1
|
Liu Q, Peng S, Wei J, Xie Z. The Function of TRIM25 in Antiviral Defense and Viral Immune Evasion. Viruses 2025; 17:735. [PMID: 40431746 PMCID: PMC12115990 DOI: 10.3390/v17050735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Tripartite motif (TRIM) 25 is a member of the TRIM E3 ubiquitin ligase family, which plays multiple roles in anti-tumor and antiviral defenses through various pathways. Its RBCC and SPRY/PRY domains work cooperatively for its oligomerization and subsequent activation of ligase activity. TRIM25 expression is regulated by several proteins and RNAs, and it functionally participates in the post-transcriptional and translational modification of antiviral regulators, such as RIG-I, ZAP, and avSGs. Conversely, the antiviral functions of TRIM25 are inhibited by viral proteins and RNAs through their interactions, as well as by the viral infection-mediated upregulation of certain miRNAs. Here, we review the antiviral functions of TRIM25 and highlight its significance regarding innate immunity, particularly in antiviral defense and viral immune evasion.
Collapse
Affiliation(s)
- Qianxun Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (Q.L.); (S.P.); (J.W.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Shantong Peng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (Q.L.); (S.P.); (J.W.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jiani Wei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (Q.L.); (S.P.); (J.W.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (Q.L.); (S.P.); (J.W.)
| |
Collapse
|
2
|
Johnston GP, Aydemir F, Byun H, de Wit E, Oxford KL, Kyle JE, McDermott JE, Deatherage Kaiser BL, Casey CP, Weitz KK, Olson HM, Stratton KG, Heller NC, Upadhye V, Monreal IA, Reyes Zamora JL, Wu L, Goodall DH, Buchholz DW, Barrow JJ, Waters KM, Collins RN, Feldmann H, Adkins JN, Aguilar HC. Multi-platform omics analysis of Nipah virus infection reveals viral glycoprotein modulation of mitochondria. Cell Rep 2025; 44:115411. [PMID: 40106432 PMCID: PMC12100452 DOI: 10.1016/j.celrep.2025.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The recent global pandemic illustrates the importance of understanding the host cellular infection processes of emerging zoonotic viruses. Nipah virus (NiV) is a deadly zoonotic biosafety level 4 encephalitic and respiratory paramyxovirus. Our knowledge of the molecular cell biology of NiV infection is extremely limited. This study identified changes in cellular components during NiV infection of human cells using a multi-platform, high-throughput transcriptomics, proteomics, lipidomics, and metabolomics approach. Remarkably, validation via multi-disciplinary approaches implicated viral glycoproteins in enriching mitochondria-associated proteins despite an overall decrease in protein translation. Our approach also allowed the mapping of significant fluctuations in the metabolism of glucose, lipids, and several amino acids, suggesting periodic changes in glycolysis and a transition to fatty acid oxidation and glutamine anaplerosis to support mitochondrial ATP synthesis. Notably, these analyses provide an atlas of cellular changes during NiV infections, which is helpful in designing therapeutics against the rapidly growing Henipavirus genus and related viral infections.
Collapse
Affiliation(s)
- Gunner P Johnston
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Fikret Aydemir
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Haewon Byun
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Kristie L Oxford
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jennifer E Kyle
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Cameron P Casey
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Heather M Olson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kelly G Stratton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Natalie C Heller
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - I Abrrey Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - J Lizbeth Reyes Zamora
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lei Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - D H Goodall
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joeva J Barrow
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Katrina M Waters
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ruth N Collins
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Joshua N Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2025; 38:e0012823. [PMID: 39714175 PMCID: PMC11905374 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Goldin K, Liu Y, Rosenke R, Prado-Smith J, Flagg M, de Wit E. Nipah Virus-Associated Neuropathology in African Green Monkeys During Acute Disease and Convalescence. J Infect Dis 2025; 231:219-229. [PMID: 38842160 PMCID: PMC11793039 DOI: 10.1093/infdis/jiae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/25/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Nipah virus is an emerging zoonotic virus that causes severe respiratory disease and meningoencephalitis. The pathophysiology of Nipah virus meningoencephalitis is poorly understood. METHODS We have collected the brains of African green monkeys during multiple Nipah virus, Bangladesh studies, resulting in 14 brains with Nipah virus-associated lesions. RESULTS The lesions seen in the brain of African green monkeys infected with Nipah virus, Bangladesh were very similar to those observed in humans with Nipah virus, Malaysia infection. We observed viral RNA and antigen within neurons and endothelial cells, within encephalitis foci and in uninflamed portions of the central nervous system (CNS). CD8+ T cells had a consistently high prevalence in CNS lesions. We developed a UNet model for quantifying and visualizing inflammation in the brain in a high-throughput and unbiased manner. While CD8+ T cells had a consistently high prevalence in CNS lesions, the model revealed that CD68+ cells were numerically the immune cell with the highest prevalence in the CNS of Nipah virus-infected animals. CONCLUSIONS Our study provides an in-depth analysis on Nipah virus infection in the brains of primates, and similarities between lesions in patients and the animals in our study validate this model.
Collapse
Affiliation(s)
- Kerry Goldin
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Yanling Liu
- Integrated Data Sciences Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jessica Prado-Smith
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Meaghan Flagg
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
5
|
Bai Y, Liu T, Zhang S, Shi Y, Yang Y, Ding M, Yang X, Guo S, Xu X, Liu Q. Traditional Chinese Medicine for Viral Pneumonia Therapy: Pharmacological Basis and Mechanistic Insights. Int J Biol Sci 2025; 21:989-1013. [PMID: 39897040 PMCID: PMC11781171 DOI: 10.7150/ijbs.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/22/2024] [Indexed: 02/04/2025] Open
Abstract
Different respiratory viruses might cause similar symptoms, ranging from mild upper respiratory tract involvement to severe respiratory distress, which can rapidly progress to septic shock, coagulation disorders, and multiorgan failure, ultimately leading to death. The COVID-19 pandemic has shown that predicting clinical outcomes can be challenging because of the complex interactions between the virus and the host. Traditional Chinese medicine (TCM) has distinct benefits in the treatment of respiratory viral illnesses due to its adherence to the principles of "different treatments for the same disease" and "same treatment for different diseases". This paper examines the effectiveness and underlying mechanisms of key TCM treatments for viral pneumonia in recent years. The aim of this study was to discover and confirm the active substances of TCM with potential therapeutic effects on viral pneumonia and their integrative effects and synergistic mechanisms and to provide a scientific basis for elucidating the effectiveness of TCM treatment and drug discovery. Furthermore, a thorough analysis of previous research is necessary to evaluate the effectiveness of TCM in treating viral pneumonia.
Collapse
Affiliation(s)
- Yinglu Bai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Tengwen Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shuwen Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yifan Shi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yumei Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Maoyu Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaowei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing Institute of Chinese Medicine, Beijing 100010, China
| |
Collapse
|
6
|
Meier K, Olejnik J, Hume AJ, Mühlberger E. A Comparative Assessment of the Pathogenic Potential of Newly Discovered Henipaviruses. Pathogens 2024; 13:587. [PMID: 39057814 PMCID: PMC11280395 DOI: 10.3390/pathogens13070587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Recent advances in high-throughput sequencing technologies have led to the discovery of a plethora of previously unknown viruses in animal samples. Some of these newly detected viruses are closely related to human pathogens. A prime example are the henipaviruses. Both Nipah (NiV) and Hendra virus (HeV) cause severe disease in humans. Henipaviruses are of zoonotic origin, and animal hosts, including intermediate hosts, play a critical role in viral transmission to humans. The natural reservoir hosts of NiV and HeV seem to be restricted to a few fruit bat species of the Pteropus genus in distinct geographic areas. However, the recent discovery of novel henipa- and henipa-like viruses suggests that these viruses are far more widespread than was originally thought. To date, these new viruses have been found in a wide range of animal hosts, including bats, shrews, and rodents in Asia, Africa, Europe, and South America. Since these viruses are closely related to human pathogens, it is important to learn whether they pose a threat to human health. In this article, we summarize what is known about the newly discovered henipaviruses, highlight differences to NiV and HeV, and discuss their pathogenic potential.
