1
|
Sun DS, Lien TS, Chang HH. Virus-Induced Pathogenic Antibodies: Lessons from Long COVID and Dengue Hemorrhage Fever. Int J Mol Sci 2025; 26:1898. [PMID: 40076527 PMCID: PMC11899886 DOI: 10.3390/ijms26051898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Virus-induced antibodies represent a dual-edged sword in the immune response to viral infections. While antibodies are critical for neutralizing pathogens, some can paradoxically exacerbate disease severity through mechanisms such as antibody-dependent enhancement (ADE), autoantibody, and prolonged inflammation. Long coronavirus disease (COVID) and dengue hemorrhagic fever (DHF) exemplify conditions where pathogenic antibodies play a pivotal role in disease progression. Long COVID is associated with persistent immune dysregulation and autoantibody production, leading to chronic symptoms and tissue damage. In DHF, pre-existing antibodies against dengue virus contribute to ADE, amplifying viral replication, immune activation, and vascular permeability. This review explores the mechanisms underlying these pathogenic antibody responses, highlighting the shared pathways of immune dysregulation and comparing the distinct features of both conditions. By examining these studies, we identify key lessons for therapeutic strategies, vaccine design, and future research aimed at mitigating the severe outcomes of viral infections.
Collapse
Grants
- 104-2320-B-320 -009 -MY3, 107-2311-B-320-002-MY3, 111-2320-B320-006-MY3, 112-2320-B-320-007 National Science and Technology Council, Taiwan
- TCMMP104-06, TCMMP108-04, TCMMP 111-01, TCAS111-02, TCAS-112-02, TCAS113-04, TCRD112-033, TCRD113-041 Tzu-Chi Medical Foundation
Collapse
Affiliation(s)
| | | | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-S.S.); (T.-S.L.)
| |
Collapse
|
2
|
Sarker S, Dutta C, Mallick A, Das S, Das Chowdhury C, De A, Gorai S, Biswas S. Dengue virus (DV) non-cross-reactive Omicron wave COVID-19 serums enhanced DV3 infectivity in vitro. J Med Microbiol 2024; 73. [PMID: 38963412 DOI: 10.1099/jmm.0.001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Introduction. In India, the SARS-CoV-2 Delta wave (2020-2021) faded away with the advent of the Omicron variants (2021-present). Dengue incidences were observed to be less in Southeast Asia during the active years of the pandemic (2020-2021). However, dengue virus type 3 (DV3) cases were increasingly reported in this region (including India) concurrent with the progression of the Omicron waves since 2022.Hypothesis. What could be the reason(s) behind this unusual DV3 surge after an overall dip in dengue incidences in many parts of Southeast Asia?Aim. We, therefore, investigated the current state of cross-reactivity of prevalent (Omicron era) SARS-CoV-2 serums with different DV serotypes and evaluated the impact of such serums on DV neutralization in cell culture.Methodology. Fifty-five COVID-19 serum samples (January-September 2022) and three pre-pandemic archived serum samples from apparently healthy individuals were tested for DV or SARS-CoV-2 IgM/IgG using the lateral flow immunoassays. DV1-4 virus neutralization tests (VNTs) were done with the SARS-CoV-2 antibody (Ab)-positive serums in Huh7 cells. DV3 envelope (env) gene was PCR amplified and sequenced for three archived DV isolates, one from 2017 and two from 2021.Results. SARS-CoV-2 Ab-positive samples constituted 74.5 % of the serums. Of these, 41.5 % were DV cross-reactive and 58.5 % were not. The DV cross-reactive serums neutralized all DV serotypes (DV1-4), as per previous results and this study. The DV non-cross-reactive serums (58.5 %) also cross-neutralized DV1, 2 and 4 but increased DV3 infectivity by means of antibody-dependent enhancement of infection as evident from significantly higher DV3 titres in VNT compared to control serums. The DV3 envelope was identical among the three isolates, including isolate 1 used in VNTs. Our results suggest that DV cross-reactivity of SARS-CoV-2 serums diminished with the shift from Delta to Omicron prevalence. Such COVID-19 serums (DV non-cross-reactive) might have played a major role in causing DV3 surge during the Omicron waves.Conclusion. Patients suspected of dengue or COVID-19 should be subjected to virus/antigen tests and serological tests for both the diseases for definitive diagnosis, prognosis and disease management.
Collapse
Affiliation(s)
- Supratim Sarker
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Chiroshri Dutta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Abinash Mallick
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sayantan Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Chandrika Das Chowdhury
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Abhishek De
- Department of Dermatology, Calcutta National Medical College and Hospital, Kolkata, West Bengal, India
| | - Surajit Gorai
- Department of Dermatology, Apollo Multispeciality Hospital, Kolkata, West Bengal, India
| | - Subhajit Biswas
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Bunimovich L, Ram A, Skums P. Antigenic cooperation in viral populations: Transformation of functions of intra-host viral variants. J Theor Biol 2024; 580:111719. [PMID: 38158118 DOI: 10.1016/j.jtbi.2023.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/10/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In this paper, we study intra-host viral adaptation by antigenic cooperation - a mechanism of immune escape that serves as an alternative to the standard mechanism of escape by continuous genomic diversification and allows to explain a number of experimental observations associated with the establishment of chronic infections by highly mutable viruses. Within this mechanism, the topology of a cross-immunoreactivity network forces intra-host viral variants to specialize for complementary roles and adapt to the host's immune response as a quasi-social ecosystem. Here we study dynamical changes in immune adaptation caused by evolutionary and epidemiological events. First, we show that the emergence of a viral variant with altered antigenic features may result in a rapid re-arrangement of the viral ecosystem and a change in the roles played by existing viral variants. In particular, it may push the population under immune escape by genomic diversification towards the stable state of adaptation by antigenic cooperation. Next, we study the effect of a viral transmission between two chronically infected hosts, which results in the merging of two intra-host viral populations in the state of stable immune-adapted equilibrium. In this case, we also describe how the newly formed viral population adapts to the host's environment by changing the functions of its members. The results are obtained analytically for minimal cross-immunoreactivity networks and numerically for larger populations.
