12.1, rs171941 (P = 3.52×10-6, OR = 3.69, 95% CI = 2.13-6.42) at 5q14.1, and rs6462008 (P = 3.40×10-6, OR = 0.34, 95% CI = 0.22-0.54) at 7p15.2 as novel susceptibility loci associated with HBsAg seroclearance in patients with CHB. The flanking genes at these loci including MPEG1, DTX4, MTX3, and HOXA13 were suggested to have functional significance. In addition, through functional analysis, CXCL13 was also presumed to be related. CONCLUSIONS To the best of our knowledge, this study is the first GWAS regarding the seroclearance of HBsAg in CHB patients. We identify new susceptibility loci for cure of CHB, providing new insights into its pathophysiology.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eun-Ju Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | - Ji-Hye Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sunwon Lee
- Department of Computer Science and Engineering, Korea University College of Informatics, Seoul, Korea
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University College of Informatics, Seoul, Korea
| | - Yoo Ra Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hyuk Soon Choi
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eun Sun Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Bora Keum
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yeon Seok Seo
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hyung Joon Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yoon Tae Jeen
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hoon Jai Chun
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hong Sik Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Chang Duck Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
- * E-mail: (HGW); (SHU)
| | - Soon Ho Um
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- * E-mail: (HGW); (SHU)
| |
Collapse
|
12
|
Ahlers LRH, Bastos RG, Hiroyasu A, Goodman AG. Invertebrate Iridescent Virus 6, a DNA Virus, Stimulates a Mammalian Innate Immune Response through RIG-I-Like Receptors. PLoS One 2016; 11:e0166088. [PMID: 27824940 PMCID: PMC5100955 DOI: 10.1371/journal.pone.0166088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022] Open
Abstract
Insects are not only major vectors of mammalian viruses, but are also host to insect-restricted viruses that can potentially be transmitted to mammals. While mammalian innate immune responses to arboviruses are well studied, less is known about how mammalian cells respond to viruses that are restricted to infect only invertebrates. Here we demonstrate that IIV-6, a DNA virus of the family Iridoviridae, is able to induce a type I interferon-dependent antiviral immune response in mammalian cells. Although IIV-6 is a DNA virus, we demonstrate that the immune response activated during IIV-6 infection is mediated by the RIG-I-like receptor (RLR) pathway, and not the canonical DNA sensing pathway via cGAS/STING. We further show that RNA polymerase III is required for maximal IFN-β secretion, suggesting that viral DNA is transcribed by this enzyme into an RNA species capable of activating the RLR pathway. Finally, we demonstrate that the RLR-driven mammalian innate immune response to IIV-6 is functionally capable of protecting cells from subsequent infection with the arboviruses Vesicular Stomatitis virus and Kunjin virus. These results represent a novel example of an invertebrate DNA virus activating a canonically RNA sensing pathway in the mammalian innate immune response, which reduces viral load of ensuing arboviral infection.
Collapse
Affiliation(s)
- Laura R. H. Ahlers
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- NIH Protein Biotechnology Graduate Training Program, Washington State University, Pullman, Washington, United States of America
| | - Reginaldo G. Bastos
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Aoi Hiroyasu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
13
|
Nucleic acid sensing and innate immunity: signaling pathways controlling viral pathogenesis and autoimmunity. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:132-141. [PMID: 27857881 DOI: 10.1007/s40588-016-0043-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Innate immunity refers to the body's initial response to curb infection upon exposure to invading organisms. While the detection of pathogen-associated molecules is an ancient form of host defense, if dysfunctional, autoimmune disease may result. The innate immune response during pathogenic infection is initiated through the activation of receptors recognizing conserved molecular patterns, such as nucleic acids from a virus' genome or replicative cycle. Additionally, the host's own nucleic acids are capable of activating an immune response. Therefore, it follows that the nucleic acid-sensing pathways must be tightly controlled to avoid an autoimmune response from recognition of self, yet still be unimpeded to respond to viral infections. In this review, we will describe the nucleic acid sensing pathways and how they respond to virus infection. Moreover, we will discuss autoimmune diseases that develop when these pathways fail to signal properly and identify knowledge gaps that are prime for interrogation.
