1
|
Fu K, Yang X, Zhang M, Yin R. The role of innate immunity triggered by HPV infection in promoting cervical lesions. J Mol Med (Berl) 2025:10.1007/s00109-025-02553-w. [PMID: 40411606 DOI: 10.1007/s00109-025-02553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/26/2025] [Accepted: 05/05/2025] [Indexed: 05/26/2025]
Abstract
Innate immunity is the immune system that organisms possess from birth. It is primarily responsible for the rapid, nonspecific recognition of pathogens when they invade, activating the host's immune response to eliminate. Cervical cancer is one of the most well-known tumors caused by human papillomavirus (HPV) infection. As the first line of defense against pathogens, innate immunity plays a crucial role in the response to HPV invasion, and there has been significant research in this area in recent years. The findings suggest that innate immune responses not only contribute to the clearance of HPV but may also facilitate the spread of the virus and the carcinogenic transformation of cervical epithelial cells. In this review, we comprehensively examine the activation of innate immune responses during HPV infection, the mechanisms by which HPV evades these immune defenses, and the role of innate immunity in promoting cervical intraepithelial neoplasia. Additionally, we explore the characteristics of innate immune responses within the tumor microenvironment of cervical cancer. Furthermore, we summarize recent advances in understanding the various mechanisms by which innate immune responses can be activated, with a focus on potential therapeutic implications. By reviewing the latest research, this article aims to provide valuable insights and stimulate further investigation into the role of innate immunity in HPV-associated cervical lesions, potentially leading to more effective strategies for prevention and treatment in the future.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Laboratory of Molecular Epidemiology of Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mengpei Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Laboratory of Molecular Epidemiology of Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.
- Laboratory of Molecular Epidemiology of Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Chen HM, Zhang J, Li JX, Li CH, Li YF, Zhang Q, Kong B, Wang PH. The viral early protein 4 of human papillomavirus type 16 suppresses innate antiviral immunity. Int J Biol Macromol 2025; 315:144542. [PMID: 40409624 DOI: 10.1016/j.ijbiomac.2025.144542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 05/13/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Although non-structural proteins of HPV are known to modulate interferon (IFN) responses, the specific role of HPV16 E4 in immune evasion remains poorly defined. In this study, we demonstrated that HPV16 E4 inhibited IFN and IFN-stimulated gene (ISG) expression induced by VSV, MHV, SeV, HSV1, and HPV16 infection. Plaque assays revealed that E4-expressing cells produced higher titers of VSV and HSV1, supporting its role in promoting viral replication. Dual-luciferase reporter assays and RT-qPCR analyses confirmed that HPV16 E4 attenuates IFN responses by targeting key antiviral pathways, including RIG-I/MDA5-MAVS, TLR3-TRIF, and cGAS-STING. Coimmunoprecipitation and immunoblotting assays revealed that E4 interacted with RIG-I, MDA5, MAVS, TRIF, TBK1, and IRF3, thereby inhibiting the phosphorylation of TBK1 and IRF3. Confocal microscopy and nuclear-cytoplasmic fractionation demonstrated that E4 impaired IRF3 nuclear translocation, a pivotal step in IFN signaling. E4 also suppressed the JAK-STAT pathway, resulting in reduced ISG expression. Furthermore, E4 disrupted ISGF3 complex formation by interacting with STAT2 and IRF9, thereby preventing the nuclear translocation of STAT1, STAT2, and IRF9. Collectively, these mechanisms facilitate viral replication and enable evasion of host antiviral immunity. These findings advance our understanding of HPV immune evasion strategies and suggest novel therapeutic targets for managing HPV-related diseases.
Collapse
Affiliation(s)
- Hui-Min Chen
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Jing Zhang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Jin-Xin Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Cheng-Hao Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yun-Fang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China; Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China; Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Pei-Hui Wang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Obanya DI, Wootton LM, Morgan EL. Advances in understanding the mechanisms of the human papillomavirus oncoproteins. Biochem Soc Trans 2025:BST20253041. [PMID: 40380881 DOI: 10.1042/bst20253041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
High-risk human papillomaviruses (HPVs) are responsible for almost all cervical cancer cases and a growing number of oropharyngeal and anogenital cancers. The primary HPV oncoproteins, E6 and E7, act together to manipulate multiple cellular pathways that can ultimately result in malignant transformation. This includes the deregulation of several signalling pathways that regulate cell proliferation, cell cycle progression and cell survival. Although multiple functions of HPV E6 and E7 in driving oncogenesis are well known, recent studies have uncovered novel oncogenic functions of the HPV oncoproteins, including the manipulation of emerging mechanisms of cancer development, such as epigenetic modifications, cellular plasticity and genomic instability. This review explores current advances in understanding how the HPV oncoproteins interact with these cellular processes, highlighting potential therapeutic targets in HPV-associated cancers.
Collapse
Affiliation(s)
| | | | - Ethan L Morgan
- School of Life Sciences, University of Sussex, Brighton, U.K
| |
Collapse
|
4
|
Baba SK, Alblooshi SSE, Yaqoob R, Behl S, Al Saleem M, Rakha EA, Malik F, Singh M, Macha MA, Akhtar MK, Houry WA, Bhat AA, Al Menhali A, Zheng ZM, Mirza S. Human papilloma virus (HPV) mediated cancers: an insightful update. J Transl Med 2025; 23:483. [PMID: 40301924 PMCID: PMC12039116 DOI: 10.1186/s12967-025-06470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
Human papillomavirus (HPV), a DNA virus, is a well-documented causative agent of several cancers, including cervical, vulvar, vaginal, penile, anal, and head & neck cancers. Major factors contributing to HPV-related cancers include persistent infection and the oncogenic potential of particular HPV genotypes. High-risk HPV strains, particularly HPV-16 and HPV-18, are responsible for over 70% of cervical cancer cases worldwide, as well as a significant proportion of other genital and head and neck cancers. At the molecular level, the oncogenic activity of these viruses is driven by the overexpression of E6 and E7 oncoproteins. These oncoproteins dysregulate the cell cycle, inhibit apoptosis, and promote the accumulation of DNA damage, ultimately transforming normal cells into cancerous ones. This review aims to provide a comprehensive overview of the recent advances in HPV-related cancer biology and epidemiology. The review highlights the molecular pathways of HPV-driven carcinogenesis, focusing on the role of viral oncoproteins in altering host cell targets and disrupting cellular signalling pathways. The review explores the therapeutic potential of these viral proteins, and discusses current diagnostic and treatment strategies for HPV-associated cancers. Furthermore, the review highlights the critical role of HPV in the development of various malignancies, emphasizing the persistent challenges in combating these cancers despite advancements in vaccination and therapeutic strategies. We also emphasize recent breakthroughs in utilizing biomarkers to monitor cancer therapy responses, such as mRNAs, miRNAs, lncRNAs, proteins, and genetic markers. We hope this review will serve as a valuable resource for researchers working on HPV, providing insights that can guide future investigations into this complex virus, which continues to be a major contributor to global morbidity and mortality.
Collapse
Affiliation(s)
- Sadaf Khursheed Baba
- Department of Chemistry, College of Science (COS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates
| | | | - Reem Yaqoob
- Department of Chemistry, College of Science (COS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates
| | - Shalini Behl
- Omics Centre of Excellence, M42 Health, Abu Dhabi, United Arab Emirates
| | - Mansour Al Saleem
- Department of Applied Medical Sciences, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Emad A Rakha
- Histopathology Department, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, Jammu and Kashmir, 190005, India
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Mohammed Kalim Akhtar
- Department of Chemistry, College of Science (COS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Ajaz A Bhat
- Metabolic and Mendelian Disorders Clinical Research Program, Precision OMICs Research & Translational Science, Sidra Medicine, Doha, Qatar
| | - Asma Al Menhali
- Department of Biology, College of Science (COS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sameer Mirza
- Department of Chemistry, College of Science (COS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates.
- Zayed Bin Sultan Centre for Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.
| |
Collapse
|
5
|
Li JX, Zhang J, Li CH, Li YF, Chen HM, Li T, Zhang Q, Kong BH, Wang PH. Human papillomavirus E1 proteins inhibit RIG-I/MDA5-MAVS, TLR3-TRIF, cGAS-STING, and JAK-STAT signaling pathways to evade innate antiviral immunity. Front Immunol 2025; 16:1549766. [PMID: 40330484 PMCID: PMC12052760 DOI: 10.3389/fimmu.2025.1549766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
Human papillomavirus (HPV) is a major etiological agent of both malignant and benign lesions, with high-risk types, such as HPV16 and HPV18, being strongly linked to cervical cancer, while low-risk types like HPV11 are associated with benign conditions. While viral proteins such as E6 and E7 are well-established regulators of immune evasion, the role of E1 in modulating the host antiviral responses remains insufficiently characterized. This study investigates the immunomodulatory functions of HPV16 and HPV11 E1 in suppressing innate antiviral immune signaling pathways. Through a combination of RT-qPCR and luciferase reporter assays, we demonstrate that E1 suppresses the production of interferons and interferon-stimulated genes triggered by viral infections and the activation of RIG-I/MDA5-MAVS, TLR3-TRIF, cGAS-STING, and JAK-STAT pathways. Co-immunoprecipitation assays reveal that E1 interacts directly with key signaling molecules within these pathways. E1 also impairs TBK1 and IRF3 phosphorylation and obstructs the nuclear translocation of IRF3, thereby broadly suppressing IFN responses. Additionally, E1 disrupts the JAK-STAT pathway by binding STAT1, which prevents the assembly and nuclear localization of the ISGF3 complex containing STAT1, STAT2, and IRF9, thereby further diminishing antiviral response. These findings establish E1 as a pivotal regulator of immune evasion and suggest its potential as a novel therapeutic target to enhance antiviral immunity in HPV-associated diseases.