Collapse
Affiliation(s)
- Leonid Bunimovich
- School of Mathematics, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| | - Athulya Ram
- School of Mathematics, Georgia Institute of Technology, Atlanta, 30332, GA, USA; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| | - Pavel Skums
- Department of Computer Science and Engineering, University of Connecticut, Storrs, 06269, CT, USA.
| |
Collapse
|
4
|
Samoilova EM, Yusubalieva GM, Belopasov VV, Ekusheva EV, Baklaushev VP. [Infections and inflammation in the development of stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:11-21. [PMID: 34553576 DOI: 10.17116/jnevro202112108211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The review systematizes data on the role of infectious diseases and systemic inflammation in the pathogenesis of stroke. Various risk factors for stroke associated with pro-inflammatory reactions and their contribution to the pathogenesis of cerebrovascular pathology are analyzed. The interaction of systemic inflammation with hemostasis disturbances and clots formation, activation of autoreactive clones of cytotoxic lymphocytes, the progression of endothelial damage, and other processes is shown. Along with infection, these factors increase the risk of stroke. The key mechanisms of the pathogenesis from the development of acute or chronic inflammation to the preconditions of stroke are presented. The mechanisms of the acting of the infectious process as a trigger factor and/or medium-term or long-term risk factors of stroke are described. A separate section is devoted to the mechanisms of developing cerebrovascular diseases after COVID-19. Identifying an increased risk of stroke due to infection can be of great preventive value. Understanding of this risk by specialists followed by correction of drug therapy and rehabilitation measures can reduce the incidence of cerebrovascular complications in infectious patients.
Collapse
Affiliation(s)
- E M Samoilova
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - G M Yusubalieva
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - V V Belopasov
- Astrakhan State Medical University, Astrakhan, Russia
| | - E V Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Belgorod State National Research University, Belgorod, Russia
| | - V P Baklaushev
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
5
|
Samrat SK, Tharappel AM, Li Z, Li H. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Res 2020; 288:198141. [PMID: 32846196 PMCID: PMC7443330 DOI: 10.1016/j.virusres.2020.198141] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
The recent outbreak of the betacoronavirus SARS-CoV-2 has become a significant concern to public health care worldwide. As of August 19, 2020, more than 22,140,472 people are infected, and over 781,135 people have died due to this deadly virus. In the USA alone, over 5,482,602 people are currently infected, and more than 171,823 people have died. SARS-CoV-2 has shown a higher infectivity rate and a more extended incubation period as compared to previous coronaviruses. SARS-CoV-2 binds much more strongly than SARS-CoV to the same host receptor, angiotensin-converting enzyme 2 (ACE2). Previously, several methods to develop a vaccine against SARS-CoV or MERS-CoV have been tried with limited success. Since SARS-CoV-2 uses the spike (S) protein for entry to the host cell, it is one of the most preferred targets for making vaccines or therapeutics against SARS-CoV-2. In this review, we have summarised the characteristics of the S protein, as well as the different approaches being used for the development of vaccines and/or therapeutics based on the S protein.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Antibodies, Viral/biosynthesis
- Antibody-Dependent Enhancement/drug effects
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Clinical Trials as Topic
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Humans
- Immunogenicity, Vaccine
- Pandemics/prevention & control
- Patient Safety
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/immunology
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/biosynthesis
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Anil M Tharappel
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, 1 University Place, Rensselaer, NY 12144, USA.
| |
Collapse
|
6
|
|
7
|
Greczmiel U, Kräutler NJ, Borsa M, Pedrioli A, Bartsch I, Richter K, Agnellini P, Bedenikovic G, Oxenius A. LCMV-specific CD4 T cell dependent polyclonal B-cell activation upon persistent viral infection is short lived and extrafollicular. Eur J Immunol 2019; 50:396-403. [PMID: 31724162 PMCID: PMC7079077 DOI: 10.1002/eji.201948286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/05/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
Abstract
Persistent virus infections with non‐ or poorly cytopathic viruses are commonly associated with B cell dysregulations. These include the induction of hypergammaglobulinemia and the emergence of virus‐unspecific antibodies. These seemingly unspecific antibody responses interfere with the virus‐specific humoral immunity and contribute to delayed virus control. Whether these virus‐unspecific antibodies are induced in the B cell follicle or at extrafollicular sites and whether one specific CD4 T cell subset is involved in the polyclonal B cell activation is unclear. Here we studied virus‐unrelated IgG antibody responses against self or foreign antigens in the context of persistent lymphocytic choriomeningitis virus (LCMV) infection. We found that the LCMV‐unspecific antibody response is short‐lived and induced predominantly at extrafollicular sites and depends on the presence of LCMV‐specific CD4 T cells. Our data support a scenario in which activated, virus‐specific CD4 T cells provide help to non‐specific B cells at extrafollicular sites, supporting the production of virus unspecific IgG antibodies during persistent viral infection.
Collapse
Affiliation(s)
- Ute Greczmiel
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Mariana Borsa
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Ilka Bartsch
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Smatti MK, Al Thani AA, Yassine HM. Viral-Induced Enhanced Disease Illness. Front Microbiol 2018; 9:2991. [PMID: 30568643 PMCID: PMC6290032 DOI: 10.3389/fmicb.2018.02991] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding immune responses to viral infections is crucial to progress in the quest for effective infection prevention and control. The host immunity involves various mechanisms to combat viral infections. Under certain circumstances, a viral infection or vaccination may result in a subverted immune system, which may lead to an exacerbated illness. Clinical evidence of enhanced illness by preexisting antibodies from vaccination, infection or maternal passive immunity is available for several viruses and is presumptively proposed for other viruses. Multiple mechanisms have been proposed to explain this phenomenon. It has been confirmed that certain infection- and/or vaccine-induced immunity could exacerbate viral infectivity in Fc receptor- or complement bearing cells- mediated mechanisms. Considering that antibody dependent enhancement (ADE) is a major obstacle in vaccine development, there are continues efforts to understand the underlying mechanisms through identification of the epitopes and antibodies responsible for disease enhancement or protection. This review discusses the recent findings on virally induced ADE, and highlights the potential mechanisms leading to this condition.
Collapse
Affiliation(s)
- Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Greczmiel U, Oxenius A. The Janus Face of Follicular T Helper Cells in Chronic Viral Infections. Front Immunol 2018; 9:1162. [PMID: 29887868 PMCID: PMC5982684 DOI: 10.3389/fimmu.2018.01162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic infections with non-cytopathic viruses constitutively expose virus-specific adaptive immune cells to cognate antigen, requiring their numeric and functional adaptation. Virus-specific CD8 T cells are compromised by various means in their effector functions, collectively termed T cell exhaustion. Alike CD8 T cells, virus-specific CD4 Th1 cell responses are gradually downregulated but instead, follicular T helper (TFH) cell differentiation and maintenance is strongly promoted during chronic infection. Thereby, the immune system promotes antibody responses, which bear less immune-pathological risk compared to cytotoxic and pro-inflammatory T cell responses. This emphasis on TFH cells contributes to tolerance of the chronic infection and is pivotal for the continued maturation and adaptation of the antibody response, leading eventually to the emergence of virus-neutralizing antibodies, which possess the potential to control the established chronic infection. However, sustained high levels of TFH cells can also result in a less stringent B cell selection process in active germinal center reactions, leading to the activation of virus-unspecific B cells, including self-reactive B cells, and to hypergammaglobulinemia. This dispersal of B cell help comes at the expense of a stringently selected virus-specific antibody response, thereby contributing to its delayed maturation. Here, we discuss these opposing facets of TFH cells in chronic viral infections.