Collapse
|
14
|
Carvajal-Yepes M, Sporer KRB, Carter JL, Colvin CJ, Coussens PM. Enhanced production of human influenza virus in PBS-12SF cells with a reduced interferon response. Hum Vaccin Immunother 2015; 11:2296-304. [PMID: 26090991 DOI: 10.1080/21645515.2015.1016677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Influenza is one of the most important infectious diseases in humans. The best way to prevent severe illness caused by influenza infection is vaccination. Cell culture-derived influenza vaccines are being considered in addition to the widely used egg-based system in order to support the increasing seasonal demand and to be prepared in case of a pandemic. Cell culture based systems offer increased safety, capacity, and flexibility with reduced downstream processing relative to embryonated eggs. We have previously reported a chick embryo cell line, termed PBS-12SF, that supports replication of human and avian influenza A viruses to high titers (>10(7) PFU/ml) without the need for exogenous proteases or serum proteins. Viral infections in cells are limited by the Interferon (IFN) response typified by production of type I IFNs that bind to the IFNα/β receptor and activate an antiviral state. In this study, we investigated how neutralizing the interferon (IFN) response in PBS-12SF cells, via shRNA-mediated knock-down of IFNAR1 mRNA expression, affects influenza virus production. We were successful in knocking down ∼90% of IFNAR1 protein expression by this method, resulting in a significant decrease in the response to recombinant chIFNα stimulation in PBS-12SF cells as shown by a reduction in expression of interferon-responsive genes when compared to control cells. Additionally; IFNAR1-knock-down cells displayed enhanced viral HA production and released more virus into cell culture supernatants than parental PBS-12SF cells.
Collapse
Affiliation(s)
- Monica Carvajal-Yepes
- a Molecular Pathogenesis Laboratory; Department of Animal Science; Michigan State University ; East Lansing , MI USA
| | | | | | | | | |
Collapse
|
15
|
Zhou H, Chen S, Wang M, Cheng A. Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation. Int J Mol Sci 2014; 15:21045-68. [PMID: 25405736 PMCID: PMC4264211 DOI: 10.3390/ijms151121045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/26/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal’s age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon’s antiviral activities and may provide the basis for new antiviral strategies.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
16
|
Eichner M, Schwehm M, Hain J, Uphoff H, Salzberger B, Knuf M, Schmidt-Ott R. 4Flu - an individual based simulation tool to study the effects of quadrivalent vaccination on seasonal influenza in Germany. BMC Infect Dis 2014; 14:365. [PMID: 24993051 PMCID: PMC4099094 DOI: 10.1186/1471-2334-14-365] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/03/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Influenza vaccines contain Influenza A and B antigens and are adjusted annually to match the characteristics of circulating viruses. In Germany, Influenza B viruses belonged to the B/Yamagata lineage, but since 2001, the antigenically distinct B/Victoria lineage has been co-circulating. Trivalent influenza vaccines (TIV) contain antigens of the two A subtypes A(H3N2) and A(H1N1), yet of only one B lineage, resulting in frequent vaccine mismatches. Since 2012, the WHO has been recommending vaccine strains from both B lineages, paving the way for quadrivalent influenza vaccines (QIV). METHODS Using an individual-based simulation tool, we simulate the concomitant transmission of four influenza strains, and compare the effects of TIV and QIV on the infection incidence. Individuals are connected in a dynamically evolving age-dependent contact network based on the POLYMOD matrix; their age-distribution reproduces German demographic data and predictions. The model considers maternal protection, boosting of existing immunity, loss of immunity, and cross-immunizing events between the B lineages. Calibration to the observed annual infection incidence of 10.6% among young adults yielded a basic reproduction number of 1.575. Vaccinations are performed annually in October and November, whereby coverage depends on the vaccinees' age, their risk status and previous vaccination status. New drift variants are introduced at random time points, leading to a sudden loss of protective immunity for part of the population and occasionally to reduced vaccine efficacy. Simulations run for 50 years, the first 30 of which are used for initialization. During the final 20 years, individuals receive TIV or QIV, using a mirrored simulation approach. RESULTS Using QIV, the mean annual infection incidence can be reduced from 8,943,000 to 8,548,000, i.e. by 395,000 infections, preventing 11.2% of all Influenza B infections which still occur with TIV (95% CI: 10.7-11.8%). Using a lower B lineage cross protection than the baseline 60%, the number of Influenza B infections increases and the number additionally prevented by QIV can be 5.5 times as high. CONCLUSIONS Vaccination with TIV substantially reduces the Influenza incidence compared to no vaccination. Depending on the assumed degree of B lineage cross protection, QIV further reduces Influenza B incidence by 11-33%.