Collapse
MESH Headings
- Humans
- Immunity, Innate
- Signal Transduction/immunology
- Interferon-Induced Helicase, IFIH1/metabolism
- Interferon-Induced Helicase, IFIH1/immunology
- DEAD Box Protein 58/metabolism
- DEAD Box Protein 58/immunology
- Membrane Proteins/metabolism
- Membrane Proteins/immunology
- Nucleotidyltransferases/metabolism
- Nucleotidyltransferases/immunology
- Toll-Like Receptor 3/metabolism
- Toll-Like Receptor 3/immunology
- Immune Evasion
- Papillomavirus Infections/immunology
- Papillomavirus Infections/virology
- Human papillomavirus 16/immunology
- Receptors, Immunologic
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/metabolism
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/immunology
- Human papillomavirus 11/immunology
- HEK293 Cells
- STAT Transcription Factors/metabolism
- Interferon Regulatory Factor-3
- Human Papillomavirus Viruses
Collapse
Affiliation(s)
- Jin-Xin Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Zhang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Cheng-Hao Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yun-Fang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui-Min Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Bei-Hua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Pei-Hui Wang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Li JX, Zhang J, Li CH, Zhang Q, Kong B, Wang PH. Human papillomavirus E2 proteins suppress innate antiviral signaling pathways. Front Immunol 2025; 16:1555629. [PMID: 40264759 PMCID: PMC12011818 DOI: 10.3389/fimmu.2025.1555629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Human papillomavirus (HPV) is a major cause of cancers and benign lesions. High-risk (HR) types, including HPV16 and HPV18, are strongly implicated in cervical and other malignancies, while low-risk (LR) types, such as HPV11, are predominantly associated with benign conditions. Although the immune evasion of HPV oncoproteins E6 and E7 are extensively studied, the immunomodulatory functions of the E2 protein remain poorly underexplored. This study elucidates the role of HPV11 and HPV16 E2 proteins in modulating innate immune responses, focusing on their interaction with key innate antiviral signaling pathways. We demonstrate that HPV11 and HPV16 E2 proteins effectively suppress the activation of pivotal antiviral signaling pathways, including RIG-I/MDA5-MAVS, TLR3-TRIF, cGAS-STING, and JAK-STAT. Mechanistic analyses reveal that E2 proteins interact with the core components of type I interferon (IFN)-inducing pathways, inhibiting IRF3 phosphorylation and nuclear translocation, thereby attenuating IFN expression. Additionally, E2 disrupts the JAK-STAT signaling cascade by preventing the assembly of the ISGF3 complex, comprising STAT1, STAT2, and IRF9, ultimately inhibiting the transcription of interferon-stimulated genes (ISGs). These findings underscore the broader immunosuppressive role of HPV E2 proteins, complementing the well-established immune evasion mechanisms mediated by E6 and E7. This work advances our understanding of HPV-mediated immune evasion and positions the E2 protein as a promising target for therapeutic strategies aimed at augmenting antiviral immunity in HPV-associated diseases.
Collapse
Affiliation(s)
- Jin-Xin Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Zhang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Cheng-Hao Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Pei-Hui Wang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Miyauchi S, Roy S, Boutros N, Sharabi AB. Virus-mediated immunosuppression in head and neck cancer. Oncogene 2025; 44:933-943. [PMID: 40074885 DOI: 10.1038/s41388-025-03295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 03/14/2025]
Abstract
Head and neck cancer is the seventh most common cancer worldwide and its development is associated with viral infection. Human papillomavirus (HPV) is the major cause of oropharyngeal cancer and encodes three known oncoproteins, E5, E6, and E7. Epstein-Barr virus (EBV), which is the causative agent of most nasopharyngeal carcinoma, also employs several immunosuppressive mechanisms that contribute to the development of the disease. In this review, we synthesize and discuss several mechanisms used by these viruses to evade and escape the host immune system. In particular, we focus on the evasive tactics of HPV E5 which, we argue, is critical to establishing persistent infection and the development and progression of carcinomas. Importantly the mechanisms by which these viruses suppress immune responses may also play a key role in resistance to checkpoint blockade immunotherapies and thus impact patient outcomes.
Collapse
Affiliation(s)
- Sayuri Miyauchi
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Souvick Roy
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Nathalie Boutros
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Zhang Y, Qiu K, Ren J, Zhao Y, Cheng P. Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use. Signal Transduct Target Ther 2025; 10:44. [PMID: 39856040 PMCID: PMC11760352 DOI: 10.1038/s41392-024-02083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/19/2024] [Accepted: 11/24/2024] [Indexed: 01/27/2025] Open
Abstract
Human papillomaviruses, particularly high-risk human papillomaviruses, have been universally considered to be associated with the oncogenesis and progression of various cancers. The genome of human papillomaviruses is circular, double-stranded DNA that encodes early and late proteins. Each of the proteins is of crucial significance in infecting the epithelium of host cells persistently and supporting viral genome integrating into host cells. Notably, E6 and E7 proteins, classified as oncoproteins, trigger the incidence of cancers by fostering cell proliferation, hindering apoptosis, evading immune surveillance, promoting cell invasion, and disrupting the balance of cellular metabolism. Therefore, targeting human papillomaviruses and decoding molecular mechanisms by which human papillomaviruses drive carcinogenesis are of great necessity to better treat human papillomaviruses-related cancers. Human papillomaviruses have been applied clinically to different facets of human papillomavirus-related cancers, including prevention, screening, diagnosis, treatment, and prognosis. Several types of prophylactic vaccines have been publicly utilized worldwide and have greatly decreased the occurrence of human papillomavirus-related cancers, which have benefited numerous people. Although various therapeutic vaccines have been developed and tested clinically, none of them have been officially approved to date. Enhancing the efficacy of vaccines and searching for innovative technologies targeting human papillomaviruses remain critical challenges that warrant continuous research and attention in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ping Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
Tolbert E, Dacus D, Pollina R, Wallace NA. Cutaneous human papillomavirus E6 impairs the cGAS-STING pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625575. [PMID: 39677810 PMCID: PMC11642751 DOI: 10.1101/2024.11.29.625575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Beta genus human papillomaviruses (β-HPVs) are ubiquitous double stranded DNA (dsDNA) viruses that may promote skin cancers by destabilizing the host genome. Supporting this, expression of the E6 gene from a β-HPV (β-HPV 8 E6) results in increased micronuclei that should induce an innate immune response that eliminates these cells. Yet, β-HPV 8 E6 promotes rather than restricts proliferation. We hypothesize that β-HPV 8 E6 accomplishes this by attenuating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, an innate immune pathway that becomes activated in response to cytosolic micronuclear dsDNA. Here, we show that in response to stimulation by transfection of pLVX-GFP plasmid, β-HPV 8 E6 reduced the magnitude and intensity of cGAS-STING pathway activation in immunoblot experiments. These data also demonstrate that impairment of the cGAS-STING pathway is strongest downstream of STING phosphorylation. Further, RNA-sequencing suggests that β-HPV 8 E6 downregulates other innate immune pathways. We also show that cGAS is recruited to micronuclei induced by β-HPV 8 E6. These data suggest a mechanism by which β-HPV 8 E6 facilitates proliferation of cells destabilized by micronuclei and support the hypothesis that the prevalence of β-HPV infections is in part due to the impairment of the cGAS-STING innate immune response.
Collapse
Affiliation(s)
- Emily Tolbert
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Dalton Dacus
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Rose Pollina
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas A Wallace
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
10
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024; 43:1315-1336. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
11
|
Sannigrahi MK, Raghav L, Diab A, Basu D. The imprint of viral oncoproteins on the variable clinical behavior among human papilloma virus-related oropharyngeal squamous cell carcinomas. Tumour Virus Res 2024; 18:200295. [PMID: 39489416 PMCID: PMC11584912 DOI: 10.1016/j.tvr.2024.200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human papilloma virus-related (HPV+) oropharyngeal squamous cell carcinomas (OPSCCs) are variable in their progression, immune landscape, treatment responses, and clinical outcomes. Their behavior is impacted not only by differences in host genomic alterations but also by diversity in levels and activity of HPV-encoded oncoproteins. Striking differences in HPV mRNA levels are found among HPV+ OPSCCs and likely derive in part from variations in the structurally diverse mix of integrated and episomal HPV genomes they often contain. Viral oncoprotein levels and function are also impacted by differential splicing of the two long polycistronic transcripts of HPV16, the HPV type within most HPV+ OPSCCs. Further variation in viral oncoprotein function arises from the distinct lineages and sub-lineages of HPV16, which encode polymorphisms in functionally important portions of oncogenes. Here we review the limited current knowledge linking HPV mRNA expression and splicing to differences in oncoprotein function that likely influence OPSCC behavior. We also summarize the evolving understanding of HPV16 physical genome state and genetic variants and their potential contributions to HPV oncoprotein levels and function. Addressing considerable remaining challenges in defining the quantitative and qualitative imprint of HPV oncoproteins on each OPSCC holds promise to guide personalization of therapy for this disease.