Collapse
Affiliation(s)
- Ute Greczmiel
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
10
|
Merat SJ, van de Berg D, Bru C, Yasuda E, Breij E, Kootstra N, Prins M, Molenkamp R, Bakker AQ, de Jong MD, Spits H, Schinkel J, Beaumont T. Multiplex flow cytometry-based assay to study the breadth of antibody responses against E1E2 glycoproteins of hepatitis C virus. J Immunol Methods 2017; 454:15-26. [PMID: 28855105 DOI: 10.1016/j.jim.2017.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/30/2022]
Abstract
Hepatitis C virus (HCV) infection is a major global public health problem. Early induction of cross-reactive neutralizing antibodies during acute infection correlates with the spontaneous clearance of HCV. Understanding the antibody response in multiple subjects in large-scale studies would greatly benefit vaccine development. To determine the breadth of a polyclonal-serum antibody response, and or, the monoclonal antibodies against the different HCV E1E2 genotypes, we developed a quick and high throughput flow cytometry assay using fluorescent cell barcoding to distinguish cells transfected with different E1E2 sequences in a single measurement. HCV-specific antibodies recognizing conformational epitopes were tested for binding to cells transfected with E1E2 from six genotypes. In this assay, 1500 samples can be analyzed for specific binding to 6 different HCV E1E2 sequences within 8h. Plasma of HCV infected subjects were tested in our assay allowing us to determine the breadth of their antibody response. In summary, we developed a quick and high throughput assay to study the specificity of an antibody response against multiple HCV E1E2 sequences simultaneously. This assay can also be used to facilitate the discovery of novel antibodies, and because other flavi- and picornaviruses have similar intracellular assembly mechanisms, this approach can be used to study the antibody response against such viruses.
Collapse
Affiliation(s)
- Sabrina J Merat
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Camille Bru
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Etsuko Yasuda
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther Breij
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Neeltje Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Amsterdam, The Netherlands; Center for Infectious Diseases and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Maria Prins
- Department of Infectious Diseases Research and Prevention, Cluster of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands; Department of infectious diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Richard Molenkamp
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjen Q Bakker
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hergen Spits
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Beaumont
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Taylor A, Foo SS, Bruzzone R, Dinh LV, King NJC, Mahalingam S. Fc receptors in antibody-dependent enhancement of viral infections. Immunol Rev 2016; 268:340-64. [PMID: 26497532 PMCID: PMC7165974 DOI: 10.1111/imr.12367] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sensitization of the humoral immune response to invading viruses and production of antiviral antibodies forms part of the host antiviral repertoire. Paradoxically, for a number of viral pathogens, under certain conditions, antibodies provide an attractive means of enhanced virus entry and replication in a number of cell types. Known as antibody‐dependent enhancement (ADE) of infection, the phenomenon occurs when virus‐antibody immunocomplexes interact with cells bearing complement or Fc receptors, promoting internalization of the virus and increasing infection. Frequently associated with exacerbation of viral disease, ADE of infection presents a major obstacle to the prevention of viral disease by vaccination and is thought to be partly responsible for the adverse effects of novel antiviral therapeutics such as intravenous immunoglobulins. There is a growing body of work examining the intracellular signaling pathways and epitopes responsible for mediating ADE, with a view to aiding rational design of antiviral strategies. With in vitro studies also confirming ADE as a feature of infection for a growing number of viruses, challenges remain in understanding the multilayered molecular mechanisms of ADE and its effect on viral pathogenesis.
Collapse
Affiliation(s)
- Adam Taylor
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| | - Suan-Sin Foo
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, Hong Kong.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Luan Vu Dinh
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| |
Collapse
|
12
|
IL-10 mediates plasmacytosis-associated immunodeficiency by inhibiting complement-mediated neutrophil migration. J Allergy Clin Immunol 2015; 137:1487-1497.e6. [PMID: 26653800 DOI: 10.1016/j.jaci.2015.10.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Plasmacytosis (ie, an expansion of plasma cell populations to much greater than the homeostatic level) occurs in the context of various immune disorders and plasma cell neoplasia. This condition is often associated with immunodeficiency that causes increased susceptibility to severe infections. Yet a causative link between plasmacytosis and immunodeficiency has not been established. OBJECTIVE Because recent studies have identified plasma cells as a relevant source of the immunosuppressive cytokine IL-10, we sought to investigate the role of IL-10 during conditions of polyclonal and neoplastic plasmacytosis for the regulation of immunity and its effect on inflammation and immunodeficiency. METHODS We used flow cytometry, IL-10 reporter (Vert-X) and B cell-specific IL-10 knockout mice, migration assays, and antibody-mediated IL-10 receptor blockade to study plasmacytosis-associated IL-10 expression and its effect on inflammation and Streptococcus pneumoniae infection in mice. ELISA was used to quantify IL-10 levels in patients with myeloma. RESULTS IL-10 production was a common feature of normal and neoplastic plasma cells in mice, and IL-10 levels increased with myeloma progression in patients. IL-10 directly inhibited neutrophil migration toward the anaphylatoxin C5a and suppressed neutrophil-dependent inflammation in a murine model of autoimmune disease. MOPC.315.BM murine myeloma leads to an increased incidence of bacterial infection in the airways, which was reversed after IL-10 receptor blockade. CONCLUSION We provide evidence that plasmacytosis-associated overexpression of IL-10 inhibits neutrophil migration and neutrophil-mediated inflammation but also promotes immunodeficiency.