Collapse
Affiliation(s)
- Martin Eichner
- Department for Clinical Epidemiology and Applied Biometry, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
- Epimos GmbH, Uhlandstr. 3, 72144 Dusslingen, Germany
| | - Markus Schwehm
- ExploSYS GmbH, Otto-Hahn-Weg 6, 70771 Leinfelden-Echterdingen, Germany
| | - Johannes Hain
- GlaxoSmithKline GmbH & Co. KG, Prinzregentenplatz 9, 81675 München, Germany
| | - Helmut Uphoff
- Hessisches Landesprüfungs- und Untersuchungsamt im Gesundheitswesen, Zentrum für Gesundheitsschutz, Wolframstr. 33, 35683 Dillenburg, Germany
| | - Bernd Salzberger
- Klinik f. Innere Medizin, Universitätsklinikum Regensburg, 93042 Regensburg, Germany
| | - Markus Knuf
- Dr. Horst Schmidt Klinik, Klinik für Kinder und Jugendliche, Ludwig-Erhard-Str. 100, 65199 Wiesbaden, Germany
| | | |
Collapse
|
17
|
Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol 2014; 14:315-28. [PMID: 24762827 DOI: 10.1038/nri3665] [Citation(s) in RCA: 841] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Influenza viruses are a major pathogen of both humans and animals. Recent studies using gene-knockout mice have led to an in-depth understanding of the innate sensors that detect influenza virus infection in a variety of cell types. Signalling downstream of these sensors induces distinct sets of effector mechanisms that block virus replication and promote viral clearance by inducing innate and adaptive immune responses. In this Review, we discuss the various ways in which the innate immune system uses pattern recognition receptors to detect and respond to influenza virus infection. We consider whether the outcome of innate sensor stimulation promotes antiviral resistance or disease tolerance, and propose rational treatment strategies for the acute respiratory disease that is caused by influenza virus infection.
Collapse
Affiliation(s)
- Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut 06520, USA
| | - Padmini S Pillai
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
18
|
Enhanced human immunodeficiency virus Type 1 expression and neuropathogenesis in knockout mice lacking Type I interferon responses. J Neuropathol Exp Neurol 2014; 73:59-71. [PMID: 24335529 PMCID: PMC3871403 DOI: 10.1097/nen.0000000000000026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The roles of Type I interferon (IFN) in human immunodeficiency virus Type 1 (HIV-1) neuropathogenesis are poorly understood; both protective and deleterious effects of IFN signaling have been described. We used genetically modified mice deficient in the Type I IFN receptor (IFNRKO) to analyze the progress of HIV-1 brain infection and neuropathogenesis in the absence of IFN signaling. IFNRKO and wild-type (WT) mice on the 129xSv/Ev or C57BL/6 strain backgrounds were infected systemically with EcoHIV, a chimeric HIV-1 that productively infects mice. IFNRKO mice showed higher HIV-1 expression in spleen and peritoneal macrophages and greater virus infiltration into the brain compared to WT mice. Neuropathogenesis was studied by histopathological, immunohistochemical, immunofluorescence, and polymerase chain reaction analyses of brain tissues after the virus was inoculated into the brain by stereotaxic intracerebral injection. Both IFNRKO and WT mice showed readily detectable HIV-1 and brain lesions, including microglial activation, astrocytosis, and increased expression of genes coding for inflammatory cytokines and chemokines typical of human HIV-1 brain disease. Parameters of HIV-1 neuropathogenesis, including HIV-1 expression in microglia/macrophages, were significantly greater in IFNRKO than in WT mice. Our results show unequivocally that Type I IFN signaling and responses limit HIV-1 infection and pathogenesis in the brains of mice.