Collapse
Affiliation(s)
- Malay K Sannigrahi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lovely Raghav
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahmed Diab
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Devraj Basu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Chen X, Liu Y, Luo X, Pan T, Zhang T, Hu L, Wu B, Liu W, Wei F. HPV16 E6-induced M2 macrophage polarization in the cervical microenvironment via exosomal miR-204-5p. Sci Rep 2024; 14:23725. [PMID: 39390116 PMCID: PMC11467391 DOI: 10.1038/s41598-024-74399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
The persistent infection of high-risk human papillomavirus (HPV) and the progression of cervical cancer necessitate the involvement of microenvironmental immunity. As cervical lesions advance, there is an observed increase in the infiltration of type 2 (M2) macrophages. However, the precise mechanism driving this increased infiltration of M2 macrophages remains unclear. In this study, we investigated the role of exosomes in polarising M2 macrophages in cervical lesions associated with HPV E6. Through the analysis of bioinformatics data and clinical specimens, we discovered a positive correlation between HPV E6/E7 mRNA copy number and the level of M2 macrophage infiltration. Exosomes derived from HPV E6 overexpressed (HPV E6+) cervical squamous cell carcinoma (CESC) cells were found to induce the polarisation of macrophages towards M2 type. Specifically, miR-204-5p, enriched in HPV E6 + CESC exosomes, was transported into macrophages and triggered M2 macrophage polarisation by inhibiting JAK2. The clinical relevance of exosomal miR-204-5p in the progression of cervical lesions was validated through serum samples from 35 cases. Exosomal miR-204-5p emerges as a critical factor influencing M2 macrophage polarisation and is correlated with the severity of cervical lesions. Consequently, miR-204-5p could be used as a potential treatment and a candidate biomarker for cervical lesions.
Collapse
Affiliation(s)
- Xiaohang Chen
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518116, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, 518005, China
| | - Yanan Liu
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518116, China
| | - Xiaojin Luo
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518116, China
| | - Teng Pan
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518116, China
| | - Tong Zhang
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518116, China
| | - Liang Hu
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518116, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, 518005, China.
| | - Weiqiang Liu
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518116, China.
| | - Fengxiang Wei
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518116, China.
| |
Collapse
|
13
|
Liu Y, Niu M, Luo Y, Pan M, Hong S. DNA damage response and inflammatory response: Two traffic lights for HPVs on the road to transformation. J Med Virol 2024; 96:e29815. [PMID: 39073137 DOI: 10.1002/jmv.29815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Human papillomaviruses (HPVs) are non-enveloped double-stranded DNA viruses. When HPV infection persists, infected tissues can develop many HPV-related diseases such as cervical cancer and head and neck squamous cell carcinoma. To establish their persistent infection, HPVs have evolved mechanisms to manipulate the host cellular processes such as DNA damage response (DDR), which includes homologous recombination, nonhomologous end joining, and microhomology-mediated end joining. Additionally, HPVs utilize host inflammatory processes to facilitate their life cycles. Here, we bridge the concepts of DDR and inflammatory response, and discuss how HPV proteins orchestrate a sophisticated manipulation of DDR and inflammation to promote their viral replication, ultimately fostering the progression of infected cells towards oncogenic transformation to malignancy.
Collapse
Affiliation(s)
- Yanfei Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Mengda Niu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ying Luo
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyuan Hong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Jayakrishnan T, Yadav D, Huffman BM, Cleary JM. Immunological Checkpoint Blockade in Anal Squamous Cell Carcinoma: Dramatic Responses Tempered By Frequent Resistance. Curr Oncol Rep 2024; 26:967-976. [PMID: 38861124 DOI: 10.1007/s11912-024-01564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
PURPOSE OF REVIEW Squamous cell carcinoma of the anus (SCCA) is an HPV-associated malignancy that has limited treatment options. Immunotherapy has expanded these options and here we review current and emerging immunotherapeutic approaches. RECENT FINDINGS Multiple studies of single-agent anti-PD1/PD-L1 immunotherapy have demonstrated a modest response rate of approximately 10% to 15%. While a minority of patients (~5%) with SCCA experience durable complete responses, most advanced SCCAs are resistant to anti-PD1/PD-L1 monotherapy. Given the need for more broadly effective immunotherapies, novel strategies, such as adaptive cell therapies and therapeutic vaccination, are being explored. To reduce the recurrence risk of localized high-risk SCCA, strategies combining immunotherapy with chemoradiation are also being investigated. While a small subset of patients with SCCA have prolonged responses to PD1-directed immunotherapy, the majority do not derive clinical benefit, and new immunotherapeutic strategies are needed. Better understanding of the immune microenvironment and predictive biomarkers could accelerate therapeutic advances.
Collapse
Affiliation(s)
- Thejus Jayakrishnan
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
| | - Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD, 21215, USA
| | - Brandon M Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
15
|
Nikmanesh N, Hosseini S, Mirbagheri F, Asadsangabi K, Fattahi MR, Safarpour AR, Abarghooee EF, Moravej A, Shamsdin SA, Akrami H, Saghi SA, Nikmanesh Y. Knowledge on Human Papillomavirus Infections, Cancer Biology, Immune Interactions, Vaccination Coverage and Common Treatments: A Comprehensive Review. Viral Immunol 2024; 37:221-239. [PMID: 38841885 DOI: 10.1089/vim.2023.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Human papillomavirus (HPV) is a circular, double-stranded DNA virus and recognized as the most prevalent sexually transmitted infectious agent worldwide. The HPV life cycle encompasses three primary stages. First, the virus infiltrates the basal cells of the stratified epidermis. Second, there is a low-level expression of viral genes and preservation of the viral genome in the basal layer. Lastly, productive replication of HPV occurs in differentiated cells. An effective immune response, involving various immune cells, including innate immunity, keratinocytes, dendritic cells, and natural killer T cells, is instrumental in clearing HPV infection and thwarting the development of HPV-associated tumors. Vaccines have demonstrated their efficacy in preventing genital warts, high-grade precancerous lesions, and cancers in females. In males, the vaccines can also aid in preventing genital warts, anal precancerous lesions, and cancer. This comprehensive review aims to provide a thorough and detailed exploration of HPV infections, delving into its genetic characteristics, life cycle, pathogenesis, and the role of high-risk and low-risk HPV strains. In addition, this review seeks to elucidate the intricate immune interactions that govern HPV infections, spanning from innate immunity to adaptive immune responses, as well as examining the evasion mechanisms used by the virus. Furthermore, the article discusses the current landscape of HPV vaccines and common treatments, contributing to a holistic understanding of HPV and its associated diseases.
Collapse
Affiliation(s)
- Nika Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - SeyedehZahra Hosseini
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | | | - Kimiya Asadsangabi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Moravej
- Department of Laboratory Sciences, School of Allied Medical Sciences, Fasa University of Medical Science, Fasa, Iran
| | - Seyedeh Azra Shamsdin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Amirreza Saghi
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
- Student Research Committee, Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Lo Cigno I, Calati F, Girone C, Catozzo M, Gariglio M. High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 2024; 96:e29685. [PMID: 38783790 DOI: 10.1002/jmv.29685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marta Catozzo
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| |
Collapse
|
17
|
Martínez-López MF, Muslin C, Kyriakidis NC. STINGing Defenses: Unmasking the Mechanisms of DNA Oncovirus-Mediated Immune Escape. Viruses 2024; 16:574. [PMID: 38675916 PMCID: PMC11054469 DOI: 10.3390/v16040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.
Collapse
Affiliation(s)
- Mayra F Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito 170503, Ecuador;
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| |
Collapse
|
18
|
Albano C, Biolatti M, Mazibrada J, Pasquero S, Gugliesi F, Lo Cigno I, Calati F, Bajetto G, Riva G, Griffante G, Landolfo S, Gariglio M, De Andrea M, Dell’Oste V. PAD-mediated citrullination is a novel candidate diagnostic marker and druggable target for HPV-associated cervical cancer. Front Cell Infect Microbiol 2024; 14:1359367. [PMID: 38529474 PMCID: PMC10961408 DOI: 10.3389/fcimb.2024.1359367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Citrullination is an emerging post-translational modification catalyzed by peptidyl-arginine deiminases (PADs) that convert peptidyl-arginine into peptidyl-citrulline. In humans, the PAD family consists of five isozymes (PADs 1-4, 6) involved in multiple diseases, including cancer. Given that high-risk (hr) human papillomaviruses (HPVs) are the etiological agents of cervical cancer, in this study, we sought to determine whether PAD-mediated protein citrullination would play a functional role in the HPV-driven transformation of epithelial cells. Here we show that both total protein citrullination and PAD4 expression levels are significantly associated with cervical cancer progression. Specifically, epithelial immunostaining for PAD4 revealed an increasingly higher histoscore from low-grade (CIN1) to high-grade (CIN2, CIN3) cervical intraepithelial neoplasia, and invasive squamous cell carcinoma (SCC) lesions, raising the attractive possibility that PAD4 may be used as tumor staging markers. Furthermore, taking advantage of the epidermoid cervical cancer cell line CaSki, which harbors multiple copies of the integrated HPV16 genome, we show that the expression of E6 and E7 HPV oncoproteins is impaired by treatment with the pharmacological pan-PAD inhibitor BB-Cl-amidine. Consistently, p53 and p21, two targets of HPV oncoproteins, are upregulated by the PAD inhibitor, which undergoes cell growth arrest and apoptosis. Altogether, these findings highlight a novel mechanism by which hrHPVs alter host regulatory pathways involved in cell cycle and survival to gain viral fitness, raising the possibility that PADs may represent an attractive target for developing novel host-targeting antivirals effective in preventing cervical cancer progression.