Collapse
|
13
|
Deng K, Liu R, Rao H, Jiang D, Wang J, Xie X, Wei L. Antibodies Targeting Novel Neutralizing Epitopes of Hepatitis C Virus Glycoprotein Preclude Genotype 2 Virus Infection. PLoS One 2015; 10:e0138756. [PMID: 26406225 PMCID: PMC4583415 DOI: 10.1371/journal.pone.0138756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/03/2015] [Indexed: 01/07/2023] Open
Abstract
Currently, there is no effective vaccine to prevent hepatitis C virus (HCV) infection, partly due to our insufficient understanding of the virus glycoprotein immunology. Most neutralizing antibodies (nAbs) were identified using glycoprotein immunogens, such as recombinant E1E2, HCV pseudoparticles or cell culture derived HCV. However, the fact that in the HCV acute infection phase, only a small proportion of patients are self-resolved accompanied with the emergence of nAbs, indicates the limited immunogenicity of glycoprotein itself to induce effective antibodies against a highly evolved virus. Secondly, in previous reports, the immunogen sequence was mostly the genotype of the 1a H77 strain. Rarely, other genotypes/subtypes have been studied, although theoretically one genotype/subtype immunogen is able to induce cross-genotype neutralizing antibodies. To overcome these drawbacks and find potential novel neutralizing epitopes, 57 overlapping peptides encompassing the full-length glycoprotein E1E2 of subtype 1b were synthesized to immunize BALB/c mice, and the neutralizing reactive of the induced antisera against HCVpp genotypes 1–6 was determined. We defined a domain comprising amino acids (aa) 192–221, 232–251, 262–281 and 292–331 of E1, and 421–543, 564–583, 594–618 and 634–673 of E2, as the neutralizing regions of HCV glycoprotein. Peptides PUHI26 (aa 444–463) and PUHI45 (aa 604–618)-induced antisera displayed the most potent broad neutralizing reactive. Two monoclonal antibodies recognizing the PUHI26 and PUHI45 epitopes efficiently precluded genotype 2 viral (HCVcc JFH and J6 strains) infection, but they did not neutralize other genotypes. Our study mapped a neutralizing epitope region of HCV glycoprotein using a novel immunization strategy, and identified two monoclonal antibodies effective in preventing genotype 2 virus infection.
Collapse
Affiliation(s)
- Kai Deng
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Ruyu Liu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huiying Rao
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Dong Jiang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging infectious Diseases, Beijing, China
| | - Jianghua Wang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Xingwang Xie
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Lai Wei
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Tarr AW, Khera T, Hueging K, Sheldon J, Steinmann E, Pietschmann T, Brown RJP. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design. Viruses 2015; 7:3995-4046. [PMID: 26193307 PMCID: PMC4517138 DOI: 10.3390/v7072809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
In the 26 years since the discovery of Hepatitis C virus (HCV) a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA) regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.
Collapse
Affiliation(s)
- Alexander W Tarr
- School of Life Sciences, Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Tanvi Khera
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Kathrin Hueging
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Julie Sheldon
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig 38124, Germany.
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| |
Collapse
|
15
|
Low cross-neutralization of hepatitis C correlates with liver disease in immunocompromized patients. AIDS 2015; 29:1025-33. [PMID: 26125137 DOI: 10.1097/qad.0000000000000651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Chronic hepatitis C virus (HCV) infection causes severe liver disease in HIV-infected patients and liver transplant recipients. The impact of serum and immunoglobulin on viral entry was analysed in these patients. METHOD Sera from 60 anti-HCV positive patients, including 30 who were also anti-HIV positive, were tested with HCVpp from different genotypes (1a, 1b, 3 and 4) and with HCVcc (H77/JFH1). Seventeen HIV-seropositive and 13 HIV-seronegative patients with decompensated liver disease were studied before and after liver transplant. RESULTS Serum neutralization was markedly lower after liver transplant and in HIV patients than in mono-infected immune-competent individuals. This effect was due to low antibody-mediated neutralization. In HIV patients, low neutralization was correlated with low lymphocyte T CD4 cell counts and the severity of liver disease. To characterize neutralization, we tested HCVpp lacking hypervariable region (HVR1) and SR-BI receptor cholesterol transfer inhibition by BLT-4. These experiments showed that neutralization was strongly dependent on the HVR1 and the SR-BI receptor. HVR1 sequences showed that selective pressures were low in immune-compromised patients and highly correlated to HCV neutralization after liver transplant. Neutralization experiments were reproduced with HCV strain JFH1. CONCLUSION Serum neutralization in HIV-coinfected patients and HCV-infected liver transplant recipients is poor enhancing HCV entry through HVR1/SR-BI interplay. This may contribute to the severity of hepatitis C in these settings.
Collapse
|
16
|
Antigenic cooperation among intrahost HCV variants organized into a complex network of cross-immunoreactivity. Proc Natl Acad Sci U S A 2015; 112:6653-8. [PMID: 25941392 DOI: 10.1073/pnas.1422942112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hepatitis C virus (HCV) has the propensity to cause chronic infection. Continuous immune escape has been proposed as a mechanism of intrahost viral evolution contributing to HCV persistence. Although the pronounced genetic diversity of intrahost HCV populations supports this hypothesis, recent observations of long-term persistence of individual HCV variants, negative selection increase, and complex dynamics of viral subpopulations during infection as well as broad cross-immunoreactivity (CR) among variants are inconsistent with the immune-escape hypothesis. Here, we present a mathematical model of intrahost viral population dynamics under the condition of a complex CR network (CRN) of viral variants and examine the contribution of CR to establishing persistent HCV infection. The model suggests a mechanism of viral adaptation by antigenic cooperation (AC), with immune responses against one variant protecting other variants. AC reduces the capacity of the host's immune system to neutralize certain viral variants. CRN structure determines specific roles for each viral variant in host adaptation, with variants eliciting broad-CR antibodies facilitating persistence of other variants immunoreacting with these antibodies. The proposed mechanism is supported by empirical observations of intrahost HCV evolution. Interference with AC is a potential strategy for interruption and prevention of chronic HCV infection.
Collapse
|
17
|
El-Shenawy R, Tabll A, Bader El Din NG, El Abd Y, Mashaly M, Abdel Malak CA, Dawood R, El-Awady M. Antiviral activity of virocidal peptide derived from NS5A against two different HCV genotypes: an in vitro study. J Immunoassay Immunochem 2015; 36:63-79. [PMID: 24606010 DOI: 10.1080/15321819.2014.896264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study aimed at assessment of the antiviral activity of an amphipathic α-helical peptide derived from the hepatitis C virus NS5A known as C5A virocidal peptide against different HCV genotypes. Two sources of HCV virus for in vitro study: HCV genotype 4 sera samples and JFH-1 infectious culture system genotype 2a were used. Several virocidal peptide concentrations were tested to determine the concentration that inhibits HCV propagation in Huh 7.5 cells according to three different prortocols (pre-infection, coinfection, and post infection). The capacity of the virocidal peptide to block HCV in Huh7.5 cells infected with different 10 individual serum samples was evaluated. In the pre-infection protocol, virocidal concentration (20, 50, and 75 μM) showed no viral RNA. In the co-infection protocol, virocidal concentrations (10, 20, 50, 75 μM) showed no viral RNA while in post-infection protocol, 75 μM was the only concentration that blocked the HCV activity. Results of Huh7.5 cell line transfected with HCV cc J6/JFH and treated with virocidal peptide revealed that only the higher virocidal concentration (75 μM) showed no amplification. The percentage of virocidal blocking in the 10 HCV individual serum samples was 60%. In conclusion, the C5A virocidal peptide has potent antiviral activity against HCV.
