1
|
Keep S, Foldes K, Dowgier G, Freimanis G, Tennakoon C, Chowdhury S, Rayment A, Kirk J, Bakshi T, Stevenson-Leggett P, Chen Y, Britton P, Bickerton E. Recombinant infectious bronchitis virus containing mutations in non-structural proteins 10, 14, 15, and 16 and within the macrodomain provides complete protection against homologous challenge. J Virol 2025; 99:e0166324. [PMID: 40013770 PMCID: PMC11998542 DOI: 10.1128/jvi.01663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025] Open
Abstract
Infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically important disease of chickens. Vaccination uses live attenuated vaccines (LAVs) that are generated via serial passage of a virulent field isolate through embryonated hens' eggs, typically 80-100 times. The molecular basis of attenuation is unknown and varies with each attenuation procedure. To investigate specifically targeted attenuation, we utilized reverse genetics to target the macrodomain 1 (Mac1) domain within non-structural protein 3 of the virulent M41 strain. Macrodomains are found in a variety of viruses, including coronaviruses, and have been associated with the modulation of the host's innate response. Two recombinant IBVs (rIBVs) were generated with specific single point mutations, either Asn42Ala (N42A) or Gly49Ser (G49S), within the Mac1 domain generating rIBVs M41K-N42A and M41K-G49S, respectively. Replication in vitro was unaffected, and the mutations were stably maintained during passaging in vitro and in ovo. While M41K-N42A exhibited an attenuated phenotype in vivo, M41K-G49S was only partially attenuated. The attenuated in vivo phenotypes observed do not appear to be linked to a reduction in viral replication and additionally M41K-N42A highlighted the N42A mutation as a method of rational attenuation. Vaccination of chickens with either rIBV M41K-N42A or a rIBV containing the Mac1 N42A mutation and our previously identified attenuating Nsp10 and 14 mutations, Pro85Leu and Val393Leu respectively, offered complete protection from homologous challenge. The presence of multiple attenuating mutations did not appear to negatively impact vaccine efficacy. IMPORTANCE Infection of chickens with the Gammacoronavirus infectious bronchitis virus (IBV) causes an acute respiratory disease, resulting in reduced weight gain and reductions in egg laying making it a global concern for poultry industries and food security. Vaccination against IBV uses live attenuated viruses (LAVs), generated by multiple passages of a virulent virus through embryonated hens' eggs. The molecular basis of attenuation is unknown and unpredictable requiring a fine balance between loss of virulence and vaccine efficacy. In this study, we targeted the macrodomain of IBV for rational attenuation demonstrating a single point mutation can result in loss of pathogenicity. An IBV vaccine candidate was subsequently generated containing three specific attenuating mutations, to reduce the risk of reversion, which completely protected chickens. The targets in this study are conserved among IBV strains and the coronavirus family offering a potential method of rational attenuation that can be universally applied for vaccine development.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | | | | | - Adam Rayment
- The Pirbright Institute, Pirbright, United Kingdom
| | - James Kirk
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Yana Chen
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | |
Collapse
|
2
|
Garcia Lopez V, Plate L. Comparative Interactome Profiling of Nonstructural Protein 3 Across SARS-CoV-2 Variants Emerged During the COVID-19 Pandemic. Viruses 2025; 17:447. [PMID: 40143373 PMCID: PMC11946765 DOI: 10.3390/v17030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
SARS-CoV-2 virus and its variants remain a global health threat, due to their capacity for rapid evolution. Variants throughout the COVID-19 pandemic exhibited variations in virulence, impacting vaccine protection and disease severity. Investigating nonstructural protein variants is critical to understanding viral evolution and manipulation of host protein interactions. We focus on nonstructural protein 3 (nsp3), with multiple domains with different activities, including viral polyprotein cleavage, host deubiquitylation, de-ISGylation, and double-membrane vesicle formation. Using affinity purification-mass spectrometry (AP-MS), we identify differential protein interactions in nsp3 caused by mutations found in variants identified between 2019 and 2024: Alpha 20I, Beta 20H, Delta 21I, Delta 21J, Gamma 20J, Kappa 21B, Lambda 21G, Omicron 21K, and Omicron 21L. A small set of amino acid substitutions in the N-terminal region of nsp3 (nsp3.1) could be traced to increased interactions with RNA-binding proteins, which are vital in viral replication. Meanwhile, variants of the central region of nsp3 (nsp3.2) were found to share interactions with protein quality control machinery, including ER-associated degradation. In this construct, shared trends in interactor enrichment are observed between Omicron 21K and Delta 21I. These results underscore how minor mutations reshape host interactions, emphasizing the evolutionary arms race between the host and virus. We provide a roadmap to track the interaction changes driven by SARS-CoV-2 variant evolution.