Collapse
Affiliation(s)
- Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Jasenka Mazibrada
- Department of Cellular Pathology, The Cotman Centre Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Irene Lo Cigno
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Federica Calati
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Greta Bajetto
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Novara, Italy
| | - Giuseppe Riva
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- IIGM Foundation – Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Marisa Gariglio
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Novara, Italy
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Rosendo-Chalma P, Antonio-Véjar V, Ortiz Tejedor JG, Ortiz Segarra J, Vega Crespo B, Bigoni-Ordóñez GD. The Hallmarks of Cervical Cancer: Molecular Mechanisms Induced by Human Papillomavirus. BIOLOGY 2024; 13:77. [PMID: 38392296 PMCID: PMC10886769 DOI: 10.3390/biology13020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Human papillomaviruses (HPVs) and, specifically, high-risk HPVs (HR-HPVs) are identified as necessary factors in the development of cancer of the lower genital tract, with CaCU standing out as the most prevalent tumor. This review summarizes ten mechanisms activated by HR-HPVs during cervical carcinogenesis, which are broadly associated with at least seven of the fourteen distinctive physiological capacities of cancer in the newly established model by Hanahan in 2022. These mechanisms involve infection by human papillomavirus, cellular tropism, genetic predisposition to uterine cervical cancer (CaCU), viral load, viral physical state, regulation of epigenetic mechanisms, loss of function of the E2 protein, deregulated expression of E6/E7 oncogenes, regulation of host cell protein function, and acquisition of the mesenchymal phenotype.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), Mexico City 14080, Mexico
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico
| | - Jonnathan Gerardo Ortiz Tejedor
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
- Carrera de Bioquímica y Farmacia, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Jose Ortiz Segarra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | - Bernardo Vega Crespo
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | | |
Collapse
|
20
|
Smahel M, Nunvar J. Bioinformatics analysis of immune characteristics in tumors with alternative carcinogenesis pathways induced by human papillomaviruses. Virol J 2023; 20:287. [PMID: 38049810 PMCID: PMC10696676 DOI: 10.1186/s12985-023-02241-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Human papillomaviruses (HPVs) induce a subset of head and neck squamous cell carcinomas (HNSCC) and anogenital cancers, particularly cervical cancer (CC). The major viral proteins that contribute to tumorigenesis are the E6 and E7 oncoproteins, whose expression is usually enhanced after the integration of viral DNA into the host genome. Recently, an alternative tumorigenesis pathway has been suggested in approximately half of HNSCC and CC cases associated with HPV infection. This pathway is characterized by extrachromosomal HPV persistence and increased expression of the viral E2, E4, and E5 genes. The E6, E7, E5, and E2 proteins have been shown to modify the expression of numerous cellular immune-related genes. The antitumor immune response is a critical factor in the prognosis of HPV-driven cancers, and its characterization may contribute to the prediction and personalization of the increasingly used cancer immunotherapy. METHODS We analyzed the immune characteristics of HPV-dependent tumors and their association with carcinogenesis types. Transcriptomic HNSCC and CC datasets from The Cancer Genome Atlas were used for this analysis. RESULTS Clustering with immune-related genes resulted in two clusters of HPV16-positive squamous cell carcinomas in both tumor types: cluster 1 had higher activation of immune responses, including stimulation of the antigen processing and presentation pathway, which was associated with higher immune cell infiltration and better overall survival, and cluster 2 was characterized by keratinization. In CC, the distribution of tumor samples into clusters 1 and 2 did not depend on the level of E2/E5 expression, but in HNSCC, most E2/E5-high tumors were localized in cluster 1 and E2/E5-low tumors in cluster 2. Further analysis did not reveal any association between the E2/E5 levels and the expression of immune-related genes. CONCLUSIONS Our results suggest that while the detection of immune responses associated with preserved expression of genes encoding components of antigen processing and presentation machinery in HPV-driven tumors may be markers of better prognosis and an important factor in therapy selection, the type of carcinogenesis does not seem to play a decisive role in the induction of antitumor immunity.
Collapse
Affiliation(s)
- Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic.
| | - Jaroslav Nunvar
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| |
Collapse
|
21
|
Lo Cigno I, Calati F, Girone C, Borgogna C, Venuti A, Boldorini R, Gariglio M. SIRT1 is an actionable target to restore p53 function in HPV-associated cancer therapy. Br J Cancer 2023; 129:1863-1874. [PMID: 37838812 PMCID: PMC10667542 DOI: 10.1038/s41416-023-02465-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Our aim was to evaluate the efficacy and anti-cancer action of a precision medicine approach involving a novel SIRT1-dependent pathway that, when disrupted, leads to the restoration of a functional p53 in human papillomavirus (HPV)-transformed cells. METHODS The anticancer potential of inhibiting SIRT1 was evaluated by examining the effects of the specific SIRT1 inhibitor EX527 (also known as Selisistat) or genetic silencing, either individually or in conjunction with standard chemotherapeutic agents, on a range of HPV+ cancer cells and a preclinical mouse model of HPV16-induced cancer. RESULTS We show that SIRT1 inhibition restores a transcriptionally active K382-acetylated p53 in HPV+ but not HPV- cell lines, which in turn promotes G0/G1 cell cycle arrest and inhibits clonogenicity specifically in HPV+ cells. Additionally, EX527 treatment increases the sensitivity of HPV+ cells to sublethal doses of standard genotoxic agents. The enhanced sensitivity to cisplatin as well as p53 restoration were also observed in an in vivo tumorigenicity assay using syngeneic C3.43 cells harbouring an integrated HPV16 genome, injected subcutaneously into C57BL/6J mice. CONCLUSIONS Our findings uncover an essential role of SIRT1 in HPV-driven oncogenesis, which may have direct translational implications for the treatment of this type of cancer.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Aldo Venuti
- HPV Unit, UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy.
| |
Collapse
|
22
|
Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, Corona-Ortega MT, Rangel-Corona R. Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion. Cytokine 2023; 170:156334. [PMID: 37598478 DOI: 10.1016/j.cyto.2023.156334] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The tumor microenvironment (TME) is a heterogeneous mixture of resident and tumor cells that maintain close communication through their secretion products. The composition of the TME is dynamic and complex among the different types of cancer, where the immune cells play a relevant role in the elimination of tumor cells, however, under certain circumstances they contribute to tumor development. In cervical cancer (CC) the human papilloma virus (HPV) shapes the microenvironment in order to mediate persistent infections that favors transformation and tumor development. Interleukin-2 (IL-2) is an important TME cytokine that induces CD8+ effector T cells and NKs to eliminate tumor cells, however, IL-2 can also suppress the immune response through Treg cells. Recent studies have shown that CC cells express the IL-2 receptor (IL-2R), that are induced to proliferate at low concentrations of exogenous IL-2 through alterations in the JAK/STAT pathway. This review provides an overview of the main immune cells that make up the TME in CC, as well as the participation of IL-2 in the tumor promotion. Finally, it is proposed that the low density of IL-2 produced by immunocompetent cells is used by tumor cells through its IL-2R as a mechanism to proliferate simultaneously depleting this molecule in order to evade immune response.
Collapse
Affiliation(s)
- Leonardo Trujillo-Cirilo
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico.
| | - Benny Weiss-Steider
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Carlos Adrian Vargas-Angeles
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Maria Teresa Corona-Ortega
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Rosalva Rangel-Corona
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| |
Collapse
|
23
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
24
|
Locatelli M, Faure-Dupuy S. Virus hijacking of host epigenetic machinery to impair immune response. J Virol 2023; 97:e0065823. [PMID: 37656959 PMCID: PMC10537592 DOI: 10.1128/jvi.00658-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023] Open
Abstract
Epigenetic modifications, such as DNA hypermethylation, histone acetylation/methylation, or nucleosome positioning, result in differential gene expression. These modifications can have an impact on various pathways, including host antiviral immune responses. In this review, we summarize the current understanding of epigenetic modifications induced by viruses to counteract host antiviral immune responses, which are crucial for establishing and maintaining infection of viruses. Finally, we provide insights into the potential use of epigenetic modulators in combating viral infections and virus-induced diseases.
Collapse
Affiliation(s)
- Maëlle Locatelli
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suzanne Faure-Dupuy
- Université de Paris Cité, Institut Cochin, Inserm U1016-CNRS UMR8104, Paris, France
| |
Collapse
|
25
|
Girone C, Calati F, Lo Cigno I, Salvi V, Tassinari V, Schioppa T, Borgogna C, Lospinoso Severini L, Hiscott J, Cerboni C, Soriani A, Bosisio D, Gariglio M. The RIG-I agonist M8 triggers cell death and natural killer cell activation in human papillomavirus-associated cancer and potentiates cisplatin cytotoxicity. Cancer Immunol Immunother 2023; 72:3097-3110. [PMID: 37356050 PMCID: PMC10412503 DOI: 10.1007/s00262-023-03483-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Although the activation of innate immunity to treat a wide variety of cancers is gaining increasing attention, it has been poorly investigated in human papillomavirus (HPV)-associated malignancies. Because these tumors harbor a severely impaired cGAS-STING axis, but they still retain a largely functional RIG-I pathway, another critical mediator of adaptive and innate immune responses, we asked whether RIG-I activation by the 5'ppp-RNA RIG-I agonist M8 would represent a therapeutically viable option to treat HPV+ cancers. Here, we show that M8 transfection of two cervical carcinoma-derived cell lines, CaSki and HeLa, both expressing a functional RIG-I, triggers intrinsic apoptotic cell death, which is significantly reduced in RIG-I KO cells. We also demonstrate that M8 stimulation potentiates cisplatin-mediated cell killing of HPV+ cells in a RIG-I dependent manner. This combination treatment is equally effective in reducing tumor growth in a syngeneic pre-clinical mouse model of HPV16-driven cancer, where enhanced expression of lymphocyte-recruiting chemokines and cytokines correlated with an increased number of activated natural killer (NK) cells in the tumor microenvironment. Consistent with a role of RIG-I signaling in immunogenic cell killing, stimulation of NK cells with conditioned medium from M8-transfected CaSki boosted NK cell proliferation, activation, and migration in a RIG-I-dependent tumor cell-intrinsic manner. Given the highly conserved molecular mechanisms of carcinogenesis and genomic features of HPV-driven cancers and the remarkably improved prognosis for HPV+ oropharyngeal cancer, targeting RIG-I may represent an effective immunotherapeutic strategy in this setting, favoring the development of de-escalating strategies.