Collapse
Affiliation(s)
- Kristina Meier
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Adam J. Hume
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| |
Collapse
|
7
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Zhang J, Shi H, Zhang L, Feng T, Chen J, Zhang X, Ji Z, Jing Z, Zhu X, Liu D, Yang X, Zeng M, Shi D, Feng L. Swine acute diarrhea syndrome coronavirus nucleocapsid protein antagonizes the IFN response through inhibiting TRIM25 oligomerization and functional activation of RIG-I/TRIM25. Vet Res 2024; 55:44. [PMID: 38589930 PMCID: PMC11000385 DOI: 10.1186/s13567-024-01303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV), an emerging Alpha-coronavirus, brings huge economic loss in swine industry. Interferons (IFNs) participate in a frontline antiviral defense mechanism triggering the activation of numerous downstream antiviral genes. Here, we demonstrated that TRIM25 overexpression significantly inhibited SADS-CoV replication, whereas TRIM25 deficiency markedly increased viral yield. We found that SADS-CoV N protein suppressed interferon-beta (IFN-β) production induced by Sendai virus (SeV) or poly(I:C). Moreover, we determined that SADS-CoV N protein interacted with RIG-I N-terminal two caspase activation and recruitment domains (2CARDs) and TRIM25 coiled-coil dimerization (CCD) domain. The interaction of SADS-CoV N protein with RIG-I and TRIM25 caused TRIM25 multimerization inhibition, the RIG-I-TRIM25 interaction disruption, and consequent the IRF3 and TBK1 phosphorylation impediment. Overexpression of SADS-CoV N protein facilitated the replication of VSV-GFP by suppressing IFN-β production. Our results demonstrate that SADS-CoV N suppresses the host IFN response, thus highlighting the significant involvement of TRIM25 in regulating antiviral immune defenses.
Collapse
Affiliation(s)
- Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Zhaoyang Ji
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Zhaoyang Jing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Xiaoyuan Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Dakai Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Xiaoman Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Miaomiao Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China.
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China.
| |
Collapse
|
9
|
Cheng J, Tao J, Li B, Shi Y, Liu H. The lncRNA HCG4 regulates the RIG-I-mediated IFN production to suppress H1N1 swine influenza virus replication. Front Microbiol 2024; 14:1324218. [PMID: 38274760 PMCID: PMC10808666 DOI: 10.3389/fmicb.2023.1324218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Influenza A virus (IAV) non-structural protein 1 (NS1) is a virulence factor that allows the virus to replicate efficiently by suppressing host innate immune responses. Previously, we demonstrated that the serine (S) at position 42 of NS1 in H1N1 swine influenza virus (SIV) is a critical residue in interferon (IFN) resistance, thus facilitating viral infections. Here, by lncRNA-seq, a total of 153 differentially expressed lncRNAs were identified, and the lncRNA HCG4 was selected due to its significantly higher expression after infection with the NS1 S42P mutant virus. Overexpression of HCG4 enhanced IFN-β production and suppressed SIV infection, highlighting the potential antiviral activity of HCG4 against SIV. Further investigation suggested that HCG4 served as a positive feedback mediator for RIG-I signaling. It alleviated the inhibitory effect on RIG-I K63-linked ubiquitination by NS1 protein, thereby resulting in an increase in RIG-I-mediated IFN production. Taken together, our findings demonstrate that HCG4 modulates the innate immune response to SIV infection through K63-linked RIG-I ubiquitination, providing insights into the role of lncRNAs in controlling viral infections.
Collapse
Affiliation(s)
- Jinghua Cheng
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Ying Shi
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| |
Collapse
|
10
|
Cheng H, Zhang H, Cai H, Liu M, Wen S, Ren J. Molecular biology of canine parainfluenza virus V protein and its potential applications in tumor immunotherapy. Front Microbiol 2023; 14:1282112. [PMID: 38173672 PMCID: PMC10761501 DOI: 10.3389/fmicb.2023.1282112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Canine parainfluenza virus (CPIV) is a zoonotic virus that is widely distributed and is the main pathogen causing canine infectious respiratory disease (CIRD), also known as "kennel cough," in dogs. The CPIV-V protein is the only nonstructural protein of the virus and plays an important role in multiple stages of the virus life cycle by inhibiting apoptosis, altering the host cell cycle and interfering with the interferon response. In addition, studies have shown that the V protein has potential applications in the field of immunotherapy in oncolytic virus therapy or self-amplifying RNA vaccines. In this review, the biosynthesis, structural characteristics and functions of the CPIV-V protein are reviewed with an emphasis on how it facilitates viral immune escape and its potential applications in the field of immunotherapy. Therefore, this review provides a scientific basis for research into the CPIV-V protein and its potential applications.
Collapse
Affiliation(s)
- Huai Cheng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Hewei Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, China
| | - Huanchang Cai
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Min Liu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, China
| |
Collapse
|
11
|
Schoen A, Hölzer M, Müller MA, Wallerang KB, Drosten C, Marz M, Lamp B, Weber F. Functional comparisons of the virus sensor RIG-I from humans, the microbat Myotis daubentonii, and the megabat Rousettus aegyptiacus, and their response to SARS-CoV-2 infection. J Virol 2023; 97:e0020523. [PMID: 37728614 PMCID: PMC10653997 DOI: 10.1128/jvi.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/09/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE A common hypothesis holds that bats (order Chiroptera) are outstanding reservoirs for zoonotic viruses because of a special antiviral interferon (IFN) system. However, functional studies about key components of the bat IFN system are rare. RIG-I is a cellular sensor for viral RNA signatures that activates the antiviral signaling chain to induce IFN. We cloned and functionally characterized RIG-I genes from two species of the suborders Yangochiroptera and Yinpterochiroptera. The bat RIG-Is were conserved in their sequence and domain organization, and similar to human RIG-I in (i) mediating virus- and IFN-activated gene expression, (ii) antiviral signaling, (iii) temperature dependence, and (iv) recognition of RNA ligands. Moreover, RIG-I of Rousettus aegyptiacus (suborder Yinpterochiroptera) and of humans were found to recognize SARS-CoV-2 infection. Thus, members of both bat suborders encode RIG-Is that are comparable to their human counterpart. The ability of bats to harbor zoonotic viruses therefore seems due to other features.
Collapse
Affiliation(s)
- Andreas Schoen
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- European Virus Bioinformatics Center, Jena, Germany
| | - Marcel A. Müller
- German Centre for Infection Research (DZIF), Partner Sites Giessen and Charité, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kai B. Wallerang
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Christian Drosten
- European Virus Bioinformatics Center, Jena, Germany
- German Centre for Infection Research (DZIF), Partner Sites Giessen and Charité, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- European Virus Bioinformatics Center, Jena, Germany
| | - Benjamin Lamp
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
- European Virus Bioinformatics Center, Jena, Germany
- German Centre for Infection Research (DZIF), Partner Sites Giessen and Charité, Berlin, Germany
| |
Collapse
|
12
|
van Tol S, Hage A, Rajsbaum R, Freiberg AN. Pteropus vampyrus TRIM40 Is an Interferon-Stimulated Gene That Antagonizes RIG-I-like Receptors. Viruses 2023; 15:2147. [PMID: 38005825 PMCID: PMC10674255 DOI: 10.3390/v15112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Nipah virus (NiV; genus: Henipavirus; family: Paramyxoviridae) naturally infects Old World fruit bats (family Pteropodidae) without causing overt disease. Conversely, NiV infection in humans and other mammals can be lethal. Comparing bat antiviral responses with those of humans may illuminate the mechanisms that facilitate bats' tolerance. Tripartite motif proteins (TRIMs), a large family of E3-ubiquitin ligases, fine-tune innate antiviral immune responses, and two human TRIMs interact with Henipavirus proteins. We hypothesize that NiV infection induces the expression of an immunosuppressive TRIM in bat, but not human cells, to promote tolerance. Here, we show that TRIM40 is an interferon-stimulated gene (ISG) in pteropodid but not human cells. Knockdown of bat TRIM40 increases gene expression of IFNβ, ISGs, and pro-inflammatory cytokines following poly(I:C) transfection. In Pteropus vampyrus, but not human cells, NiV induces TRIM40 expression within 16 h after infection, and knockdown of TRIM40 correlates with reduced NiV titers as compared to control cells. Bats may have evolved to express TRIM40 in response to viral infections to control immunopathogenesis.
Collapse
Affiliation(s)
- Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.v.T.); (A.H.)
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.v.T.); (A.H.)
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.v.T.); (A.H.)
- Center for Virus-Host-Innate-Immunity and Department of Medicine, RBHS Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers—The State University of New Jersey, Newark, NJ 07103, USA
- Institute for Human Infections and Immunity, Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Institute for Human Infections and Immunity, Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
13
|
Welch SR, Spengler JR, Genzer SC, Coleman-McCray JD, Harmon JR, Sorvillo TE, Scholte FE, Rodriguez SE, O’Neal TJ, Ritter JM, Ficarra G, Davies KA, Kainulainen MH, Karaaslan E, Bergeron É, Goldsmith CS, Lo MK, Nichol ST, Montgomery JM, Spiropoulou CF. Single-dose mucosal replicon-particle vaccine protects against lethal Nipah virus infection up to 3 days after vaccination. SCIENCE ADVANCES 2023; 9:eadh4057. [PMID: 37540755 PMCID: PMC10403222 DOI: 10.1126/sciadv.adh4057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease.