Collapse
|
19
|
Adams S, Xing Z, Li J, Mendoza K, Perez D, Reed K, Cardona C. The effect of avian influenza virus NS1 allele on virus replication and innate gene expression in avian cells. Mol Immunol 2013; 56:358-68. [DOI: 10.1016/j.molimm.2013.05.236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
20
|
Liedmann S, Hrincius ER, Anhlan D, McCullers JA, Ludwig S, Ehrhardt C. New virulence determinants contribute to the enhanced immune response and reduced virulence of an influenza A virus A/PR8/34 variant. J Infect Dis 2013; 209:532-41. [PMID: 23983213 DOI: 10.1093/infdis/jit463] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The identification of amino acid motifs responsible for increased virulence and/or transmission of influenza viruses is of enormous importance to predict pathogenicity of upcoming influenza strains. We phenotypically and genotypically compared 2 variants of influenza virus A/PR/8/34 with different passage histories. The analysis revealed differences in virulence due to an altered type I interferon (IFN) induction, as evidenced by experiments using IFNAR(-/-) mice. Interestingly, these differences were not due to altered functions of the well-known viral IFN antagonists NS1 or PB1-F2. Using reassortant viruses, we showed that differences in the polymerase proteins and nucleoprotein determined the altered virulence. In particular, changes in PB1 and PA contributed to an altered host type I IFN response, indicating IFN antagonistic properties of these proteins. Thus, PB1 and PA appear to harbor previously unknown virulence markers, which may prove helpful in assessing the risk potential of emerging influenza viruses.
Collapse
Affiliation(s)
- Swantje Liedmann
- Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Li ZF, Liang YM, Lau PN, Shen W, Wang DK, Cheung WT, Xue CJ, Poon LM, Lam YW. Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials. PLoS One 2013; 8:e70869. [PMID: 23940654 PMCID: PMC3735495 DOI: 10.1371/journal.pone.0070869] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 06/26/2013] [Indexed: 11/18/2022] Open
Abstract
Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.
Collapse
Affiliation(s)
- Zhou Fang Li
- Departments of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yi Min Liang
- Departments of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Pui Ngan Lau
- Centre of Influenza Research and School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wei Shen
- Departments of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Dai Kui Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Tai Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Jason Xue
- Departments of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Lit Man Poon
- Centre of Influenza Research and School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Yun Wah Lam
- Departments of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Qu H, Yang L, Meng S, Xu L, Bi Y, Jia X, Li J, Sun L, Liu W. The differential antiviral activities of chicken interferon α (ChIFN-α) and ChIFN-β are related to distinct interferon-stimulated gene expression. PLoS One 2013; 8:e59307. [PMID: 23527158 PMCID: PMC3602166 DOI: 10.1371/journal.pone.0059307] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 02/15/2013] [Indexed: 01/26/2023] Open
Abstract
Chicken interferon α (ChIFN-α) and ChIFN-β are type I IFNs that are important antiviral cytokines in the innate immune system. In the present study, we identified the virus-induced expression of ChIFN-α and ChIFN-β in chicken fibroblast DF-1 cells and systematically evaluated the antiviral activities of recombinant ChIFN-α and ChIFN-β by cytopathic-effect (CPE) inhibition assays. We found that ChIFN-α exhibited stronger antiviral activity than ChIFN-β in terms of inhibiting the replication of vesicular stomatitis virus, Newcastle disease virus and avian influenza virus, respectively. To elucidate the mechanism of differential antiviral activities between the two ChIFNs, we measured the relative mRNA levels of IFN-stimulated genes (ISGs) in IFN-treated DF-1 cells by real-time PCR. ChIFN-α displayed greater induction potency than ChIFN-β on several ISGs encoding antiviral proteins and MHC-I, whereas ChIFN-α was less potent than ChIFN-β for inducing ISGs involved in signaling pathways. In conclusion, ChIFN-α and ChIFN-β presented differential induction potency on various sets of ISGs, and the stronger antiviral activity of ChIFN-α is likely attributed to the greater expression levels of downstream antiviral ISGs.
Collapse
Affiliation(s)
- Hongren Qu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Limin Yang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shanshan Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Lei Xu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Jia
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
- China-Japan Joint Laboratory of Molecular Immunology and Molecular Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Ito T, Connett JM, Kunkel SL, Matsukawa A. The linkage of innate and adaptive immune response during granulomatous development. Front Immunol 2013; 4:10. [PMID: 23386849 PMCID: PMC3560376 DOI: 10.3389/fimmu.2013.00010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 01/07/2013] [Indexed: 12/26/2022] Open
Abstract
Granulomas represent a spectrum of inflammatory sequestration responses that may be initiated by a variety of agents, including non-infectious environmental factors and infectious microbial pathogens. Although this reaction is designed to be protective, the associated tissue injury is often responsible for a profound degree of pathology. While many of the mechanisms that sustain the development of the granuloma are enigmatic, it is accepted that the maintenance of this inflammatory process is dependent upon dynamic interactions between an inciting agent, inflammatory mediators, various immune and inflammatory cells, and structural cells of the involved tissue. The best studied of the host-dependent processes during granuloma development is the innate and adaptive immune response. The innate immune response by antigen-presenting cells [APCs; dendritic cells (DCs) and macrophages] is initiated quickly to protect from overwhelming pathogens, but with time, can also activate the adaptive immune response. APCs, essential regulators of the innate immune response, can respond to microbial ligands through Toll-like receptors (TLRs), which function in the recognition of microbial components and play an important role to link the innate and adaptive immune responses. CD4(+) T helper (Th) cells are essential regulators of adaptive immune responses and inflammatory diseases. Recently, the Notch system has been shown to be an important bridge between APCs and T cell communication circuits. In the present review, we discuss recent findings that explore the mechanisms in the linkage of innate and adaptive immunity, including granulomatous formation though TLRs and Notch activation.