Collapse
Affiliation(s)
- Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Kerr CM, Proctor-Roser MA, Parthasarathy S, O’Connor JJ, Pfannenstiel JJ, Orozco RC, Fehr AR. IFN- γ signaling is required for the efficient replication of murine hepatitis virus (MHV) strain JHM in the brains of infected mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631031. [PMID: 39803452 PMCID: PMC11722247 DOI: 10.1101/2025.01.01.631031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Neurotropic viruses are a major public health concern as they can cause encephalitis and other severe brain diseases. Many of these viruses, including flaviviruses, herpesviruses, rhabdoviruses and alphaviruses enter the brain through the olfactory neuroepithelium (ONE) in the olfactory bulbs (OB). Due to the low percentage of encephalitis that occurs following these infections, it's thought that the OBs have specialized innate immune responses to eliminate viruses. Murine hepatitis virus strain JHM (JHMV) is a model coronavirus that causes severe encephalitis in mice and can access the brain through olfactory sensory neurons. We've shown that a JHMV Mac1-mutant virus, N1347A, has decreased replication and disease in the brains of mice. Here we further show that this virus replicates poorly in the OB. However, it is unknown which innate immune factors restrict N1347A replication in the OB. RNA seq analysis of infected olfactory bulbs showed that IFNγ was upregulated in the OB while IFN-β was barely detectable at 5 days post-infection. To determine if IFN-γ restricts JHMV N1347A replication, we utilized IFN-γ and IFN-γ receptor (IFN-γR) knockout (KO) mice. Surprisingly we found that JHMV WT and N1347A replicated very poorly in the OB and whole brains of both IFN-γ and IFN-γR KO mice following intranasal infection, though survival and weight loss were unaltered. Furthermore, we determined that microglia were the primary cells producing IFN-γ during the early stages of this infection. We conclude that IFN-γ is required for the efficient replication of JHMV in the brains of infected mice.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | | | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Robin C. Orozco
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
4
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O'Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental for replication. J Virol 2024; 98:e0131324. [PMID: 39387584 PMCID: PMC11575489 DOI: 10.1128/jvi.01313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in non-structural protein 3. Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the glycine-isoleucine-phenylalanine motif. While we previously demonstrated the importance of the glycine residue for CoV replication and pathogenesis, the impact of the isoleucine and phenylalanine residues remains unknown. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that correlated with attenuated replication and pathogenesis of F-A mutant MERS-CoV and SARS-CoV-2 viruses in cell culture and mice. In contrast, the I-A mutant proteins had normal enzyme activity and enhanced ADP-ribose binding. Despite only demonstrating increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 viruses were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication. IMPORTANCE The conserved coronavirus (CoV) macrodomain (Mac1) counters the activity of host ADP-ribosyltransferases and is critical for CoV replication and pathogenesis. As such, Mac1 is a potential therapeutic target for CoV-induced disease. However, we lack a basic knowledge of how several residues in its ADP-ribose binding pocket contribute to its biochemical and virological functions. We engineered mutations into two highly conserved residues in the ADP-ribose binding pocket of Mac1, both as recombinant proteins and viruses for Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Interestingly, a Mac1 isoleucine-to-alanine mutant protein had enhanced ADP-ribose binding which proved to be detrimental for virus replication, indicating that this isoleucine controls ADP-ribose binding and is beneficial for virus replication and pathogenesis. These results provide unique insight into how macrodomains control ADP-ribose binding and will be critical for the development of novel inhibitors targeting Mac1 that could be used to treat CoV-induced disease.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Joseph J. O'Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Peter R. McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Wang Q, Wei J, He J, Ming S, Li X, Huang X, Hong Z, Wu Y. HSP70 contributes to pathogenesis of fulminant hepatitis induced by coronavirus. Int Immunopharmacol 2024; 141:112963. [PMID: 39159560 DOI: 10.1016/j.intimp.2024.