Collapse
Affiliation(s)
- Stephen R. Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sarah C. Genzer
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - JoAnn D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Harmon
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Teresa E. Sorvillo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Florine E. M. Scholte
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sergio E. Rodriguez
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - T. Justin O’Neal
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jana M. Ritter
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Georgia Ficarra
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Katherine A. Davies
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Markus H. Kainulainen
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Cynthia S. Goldsmith
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Stuart T. Nichol
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
14
|
Abstract
Re-emerging and new viral pathogens have caused significant morbidity and mortality around the world, as evidenced by the recent monkeypox, Ebola and Zika virus outbreaks and the ongoing COVID-19 pandemic. Successful viral infection relies on tactical viral strategies to derail or antagonize host innate immune defenses, in particular the production of type I interferons (IFNs) by infected cells. Viruses can thwart intracellular sensing systems that elicit IFN gene expression (that is, RIG-I-like receptors and the cGAS-STING axis) or obstruct signaling elicited by IFNs. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge about the major mechanisms employed by viruses to inhibit the activity of intracellular pattern-recognition receptors and their downstream signaling cascades leading to IFN-based antiviral host defenses. Advancing our understanding of viral immune evasion might spur unprecedented opportunities to develop new antiviral compounds or vaccines to prevent viral infectious diseases.
Collapse
Affiliation(s)
- Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| |
Collapse
|
15
|
Li Y, Li C. Porcine Respirovirus 1 Suppresses Host Type I Interferon Production and the JAK-STAT Signaling Pathway. Viruses 2023; 15:v15051176. [PMID: 37243262 DOI: 10.3390/v15051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine respirovirus 1 (PRV1), first reported in Hong Kong, is currently widely spread in several countries. Our knowledge of the clinical significance and the pathogenicity of this virus is still limited. In this study, we studied the interactions between PRV1 and host innate immune responses. PRV1 exhibited strong inhibitory effects on the production of interferon (IFN), ISG15, and RIG-I induced by SeV infection. Our data generated in vitro suggest that multiple viral proteins can suppress host type I interferon production and signaling, including N, M, and P/C/V/W. The P gene products disrupt both IRF3 and NF-κB dependent type I IFN production and block type I IFN signaling pathway by sequestering STAT1 in the cytoplasm. The V protein disrupts both MDA5 signaling and RIG-I signaling through interaction with TRIM25 and RIG-I, V protein blocks RIG-I polyubiquitination, which is required for RIG-I activation. V protein also binds to MDA5, which may contribute to its inhibitory effect on MDA5 signaling. These findings indicate that PRV1 antagonizes host innate immune responses using various mechanisms, which provides important insights into the pathogenicity of PRV1.
Collapse
Affiliation(s)
- Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Department of Diagnostic Medicine & Pathobiology, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
16
|
Müller M, Fischer K, Woehnke E, Zaeck LM, Prönnecke C, Knittler MR, Karger A, Diederich S, Finke S. Analysis of Nipah Virus Replication and Host Proteome Response Patterns in Differentiated Porcine Airway Epithelial Cells Cultured at the Air-Liquid Interface. Viruses 2023; 15:v15040961. [PMID: 37112941 PMCID: PMC10143807 DOI: 10.3390/v15040961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory tract epithelium infection plays a primary role in Nipah virus (NiV) pathogenesis and transmission. Knowledge about infection dynamics and host responses to NiV infection in respiratory tract epithelia is scarce. Studies in non-differentiated primary respiratory tract cells or cell lines indicate insufficient interferon (IFN) responses. However, studies are lacking in the determination of complex host response patterns in differentiated respiratory tract epithelia for the understanding of NiV replication and spread in swine. Here we characterized infection and spread of NiV in differentiated primary porcine bronchial epithelial cells (PBEC) cultivated at the air-liquid interface (ALI). After the initial infection of only a few apical cells, lateral spread for 12 days with epithelium disruption was observed without releasing substantial amounts of infectious virus from the apical or basal sides. Deep time course proteomics revealed pronounced upregulation of genes related to type I/II IFN, immunoproteasomal subunits, transporter associated with antigen processing (TAP)-mediated peptide transport, and major histocompatibility complex (MHC) I antigen presentation. Spliceosomal factors were downregulated. We propose a model in which NiV replication in PBEC is slowed by a potent and broad type I/II IFN host response with conversion from 26S proteasomes to immunoproteasomal antigen processing and improved MHC I presentation for adaptive immunity priming. NiV induced cytopathic effects could reflect the focal release of cell-associated NiV, which may contribute to efficient airborne viral spread between pigs.
Collapse
Affiliation(s)
- Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Elisabeth Woehnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Luca M Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Christoph Prönnecke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, 04103 Leipzig, Germany
| | - Michael R Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
17
|
Yu L, Zhu Z, Deng J, Tian K, Li X. Antagonisms of ASFV towards Host Defense Mechanisms: Knowledge Gaps in Viral Immune Evasion and Pathogenesis. Viruses 2023; 15:574. [PMID: 36851786 PMCID: PMC9963191 DOI: 10.3390/v15020574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
African swine fever (ASF) causes high morbidity and mortality of both domestic pigs and wild boars and severely impacts the swine industry worldwide. ASF virus (ASFV), the etiologic agent of ASF epidemics, mainly infects myeloid cells in swine mononuclear phagocyte system (MPS), including blood-circulating monocytes, tissue-resident macrophages, and dendritic cells (DCs). Since their significant roles in bridging host innate and adaptive immunity, these cells provide ASFV with favorable targets to manipulate and block their antiviral activities, leading to immune escape and immunosuppression. To date, vaccines are still being regarded as the most promising measure to prevent and control ASF outbreaks. However, ASF vaccine development is delayed and limited by existing knowledge gaps in viral immune evasion, pathogenesis, etc. Recent studies have revealed that ASFV can employ diverse strategies to interrupt the host defense mechanisms via abundant self-encoded proteins. Thus, this review mainly focuses on the antagonisms of ASFV-encoded proteins towards IFN-I production, IFN-induced antiviral response, NLRP3 inflammasome activation, and GSDMD-mediated pyroptosis. Additionally, we also make a brief discussion concerning the potential challenges in future development of ASF vaccine.
Collapse
Affiliation(s)
- Liangzheng Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
LGP2 Promotes Type I Interferon Production To Inhibit PRRSV Infection via Enhancing MDA5-Mediated Signaling. J Virol 2023; 97:e0184322. [PMID: 36622220 PMCID: PMC9888222 DOI: 10.1128/jvi.01843-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the global pig industry, which modulates the host's innate antiviral immunity to achieve immune evasion. RIG-I-like receptors (RLRs) sense viral RNA and activate the interferon signaling pathway. LGP2, a member of the RLR family, plays an important role in regulating innate immunity. However, the role of LGP2 in virus infection is controversial. Whether LGP2 has a role during infection with PRRSV remains unclear. Here, we found that LGP2 overexpression restrained the replication of PRRSV, while LGP2 silencing facilitated PRRSV replication. LGP2 was prone to interact with MDA5 and enhanced viral RNA enrichment and recognition by MDA5, thus promoting the activation of RIG-I/IRF3 and NF-κB signaling pathways and reinforcing the expression of proinflammatory cytokines and type I interferon during PRRSV infection. Meanwhile, there was a decreased protein expression of LGP2 upon PRRSV infection in vitro. PRRSV Nsp1 and Nsp2 interacted with LGP2 and promoted K63-linked ubiquitination of LGP2, ultimately leading to the degradation of LGP2. These novel findings indicate that LGP2 plays a role in regulating PRRSV replication through synergistic interaction with MDA5. Moreover, targeting LGP2 is responsible for PRRSV immune evasion. Our work describes a novel mechanism of virus-host interaction and provides the basis for preventing and controlling PRRSV. IMPORTANCE LGP2, a member of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), shows higher-affinity binding to RNA and work synergism with RIG-I or MDA5. However, LGP2 has divergent responses to different viruses, which remains controversial in antiviral immune responses. Here, we present the detailed process of LGP2 in positively regulating the anti-PRRSV response. Upon PRRSV infection, LGP2 was prone to bind to MDA5 and enhanced MDA5 signaling, manifesting the enrichment of viral RNA on MDA5 and the activation of downstream IRF3 and NF-κB, which results in increased proinflammatory cytokines and type I interferon expression, ultimately inhibiting PRRSV at the early stage of infection. Moreover, PRRSV Nsp1 and Nsp2 interacted with LGP2 via ubiquitin-proteasome pathways, thus blocking LGP2-mediated immune response. This research helps us understand the host recognition and innate antiviral response to PRRSV infection by neglected pattern recognition receptors, which sheds light on the detailed mechanism of virus-host interaction.