Collapse
Affiliation(s)
- Toshihiro Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Okayama, Japan
| | | | | | | |
Collapse
|
24
|
Korth MJ, Tchitchek N, Benecke AG, Katze MG. Systems approaches to influenza-virus host interactions and the pathogenesis of highly virulent and pandemic viruses. Semin Immunol 2012; 25:228-39. [PMID: 23218769 PMCID: PMC3596458 DOI: 10.1016/j.smim.2012.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/08/2012] [Indexed: 12/14/2022]
Abstract
Influenza virus research has recently undergone a shift from a virus-centric perspective to one that embraces the full spectrum of virus-host interactions and cellular signaling events that determine disease outcome. This change has been brought about by the increasing use and expanding scope of high-throughput molecular profiling and computational biology, which together fuel discovery in systems biology. In this review, we show how these approaches have revealed an uncontrolled inflammatory response as a contributor to the extreme virulence of the 1918 pandemic and avian H5N1 viruses, and how this response differs from that induced by the 2009 H1N1 viruses responsible for the most recent influenza pandemic. We also discuss how new animal models, such as the Collaborative Cross mouse systems genetics platform, are key to the necessary systematic investigation of the impact of host genetics on infection outcome, how genome-wide RNAi screens have identified hundreds of cellular factors involved in viral replication, and how systems biology approaches are making possible the rational design of new drugs and vaccines against an ever-evolving respiratory virus.
Collapse
Affiliation(s)
- Marcus J Korth
- Department of Microbiology, School of Medicine, and Washington National Primate Research Center, University of Washington, Seattle, WA 98195-8070, USA
| | | | | | | |
Collapse
|
25
|
Kane M, Golovkina T. Realities of virus sensing. Microbes Infect 2012; 14:1017-25. [DOI: 10.1016/j.micinf.2012.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 12/24/2022]
|
26
|
Shoemaker JE, Fukuyama S, Eisfeld AJ, Muramoto Y, Watanabe S, Watanabe T, Matsuoka Y, Kitano H, Kawaoka Y. Integrated network analysis reveals a novel role for the cell cycle in 2009 pandemic influenza virus-induced inflammation in macaque lungs. BMC SYSTEMS BIOLOGY 2012; 6:117. [PMID: 22937776 PMCID: PMC3481363 DOI: 10.1186/1752-0509-6-117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/18/2012] [Indexed: 12/17/2022]
Abstract
Background Annually, influenza A viruses circulate the world causing wide-spread sickness, economic loss, and death. One way to better defend against influenza virus-induced disease may be to develop novel host-based therapies, targeted at mitigating viral pathogenesis through the management of virus-dysregulated host functions. However, mechanisms that govern aberrant host responses to influenza virus infection remain incompletely understood. We previously showed that the pandemic H1N1 virus influenza A/California/04/2009 (H1N1; CA04) has enhanced pathogenicity in the lungs of cynomolgus macaques relative to a seasonal influenza virus isolate (A/Kawasaki/UTK-4/2009 (H1N1; KUTK4)). Results Here, we used microarrays to identify host gene sequences that were highly differentially expressed (DE) in CA04-infected macaque lungs, and we employed a novel strategy – combining functional and pathway enrichment analyses, transcription factor binding site enrichment analysis and protein-protein interaction data – to create a CA04 differentially regulated host response network. This network describes enhanced viral RNA sensing, immune cell signaling and cell cycle arrest in CA04-infected lungs, and highlights a novel, putative role for the MYC-associated zinc finger (MAZ) transcription factor in regulating these processes. Conclusions Our findings suggest that the enhanced pathology is the result of a prolonged immune response, despite successful virus clearance. Most interesting, we identify a mechanism which normally suppresses immune cell signaling and inflammation is ineffective in the pH1N1 virus infection; a dyregulatory event also associated with arthritis. This dysregulation offers several opportunities for developing strain-independent, immunomodulatory therapies to protect against future pandemics.