Collapse
Affiliation(s)
- Reem El-Shenawy
- a Department of Microbial Biotechnology , National Research Center , Giza , Egypt
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pratanwanich N, Lió P. Pathway-based Bayesian inference of drug-disease interactions. MOLECULAR BIOSYSTEMS 2014; 10:1538-1548. [PMID: 24695945 DOI: 10.1039/c4mb00014e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Drug treatments often perturb the activities of certain pathways, sets of functionally related genes. Examining pathways/gene sets that are responsive to drug treatments instead of a simple list of regulated genes can advance our understanding about such cellular processes after perturbations. In general, pathways do not work in isolation and their connections can cause secondary effects. To address this, we present a new method to better identify pathway responsiveness to drug treatments and simultaneously to determine between-pathway interactions. Firstly, we developed a Bayesian matrix factorisation of gene expression data together with known gene-pathway memberships to identify pathways perturbed by drugs. Secondly, in order to determine the interactions between pathways, we implemented a Gaussian Markov Random Field (GMRF) under the matrix factorization framework. Assuming a Gaussian distribution of pathway responsiveness, we calculated the correlations between pathways. We applied the combination of the Bayesian factor model and the GMRF to analyse gene expression data of 1169 drugs with 236 known pathways, 66 of which were disease-related pathways. Our model yielded a significantly higher average precision than the existing methods for identifying pathway responsiveness to drugs that affected multiple pathways. This implies the advantage of the between-pathway interactions and confirms our assumption that pathways are not independent, an aspect that has been commonly overlooked in the existing methods. Additionally, we demonstrate four case studies illustrating that the between-pathway network enhances the performance of pathway identification and provides insights into disease comorbidity, drug repositioning, and tissue-specific comparative analysis of drug treatments.
Collapse
|
19
|
Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res 2014; 105:100-11. [PMID: 24583033 PMCID: PMC4034163 DOI: 10.1016/j.antiviral.2014.02.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease and hepatocellular carcinoma worldwide. HCV establishes a chronic infection in the majority of cases. However, some individuals clear the virus, demonstrating a protective role for the host immune response. Although new all-oral drug combinations may soon replace traditional ribavirin-interferon therapy, the emerging drug cocktails will be expensive and associated with side-effects and resistance, making a global vaccine an urgent priority. T cells are widely accepted to play an essential role in clearing acute HCV infection, whereas the role antibodies play in resolution and disease pathogenesis is less well understood. Recent studies have provided an insight into viral neutralizing determinants and the protective role of antibodies during infection. This review provides a historical perspective of the role neutralizing antibodies play in HCV infection and discusses the therapeutic benefits of antibody-based therapies. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Jonathan K Ball
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alexander W Tarr
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jane A McKeating
- Viral Hepatitis Research Group and Centre for Human Virology, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
20
|
Tabll AA, Atef K, Bader El Din NG, El Abd YS, Salem A, Sayed AA, Dawood RM, Omran MH, El-Awady MK. In vitro neutralization of HCV by goat antibodies against peptides encompassing regions downstream of HVR-1 of E2 glycoprotein. J Immunoassay Immunochem 2014; 35:12-25. [PMID: 24063613 DOI: 10.1080/15321819.2013.779925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article aims at testing several in vitro systems with various viral sources and cell lines for propagation of HCV to evaluate goat antibodies raised against three E2 epitopes in viral neutralization experiments. Four human cell lines (Huh-7, Huh-7.5, HepG2, and CaCo2) were tested using two different HCV viral sources; Genotype 4 infected sera and J6/JFH HCV cc particles. Neutralization capacity of goat Abs against conserved E2 epitopes; p412 (a.a 412-419), p517 (a.a 517-531), and p430 (a.a 430-447) were examined in the above mentioned in vitro systems. Although infection with patients' sera seems to mimic the in vitro situation, it has limited replication rates as compared with HCV cc particularly in Huh7.5 cells. Non-HCV adapted Huh-7 cells were also found susceptible for transfection with J6/JFH virus but at much slower kinetics. The results of the neutralization assay showed that anti p412 and anti p517 were highly neutralizing to HCVcc. Our data demonstrate that antibodies directed against the viral surface glycoprotein E2 reduced the infectivity of the J6/JFH virus and are promising agents for immunotherapy and HCV vaccine development.
Collapse
Affiliation(s)
- Ashraf A Tabll
- a Department of Microbial Biotechnology National Research Center , Gizza , Egypt
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bao D, Wang R, Qiao S, Wan B, Wang Y, Liu M, Shi X, Guo J, Zhang G. Antibody-dependent enhancement of PRRSV infection down-modulates TNF-α and IFN-β transcription in macrophages. Vet Immunol Immunopathol 2013; 156:128-34. [PMID: 24099951 DOI: 10.1016/j.vetimm.2013.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 08/08/2013] [Accepted: 09/12/2013] [Indexed: 11/25/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease, resulting in important economic losses in pig farming. Previous studies have shown that Fcγ receptor (FcγR)-mediated entry of infectious PRRSV immune complexes into macrophages plays a pivotal role in the pathogenesis of the disease. This study demonstrates that PRRSV was able to suppress the transcription of key antiviral genes tumor necrosis factor-α (TNF-α) and interferon-β (IFN-β), when infection was via the ADE pathway. Investigation of this infection pathway found that PRRSV suppresses the antiviral genes by disrupting the transcription of the genes coding for the associated transcription factors interferon regulatory factor-1 (IRF-1), interferon regulatory factor-3 (IRF-3) and nuclear factor kappa B (NF-κB). The ADE pathway of infection allows PRRSV to specifically target antiviral genes and alters the innate intracellular immune responses in macrophages. The ADE mechanism described in this study furthers our understanding of pathogenesis following PRRSV infection and is of general relevance to virally induced disease and in relation to antiviral vaccination strategies.