Collapse
|
19
|
Su CM, Du Y, Rowland RRR, Wang Q, Yoo D. Reprogramming viral immune evasion for a rational design of next-generation vaccines for RNA viruses. Front Immunol 2023; 14:1172000. [PMID: 37138878 PMCID: PMC10149994 DOI: 10.3389/fimmu.2023.1172000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Type I interferons (IFNs-α/β) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Raymond R. R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Dongwan Yoo,
| |
Collapse
|
20
|
Amurri L, Reynard O, Gerlier D, Horvat B, Iampietro M. Measles Virus-Induced Host Immunity and Mechanisms of Viral Evasion. Viruses 2022; 14:v14122641. [PMID: 36560645 PMCID: PMC9781438 DOI: 10.3390/v14122641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The immune system deploys a complex network of cells and signaling pathways to protect host integrity against exogenous threats, including measles virus (MeV). However, throughout its evolutionary path, MeV developed various mechanisms to disrupt and evade immune responses. Despite an available vaccine, MeV remains an important re-emerging pathogen with a continuous increase in prevalence worldwide during the last decade. Considerable knowledge has been accumulated regarding MeV interactions with the innate immune system through two antagonistic aspects: recognition of the virus by cellular sensors and viral ability to inhibit the induction of the interferon cascade. Indeed, while the host could use several innate adaptors to sense MeV infection, the virus is adapted to unsettle defenses by obstructing host cell signaling pathways. Recent works have highlighted a novel aspect of innate immune response directed against MeV unexpectedly involving DNA-related sensing through activation of the cGAS/STING axis, even in the absence of any viral DNA intermediate. In addition, while MeV infection most often causes a mild disease and triggers a lifelong immunity, its tropism for invariant T-cells and memory T and B-cells provokes the elimination of one primary shield and the pre-existing immunity against previously encountered pathogens, known as "immune amnesia".
Collapse
Affiliation(s)
- Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie (CIRI), Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
21
|
Huang S, Cheng A, Wang M, Yin Z, Huang J, Jia R. Viruses utilize ubiquitination systems to escape TLR/RLR-mediated innate immunity. Front Immunol 2022; 13:1065211. [PMID: 36505476 PMCID: PMC9732732 DOI: 10.3389/fimmu.2022.1065211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
When the viruses invade the body, they will be recognized by the host pattern recognition receptors (PRRs) such as Toll like receptor (TLR) or retinoic acid-induced gene-I like receptor (RLR), thus causing the activation of downstream antiviral signals to resist the virus invasion. The cross action between ubiquitination and proteins in these signal cascades enhances the antiviral signal. On the contrary, more and more viruses have also been found to use the ubiquitination system to inhibit TLR/RLR mediated innate immunity. Therefore, this review summarizes how the ubiquitination system plays a regulatory role in TLR/RLR mediated innate immunity, and how viruses use the ubiquitination system to complete immune escape.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Renyong Jia,
| |
Collapse
|
22
|
Yuan Y, Fang A, Wang Z, Tian B, Zhang Y, Sui B, Luo Z, Li Y, Zhou M, Chen H, Fu ZF, Zhao L. Trim25 restricts rabies virus replication by destabilizing phosphoprotein. CELL INSIGHT 2022; 1:100057. [PMID: 37193556 PMCID: PMC10120326 DOI: 10.1016/j.cellin.2022.100057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 05/18/2023]
Abstract
Tripartite motif-containing protein 25 (Trim25) is an E3 ubiquitin ligase that activates retinoid acid-inducible gene I (RIG-I) and promotes the antiviral interferon response. Recent studies have shown that Trim25 can bind and degrade viral proteins, suggesting a different mechanism of Trim25 on its antiviral effects. In this study, Trim25 expression was upregulated in cells and mouse brains after rabies virus (RABV) infection. Moreover, expression of Trim25 limited RABV replication in cultured cells. Overexpression of Trim25 caused attenuated viral pathogenicity in a mouse model that was intramuscularly injected with RABV. Further experiments confirmed that Trim25 inhibited RABV replication via two different mechanisms: an E3 ubiquitin ligase-dependent mechanism and an E3 ubiquitin ligase-independent mechanism. Specifically, the CCD domain of Trim25 interacted with RABV phosphoprotein (RABV-P) at amino acid (AA) position at 72 and impaired the stability of RABV-P via complete autophagy. This study reveals a novel mechanism by which Trim25 restricts RABV replication by destabilizing RABV-P, which is independent of its E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaochen Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
23
|
Mougari S, Gonzalez C, Reynard O, Horvat B. Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral toleranceInteractions between Henipaviruses and their natural host, fruit bats. Curr Opin Virol 2022; 54:101228. [DOI: 10.1016/j.coviro.2022.101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
|
24
|
Type I and Type II Interferon Antagonism Strategies Used by Paramyxoviridae: Previous and New Discoveries, in Comparison. Viruses 2022; 14:v14051107. [PMID: 35632848 PMCID: PMC9145045 DOI: 10.3390/v14051107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Paramyxoviridae is a viral family within the order of Mononegavirales; they are negative single-strand RNA viruses that can cause significant diseases in both humans and animals. In order to replicate, paramyxoviruses–as any other viruses–have to bypass an important protective mechanism developed by the host’s cells: the defensive line driven by interferon. Once the viruses are recognized, the cells start the production of type I and type III interferons, which leads to the activation of hundreds of genes, many of which encode proteins with the specific function to reduce viral replication. Type II interferon is produced by active immune cells through a different signaling pathway, and activates a diverse range of genes with the same objective to block viral replication. As a result of this selective pressure, viruses have evolved different strategies to avoid the defensive function of interferons. The strategies employed by the different viral species to fight the interferon system include a number of sophisticated mechanisms. Here we analyzed the current status of the various strategies used by paramyxoviruses to subvert type I, II, and III interferon responses.
Collapse
|
25
|
Airo AM, Felix-Lopez A, Mancinelli V, Evseev D, Lopez-Orozco J, Shire K, Paszkowski P, Frappier L, Magor KE, Hobman TC. Flavivirus Capsid Proteins Inhibit the Interferon Response. Viruses 2022; 14:v14050968. [PMID: 35632712 PMCID: PMC9146811 DOI: 10.3390/v14050968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Zika virus (ZIKV) establishes persistent infections in multiple human tissues, a phenomenon that likely plays a role in its ability to cause congenital birth defects and neurological disease. Multiple nonstructural proteins encoded by ZIKV, in particular NS5, are known to suppress the interferon (IFN) response by attacking different steps in this critical antiviral pathway. Less well known are the potential roles of structural proteins in affecting the host immune response during ZIKV infection. Capsid proteins of flaviviruses are of particular interest because a pool of these viral proteins is targeted to the nuclei during infection and, as such, they have the potential to affect host cell gene expression. In this study, RNA-seq analyses revealed that capsid proteins from six different flaviviruses suppress expression of type I IFN and IFN-stimulated genes. Subsequent interactome and in vitro ubiquitination assays showed that ZIKV capsid protein binds to and prevents activating ubiquitination of RIG-I CARD domains by TRIM25, a host factor that is important for the induction arm of the IFN response. The other flavivirus capsid proteins also interacted with TRIM25, suggesting that these viral proteins may attenuate antiviral signaling pathways at very early stages of infection, potentially even before nonstructural proteins are produced.
Collapse
Affiliation(s)
- Adriana M. Airo
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.M.A.); (A.F.-L.); (P.P.)
| | - Alberto Felix-Lopez
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.M.A.); (A.F.-L.); (P.P.)
| | - Valeria Mancinelli
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Danyel Evseev
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (D.E.); (K.E.M.)
| | - Joaquin Lopez-Orozco
- High Content Analysis Core, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Kathy Shire
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; (K.S.); (L.F.)
| | - Patrick Paszkowski
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.M.A.); (A.F.-L.); (P.P.)
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; (K.S.); (L.F.)
| | - Katharine E. Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (D.E.); (K.E.M.)
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Tom C. Hobman
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.M.A.); (A.F.-L.); (P.P.)
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-780-492-6485
| |
Collapse
|
26
|
Zhang B, Tian J, Zhang Q, Xie Y, Wang K, Qiu S, Lu K, Liu Y. Comparing the Nucleocapsid Proteins of Human Coronaviruses: Structure, Immunoregulation, Vaccine, and Targeted Drug. Front Mol Biosci 2022; 9:761173. [PMID: 35573742 PMCID: PMC9099148 DOI: 10.3389/fmolb.2022.761173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
The seven pathogenic human coronaviruses (HCoVs) include HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1, which usually cause mild upper respiratory tract diseases, and SARS-CoV, MERS-CoV, and SARS-CoV-2, which cause a severe acute respiratory syndrome. The nucleocapsid (N) protein, as the dominant structural protein from coronaviruses that bind to the genomic RNA, participates in various vital activities after virus invasion and will probably become a promising target of antiviral drug design. Therefore, a comprehensive literature review of human coronavirus’ pathogenic mechanism and therapeutic strategies is necessary for the control of the pandemic. Here, we give a systematic summary of the structures, immunoregulation, and potential vaccines and targeted drugs of the HCoVs N protein. First, we provide a general introduction to the fundamental structures and molecular function of N protein. Next, we outline the N protein mediated immune regulation and pathogenesis mechanism. Finally, we comprehensively summarize the development of potential N protein-targeted drugs and candidate vaccines to treat coronavirus disease 2019 (COVID-19). We believe this review provides insight into the virulence and transmission of SARS-CoV-2 as well as support for further study on epidemic control of COVID-19.