Collapse
Affiliation(s)
- Carlo Girone
- Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100, Novara, Italy
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100, Novara, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100, Novara, Italy
| | | | - John Hiscott
- Pasteur Institute, Fondazione Cenci-Bolognetti, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Fondazione Cenci-Bolognetti, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100, Novara, Italy.
| |
Collapse
|
26
|
Tao T, Zhang P, Zeng Z, Wang M. Advances in autophagy modulation of natural products in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116575. [PMID: 37142142 DOI: 10.1016/j.jep.2023.116575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products play a critical role in drug development and is emerging as a potential source of biologically active metabolites for therapeutic intervention, especially in cancer therapy. In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. Understanding the mechanisms of these natural products helps to develop medications for cervical cancer treatments. AIM OF THE STUDY In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. In this review, we briefly introduce autophagy and systematically describe several classes of natural products implicated in autophagy modulation in cervical cancer, hoping to provide valuable information for the development of cervical cancer treatments based on autophagy. MATERIALS AND METHODS We searched for studies on natural products and autophagy in cervical cancer on the online database and summarized the relationship between natural products and autophagy modulation in cervical cancer. RESULTS Autophagy is a lysosome-mediated catabolic process in eukaryotic cells that plays an important role in a variety of physiological and pathological processes, including cervical cancer. Abnormal expression of cellular autophagy and autophagy-related proteins has been implicated in cervical carcinogenesis, and human papillomavirus infection can affect autophagic activity. Flavonoids, alkaloids, polyphenols, terpenoids, quinones, and other compounds are important sources of natural products that act as anticancer agents. In cervical cancer, natural products exert the anticancer function mainly through the induction of protective autophagy. CONCLUSIONS The regulation of cervical cancer autophagy by natural products has significant advantages in inducing apoptosis, inhibiting proliferation, and reducing drug resistance in cervical cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, Liaoning Province, China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
27
|
Avila JP, Carvalho BM, Coimbra EC. A Comprehensive View of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and Prospects for Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:1333. [PMID: 36831674 PMCID: PMC9954575 DOI: 10.3390/cancers15041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with more than 500,000 new cases each year and a mortality rate of around 55%. Over 80% of these deaths occur in developing countries. The most important risk factor for CC is persistent infection by a sexually transmitted virus, the human papillomavirus (HPV). Conventional treatments to eradicate this type of cancer are accompanied by high rates of resistance and a large number of side effects. Hence, it is crucial to devise novel effective therapeutic strategies. In recent years, an increasing number of studies have aimed to develop immunotherapeutic methods for treating cancer. However, these strategies have not proven to be effective enough to combat CC. This means there is a need to investigate immune molecular targets. An adaptive immune response against cancer has been described in seven key stages or steps defined as the cancer-immunity cycle (CIC). The CIC begins with the release of antigens by tumor cells and ends with their destruction by cytotoxic T-cells. In this paper, we discuss several molecular alterations found in each stage of the CIC of CC. In addition, we analyze the evidence discovered, the molecular mechanisms and their relationship with variables such as histological subtype and HPV infection, as well as their potential impact for adopting novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | - Eliane Campos Coimbra
- Institute of Biological Sciences, University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife 50100-130, PE, Brazil
| |
Collapse
|
28
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
29
|
Zeng PH, Yin WJ. The cGAS/STING signaling pathway: a cross-talk of infection, senescence and tumors. Cell Cycle 2023; 22:38-56. [PMID: 35946607 PMCID: PMC9769453 DOI: 10.1080/15384101.2022.2109899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The cGAS/STING signaling pathway is an important part of the cytoplasmic DNA sensor, which can trigger a type I interferon response to microbial infection when pathogenic DNA is detected. However, continuous inhibition of cGAS/STING signaling by viral infection may be an important cause of tumorigenesis. At the same time, recent studies have shown that although the cGAS/STING signaling pathway also plays a core role in anti-tumor immunity and cell senescence, the inflammatory response induced by cGAS/STING signaling will also promote tumorigenesis in different backgrounds. Here, we discuss the role of cGAS/STING in the context of infection, senescence, and tumors, especially with respect to progression, to facilitate a better understanding of the mechanism of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
30
|
Albertini S, Martuscelli L, Borgogna C, Virdi S, Indenbirken D, Lo Cigno I, Griffante G, Calati F, Boldorini R, Fischer N, Gariglio M. Cancer-Associated Fibroblasts Exert Proangiogenic Activity in Merkel Cell Carcinoma. J Invest Dermatol 2022; 143:965-976.e15. [PMID: 36572089 DOI: 10.1016/j.jid.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022]
Abstract
The tumor microenvironment is a complex niche enveloping a tumor formed by extracellular matrix, blood vessels, immune cells, and fibroblasts constantly interacting with cancer cells. Although tumor microenvironment is increasingly recognized as a major player in cancer initiation and progression in many tumor types, its involvement in Merkel cell carcinoma (MCC) pathogenesis is currently unknown. In this study, we provide a molecular and functional characterization of cancer-associated fibroblasts (CAFs), the major tumor microenvironment component, in patient-derived xenografts of patients with MCC. We show that subcutaneous coinjection of patient-derived CAFs and human MCC MKL-1 cells into severe combined immunodeficient mice significantly promotes tumor growth and metastasis. These fast-growing xenografts are characterized by areas densely populated with human CAFs, mainly localized around blood vessels. We provide evidence that the growth-promoting activity of MCC-derived CAFs is mediated by the aminopeptidase A/angiotensin II and III/angiotensin II type 1 receptor axis, with the expression of aminopeptidase A in CAFs being a triggering event. Together, our findings point to aminopeptidase A as a potential marker for MCC prognostic stratification and as a candidate for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Albertini
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Licia Martuscelli
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Sanamjeet Virdi
- Technology Platform Next Generation Sequencing, Leibniz Institute for Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute for Virology, Hamburg, Germany
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Gloria Griffante
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy.
| |
Collapse
|
31
|
Castro-Muñoz LJ, Rocha-Zavaleta L, Lizano M, Ramírez-Alcántara KM, Madrid-Marina V, Manzo-Merino J. Alteration of the IFN-Pathway by Human Papillomavirus Proteins: Antiviral Immune Response Evasion Mechanism. Biomedicines 2022; 10:biomedicines10112965. [PMID: 36428532 PMCID: PMC9687819 DOI: 10.3390/biomedicines10112965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
A persistent infection with the so-called high-risk Human Papillomaviruses (hr-HPVs) plays a fundamental role in the development of different neoplasms. The expression of the HPV proteins throughout the different steps of the viral life cycle produce a disruption of several cellular processes, including immune response, which can lead to cell transformation. The interferon-mediated response plays an important role in eliminating HPV-infected and -transformed cells. The ability of HPV to disrupt the proper function of the interferon response is based on a series of molecular mechanisms coordinated by HPV proteins intended to prevent clearance of infection, ultimately producing an immunotolerant environment that facilitates the establishment of persistence and cancer. In this review, we focus on the molecular actions performed by HPV E1, E2, E5, E6 and E7 proteins on IFN signaling elements and their contribution to the establishment of infection, viral persistence and the progression to cancer.
Collapse
Affiliation(s)
- Leonardo Josué Castro-Muñoz
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Delegación Coyoacán, Mexico City 04500, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Katia Montserrat Ramírez-Alcántara
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Vicente Madrid-Marina
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, Morelos 62100, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Cátedras CONACyT-Instituto Nacional de Cancerología, San Fernando No. 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Correspondence:
| |
Collapse
|
32
|
White MC, Wu X, Damania B. Oncogenic viruses, cancer biology, and innate immunity. Curr Opin Immunol 2022; 78:102253. [PMID: 36240666 DOI: 10.1016/j.coi.2022.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Malignancies that arise as a result of viral infection account for roughly 15% of cancer cases worldwide. The innate immune system is the body's first line of defense against oncogenic viral infection and is also involved in the response against viral-driven tumors. In this review, we discuss research advances made over the last five years elucidating how the innate immune system recognizes and responds to oncogenic viruses, how these viruses have evolved to escape this immune pressure, and ways that innate immunity can inform the development of novel therapeutics against oncogenic viral infection and their associated cancers.
Collapse
Affiliation(s)
- Maria C White
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xinjun Wu
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
Moody CA. Regulation of the Innate Immune Response during the Human Papillomavirus Life Cycle. Viruses 2022; 14:v14081797. [PMID: 36016419 PMCID: PMC9412305 DOI: 10.3390/v14081797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR HPVs) are associated with multiple human cancers and comprise 5% of the human cancer burden. Although most infections are transient, persistent infections are a major risk factor for cancer development. The life cycle of HPV is intimately linked to epithelial differentiation. HPVs establish infection at a low copy number in the proliferating basal keratinocytes of the stratified epithelium. In contrast, the productive phase of the viral life cycle is activated upon epithelial differentiation, resulting in viral genome amplification, high levels of late gene expression, and the assembly of virions that are shed from the epithelial surface. Avoiding activation of an innate immune response during the course of infection plays a key role in promoting viral persistence as well as completion of the viral life cycle in differentiating epithelial cells. This review highlights the recent advances in our understanding of how HPVs manipulate the host cell environment, often in a type-specific manner, to suppress activation of an innate immune response to establish conditions supportive of viral replication.