Collapse
Affiliation(s)
- Jason E Shoemaker
- ERATO Infection-Induced Host Responses Project, Saitama, 332-0012, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
New Progress of Glycan as Receptors for Influenza Virus*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Ito T, Connett JM, Kunkel SL, Matsukawa A. Notch system in the linkage of innate and adaptive immunity. J Leukoc Biol 2012; 92:59-65. [PMID: 22459946 PMCID: PMC3382313 DOI: 10.1189/jlb.1011529] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 01/23/2023] Open
Abstract
The lung is one of the most immunologically challenged organs and can be affected by a number of pathogens, including bacteria, virus, fungi, and parasites. The development and chronicity of pulmonary infection are determined by the early innate response to the pathogenic stimuli and are regulated at multiple levels. Initial studies have indicated that the interaction of Notch and Notch ligands plays a critical role during development, and further, the Notch system is an important bridge between APCs and T cell communication circuits. APCs are essential regulators of the innate immune response. They can respond to PAMPs through PRRs, which function in the recognition of pathogenic components and play an important role in the innate and adaptive immune response. T cells are essential regulators of adaptive immune responses and infectious diseases. However, the role of the Notch system in the cross-talk between APC and T cells during pulmonary infection is still poorly understood. In the present review, we discuss recent findings that explore the mechanisms underlying the role of Notch signaling in the linkage of innate and adaptive immunity, including pulmonary infection though PPRs and Notch activation.
Collapse
Affiliation(s)
- Toshihiro Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | | | | | | |
Collapse
|
29
|
Activation of innate immune responses in the central nervous system during reovirus myelitis. J Virol 2012; 86:8107-18. [PMID: 22623770 DOI: 10.1128/jvi.00171-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reovirus infection of the murine spinal cord (SC) was used as a model system to investigate innate immune responses during viral myelitis, including the activation of glia (microglia and astrocytes) and interferon (IFN) signaling and increased expression of inflammatory mediators. Reovirus myelitis was associated with the pronounced activation of SC glia, as evidenced by characteristic changes in cellular morphology and increased expression of astrocyte and microglia-specific proteins. Expression of inflammatory mediators known to be released by activated glia, including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), chemokine (C-C motif) ligand 5 (CCL 5), chemokine (C-X-C motif) ligand 10 (CXCL10), and gamma interferon (IFN-γ), was also significantly upregulated in the SC of reovirus-infected animals compared to mock-infected controls. Reovirus infection of the mouse SC was also associated with increased expression of genes involved in IFN signaling, including IFN-stimulated genes (ISG). Further, reovirus infection of mice deficient in the expression of the IFN-α/β receptor (IFNAR(-/-)) resulted in accelerated mortality, demonstrating that IFN signaling is protective during reovirus myelitis. Experiments performed in ex vivo SC slice cultures (SCSC) confirmed that resident SC cells contribute to the production of at least some of these inflammatory mediators and ISG during reovirus infection. Microglia, but not astrocytes, were still activated, and glia-associated inflammatory mediators were still produced in reovirus-infected INFAR(-/-) mice, demonstrating that IFN signaling is not absolutely required for these neuroinflammatory responses. Our results suggest that activated glia and inflammatory mediators contribute to a local microenvironment that is deleterious to neuronal survival.
Collapse
|
30
|
Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection. J Virol 2012; 86:5422-36. [PMID: 22398282 DOI: 10.1128/jvi.06757-11] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Airway epithelial cells (AECs) provide the first line of defense in the respiratory tract and are the main target of respiratory viruses. Here, using oligonucleotide and protein arrays, we analyze the infection of primary polarized human AEC cultures with influenza virus and respiratory syncytial virus (RSV), and we show that the immune response of AECs is quantitatively and qualitatively virus specific. Differentially expressed genes (DEGs) specifically induced by influenza virus and not by RSV included those encoding interferon B1 (IFN-B1), type III interferons (interleukin 28A [IL-28A], IL-28B, and IL-29), interleukins (IL-6, IL-1A, IL-1B, IL-23A, IL-17C, and IL-32), and chemokines (CCL2, CCL8, and CXCL5). Lack of type I interferon or STAT1 signaling decreased the expression and secretion of cytokines and chemokines by the airway epithelium. We also observed strong basolateral polarization of the secretion of cytokines and chemokines by human and murine AECs during infection. Importantly, the antiviral response of human AECs to influenza virus or to RSV correlated with the infection signature obtained from peripheral blood mononuclear cells (PBMCs) isolated from patients with acute influenza or RSV bronchiolitis, respectively. IFI27 (also known as ISG12) was identified as a biomarker of respiratory virus infection in both AECs and PBMCs. In addition, the extent of the transcriptional perturbation in PBMCs correlated with the clinical disease severity. Our results demonstrate that the human airway epithelium mounts virus-specific immune responses that are likely to determine the subsequent systemic immune responses and suggest that the absence of epithelial immune mediators after RSV infection may contribute to explaining the inadequacy of systemic immunity to the virus.