Collapse
Affiliation(s)
- Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- *Correspondence: Yang Liu, ; Keyu Lu, ; Bo Zhang,
| | - Junjie Tian
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Qintao Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Kejia Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Shuyi Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Keyu Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- *Correspondence: Yang Liu, ; Keyu Lu, ; Bo Zhang,
| | - Yang Liu
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- *Correspondence: Yang Liu, ; Keyu Lu, ; Bo Zhang,
| |
Collapse
|
27
|
Morita N, Tanaka Y, Takeuchi K, Kitagawa Y, Sakuma R, Koide N, Komatsu T. SeV C Protein Plays a Role in Restricting Macrophage Phagocytosis by Limiting the Generation of Intracellular Double-Stranded RNA. Front Microbiol 2022; 13:780534. [PMID: 35265056 PMCID: PMC8899396 DOI: 10.3389/fmicb.2022.780534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages play a central role in the innate immune response to respiratory viral infections through pro-inflammatory factor secretion and phagocytosis. However, as a countermeasure, viral pathogens have evolved virulence factors to antagonize macrophage function. In our recent in vitro analyses of murine macrophage cell lines, Sendai virus (SeV) accessory protein C inhibited the secretion of pro-inflammatory factors, and C gene-knockout SeV (SeVΔC) caused drastic morphological changes in RAW264.7 macrophages, similar to those observed after stimulation with Lipid A, a well-known activator of actin-rich membrane ruffle formation and phagocytosis. Hence, we sought to determine whether the C protein limits phagocytosis in SeV-infected macrophages through the suppression of membrane ruffling. Phagocytosis assays indicated an upregulation of phagocytosis in both SeVΔC-infected and Lipid A-stimulated macrophages, but not in SeV WT-infected cells. Further, the observed membrane ruffling was associated with phagocytosis. RIG-I is essential for Lipid A-induced phagocytosis; its deficiency inhibited SeVΔC-stimulated phagocytosis and ruffling, confirming the essential role of RIG-I. Moreover, treatment with interferon (IFN)-β stimulation and neutralizing antibodies against IFN-β suggested that SeVΔC-induced phagocytosis and ruffling occurred in an IFN-β-independent manner. A newly isolated SeVΔC strain that does not generate dsRNA further highlighted the importance of dsRNA in the induction of phagocytosis and ruffling. Taken together, the current results suggest that SeV C protein might limit phagocytosis-associated membrane ruffling in an RIG-I-mediated but IFN-independent manner via limiting the generation of intracellular dsRNA.
Collapse
Affiliation(s)
- Naoko Morita
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Yukie Tanaka
- Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kenji Takeuchi
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Ryusuke Sakuma
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Takayuki Komatsu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
- *Correspondence: Takayuki Komatsu,
| |
Collapse
|
28
|
Wang C, Wang T, Duan L, Chen H, Hu R, Wang X, Jia Y, Chu Z, Liu H, Wang X, Zhang S, Xiao S, Wang J, Dang R, Yang Z. Evasion of Host Antiviral Innate Immunity by Paramyxovirus Accessory Proteins. Front Microbiol 2022; 12:790191. [PMID: 35173691 PMCID: PMC8841848 DOI: 10.3389/fmicb.2021.790191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
For efficient replication, viruses have developed multiple strategies to evade host antiviral innate immunity. Paramyxoviruses are a large family of enveloped RNA viruses that comprises diverse human and animal pathogens which jeopardize global public health and the economy. The accessory proteins expressed from the P gene by RNA editing or overlapping open reading frames (ORFs) are major viral immune evasion factors antagonizing type I interferon (IFN-I) production and other antiviral innate immune responses. However, the antagonistic mechanisms against antiviral innate immunity by accessory proteins differ among viruses. Here, we summarize the current understandings of immune evasion mechanisms by paramyxovirus accessory proteins, specifically how accessory proteins directly or indirectly target the adaptors in the antiviral innate immune signaling pathway to facilitate virus replication. Additionally, some cellular responses, which are also involved in viral replication, will be briefly summarized.
Collapse
|
29
|
Wagner N, Liu H, Rohrs HW, Amarasinghe GK, Gross ML, Leung DW. Nipah Virus V Protein Binding Alters MDA5 Helicase Folding Dynamics. ACS Infect Dis 2022; 8:118-128. [PMID: 35026950 PMCID: PMC8762660 DOI: 10.1021/acsinfecdis.1c00403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Nipah virus (NiV) is an emerging and deadly zoonotic paramyxovirus that is responsible for periodic epidemics of acute respiratory illness and encephalitis in humans. Previous studies have shown that the NiV V protein antagonizes host antiviral immunity, but the molecular mechanism is incompletely understood. To address this gap, we biochemically characterized NiV V binding to the host pattern recognition receptor MDA5. We find that the C-terminal domain of NiV V (VCTD) is sufficient to bind the MDA5SF2 domain when recombinantly co-expressed in bacteria. Analysis by hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies revealed that NiV VCTD is conformationally dynamic, and binding to MDA5 reduces the dynamics of VCTD. Our results also suggest that the β-sheet region in between the MDA5 Hel1, Hel2, and Hel2i domains exhibits rapid HDX. Upon VCTD binding, these β-sheet and adjacent residues show significant protection. Collectively, our findings suggest that NiV V binding disrupts the helicase fold and dynamics of MDA5 to antagonize host antiviral immunity.
Collapse
Affiliation(s)
- Nicole
D. Wagner
- Division
of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Hejun Liu
- Division
of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Pathology and Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Henry W. Rohrs
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Gaya K. Amarasinghe
- Department
of Pathology and Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael L. Gross
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Daisy W. Leung
- Division
of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Pathology and Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
30
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
31
|
Liu Y, Liang QZ, Lu W, Yang YL, Chen R, Huang YW, Wang B. A Comparative Analysis of Coronavirus Nucleocapsid (N) Proteins Reveals the SADS-CoV N Protein Antagonizes IFN-β Production by Inducing Ubiquitination of RIG-I. Front Immunol 2021; 12:688758. [PMID: 34220846 PMCID: PMC8242249 DOI: 10.3389/fimmu.2021.688758] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
Coronaviruses (CoVs) are a known global threat, and most recently the ongoing COVID-19 pandemic has claimed more than 2 million human lives. Delays and interference with IFN responses are closely associated with the severity of disease caused by CoV infection. As the most abundant viral protein in infected cells just after the entry step, the CoV nucleocapsid (N) protein likely plays a key role in IFN interruption. We have conducted a comprehensive comparative analysis and report herein that the N proteins of representative human and animal CoVs from four different genera [swine acute diarrhea syndrome CoV (SADS-CoV), porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome CoV (SARS-CoV), SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), infectious bronchitis virus (IBV) and porcine deltacoronavirus (PDCoV)] suppress IFN responses by multiple strategies. In particular, we found that the N protein of SADS-CoV interacted with RIG-I independent of its RNA binding activity, mediating K27-, K48- and K63-linked ubiquitination of RIG-I and its subsequent proteasome-dependent degradation, thus inhibiting the host IFN response. These data provide insight into the interaction between CoVs and host, and offer new clues for the development of therapies against these important viruses.
Collapse
Affiliation(s)
- Yan Liu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Qi-Zhang Liang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Wan Lu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yong-Le Yang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Ruiai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Bin Wang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Chiang C, Dvorkin S, Chiang JJ, Potter RB, Gack MU. The Small t Antigen of JC Virus Antagonizes RIG-I-Mediated Innate Immunity by Inhibiting TRIM25's RNA Binding Ability. mBio 2021; 12:e00620-21. [PMID: 33849980 PMCID: PMC8092259 DOI: 10.1128/mbio.00620-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
JC polyomavirus (JCV), a DNA virus that leads to persistent infection in humans, is the causative agent of progressive multifocal leukoencephalopathy, a lethal brain disease that affects immunocompromised individuals. Almost nothing is currently known about how JCV infection is controlled by the innate immune response and, further, whether JCV has evolved mechanisms to antagonize antiviral immunity. Here, we show that the innate immune sensors retinoic acid-inducible gene I (RIG-I) and cGMP-AMP synthase (cGAS) control JCV replication in human astrocytes. We further identify that the small t antigen (tAg) of JCV functions as an interferon (IFN) antagonist by suppressing RIG-I-mediated signal transduction. JCV tAg interacts with the E3 ubiquitin ligase TRIM25, thereby preventing its ability to bind RNA and to induce the K63-linked ubiquitination of RIG-I, which is known to facilitate RIG-I-mediated cytokine responses. Antagonism of RIG-I K63-linked ubiquitination and antiviral signaling is also conserved in the tAg of the related polyomavirus BK virus (BKV). These findings highlight how JCV and BKV manipulate a key innate surveillance pathway, which may stimulate research into designing novel therapies.IMPORTANCE The innate immune response is the first line of defense against viral pathogens, and in turn, many viruses have evolved strategies to evade detection by the host's innate immune surveillance machinery. Investigation of the interplay between viruses and the innate immune response provides valuable insight into potential therapeutic targets against viral infectious diseases. JC polyomavirus (JCV) is associated with a lifelong, persistent infection that can cause a rare neurodegenerative disease, called progressive multifocal leukoencephalopathy, in individuals that are immunosuppressed. The molecular mechanisms of JCV infection and persistence are not well understood, and very little is currently known about the relevance of innate immunity for the control of JCV replication. Here, we define the intracellular innate immune sensors responsible for controlling JCV infection and also demonstrate a novel mechanism by which a JCV-encoded protein acts as an antagonist of the type I interferon-mediated innate immune response.