Collapse
Affiliation(s)
- Cary A. Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Gusho E, Laimins LA. Human papillomaviruses sensitize cells to DNA damage induced apoptosis by targeting the innate immune sensor cGAS. PLoS Pathog 2022; 18:e1010725. [PMID: 35877778 PMCID: PMC9352202 DOI: 10.1371/journal.ppat.1010725] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
The cyclic GMP-AMP synthase (cGAS) is a critical regulator of the innate immune response acting as a sensor of double-strand DNAs from pathogens or damaged host DNA. Upon activation, cGAS signals through the STING/TBK1/IRF3 pathway to induce interferon expression. Double stranded DNA viruses target the cGAS pathway to facilitate infection. In HPV positive cells that stably maintain viral episomes, the levels of cGAS were found to be significantly increased over those seen in normal human keratinocytes. Furthermore the downstream effectors of the cGAS pathway, STING and IRF3, were fully active in response to signaling from the secondary messenger cGAMP or poly (dA:dT). In HPV positive cells cGAS was detected in both cytoplasmic puncta as well as in DNA damage induced micronuclei. E6 was responsible for increased levels of cGAS that was dependent on inhibition of p53. CRISPR-Cas9 mediated knockout of cGAS prevented activation of STING and IRF3 but had a minimal effect on viral replication. A primary function of cGAS in HPV positive cells was in response to treatment with etoposide or cisplatin which lead to increased levels of H2AX phosphorylation and activation of caspase 3/7 cleavage while having only a minimal effect on activation of homologous recombination repair factors ATM, ATR or CHK2. In HPV positive cells cGAS was found to regulate the levels of the phosphorylated non-homologous end-joining kinase, DNA-PK, which may contribute to H2AX phosphorylation along with other factors. Importantly cGAS was also responsible for increased levels of DNA breaks along with enhanced apoptosis in HPV positive cells but not in HFKs. This study identifies an important and novel role for cGAS in mediating the response of HPV positive cells to chemotherapeutic drugs. Persistent infection by human papillomaviruses (HPV) is the major risk factor for development of cervical as well as other anogenital and oropharyngeal cancers. Innate immune surveillance pathways are important in determining whether HPV infections will be cleared or persist. The role and activity of cGAS, an innate immune DNA sensor, during HPV infection is still not well understood. In this study we characterized the activity of cGAS-STING pathway in cells that stably maintain high-risk HPV episomes and found it was fully active. Furthermore, our studies indicate that cGAS helps regulate the response to DNA damage causing drugs such as etoposide and cisplatin. Treatment with both drugs further increased the levels of cGAS in HPV positive cells and this was critical for causing DNA breaks along with apoptotic cell death. These findings identify a novel role of cGAS in HPV positive cells in regulating the response to chemotherapeutic DNA damaging agents.
Collapse
Affiliation(s)
- Elona Gusho
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Rattay S, Hufbauer M, Hagen C, Putschli B, Coch C, Akgül B, Hartmann G. Human Beta Papillomavirus Type 8 E1 and E2 Proteins Suppress the Activation of the RIG-I-like Receptor MDA5. Viruses 2022; 14:v14071361. [PMID: 35891343 PMCID: PMC9317666 DOI: 10.3390/v14071361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022] Open
Abstract
Persistent infections of the skin with the human papillomavirus of genus beta (β-HPV) in immunocompetent individuals are asymptomatic, but in immunosuppressed patients, β-HPV infections exhibit much higher viral loads on the skin and are associated with an increased risk of skin cancer. Unlike with HPV16, a high-risk α-HPV, the impact of β-HPV early genes on the innate immune sensing of viral nucleic acids has not been studied. Here, we used primary skin keratinocytes and U2OS cells expressing HPV8 or distinct HPV8 early genes and well-defined ligands of the nucleic-acid-sensing receptors RIG-I, MDA5, TLR3, and STING to analyze a potential functional interaction. We found that primary skin keratinocytes and U2OS cells expressed RIG-I, MDA5, TLR3, and STING, but not TLR7, TLR8, or TLR9. While HPV16-E6 downregulated the expression of RIG-I, MDA5, TLR3, and STING and, in conjunction with HPV16-E7, effectively suppressed type I IFN in response to MDA5 activation, the presence of HPV8 early genes showed little effect on the expression of these immune receptors, except for HPV8-E2, which was associated with an elevated expression of TLR3. Nevertheless, whole HPV8 genome expression, as well as the selective expression of HPV8-E1 or HPV8-E2, was found to suppress MDA5-induced type I IFN and the proinflammatory cytokine IL-6. Furthermore, RNA isolated from HPV8-E2 expressing primary human keratinocytes, but not control cells, stimulated a type I IFN response in peripheral blood mononuclear cells, indicating that the expression of HPV8-E2 in keratinocytes leads to the formation of stimulatory RNA ligands that require the active suppression of immune recognition. These results identify HPV8-E1 and HPV8-E2 as viral proteins that are responsible for the immune escape of β-HPV from the innate recognition of viral nucleic acids, a mechanism that may be necessary for establishing persistent β-HPV infections.
Collapse
Affiliation(s)
- Stephanie Rattay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
- Correspondence: ; Tel.: +49-221-478-85821; Fax: +49-221-478-85802
| | - Martin Hufbauer
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Christian Hagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Bastian Putschli
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| |
Collapse
|
36
|
Chen X, Li M, Tang Y, Liang Q, Hua C, He H, Song Y, Cheng H. Gene Expression Profile Analysis of Human Epidermal Keratinocytes Expressing Human Papillomavirus Type 8 E7. Pathol Oncol Res 2022; 28:1610176. [PMID: 35665406 PMCID: PMC9156622 DOI: 10.3389/pore.2022.1610176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Background: Human papillomavirus type 8 (HPV8) has been implicated in the progress of non-melanoma skin cancers and their precursor lesions. The HPV8 E7 oncoprotein plays a key role in the tumorigenesis of HPV-associated cutaneous tumors. However, the exact role of HPV8 E7 in human epidermal carcinogenesis has not been fully elucidated. Methods: To investigate the potential carcinogenic effects of HPV8 E7 on epithelial cells, we used RNA-sequencing technology to analyze the gene expression profile of HPV8 E7-overexpressed normal human epidermal keratinocytes (NHEKs). Results: RNA-sequencing revealed 831 differentially expressed genes (DEGs) between HPV8 E7-expressing NHEKs and control cells, among which, 631 genes were significantly upregulated, and 200 were downregulated. Gene ontology annotation enrichment analysis showed that HPV8 E7 mainly affected the expression of genes associated with protein heterodimerization activity, DNA binding, nucleosomes, and nucleosome assembly. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that overexpression of HPV8 E7 affected the expression of gene clusters associated with viral carcinogenesis and transcriptional misregulation in cancer and necroptosis signaling pathways that reportedly play crucial roles in HPV infection promotion and cancer progression. We also found the DEGs, such as HKDC1 and TNFAIP3, were associated with epigenetic modifications, immune regulation, and metabolic pathways. Conclusion: Our results demonstrate that the pro-carcinogenic effect of HPV8 expression in epithelial cells may be attributed to the regulatory effect of oncogene E7 on gene expression associated with epigenetic modifications and immune and metabolic status-associated gene expression. Although our data are based on an in vitro experiment, it provides the theoretical evidence that the development of squamous cell carcinoma can be caused by HPV.
Collapse
Affiliation(s)
- Xianzhen Chen
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Ma Li
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Yi Tang
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China.,Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qichang Liang
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Chunting Hua
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Huiqin He
- Department of Gastroenterology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| |
Collapse
|
37
|
Baj J, Forma A, Dudek I, Chilimoniuk Z, Dobosz M, Dobrzyński M, Teresiński G, Buszewicz G, Flieger J, Portincasa P. The Involvement of Human Papilloma Virus in Gastrointestinal Cancers. Cancers (Basel) 2022; 14:2607. [PMID: 35681587 PMCID: PMC9179480 DOI: 10.3390/cancers14112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Human Papilloma Virus (HPV) is one of the most common sexually transmitted infections worldwide. HPV infection has a strong relationship with the onset of cervix uteri, vagina, penis, anus, and oropharynx, but also tonsils and tongue cancers. Some epidemiological data indicate that except for gynecologic cancers, HPV infection can be one of the risk factors associated with a greater risk of induction and progression of gastrointestinal cancers. Data, however, remain contradictory and definite conclusions cannot be drawn, so far. The following review aims to organize recent evidence and summarize the current state of knowledge regarding the association between HPV infection and gastrointestinal tumors primarily focusing on esophageal, liver, gastric, colorectal, and anal cancers.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Zuzanna Chilimoniuk
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Maciej Dobosz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Michał Dobrzyński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
38
|
Poirson J, Suarez IP, Straub ML, Cousido-Siah A, Peixoto P, Hervouet E, Foster A, Mitschler A, Mukobo N, Chebaro Y, Garcin D, Recberlik S, Gaiddon C, Altschuh D, Nominé Y, Podjarny A, Trave G, Masson M. High-Risk Mucosal Human Papillomavirus 16 (HPV16) E6 Protein and Cutaneous HPV5 and HPV8 E6 Proteins Employ Distinct Strategies To Interfere with Interferon Regulatory Factor 3-Mediated Beta Interferon Expression. J Virol 2022; 96:e0187521. [PMID: 35475668 PMCID: PMC9131866 DOI: 10.1128/jvi.01875-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous β-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and β-genus to inhibit the interferon-β (IFNB1) response. HPV16 E6 mediates this effect by a strong direct interaction with interferon regulatory factor 3 (IRF3). The binding site of E6 was localized within a flexible linker between the DNA-binding domain and the IRF-activation domain of IRF3 containing an LxxLL motif. The crystallographic structure of the complex between HPV16 E6 and the LxxLL motif of IRF3 was solved and compared with the structure of HPV16 E6 interacting with the LxxLL motif of the ubiquitin ligase E6AP. In contrast, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3-binding domain (IBiD) of the CREB-binding protein (CBP), a key transcriptional coactivator in IRF3-mediated IFN-β expression. IMPORTANCE Persistent HPV infections can be associated with the development of several cancers. The ability to persist depends on the ability of the virus to escape the host immune system. The type I interferon (IFN) system is the first-line antiviral defense strategy. HPVs carry early proteins that can block the activation of IFN-I. Among mucosal α-genus HPV types, the HPV16 E6 protein has a remarkable property to strongly interact with the transcription factor IRF3. Instead, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3 cofactor CBP. These results highlight the versatility of E6 proteins to interact with different cellular targets. The interaction between the HPV16 E6 protein and IRF3 might contribute to the higher prevalence of HPV16 than that of other high-risk mucosal HPV types in HPV-associated cancers.