Collapse
Affiliation(s)
- Dengke Bao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakamura M, Kanda T, Miyamura T, Wu S, Nakamoto S, Yokosuka O. Alanine aminotransferase elevation during peginterferon alpha-2a or alpha-2b plus ribavirin treatment. Int J Med Sci 2013; 10:1015-1021. [PMID: 23801888 PMCID: PMC3691800 DOI: 10.7150/ijms.6402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/09/2013] [Indexed: 02/07/2023] Open
Abstract
Alanine aminotransferase (ALT) elevation was occassionally observed during the treatment with combination peginterferon alpha plus ribavirin. Two forms of peginterferon are currently available as a standard of care with or without direct-acting antivirals against hepatitis C virus (HCV). Until the appearance of interferon-sparing regimen, peginterferon alpha plus ribavirin will play a central role in the eradication of HCV. In the present study, we compared ALT elevations in response to peginterferon alpha-2a plus ribavirin or peginterferon alpha-2b plus ribavirin in HCV genotype-1-infected patients. There were no significant differences in ALT elevations between treatments with the two peginterferons, but in a comparison of the proportions of patients with transient ALT elevation from baseline between the two groups, transient ALT elevation was observed more in sustained virological response (SVR) patients treated with peginterferon alpha-2a than with peginterferon alpha-2b. However, no patients discontinued treatment due to ALT elevation. Patients with transient ALT elevation from baseline during the treatment had less favorable IL28B rs8099917 genotype in the peginterferon alpha-2b group. Patients achieving SVR tended to have lower ALT levels, although some had persistent ALT elevation during treatment. In conclusion, clinicians should pay attention to possible ALT elevation during the treatment of chronic hepatitis C patients.
Collapse
Affiliation(s)
- Masato Nakamura
- 1. Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tatsuo Kanda
- 1. Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tatsuo Miyamura
- 1. Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shuang Wu
- 1. Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- 1. Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- 2. Department of Molecular Virology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Osamu Yokosuka
- 1. Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
23
|
Abstract
A fascinating aspect of viral evolution relates to the ability of viruses to escape the adaptive immune response. The widely held view has been that the great variability of viral glycoproteins would be an absolute obstacle to the development of antibody-based therapies or vaccines that could confer broad and long-lasting protection. In the past five years, new approaches have been developed to interrogate human memory B cells and plasma cells with high efficiency and to isolate several broadly neutralizing antiviral antibodies against highly variable pathogens such as HIV-1 and influenza virus. These antibodies not only provide new tools for prophylaxis and therapy for viral diseases but also identify conserved epitopes that may be used to design new vaccines capable of conferring broader protection.
Collapse
Affiliation(s)
- Davide Corti
- Institute for Research in Biomedicine IRB, 6500 Bellinzona, Switzerland.
| | | |
Collapse
|
24
|
Iankov ID, Penheiter AR, Griesmann GE, Carlson SK, Federspiel MJ, Galanis E. Neutralization capacity of measles virus H protein specific IgG determines the balance between antibody-enhanced infectivity and protection in microglial cells. Virus Res 2012; 172:15-23. [PMID: 23266401 DOI: 10.1016/j.virusres.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/05/2012] [Accepted: 12/03/2012] [Indexed: 01/23/2023]
Abstract
Neutralizing antibodies directed against measles virus (MV) surface glycoproteins prevent viral attachment and entry through the natural receptors. H protein specific IgG can enhance MV infectivity in macrophages via Fcγ receptor (FcγR)-dependent mechanism. H-specific IgM, anti-F antibodies and complement cascade activation are protective against antibody-mediated enhancement of MV infection. However, protective role of anti-H IgG against antibody-enhanced infection is not well understood. Here we designed a set of experiments to test the protective effect of H-specific IgG against FcγR-mediated infection in microglial cells. Microglial cells are also potential target of the antibody-mediated enhancement and spread of MV infection in the central nervous system. A partially neutralizing IgG monoclonal antibody (MAb) CL55, specific for MV H protein, at 10 μg/ml enhanced MV infection in mouse microglial cells by 13-14-fold. Infection-enhancing antibody concentrations induced large multinucleated syncytia formation 48-72 h post-inoculation. We generated anti-H IgG MAb 20H6 with a strong neutralization capacity >1:80,000 at 1mg/ml concentration in MV plaque-reduction neutralization assay. In contrast to the partially protective MAb CL55, enhancement of MV infectivity by MAb 20H6 required dilutions below the 1:120 serum titer considered protective against measles infection in humans. At a concentration of 10 μg/ml MAb 20H6 exhibited a dominant protective effect and prevented MAb CL55-mediated enhancement of MV infection and virus-mediated fusion. These results indicate that neutralization capacity of the H-specific IgG determines the balance between antibody enhancement and protection against MV infection in microglial cells.
Collapse
Affiliation(s)
- Ianko D Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Human poly- and cross-reactive anti-viral antibodies and their impact on protection and pathology. Immunol Res 2012; 53:148-61. [DOI: 10.1007/s12026-012-8268-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Recruitment and interaction of human dendritic and T cells in autologous liver slices experimentally infected with HCV produced in cell culture. J Immunol Methods 2012; 378:51-5. [PMID: 22349126 DOI: 10.1016/j.jim.2012.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/24/2022]
Abstract
Studying the immunological processes taking place during the initial steps of acute hepatitis C virus (HCV) infection has been a challenge in patients. Shin et al. have recently reported that delayed induction, not impaired recruitment of specific CD8(+) T cells, causes the late onset of acute hepatitis C in chimpanzees (Gastroenterology, 2011). However, further elucidation of the underlying mechanisms is difficult in vivo. We made observations consistent with their conclusions in human liver slices inoculated ex vivo with HCV produced in cell culture (HCVcc). Autologous immune cells were purified from blood and differentially stained prior to their incubation with the slices for 2 hours. A two-photon confocal microscopic analysis revealed that many more stained dendritic and T cells contracted interactions within two-day infected slices than non-inoculated ones (p<0.001). While in the first instance some dendritic and T cells entered into closer interactions, they never did in the latter case. These results suggest that ex vivo infection of human liver slices with HCVcc may be useful for gaining experimental insight regarding the immunological processes taking place at early steps of HCV infections.
Collapse
|
27
|
Qiao S, Jiang Z, Tian X, Wang R, Xing G, Wan B, Bao D, Liu Y, Hao H, Guo J, Zhang G. Porcine FcγRIIb mediates enhancement of porcine reproductive and respiratory syndrome virus (PRRSV) infection. PLoS One 2011; 6:e28721. [PMID: 22220194 PMCID: PMC3248417 DOI: 10.1371/journal.pone.0028721] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/14/2011] [Indexed: 01/04/2023] Open
Abstract
Antibody-dependent enhancement (ADE) of virus infection caused by the uptake of virus-antibody complexes by FcγRs is a significant obstacle to the development of effective vaccines to control certain human and animal viral diseases. The activation FcγRs, including FcγRI and FcγRIIa have been shown to mediate ADE infection of virus. In the present paper, we showed that pocine FcγRIIb, an inhibitory FcγR, mediates ADE of PRRSV infection. Stable Marc-145 cell lines expressing poFcγRIIb (Marc-poFcγRII) were established. The relative yield of progeny virus was significantly increased in the presence of sub-neutralization anti-PRRSV antibody. The Fab fragment and normal porcine sera had no effect. Anti-poFcγRII antibody inhibited the enhancement of infection when cells were infected in the presence of anti-PRRSV antibody, but not when cells were infected in the absence of antibody. These results indicate that enhancement of infection in these cells by anti-PRRSV virus antibody is FcγRII-mediated. Identification of the inhibitory FcγR mediating ADE infection should expand our understanding of the mechanisms of pathogenesis for a broad range of infectious diseases and may open many approaches for improvements to the treatment and prevention of such diseases.