Collapse
Affiliation(s)
- Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Steve Dvorkin
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jessica J Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel B Potter
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
34
|
Valerdi KM, Hage A, van Tol S, Rajsbaum R, Giraldo MI. The Role of the Host Ubiquitin System in Promoting Replication of Emergent Viruses. Viruses 2021; 13:369. [PMID: 33652634 PMCID: PMC7996891 DOI: 10.3390/v13030369] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
Ubiquitination of proteins is a post-translational modification process with many different cellular functions, including protein stability, immune signaling, antiviral functions and virus replication. While ubiquitination of viral proteins can be used by the host as a defense mechanism by destroying the incoming pathogen, viruses have adapted to take advantage of this cellular process. The ubiquitin system can be hijacked by viruses to enhance various steps of the replication cycle and increase pathogenesis. Emerging viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviviruses like Zika and dengue, as well as highly pathogenic viruses like Ebola and Nipah, have the ability to directly use the ubiquitination process to enhance their viral-replication cycle, and evade immune responses. Some of these mechanisms are conserved among different virus families, especially early during virus entry, providing an opportunity to develop broad-spectrum antivirals. Here, we discuss the mechanisms used by emergent viruses to exploit the host ubiquitin system, with the main focus on the role of ubiquitin in enhancing virus replication.
Collapse
Affiliation(s)
- Karl M. Valerdi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| |
Collapse
|
35
|
Meignié A, Combredet C, Santolini M, Kovács IA, Douché T, Gianetto QG, Eun H, Matondo M, Jacob Y, Grailhe R, Tangy F, Komarova AV. Proteomic Analysis Uncovers Measles Virus Protein C Interaction With p65-iASPP Protein Complex. Mol Cell Proteomics 2021; 20:100049. [PMID: 33515806 PMCID: PMC7950213 DOI: 10.1016/j.mcpro.2021.100049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses manipulate the central machineries of host cells to their advantage. They prevent host cell antiviral responses to create a favorable environment for their survival and propagation. Measles virus (MV) encodes two nonstructural proteins MV-V and MV-C known to counteract the host interferon response and to regulate cell death pathways. Several molecular mechanisms underlining MV-V regulation of innate immunity and cell death pathways have been proposed, whereas MV-C host-interacting proteins are less studied. We suggest that some cellular factors that are controlled by MV-C protein during viral replication could be components of innate immunity and the cell death pathways. To determine which host factors are targeted by MV-C, we captured both direct and indirect host-interacting proteins of MV-C protein. For this, we used a strategy based on recombinant viruses expressing tagged viral proteins followed by affinity purification and a bottom-up mass spectrometry analysis. From the list of host proteins specifically interacting with MV-C protein in different cell lines, we selected the host targets that belong to immunity and cell death pathways for further validation. Direct protein interaction partners of MV-C were determined by applying protein complementation assay and the bioluminescence resonance energy transfer approach. As a result, we found that MV-C protein specifically interacts with p65–iASPP protein complex that controls both cell death and innate immunity pathways and evaluated the significance of these host factors on virus replication. Measles virus controls immune response and cell death pathways to achieve replication. Host proteins interaction network with measles virulence factor C protein. Cellular p65–iASPP complex is targeted by measles virus C protein.
Collapse
Affiliation(s)
- Alice Meignié
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Chantal Combredet
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Marc Santolini
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France; Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - István A Kovács
- Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, USA; Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Thibaut Douché
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Quentin Giai Gianetto
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France; Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, CNRS USR 3756, Paris, France
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Mariette Matondo
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Yves Jacob
- Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France.
| | - Anastassia V Komarova
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France.
| |
Collapse
|
36
|
Chiang C, Liu G, Gack MU. Viral Evasion of RIG-I-Like Receptor-Mediated Immunity through Dysregulation of Ubiquitination and ISGylation. Viruses 2021; 13:182. [PMID: 33530371 PMCID: PMC7910861 DOI: 10.3390/v13020182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Viral dysregulation or suppression of innate immune responses is a key determinant of virus-induced pathogenesis. Important sensors for the detection of virus infection are the RIG-I-like receptors (RLRs), which, in turn, are antagonized by many RNA viruses and DNA viruses. Among the different escape strategies are viral mechanisms to dysregulate the post-translational modifications (PTMs) that play pivotal roles in RLR regulation. In this review, we present the current knowledge of immune evasion by viral pathogens that manipulate ubiquitin- or ISG15-dependent mechanisms of RLR activation. Key viral strategies to evade RLR signaling include direct targeting of ubiquitin E3 ligases, active deubiquitination using viral deubiquitinating enzymes (DUBs), and the upregulation of cellular DUBs that regulate RLR signaling. Additionally, we summarize emerging new evidence that shows that enzymes of certain coronaviruses such as SARS-CoV-2, the causative agent of the current COVID-19 pandemic, actively deISGylate key molecules in the RLR pathway to escape type I interferon (IFN)-mediated antiviral responses. Finally, we discuss the possibility of targeting virally-encoded proteins that manipulate ubiquitin- or ISG15-mediated innate immune responses for the development of new antivirals and vaccines.
Collapse
Affiliation(s)
| | | | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; (C.C.); (G.L.)
| |
Collapse
|
37
|
Abstract
The Nipah virus (NiV) phosphoprotein (P) gene encodes four proteins. Three of these-P, V, and W-possess a common N-terminal domain but distinct C termini. These proteins interact with immune modulators. Previous studies demonstrated that P, V, and W bind STAT1 and STAT4 and that V also interacts with STAT2 but not with STAT3. The STAT1 and STAT2 interactions block interferon (IFN)-induced STAT tyrosine phosphorylation. To more fully characterize the interactions of P, V, and W with the STATs, we screened for interaction of each viral protein with STATs 1 to 6 by coimmunoprecipitation. We demonstrate that NiV P, V, and W interact with STAT4 through their common N-terminal domain and block STAT4 activity, based on a STAT4 response element reporter assay. Although none of the NiV proteins interact with STAT3 or STAT6, NiV V, but not P or W, interacts with STAT5 through its unique C terminus. Furthermore, the interaction of NiV V with STAT5 was not disrupted by overexpression of the N-terminal binding STAT1 or the C-terminal binding MDA5. NiV V also inhibits a STAT5 response element reporter assay. Residues 114 to 140 of the common N-terminal domain of the NiV P gene products were found to be sufficient to bind STAT1 and STAT4. Analysis of STAT1-STAT3 chimeras suggests that the P gene products target the STAT1 SH2 domain. When fused to GST, the 114-140 peptide is sufficient to decrease STAT1 phosphorylation in IFN-β-stimulated cells, suggesting that this peptide could potentially be fused to heterologous proteins to confer inhibition of STAT1- and STAT4-dependent responses.IMPORTANCE How Nipah virus (NiV) antagonizes innate immune responses is incompletely understood. The P gene of NiV encodes the P, V, and W proteins. These proteins have a common N-terminal sequence that is sufficient to bind to STAT1 and STAT2 and block IFN-induced signal transduction. This study sought to more fully understand how P, V, and W engage with the STAT family of transcription factors to influence their functions. The results identify a novel interaction of V with STAT5 and demonstrate V inhibition of STAT5 function. We also demonstrate that the common N-terminal residues 114 to 140 of P, V, and W are critical for inhibition of STAT1 and STAT4 function, map the interaction to the SH2 region of STAT1, and show that a fusion construct with this peptide significantly inhibits cytokine-induced STAT1 phosphorylation. These data clarify how these important virulence factors modulate innate antiviral defenses.
Collapse
|
38
|
SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci U S A 2020; 117:28344-28354. [PMID: 33097660 PMCID: PMC7668094 DOI: 10.1073/pnas.2016650117] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.
Collapse
|
39
|
Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell Mol Life Sci 2020; 78:1423-1444. [PMID: 33084946 PMCID: PMC7576986 DOI: 10.1007/s00018-020-03671-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Antiviral responses of interferons (IFNs) are crucial in the host immune response, playing a relevant role in controlling viralw infections. Three types of IFNs, type I (IFN-α, IFN-β), II (IFN-γ) and III (IFN-λ), are classified according to their receptor usage, mode of induction, biological activity and amino acid sequence. Here, we provide a comprehensive review of type I IFN responses and different mechanisms that viruses employ to circumvent this response. In the first part, we will give an overview of the different induction and signaling cascades induced in the cell by IFN-I after virus encounter. Next, highlights of some of the mechanisms used by viruses to counteract the IFN induction will be described. And finally, we will address different mechanism used by viruses to interference with the IFN signaling cascade and the blockade of IFN induced antiviral activities.