Collapse
|
31
|
Ito T, Allen RM, Carson WF, Schaller M, Cavassani KA, Hogaboam CM, Lukacs NW, Matsukawa A, Kunkel SL. The critical role of Notch ligand Delta-like 1 in the pathogenesis of influenza A virus (H1N1) infection. PLoS Pathog 2011; 7:e1002341. [PMID: 22072963 PMCID: PMC3207886 DOI: 10.1371/journal.ppat.1002341] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/14/2011] [Indexed: 12/28/2022] Open
Abstract
Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4+and CD8+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection. Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. Both innate and acquired immunity are essential for protection against influenza virus, and Notch and Notch ligands provide a key bridge between innate and acquired immunity. However, the role of Notch system during influenza virus infection is unknown. Here, we show that Notch ligand Delta-like 1 (Dll1) expression was up-regulated in influenza virus H1N1 challenged macrophages, and was dependent on both retinoic-acid–inducible protein I (RIG-I) and IFNα receptor (IFNαR)-mediated pathways. IFNαR-deficient mice challenged with influenza virus in vivo also display a profoundly impaired Dll1 expression with increased mortality and abrogated IFN-γ production. Treatment of WT mice during influenza infection, with either neutralizing antibodies specific for Dll1 or a γ-secretase inhibitor (GSI), which blocks Notch signaling, resulted in increased mortality, impaired viral clearance, and lower IFN-γ production. In addition, Dll1 specifically regulated IFN-γ production from both CD4+and CD8+T cells in vitro. Together, these results suggest that Notch signaling through macrophage-dependent Dll1 is critical in providing an anti-viral response during influenza infection by linking innate and acquired immunity.
Collapse
Affiliation(s)
- Toshihiro Ito
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ronald M. Allen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - William F. Carson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Matthew Schaller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Karen A. Cavassani
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Cory M. Hogaboam
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
32
|
Goodman AG, Tanner BCW, Chang ST, Esteban M, Katze MG. Virus infection rapidly activates the P58(IPK) pathway, delaying peak kinase activation to enhance viral replication. Virology 2011; 417:27-36. [PMID: 21612809 PMCID: PMC3152592 DOI: 10.1016/j.virol.2011.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 01/06/2023]
Abstract
Previously we showed that the cellular protein P58(IPK) contributes to viral protein synthesis by decreasing the activity of the anti-viral protein, PKR. Here, we constructed a mathematical model to examine the P58(IPK) pathway and investigated temporal behavior of this biological system. We find that influenza virus infection results in the rapid activation of P58(IPK) which delays and reduces maximal PKR and eIF2α phosphorylation, leading to increased viral protein levels. We confirmed that the model could accurately predict viral and host protein levels at extended time points by testing it against experimental data. Sensitivity analysis of relative reaction rates describing P58(IPK) activity and the downstream proteins through which it functions helped identify processes that may be the most beneficial targets to thwart virus replication. Together, our study demonstrates how computational modeling can guide experimental design to further understand a specific metabolic signaling pathway during viral infection in a mammalian system.