Collapse
Affiliation(s)
- Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhizheng Jiang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaohui Tian
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Rui Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bo Wan
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dengke Bao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yonghui Liu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huifang Hao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail:
| |
Collapse
|
28
|
Abstract
Hepatitis C virus (HCV) infection in humans can cause progressive and end-stage liver disease. As such, preventive measures against HCV, including vaccine development, are a priority among researchers in the field. The report from Garrone et al. describes the development of a vaccine platform to generate HCV-neutralizing antibodies that are based on retrovirus-derived virus-like particles (VLPs) pseudotyped with heterologous viral envelope proteins. Immunization with these VLPs induced neutralizing antibodies in mouse and macaque models. These results, when considered in the context of an earlier clinical trial that used recombinant HCV E1/E2 purified protein as a subunit vaccine and additional findings from the VLP strategy, may lead to a new HCV vaccine that induces a neutralizing antibody response.
Collapse
Affiliation(s)
- Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Saint Louis, MO 63104, USA.
| |
Collapse
|
29
|
A weak neutralizing antibody response to hepatitis C virus envelope glycoprotein enhances virus infection. PLoS One 2011; 6:e23699. [PMID: 21887300 PMCID: PMC3161815 DOI: 10.1371/journal.pone.0023699] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 07/22/2011] [Indexed: 01/26/2023] Open
Abstract
We have completed a phase 1 safety and immunogenicity trial with hepatitis C virus (HCV) envelope glycoproteins, E1 and E2, with MF59 adjuvant as a candidate vaccine. Neutralizing activity to HCV genotype 1a was detected in approximately 25% of the vaccinee sera. In this study, we evaluated vaccinee sera from poor responders as a potential source of antibody dependent enhancement (ADE) of HCV infection. Sera with poor neutralizing activity enhanced cell culture grown HCV genotype 1a or 2a, and surrogate VSV/HCV pseudotype infection titer, in a dilution dependent manner. Surrogate pseudotypes generated from individual HCV glycoproteins suggested that antibody to the E2 glycoprotein; but not the E1 glycoprotein, was the principle target for enhancing infection. Antibody specific to FcRII expressed on the hepatic cell surface or to the Fc portion of Ig blocked enhancement of HCV infection by vaccinee sera. Together, the results from in vitro studies suggested that enhancement of viral infectivity may occur in the absence of a strong antibody response to HCV envelope glycoproteins.
Collapse
|
30
|
Tarr AW, Urbanowicz RA, Hamed MR, Albecka A, McClure CP, Brown RJP, Irving WL, Dubuisson J, Ball JK. Hepatitis C patient-derived glycoproteins exhibit marked differences in susceptibility to serum neutralizing antibodies: genetic subtype defines antigenic but not neutralization serotype. J Virol 2011; 85:4246-57. [PMID: 21325403 PMCID: PMC3126256 DOI: 10.1128/jvi.01332-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/21/2011] [Indexed: 12/30/2022] Open
Abstract
Neutralizing antibodies have a role in controlling hepatitis C virus (HCV) infection. A successful vaccine will need to elicit potently neutralizing antibodies that are capable of preventing the infection of genetically diverse viral isolates. However, the specificity of the neutralizing antibody response in natural HCV infection still is poorly understood. To address this, we examined the reactivity of polyclonal antibodies isolated from chronic HCV infection to the diverse patient-isolated HCV envelope glycoproteins E1 and E2 (E1E2), and we also examined the potential to neutralize the entry of pseudoparticles bearing these diverse E1E2 proteins. The genetic type of the infection was found to determine the pattern of the antibody recognition of these E1E2 proteins, with the greatest reactivity to homologous E1E2 proteins. This relationship was strongest when the component of the antibody response directed only to linear epitopes was analyzed. In contrast, the neutralization serotype did not correlate with genotype. Instead, serum-derived antibodies displayed a range of neutralization breadth and potency, while different E1E2 glycoproteins displayed different sensitivities to neutralization, such that these could be divided broadly into neutralization-sensitive and -resistant phenotypes. An important additional observation was that entry mediated by some E1E2 proteins was enhanced in the presence of some of the polyclonal antibody fractions isolated during chronic infection. These data highlight the need to use diverse E1E2 isolates, which represent extremes of neutralization sensitivity, when screening antibodies for therapeutic potential and for testing antibodies generated following immunization as part of vaccine development.
Collapse
Affiliation(s)
- Alexander W. Tarr
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Richard A. Urbanowicz
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Mohamed R. Hamed
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Anna Albecka
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, Inserm U1019, F-59019 Lille, CNRS UMR8204, F-59021 Lille, and University Lille Nord de France, F-59000 Lille, France
| | - C. Patrick McClure
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Richard J. P. Brown
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - William L. Irving
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jean Dubuisson
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, Inserm U1019, F-59019 Lille, CNRS UMR8204, F-59021 Lille, and University Lille Nord de France, F-59000 Lille, France
| | - Jonathan K. Ball
- School of Molecular Medical Sciences and Biomedical Research Unit in Gastroenterology, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
31
|
Temporal variations in the hepatitis C virus intrahost population during chronic infection. J Virol 2011; 85:6369-80. [PMID: 21525348 DOI: 10.1128/jvi.02204-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intrahost evolution of hepatitis C virus (HCV) holds keys to understanding mechanisms responsible for the establishment of chronic infections and to development of a vaccine and therapeutics. In this study, intrahost variants of two variable HCV genomic regions, HVR1 and NS5A, were sequenced from four treatment-naïve chronically infected patients who were followed up from the acute stage of infection for 9 to 18 years. Median-joining network analysis indicated that the majority of the HCV intrahost variants were observed only at certain time points, but some variants were detectable at more than one time point. In all patients, these variants were found organized into communities or subpopulations. We hypothesize that HCV intrahost evolution is defined by two processes: incremental changes within communities through random mutation and alternations between coexisting communities. The HCV population was observed to incrementally evolve within a single community during approximately the first 3 years of infection, followed by dispersion into several subpopulations. Two patients demonstrated this pattern of dispersion for the rest of the observation period, while HCV variants in the other two patients converged into another single subpopulation after ∼9 to 12 years of dispersion. The final subpopulation in these two patients was under purifying selection. Intrahost HCV evolution in all four patients was characterized by a consistent increase in negative selection over time, suggesting the increasing HCV adaptation to the host late in infection. The data suggest specific staging of HCV intrahost evolution.