Collapse
|
40
|
Abstract
Purpose of Review Tripartite motif (TRIM) proteins are a large group of E3 ubiquitin ligases involved in different cellular functions. Of special interest are their roles in innate immunity, inflammation, and virus replication. We discuss novel roles of TRIM proteins during virus infections that lead to increased pathogenicity. Recent Findings TRIM proteins regulate different antiviral and inflammatory signaling pathways, mostly by promoting ubiquitination of important factors including pattern recognition receptors, adaptor proteins, kinases, and transcription factors that are involved in type I interferon and NF-κB pathways. Therefore, viruses have developed mechanisms to target TRIMs for immune evasion. New evidence is emerging indicating that viruses have the ability to directly use TRIMs and the ubiquitination process to enhance the viral replication cycle and cause increased pathogenesis. A new report on TRIM7 also highlights the potential pro-viral role of TRIMs via ubiquitination of viral proteins and suggests a novel mechanism by which ubiquitination of virus envelope protein may provide determinants of tissue and species tropism. Summary TRIM proteins have important functions in promoting host defense against virus infection; however, viruses have adapted to evade TRIM-mediated immune responses and can hijack TRIMs to ultimately increase virus pathogenesis. Only by understanding specific TRIM-virus interactions and by using more in vivo approaches can we learn how to harness TRIM function to develop therapeutic approaches to reduce virus pathogenesis.
Collapse
|
41
|
Chang CY, Liu HM, Chang MF, Chang SC. Middle East Respiratory Syndrome Coronavirus Nucleocapsid Protein Suppresses Type I and Type III Interferon Induction by Targeting RIG-I Signaling. J Virol 2020; 94:e00099-20. [PMID: 32295922 PMCID: PMC7307178 DOI: 10.1128/jvi.00099-20] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Type I and type III interferons (IFNs) are the frontline of antiviral defense mechanisms that trigger hundreds of downstream antiviral genes. In this study, we observed that MERS-CoV nucleocapsid (N) protein suppresses type I and type III IFN gene expression. The N protein suppresses Sendai virus-induced IFN-β and IFN-λ1 by reducing their promoter activity and mRNA levels, as well as downstream IFN-stimulated genes (ISGs). Retinoic acid-inducible gene I (RIG-I) is known to recognize viral RNA and induce IFN expression through tripartite motif-containing protein 25 (TRIM25)-mediated ubiquitination of RIG-I caspase activation and recruitment domains (CARDs). We discovered that MERS-CoV N protein suppresses RIG-I-CARD-induced, but not MDA5-CARD-induced, IFN-β and IFN-λ1 promoter activity. By interacting with TRIM25, N protein impedes RIG-I ubiquitination and activation and inhibits the phosphorylation of transcription factors IFN-regulatory factor 3 (IRF3) and NF-κB that are known to be important for IFN gene activation. By employing a recombinant Sindbis virus-EGFP replication system, we showed that viral N protein downregulated the production of not only IFN mRNA but also bioactive IFN proteins. Taken together, MERS-CoV N protein functions as an IFN antagonist. It suppresses RIG-I-induced type I and type III IFN production by interfering with TRIM25-mediated RIG-I ubiquitination. Our study sheds light on the pathogenic mechanism of how MERS-CoV causes disease.IMPORTANCE MERS-CoV causes death of about 35% of patients. Published studies showed that some coronaviruses are capable of suppressing interferon (IFN) expression in the early phase of infection and MERS-CoV proteins can modulate host immune response. In this study, we demonstrated that MERS-CoV nucleocapsid (N) protein suppresses the production of both type I and type III IFNs via sequestering TRIM25, an E3 ubiquitin ligase that is essential for activating the RIG-I signaling pathway. Ectopic expression of TRIM25 rescues the suppressive effect of the N protein. In addition, the C-terminal domain of the viral N protein plays a pivotal role in the suppression of IFN-β promoter activity. Our findings reveal how MERS-CoV evades innate immunity and provide insights into the interplay between host immune response and viral pathogenicity.
Collapse
Affiliation(s)
- Chi-You Chang
- Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Helene Minyi Liu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shin C Chang
- Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
42
|
The Andes Orthohantavirus NSs Protein Antagonizes the Type I Interferon Response by Inhibiting MAVS Signaling. J Virol 2020; 94:JVI.00454-20. [PMID: 32321811 DOI: 10.1128/jvi.00454-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
The small messenger RNA (SmRNA) of the Andes orthohantavirus (ANDV), a rodent-borne member of the Hantaviridae family of viruses of the Bunyavirales order, encodes a multifunctional nucleocapsid (N) protein and for a nonstructural (NSs) protein of unknown function. We have previously shown the expression of the ANDV-NSs, but only in infected cell cultures. In this study, we extend our early findings by confirming the expression of the ANDV-NSs protein in the lungs of experimentally infected golden Syrian hamsters. Next, we show, using a virus-free system, that the ANDV-NSs protein antagonizes the type I interferon (IFN) induction pathway by suppressing signals downstream of the melanoma differentiation-associated protein 5 (MDA5) and the retinoic acid-inducible gene 1 (RIG-I) and upstream of TBK1. Consistent with this observation, the ANDV-NSs protein antagonized mitochondrial antiviral-signaling protein (MAVS)-induced IFN-β, NF-κB, IFN-regulatory factor 3 (IRF3), and IFN-sensitive response element (ISRE) promoter activity. Results demonstrate that ANDV-NSs binds to MAVS in cells without disrupting the MAVS-TBK-1 interaction. However, in the presence of the ANDV-NSs ubiquitination of MAVS is reduced. In summary, this study provides evidence showing that the ANDV-NSs protein acts as an antagonist of the cellular innate immune system by suppressing MAVS downstream signaling by a yet not fully understand mechanism. Our findings reveal new insights into the molecular regulation of the hosts' innate immune response by the Andes orthohantavirus.IMPORTANCE Andes orthohantavirus (ANDV) is endemic in Argentina and Chile and is the primary etiological agent of hantavirus cardiopulmonary syndrome (HCPS) in South America. ANDV is distinguished from other hantaviruses by its unique ability to spread from person to person. In a previous report, we identified a novel ANDV protein, ANDV-NSs. Until now, ANDV-NSs had no known function. In this new study, we established that ANDV-NSs acts as an antagonist of cellular innate immunity, the first line of defense against invading pathogens, hindering the cellular antiviral response during infection. This study provides novel insights into the mechanisms used by ANDV to establish its infection.
Collapse
|
43
|
Hage A, Rajsbaum R. To TRIM or not to TRIM: the balance of host-virus interactions mediated by the ubiquitin system. J Gen Virol 2020; 100:1641-1662. [PMID: 31661051 DOI: 10.1099/jgv.0.001341] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The innate immune system responds rapidly to protect against viral infections, but an overactive response can cause harmful damage. To avoid this, the response is tightly regulated by post-translational modifications (PTMs). The ubiquitin system represents a powerful PTM machinery that allows for the reversible linkage of ubiquitin to activate and deactivate a target's function. A precise enzymatic cascade of ubiquitin-activating, conjugating and ligating enzymes facilitates ubiquitination. Viruses have evolved to take advantage of the ubiquitin pathway either by targeting factors to dampen the antiviral response or by hijacking the system to enhance their replication. The tripartite motif (TRIM) family of E3 ubiquitin ligases has garnered attention as a major contributor to innate immunity. Many TRIM family members limit viruses either indirectly as components in innate immune signalling, or directly by targeting viral proteins for degradation. In spite of this, TRIMs and other ubiquitin ligases can be appropriated by viruses and repurposed as valuable tools in viral replication. This duality of function suggests a new frontier of research for TRIMs and raises new challenges for discerning the subtleties of these pro-viral mechanisms. Here, we review current findings regarding the involvement of TRIMs in host-virus interactions. We examine ongoing developments in the field, including novel roles for unanchored ubiquitin in innate immunity, the direct involvement of ubiquitin ligases in promoting viral replication, recent controversies on the role of ubiquitin and TRIM25 in activation of the pattern recognition receptor RIG-I, and we discuss the implications these studies have on future research directions.
Collapse
Affiliation(s)
- Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
44
|
Ayasoufi K, Pfaller CK. Seek and hide: the manipulating interplay of measles virus with the innate immune system. Curr Opin Virol 2020; 41:18-30. [PMID: 32330821 DOI: 10.1016/j.coviro.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/17/2023]
Abstract
The innate immune system is the first line of defense against infections with pathogens. It provides direct antiviral mechanisms to suppress the viral life cycle at multiple steps. Innate immune cells are specialized to recognize pathogen infections and activate and modulate adaptive immune responses through antigen presentation, co-stimulation and release of cytokines and chemokines. Measles virus, which causes long-lasting immunosuppression and immune-amnesia, primarily infects and replicates in innate and adaptive immune cells, such as dendritic cells, macrophages, T cells and B cells. To achieve efficient replication, measles virus has evolved multiple mechanisms to manipulate innate immune responses by both stimulation and blocking of specific signals necessary for antiviral immunity. This review will highlight our current knowledge in this and address open questions.