Collapse
Affiliation(s)
- Juline Poirson
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - Irina Paula Suarez
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marie-Laure Straub
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - Alexandra Cousido-Siah
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Paul Peixoto
- Equipe TIM-C, groupe “Autophagy, EMT and antitumor T-cell immunity,” INSERM UMR1098, Laboratoire de Biochimie, Besançon, France
| | - Eric Hervouet
- Equipe TIM-C, groupe “Autophagy, EMT and antitumor T-cell immunity,” INSERM UMR1098, Laboratoire de Biochimie, Besançon, France
| | - Anne Foster
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - André Mitschler
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Noella Mukobo
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - Yassmine Chebaro
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | - Danièle Altschuh
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Yves Nominé
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Alberto Podjarny
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Gilles Trave
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Murielle Masson
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| |
Collapse
|
39
|
High Risk-Human Papillomavirus in HNSCC: Present and Future Challenges for Epigenetic Therapies. Int J Mol Sci 2022; 23:ijms23073483. [PMID: 35408843 PMCID: PMC8998945 DOI: 10.3390/ijms23073483] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a highly heterogeneous group of tumors characterized by an incidence of 650,000 new cases and 350,000 deaths per year worldwide and a male to female ratio of 3:1. The main risk factors are alcohol and tobacco consumption and Human Papillomavirus (HPV) infections. HNSCC cases are divided into two subgroups, the HPV-negative (HPV−) and the HPV-positive (HPV+) which have different clinicopathological and molecular profiles. However, patients are still treated with the same therapeutic regimens. It is thus of utmost importance to characterize the molecular mechanisms underlying these differences to find new biomarkers and novel therapeutic targets towards personalized therapies. Epigenetic alterations are a hallmark of cancer and can be exploited as both promising biomarkers and potential new targets. E6 and E7 HPV oncoviral proteins besides targeting p53 and pRb, impair the expression and the activity of several epigenetic regulators. While alterations in DNA methylation patterns have been well described in HPV+ and HPV− HNSCC, accurate histone post-translational modifications (hPTMs) characterization is still missing. Herein, we aim to provide an updated overview on the impact of HPV on the hPTMs landscape in HNSCC. Moreover, we will also discuss the sex and gender bias in HNSCC and how the epigenetic machinery could be involved in this process, and the importance of taking into account sex and/or gender also in this field.
Collapse
|
40
|
Jiang H, Li Y, Xiang X, Tang Z, Liu K, Su Q, Zhang X, Li L. Chaetocin: A review of its anticancer potentials and mechanisms. Eur J Pharmacol 2021; 910:174459. [PMID: 34464601 DOI: 10.1016/j.ejphar.2021.174459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Chaetocin is a natural metabolite product with various biological activities and pharmacological functions isolated from Chaetomium species fungi belonging to the thiodiketopyrazines. Numerous studies have demonstrated a wide range of antitumor activities of chaetocin in vitro and in vivo. Several studies have demonstrated that chaetocin suppresses the growth and proliferation of various tumour cells by regulating multiple signalling pathways related to tumour initiation and progression, inducing cancer cell apoptosis (intrinsic and extrinsic), enhancing autophagy, inducing cell cycle arrest, and inhibiting tumour angiogenesis, invasion, and migration. The antitumor effects and molecular mechanisms of chaetocin are reviewed and analysed in this paper, and the prospective applications of chaetocin in cancer prevention and therapy are also discussed. This review aimed to summarize the recent advances in the antitumor activity of chaetocin and to provide a rationale for further exploring the potential application of chaetocin in overcoming cancer in the future.
Collapse
Affiliation(s)
- Hangyu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China; School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yuqi Li
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China; School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xiaocong Xiang
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Zhili Tang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiang Su
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Xiaofen Zhang
- Department of Urology, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.
| | - Lin Li
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China; College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
41
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
42
|
Oncolytic HSV: Underpinnings of Tumor Susceptibility. Viruses 2021; 13:v13071408. [PMID: 34372614 PMCID: PMC8310378 DOI: 10.3390/v13071408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic herpes simplex virus (oHSV) is a therapeutic modality that has seen substantial success for the treatment of cancer, though much remains to be improved. Commonly attenuated through the deletion or alteration of the γ134.5 neurovirulence gene, the basis for the success of oHSV relies in part on the malignant silencing of cellular pathways critical for limiting these viruses in healthy host tissue. However, only recently have the molecular mechanisms underlying the success of these treatments begun to emerge. Further clarification of these mechanisms can strengthen rational design approaches to develop the next generation of oHSV. Herein, we review our current understanding of the molecular basis for tumor susceptibility to γ134.5-attenuated oHSV, with particular focus on the malignant suppression of nucleic acid sensing, along with strategies meant to improve the clinical efficacy of these therapeutic viruses.
Collapse
|
43
|
Gusho E, Laimins L. Human Papillomaviruses Target the DNA Damage Repair and Innate Immune Response Pathways to Allow for Persistent Infection. Viruses 2021; 13:1390. [PMID: 34372596 PMCID: PMC8310235 DOI: 10.3390/v13071390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs) is the major risk factor associated with development of anogenital and oropharyngeal cancers. Initial infection by HPVs occurs into basal epithelial cells where viral genomes are established as nuclear episomes and persist until cleared by the immune response. Productive replication or amplification occurs upon differentiation and is dependent upon activation of the ataxia-telangiectasia mutated (ATM), ataxia telangiectasia and RAD3-related (ATR) DNA damage repair (DDR) pathways. In addition to activating DDR pathways, HPVs must escape innate immune surveillance mechanisms by antagonizing sensors, adaptors, interferons and antiviral gene expression. Both DDR and innate immune pathways are key host mechanisms that crosstalk with each other to maintain homeostasis of cells persistently infected with HPVs. Interestingly, it is still not fully understood why some HPV infections get cleared while others do not. Targeting of these two processes with antiviral therapies may provide opportunities for treatment of cancers caused by high-risk HPVs.
Collapse
Affiliation(s)
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
44
|
Saulters E, Woolley JF, Varadarajan S, Jones TM, Dahal LN. STINGing Viral Tumors: What We Know from Head and Neck Cancers. Cancer Res 2021; 81:3945-3952. [PMID: 33903123 DOI: 10.1158/0008-5472.can-21-0785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
It has now become increasingly clear that viruses, which may not be directly oncogenic, can affect the biology of tumors as well as immune behavior against tumors. This has led to a fundamental question: Should tumors associated with viral infection be considered distinct from those without? Typically, viruses activate the host innate immune responses by stimulating pathogen recognition receptors and DNA-sensing pathways, including the stimulator of interferon genes (STING) pathway. However, regulation of the STING pathway in a virus-associated tumor microenvironment is poorly understood. Human papillomavirus (HPV) infection within a subset of head and neck squamous cell carcinomas (HNSCC) promotes a unique etiology and clinical outcome. For reasons currently not well understood, patients with HPV+ tumors have a better outcome in terms of both overall survival and reduced risk of recurrence compared with HPV- HNSCC. This observation may reflect a greater intrinsic immunogenicity associated with HPV infection, pertaining to innate immune system pathways activated following recognition of viral nucleotides. Here we discuss how HNSCC provides a unique model to study the STING pathway in the context of viral-induced tumor type as well as recent advances in our understanding of this pathway in HSNCC.
Collapse
Affiliation(s)
- Emma Saulters
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - John F Woolley
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Shankar Varadarajan
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Terence M Jones
- Liverpool Head and Neck Cancer Centre, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Otorhinolaryngology-Head and Neck Surgery, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
45
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
46
|
Luo X, Qiu Y, Dinesh P, Gong W, Jiang L, Feng X, Li J, Jiang Y, Lei YL, Chen Q. The functions of autophagy at the tumour-immune interface. J Cell Mol Med 2021; 25:2333-2341. [PMID: 33605033 PMCID: PMC7933948 DOI: 10.1111/jcmm.16331] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy is frequently induced in the hypoxic tumour microenvironment. Accumulating evidence reveals important functions of autophagy at the tumour-immune interface. Herein, we propose an update on the roles of autophagy in modulating tumour immunity. Autophagy promotes adaptive resistance of established tumours to the cytotoxic effects of natural killer cells (NKs), macrophages and effector T cells. Increased autophagic flux in tumours dampen their immunogenicity and inhibits the expansion of cytotoxic T lymphocytes (CTLs) by suppressing the activation of STING type I interferon signalling (IFN-I) innate immune sensing pathway. Autophagy in suppressive tumour-infiltrating immune subsets maintains their survival through metabolic remodelling. On the other hand, autophagy is involved in the antigen processing and presentation process, which is essential for anti-tumour immune responses. Genetic deletion of autophagy induces spontaneous tumours in some models. Thus, the role of autophagy is context-dependent. In summary, our review has revealed the dichotomous roles of autophagy in modulating tumour immunity. Broad targeting of autophagy may not yield maximal benefits. The characterization of specific genes regulating tumour immunogenicity and innovation in targeted delivery of autophagy inhibitors into certain tumours are among the most urgent tasks to sensitize cold cancers to immunotherapy.