Collapse
Affiliation(s)
- Alan G Goodman
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| | | | | | | | | |
Collapse
|
33
|
Zhang J, Tarbet EB, Feng T, Shi Z, Van Kampen KR, Tang DCC. Adenovirus-vectored drug-vaccine duo as a rapid-response tool for conferring seamless protection against influenza. PLoS One 2011; 6:e22605. [PMID: 21818346 PMCID: PMC3144911 DOI: 10.1371/journal.pone.0022605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/25/2011] [Indexed: 11/19/2022] Open
Abstract
Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Vaxin, Inc., Birmingham, Alabama, United States of America
| | - E. Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, Utah, United States of America
| | - Tsungwei Feng
- Vaxin, Inc., Birmingham, Alabama, United States of America
| | - Zhongkai Shi
- Vaxin, Inc., Birmingham, Alabama, United States of America
| | | | - De-chu C. Tang
- Vaxin, Inc., Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
34
|
A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J Virol 2010; 85:652-62. [PMID: 21084483 DOI: 10.1128/jvi.01987-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PB1-F2 protein of influenza A virus can contribute to viral pathogenesis of influenza virus strains. Of note, an N66S amino acid mutation in PB1-F2 has been shown to increase the pathogenesis associated with H5N1 Hong Kong/1997 and H1N1 Brevig Mission/1918 influenza viruses. To identify the mechanism of enhanced immunopathology, we evaluated the host response to two isogenic viruses that differ by a single amino acid at position 66 of the PB1-F2 protein. Various components of the adaptive immune response were ruled out as factors contributing to pathogenesis through knockout mouse studies. Transcriptional profiling of lungs from PB1-F2 66S-infected mice revealed an early delay in innate immune responses. In particular, enhanced activation of type I interferon (IFN) pathway genes, including IFN-β, RIG-I, and numerous interferon-inducible genes, was not observed until day 3 postinfection. The N66S mutant virus caused increased cellularity in the lungs, as a result of monocyte and neutrophil infiltration. Furthermore, numerous cytokines and chemokines related to monocyte and neutrophil migration and maturation were upregulated. The cellular infiltration and increased cytokine expression corresponded to increased PB1-F2 66S titer. These data suggest that PB1-F2 N66S may contribute to the delay of innate immune responses, allowing for unchecked viral growth and ultimately severe immunopathology observed in the lungs.
Collapse
|
35
|
Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection. J Virol 2010; 84:11297-309. [PMID: 20702617 DOI: 10.1128/jvi.01130-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) infection can cause the development of severe end-stage lung disease characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. The mechanisms by which pulmonary lesions and fibrosis are generated during SARS-CoV infection are not known. Using high-throughput mRNA profiling, we examined the transcriptional response of wild-type (WT), type I interferon receptor knockout (IFNAR1-/-), and STAT1 knockout (STAT1-/-) mice infected with a recombinant mouse-adapted SARS-CoV (rMA15) to better understand the contribution of specific gene expression changes to disease progression. Despite a deletion of the type I interferon receptor, strong expression of interferon-stimulated genes was observed in the lungs of IFNAR1-/- mice, contributing to clearance of the virus. In contrast, STAT1-/- mice exhibited a defect in the expression of interferon-stimulated genes and were unable to clear the infection, resulting in a lethal outcome. STAT1-/- mice exhibited dysregulation of T-cell and macrophage differentiation, leading to a TH2-biased immune response and the development of alternatively activated macrophages that mediate a profibrotic environment within the lung. We propose that a combination of impaired viral clearance and T-cell/macrophage dysregulation causes the formation of prefibrotic lesions in the lungs of rMA15-infected STAT1-/- mice.
Collapse
|
36
|
Kohlmeier JE, Cookenham T, Roberts AD, Miller SC, Woodland DL. Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 2010; 33:96-105. [PMID: 20637658 PMCID: PMC2908370 DOI: 10.1016/j.immuni.2010.06.016] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/03/2010] [Accepted: 05/19/2010] [Indexed: 12/26/2022]
Abstract
Memory CD8(+) T cells in the lung airways provide protection from secondary respiratory virus challenge by limiting early viral replication. Here, we demonstrate that although airway-resident memory CD8(+) T cells were poorly cytolytic, memory CD8(+) T cells recruited to the airways early during a recall response showed markedly enhanced cytolytic ability. This enhanced lytic activity did not require cognate antigen stimulation, but rather was dependent on STAT1 transcription factor signaling through the interferon-alpha receptor (Ifnar1), resulting in the antigen-independent expression of granzyme B protein in both murine and human virus-specific T cells. Signaling through Ifnar1 was required for the enhanced lytic activity and control of early viral replication by memory CD8(+) T cells in the lung airways. These findings demonstrate that innate inflammatory signals act directly on memory T cells, enabling them to rapidly destroy infected host cells once they enter infected tissues.
Collapse
Affiliation(s)
- Jacob E Kohlmeier
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, USA.
| | | | | | | | | |
Collapse
|