Collapse
Affiliation(s)
- Katayoun Ayasoufi
- Mayo Clinic, Department of Immunology, 200 First Street SW, Rochester, MN 55905, United States
| | - Christian K Pfaller
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany.
| |
Collapse
|
45
|
Interferon- Stimulation Elicited by the Influenza Virus Is Regulated by the Histone Methylase Dot1L through the RIG-I-TRIM25 Signaling Axis. Cells 2020; 9:cells9030732. [PMID: 32188146 PMCID: PMC7140698 DOI: 10.3390/cells9030732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza virus infection increases the methylation of lysine 79 of histone 3 catalyzed by the Dot1L enzyme. The role of Dot1L against infections was highlighted by an increase of influenza A and vesicular stomatitis virus replication in Dot1L-inhibited cells mediated by a decreased antiviral response. Interferon-beta (IFN-β) reporter assays indicate that Dot1L is involved in the control of retinoic acid-inducible geneI protein (RIG-I) signaling. Accordingly, Dot1L inhibition decreases the IFN-β promoter stimulation and RIG-I- mitochondria-associated viral sensor (RIG-I-MAVS) association upon viral infection. Replication of an influenza A virus lacking NS1 (delNS1), incapable of counteracting the antiviral response, is not affected by Dot1L inhibition. Consequently, RIG-I-MAVS association and nuclear factor-B (NF-κ nuclear translocation, are not affected by the Dot1L inhibition in delNS1 infected cells. Restoration of NS1 expression in trans also reinstated Dot1L as a regulator of the RIG-I-dependent signaling in delNS1 infections. Interferon-inducible E3 ligase tripartite motif-containing protein 25 (TRIM25) expression increases in influenza virus infected cells, but Dot1L inhibition reduces both the TRIM25 expression and TRIM25 protein levels. TRIM25 overexpression reverses the defective innate response mediated by Dot1L inhibition elicited upon virus infection or by overexpression of RIG-I signaling intermediates. Thus, TRIM25 is a control point of the RIG-I recognition pathway controlled by Dot1L and may have a general role in RNA viruses recognized by the RIG-I sensor.
Collapse
|
46
|
Dawes BE, Freiberg AN. Henipavirus infection of the central nervous system. Pathog Dis 2020; 77:5462651. [PMID: 30985897 DOI: 10.1093/femspd/ftz023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae. These viruses were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 75%. While outbreaks of Nipah and Hendra virus infections remain rare and sporadic, there is concern that NiV has pandemic potential. Despite increased attention, little is understood about the neuropathogenesis of henipavirus infection. Neuropathogenesis appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection, but the relative contributions remain unknown while respiratory disease arises from vasculitis and respiratory epithelial cell infection. This review will address NiV basic clinical disease, pathology and pathogenesis with a particular focus on central nervous system (CNS) infection and address the necessity of a model of relapsed CNS infection. Additionally, the innate immune responses to NiV infection in vitro and in the CNS are reviewed as it is likely linked to any persistent CNS infection.
Collapse
Affiliation(s)
- Brian E Dawes
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA
| |
Collapse
|
47
|
Morita N, Tanaka Y, Odkhuu E, Naiki Y, Komatsu T, Koide N. Sendai virus V protein decreases nitric oxide production by inhibiting RIG-I signaling in infected RAW264.7 macrophages. Microbes Infect 2020; 22:322-330. [PMID: 32032681 DOI: 10.1016/j.micinf.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022]
Abstract
Sendai virus V protein is a known antagonist of RIG-I-like receptors (RLRs) RIG-I and MDA5, which activate transcription factors IRF3, leading to activation of ISGF3 and NF-κB. These transcription factors are known activators of inducible NO synthase (iNOS) and increase the production of nitric oxide (NO). By inhibiting ISGF3 and NF-κB, the V protein acts as an indirect negative regulator of iNOS and NO. Here we report that the V gene knockout Sendai virus [SeV V(-)] markedly enhanced iNOS expression and subsequent NO production in infected macrophages compared to wild-type SeV. The knockout of RIG-I in cells inhibited SeV V(-)-induced iNOS expression and subsequent NO production. To understand the underlying mechanism of the V protein-mediated negative regulation of iNOS activation, we transfected HEK293T cells with RIG-I and the RIG-I regulatory protein TRIM25. Our results demonstrated that the V protein inhibited iNOS activation via the RIG-I/TRIM25 pathway. Moreover, the V protein inhibited TRIM25-mediated K63-linked ubiquitination of RIG-I, as well as its CARD-dependent interaction with mitochondrial antiviral signaling (MAVS) molecules. These results suggest that the V protein downregulates iNOS activation and inhibits NO production by preventing the RIG-I-MAVS interaction, possibly through its effect on the ubiquitination status of RIG-I.
Collapse
Affiliation(s)
- Naoko Morita
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan
| | - Yukie Tanaka
- Department of Molecular Biology and Chemistry, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Erdenezaya Odkhuu
- Department of Anatomy, Mongolian National University of Medical Sciences, Ulaanbaatar, 210648, Mongolia
| | - Yoshikazu Naiki
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan
| | - Takayuki Komatsu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan.
| | - Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan
| |
Collapse
|
48
|
Choudhury NR, Heikel G, Michlewski G. TRIM25 and its emerging RNA-binding roles in antiviral defense. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1588. [PMID: 31990130 DOI: 10.1002/wrna.1588] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
The innate immune system is the body's first line of defense against viruses, with pattern recognition receptors (PRRs) recognizing molecules unique to viruses and triggering the expression of interferons and other anti-viral cytokines, leading to the formation of an anti-viral state. The tripartite motif containing 25 (TRIM25) is an E3 ubiquitin ligase thought to be a key component in the activation of signaling by the PRR retinoic acid-inducible gene I protein (RIG-I). TRIM25 has recently been identified as an RNA-binding protein, raising the question of whether its RNA-binding activity is important for its role in innate immunity. Here, we review TRIM25's mechanisms and pathways in noninfected and infected cells. We also introduce models that explain how TRIM25 binding to RNA could modulate its functions and play part in the antiviral response. These findings have opened new lines of investigations into functional and molecular roles of TRIM25 and other E3 ubiquitin ligases in cell biology and control of pathogenic infections. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
| | - Gregory Heikel
- Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Gracjan Michlewski
- Infection Medicine, University of Edinburgh, Edinburgh, UK.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| |
Collapse
|
49
|
The influenza NS1 protein modulates RIG-I activation via a strain-specific direct interaction with the second CARD of RIG-I. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49923-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
50
|
Jureka AS, Kleinpeter AB, Tipper JL, Harrod KS, Petit CM. The influenza NS1 protein modulates RIG-I activation via a strain-specific direct interaction with the second CARD of RIG-I. J Biol Chem 2019; 295:1153-1164. [PMID: 31843969 DOI: 10.1074/jbc.ra119.011410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/30/2019] [Indexed: 12/13/2022] Open
Abstract
A critical role of influenza A virus nonstructural protein 1 (NS1) is to antagonize the host cellular antiviral response. NS1 accomplishes this role through numerous interactions with host proteins, including the cytoplasmic pathogen recognition receptor, retinoic acid-inducible gene I (RIG-I). Although the consequences of this interaction have been studied, the complete mechanism by which NS1 antagonizes RIG-I signaling remains unclear. We demonstrated previously that the NS1 RNA-binding domain (NS1RBD) interacts directly with the second caspase activation and recruitment domain (CARD) of RIG-I. We also identified that a single strain-specific polymorphism in the NS1RBD (R21Q) completely abrogates this interaction. Here we investigate the functional consequences of an R21Q mutation on NS1's ability to antagonize RIG-I signaling. We observed that an influenza virus harboring the R21Q mutation in NS1 results in significant up-regulation of RIG-I signaling. In support of this, we determined that an R21Q mutation in NS1 results in a marked deficit in NS1's ability to antagonize TRIM25-mediated ubiquitination of the RIG-I CARDs, a critical step in RIG-I activation. We also observed that WT NS1 is capable of binding directly to the tandem RIG-I CARDs, whereas the R21Q mutation in NS1 significantly inhibits this interaction. Furthermore, we determined that the R21Q mutation does not impede the interaction between NS1 and TRIM25 or NS1RBD's ability to bind RNA. The data presented here offer significant insights into NS1 antagonism of RIG-I and illustrate the importance of understanding the role of strain-specific polymorphisms in the context of this specific NS1 function.
Collapse
Affiliation(s)
- Alexander S Jureka
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294
| | - Alex B Kleinpeter
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294
| | - Jennifer L Tipper
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294
| | - Chad M Petit
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294
| |
Collapse
|