Collapse
Affiliation(s)
- Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Palani Dinesh
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Wang Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Ramarao-Milne P, Kondrashova O, Barry S, Hooper JD, Lee JS, Waddell N. Histone Modifying Enzymes in Gynaecological Cancers. Cancers (Basel) 2021; 13:cancers13040816. [PMID: 33669182 PMCID: PMC7919659 DOI: 10.3390/cancers13040816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Epigenetics is a process that allows genetic control, without the involvement of sequence changes to DNA or genes. In cancer, epigenetics is a key event in tumour development that can alter the expression of cancer driver genes and result in genomic instability. Due to the critical role of epigenetics in malignant transformation, therapies that target these processes have been developed to treat cancer. Here, we provide a summary of the epigenetic changes that have been described in a variety of gynaecological cancers. We then highlight how these changes are being targeted in preclinical models and clinical trials for gynaecological cancers. Abstract Genetic and epigenetic factors contribute to the development of cancer. Epigenetic dysregulation is common in gynaecological cancers and includes altered methylation at CpG islands in gene promoter regions, global demethylation that leads to genome instability and histone modifications. Histones are a major determinant of chromosomal conformation and stability, and unlike DNA methylation, which is generally associated with gene silencing, are amenable to post-translational modifications that induce facultative chromatin regions, or condensed transcriptionally silent regions that decondense resulting in global alteration of gene expression. In comparison, other components, crucial to the manipulation of chromatin dynamics, such as histone modifying enzymes, are not as well-studied. Inhibitors targeting DNA modifying enzymes, particularly histone modifying enzymes represent a potential cancer treatment. Due to the ability of epigenetic therapies to target multiple pathways simultaneously, tumours with complex mutational landscapes affected by multiple driver mutations may be most amenable to this type of inhibitor. Interrogation of the actionable landscape of different gynaecological cancer types has revealed that some patients have biomarkers which indicate potential sensitivity to epigenetic inhibitors. In this review we describe the role of epigenetics in gynaecological cancers and highlight how it may exploited for treatment.
Collapse
Affiliation(s)
- Priya Ramarao-Milne
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.R.-M.); (O.K.); (N.W.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Olga Kondrashova
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.R.-M.); (O.K.); (N.W.)
| | - Sinead Barry
- Department of Gynaecological Oncology, Mater Hospital Brisbane, Brisbane, QLD 4101, Australia;
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia;
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia;
| | - Jason S. Lee
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Epigenetics and Disease Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-38453951
| | - Nicola Waddell
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.R.-M.); (O.K.); (N.W.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
48
|
Uhlorn BL, Jackson R, Li S, Bratton SM, Van Doorslaer K, Campos SK. Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. PLoS Pathog 2020; 16:e1009028. [PMID: 33253291 PMCID: PMC7728285 DOI: 10.1371/journal.ppat.1009028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/10/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022] Open
Abstract
Oncogenic human papillomaviruses (HPVs) replicate in differentiating epithelium, causing 5% of cancers worldwide. Like most other DNA viruses, HPV infection initiates after trafficking viral genome (vDNA) to host cell nuclei. Cells possess innate surveillance pathways to detect microbial components or physiological stresses often associated with microbial infections. One of these pathways, cGAS/STING, induces IRF3-dependent antiviral interferon (IFN) responses upon detection of cytosolic DNA. Virion-associated vDNA can activate cGAS/STING during initial viral entry and uncoating/trafficking, and thus cGAS/STING is an obstacle to many DNA viruses. HPV has a unique vesicular trafficking pathway compared to many other DNA viruses. As the capsid uncoats within acidic endosomal compartments, minor capsid protein L2 protrudes across vesicular membranes to facilitate transport of vDNA to the Golgi. L2/vDNA resides within the Golgi lumen until G2/M, whereupon vesicular L2/vDNA traffics along spindle microtubules, tethering to chromosomes to access daughter cell nuclei. L2/vDNA-containing vesicles likely remain intact until G1, following nuclear envelope reformation. We hypothesize that this unique vesicular trafficking protects HPV from cGAS/STING surveillance. Here, we investigate cGAS/STING responses to HPV infection. DNA transfection resulted in acute cGAS/STING activation and downstream IFN responses. In contrast, HPV infection elicited minimal cGAS/STING and IFN responses. To determine the role of vesicular trafficking in cGAS/STING evasion, we forced premature viral penetration of vesicular membranes with membrane-perturbing cationic lipids. Such treatment renders a non-infectious trafficking-defective mutant HPV infectious, yet susceptible to cGAS/STING detection. Overall, HPV evades cGAS/STING by its unique subcellular trafficking, a property that may contribute to establishment of infection.
Collapse
Affiliation(s)
- Brittany L. Uhlorn
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Robert Jackson
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Shuaizhi Li
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Shauna M. Bratton
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular & Cellular Biology, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
49
|
Jeffries AM, Marriott I. Cytosolic DNA Sensors and CNS Responses to Viral Pathogens. Front Cell Infect Microbiol 2020; 10:576263. [PMID: 33042875 PMCID: PMC7525022 DOI: 10.3389/fcimb.2020.576263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Viral central nervous system (CNS) infections can lead to life threatening encephalitis and long-term neurological deficits in survivors. Resident CNS cell types, such as astrocytes and microglia, are known to produce key inflammatory and antiviral mediators following infection with neurotropic DNA viruses. However, the mechanisms by which glia mediate such responses remain poorly understood. Recently, a class of intracellular pattern recognition receptors (PRRs), collectively known as DNA sensors, have been identified in both leukocytic and non-leukocytic cell types. The ability of such DNA sensors to initiate immune mediator production and contribute to infection resolution in the periphery is increasingly recognized, but our understanding of their role in the CNS remains limited at best. In this review, we describe the evidence for the expression and functionality of DNA sensors in resident brain cells, with a focus on their role in neurotropic virus infections. The available data indicate that glia and neurons can constitutively express, and/or can be induced to express, various disparate DNA sensing molecules previously described in peripheral cell types. Furthermore, multiple lines of investigation suggest that these sensors are functional in resident CNS cells and are required for innate immune responses to viral infections. However, it is less clear whether DNA sensormediated glial responses are beneficial or detrimental, and the answer to this question appears to dependent on the context of the infection with regard to the identity of the pathogen, host cell type, and host species. Defining such parameters will be essential if we are to successfully target these molecules to limit damaging inflammation while allowing beneficial host responses to improve patient outcomes.
Collapse
Affiliation(s)
- Austin M Jeffries
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
50
|
Quinlan S, May S, Weeks R, Yuan H, Luff JA. Abrogation of Constitutive and Induced Type I and Type III Interferons and Interferon-Stimulated Genes in Keratinocytes by Canine Papillomavirus 2 E6 and E7. Viruses 2020; 12:v12060677. [PMID: 32585804 PMCID: PMC7354437 DOI: 10.3390/v12060677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cutaneous papillomaviruses can cause severe, persistent infections and skin cancer in immunodeficient patients, including people with X-linked severe combined immunodeficiency (XSCID). A similar phenotype is observed in a canine model of XSCID; these dogs acquire severe cutaneous papillomavirus infections that can progress to cancer in association with canine papillomavirus type 2 (CPV2). This canine model system provides a natural spontaneous animal model for investigation of papillomavirus infections in immunodeficient patients. Currently, it is unknown if CPV2 can subvert the innate immune system and interfere with its ability to express antiviral cytokines, which are critical in the host defense against viral pathogens. The aim of the current study was to determine if the oncogenes E6 and E7 from CPV2 interfere with expression of antiviral cytokines in keratinocytes, the target cells of papillomavirus infections. We determined that E6 but not E7 interferes with the constitutive expression of some antiviral cytokines, including interferon (IFN)-β and the IFN-stimulated gene IFIT1. Both E6 and E7 interfere with the transcriptional upregulation of the antiviral cytokines in response to stimulation with the dsDNA Poly(dA:dT). In contrast, while E6 also interferes with the transcriptional upregulation of antiviral cytokines in response to stimulation with the dsRNA Poly(I:C), E7 interferes with only a subset of these antiviral cytokines. Finally, we demonstrated that E7 but not E6 abrogates signaling through the type I IFN receptor. Taken together, CPV2 E6 and E7 both impact expression of antiviral cytokines in canine keratinocytes, albeit likely through different mechanisms.
Collapse
Affiliation(s)
- Sarah Quinlan
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA; (S.Q.); (S.M.); (R.W.)
| | - Susan May
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA; (S.Q.); (S.M.); (R.W.)
| | - Ryan Weeks
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA; (S.Q.); (S.M.); (R.W.)
| | - Hang Yuan
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Jennifer A. Luff
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA; (S.Q.); (S.M.); (R.W.)
- Correspondence:
| |
Collapse
|