Collapse
|
32
|
Pinna D, Corti D, Jarrossay D, Sallusto F, Lanzavecchia A. Clonal dissection of the human memory B-cell repertoire following infection and vaccination. Eur J Immunol 2009; 39:1260-70. [PMID: 19404981 DOI: 10.1002/eji.200839129] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The analysis of the human memory B-cell repertoire is of both fundamental and practical significance. We developed a simple method for the selective activation of memory B cells in total fresh or frozen PBMC using a combination of R848 and IL-2. In these conditions, 30-40% of memory B cells generated clones producing on average 200 ng IgG in 10 days. This method was used to measure the frequency of antigen-specific memory B cells as well as the fine specificity, cross-reactivity and neutralizing activity of the secreted antibodies. Following influenza vaccination, specific B cells expanded dramatically, reaching up to 50% of total clonable memory B cells on day 14. Specific B-cell expansions were detected also in individuals that did not show a significant serological response. Dynamic changes and persistence of B cells specific for a variety of pathogens were documented in serial PBMC samples collected over almost two decades. These results reveal novel aspects of memory B-cell kinetics and provide a powerful tool to monitor immune responses following infection and vaccination.
Collapse
Affiliation(s)
- Debora Pinna
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Jia L, Yu J, Yang J, Song H, Liu X, Wang Y, Xu Y, Zhang C, Zhong Y, Li Q. HCV antibody response and genotype distribution in different areas and races of China. Int J Biol Sci 2009; 5:421-7. [PMID: 19564925 PMCID: PMC2702825 DOI: 10.7150/ijbs.5.421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/04/2009] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) heterogeneity accounts for the failure of effective vaccine development and the lack of successful anti-viral therapy in some patients. Little is known about the immune response to HCV peptides and the region or race specific genotypes in China. The objective of this study was to characterize HCV antibody immune response to HCV peptides and HCV genotypes in different regions and races of China. A total of 363 serum samples were collected from HCV carriers in 6 regions in China. The immune response to HCV peptides was evaluated by ELISA. HCV genotypes were examined using nested RT-PCR. We found that the anti-HCV antibody neutralization rates were significantly different among the serum samples from different areas or from different races in the same area. For samples from Tibet and Sinkiang, the rates of neutralization by HCV peptides were only 3.2% and 30.8%, respectively. The genotypes of samples from Tibet and Sinkiang were apparently heterogeneic and included type I, II, III and multiple types (I/II/III, I/II, I/III, II/III). One specific sample with multiple-genotype (I/II/III) HCV infection was found to consist of type I, II, III, II/III and an unclassified genotype. These studies indicate that the anti-HCV antibody immune response to HCV peptides varied across regions and among races. The distribution of HCV genotypes among Tibetans in Tibet and Uighurs in Sinkiang was different from that in the inner areas of China. In addition, a "master" genotype, type II, was found to exist in HCV infection with multiple HCV genotypes.
Collapse
Affiliation(s)
- Leili Jia
- The Institute for Disease Prevention and Control of PLA, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Moreau I, O'Sullivan H, Murray C, Levis J, Crosbie O, Kenny-Walsh E, Fanning LJ. Separation of Hepatitis C genotype 4a into IgG-depleted and IgG-enriched fractions reveals a unique quasispecies profile. Virol J 2008; 5:103. [PMID: 18811965 PMCID: PMC2561023 DOI: 10.1186/1743-422x-5-103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/23/2008] [Indexed: 01/25/2023] Open
Abstract
Background Hepatitis C virus (HCV) circulates in an infected individual as a heterogeneous mixture of closely related viruses called quasispecies. The E1/E2 region of the HCV genome is hypervariable (HVR1) and is targeted by the humoral immune system. Hepatitis C virions are found in two forms: antibody associated or antibody free. The objective of this study was to investigate if separation of Hepatitis C virions into antibody enriched and antibody depleted fractions segregates quasispecies populations into distinctive swarms. Results A HCV genotype 4a specimen was fractionated into IgG-depleted and IgG-enriched fractions by use of Albumin/IgG depletion spin column. Clonal analysis of these two fractions was performed and then compared to an unfractionated sample. Following sequence analysis it was evident that the antibody depleted fraction was significantly more heterogeneous than the antibody enriched fraction, revealing a unique quasispecies profile. An in-frame 3 nt insertion was observed in 26% of clones in the unfractionated population and in 64% of clones in the IgG-depleted fraction. In addition, an in-frame 3 nt indel event was observed in 10% of clones in the unfractionated population and in 9% of clones in the IgG-depleted fraction. Neither of these latter events, which are rare occurrences in genotype 4a, was identified in the IgG-enriched fraction. Conclusion In conclusion, the homogeneity of the IgG-enriched species is postulated to represent a sequence that was strongly recognised by the humoral immune system at the time the sample was obtained. The heterogeneous nature of the IgG-depleted fraction is discussed in the context of humoral escape.
Collapse
Affiliation(s)
- Isabelle Moreau
- Department of Medicine, Molecular Virology Diagnostic & Research Laboratory, Clinical Sciences Building, Cork University Hospital, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
35
|
Jin X. Cellular and molecular basis of antibody-dependent enhancement in human dengue pathogenesis. Future Virol 2008. [DOI: 10.2217/17460794.3.4.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dengue fever is gaining increased attention as a major global health problem. It occurs annually in 50–100 million people in more than 100 countries, and places half a million people at risk of life-threatening diseases: dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS). The pathogenic mechanisms causing DHF/DSS are not clearly understood. This article reviews cellular and molecular mechanisms that might be responsible for the initiation of the pathogenic processes, including hypotheses for DHF/DSS, dengue-permissive target cells, putative dengue receptors, neutralizing and enhancing antibodies to dengue virus, mechanisms of vascular plasma leakage, innate immune response in dengue infection and antibody-dependent enhancement of dengue infection. While reviewing the literature, the article also gives the author’s opinion on perceived areas of importance for future research in human dengue pathogenesis.
Collapse
Affiliation(s)
- Xia Jin
- Department of Medicine, Infectious Diseases Division, University of Rochester Medical Center, 601 Elmwood Avenue, Box 689, Room 3-5103, Rochester, NY 14642, USA
| |
Collapse
|