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Fulminant viral hepatitis (FH) represents a significant clinical challenge, with its pathogenesis not yet fully elucidated. Heat shock protein (HSP)70, a molecular chaperone protein with a broad range of cytoprotective functions, is upregulated in response to stress. However, the role of HSP70 in FH remains to be investigated. Notably, HSP70 expression is upregulated in the livers of coronavirus-infected mice and patients. Therefore, we investigated the mechanistic role of HSP70 in coronavirus-associated FH pathogenesis. FH was induced in HSP70-deficient (HSP70 KO) mice or in WT mice treated with the HSP70 inhibitor VER155008 when infected with the mouse hepatitis virus strain A59 (MHV-A59). MHV-A59-infected HSP70 KO mice exhibited significantly reduced liver damage and mortality. This effect was attributed to decreased infiltration of monocyte-macrophages and neutrophils in the liver of HSP70 KO mice, resulting in lower levels of inflammatory cytokines such as IL-1β, TNFα, and IL-6, and a reduced viral load. Moreover, treatment with the HSP70 inhibitor VER155008 protected mice from MHV-A59-induced liver damage and FH mortality. In summary, HSP70 promotes coronavirus-induced FH pathogenesis by enhancing the infiltration of monocyte-macrophages and neutrophils and promoting the secretion of inflammatory cytokines. Therefore, HSP70 is a potential therapeutic target in viral FH intervention.
Collapse
Affiliation(s)
- Qiaohua Wang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jiayou Wei
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Siqi Ming
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, Guangdong Province 519015, China
| | - Xingyu Li
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhongsi Hong
- Center of Infectious Disease, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Yongjian Wu
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
6
|
Pfannenstiel JJ, Duong MTH, Cluff D, Sherrill LM, Colquhoun I, Cadoux G, Thorne D, Pääkkönen J, Schemmel NF, O'Connor J, Saenjamsai P, Feng M, Hageman MJ, Johnson DK, Roy A, Lehtiö L, Ferraris DV, Fehr AR. Identification of a series of pyrrolo-pyrimidine based SARS-CoV-2 Mac1 inhibitors that repress coronavirus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620664. [PMID: 39554145 PMCID: PMC11565749 DOI: 10.1101/2024.10.28.620664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Coronaviruses (CoVs) can emerge from zoonotic sources and cause severe diseases in humans and animals. All CoVs encode for a macrodomain (Mac1) that binds to and removes ADP-ribose from target proteins. SARS-CoV-2 Mac1 promotes virus replication in the presence of interferon (IFN) and blocks the production of IFN, though the mechanisms by which it mediates these functions remain unknown. Mac1 inhibitors could help elucidate these mechanisms and serve as therapeutic agents against CoV-induced diseases. We previously identified compound 4a (a.k.a. MCD-628), a pyrrolo-pyrimidine that inhibited Mac1 activity in vitro at low micromolar levels. Here, we determined the binding mode of 4a by crystallography, further defining its interaction with Mac1. However, 4a did not reduce CoV replication, which we hypothesized was due to its acidic side chain limiting permeability. To test this hypothesis, we developed several hydrophobic derivatives of 4a . We identified four compounds that both inhibited Mac1 in vitro and inhibited murine hepatitis virus (MHV) replication: 5a , 5c , 6d , and 6e . Furthermore, 5c and 6e inhibited SARS-CoV-2 replication only in the presence of IFN γ , similar to a Mac1 deletion virus. To confirm their specificity, we passaged MHV in the presence of 5a to identify drug-resistant mutations and identified an alanine-to-threonine and glycine-to-valine double mutation in Mac1. Recombinant virus with these mutations had enhanced replication compared to WT virus when treated with 5a , demonstrating the specificity of these compounds during infection. However, this virus is highly attenuated in vivo , indicating that drug-resistance emerged at the expense of viral fitness. IMPORTANCE Coronaviruses (CoVs) present significant threats to human and animal health, as evidenced by recent outbreaks of MERS-CoV and SARS-CoV-2. All CoVs encode for a highly conserved macrodomain protein (Mac1) that binds to and removes ADP-ribose from proteins, which promotes virus replication and blocks IFN production, though the exact mechanisms remain unclear. Inhibiting Mac1 could provide valuable insights into these mechanisms and offer new therapeutic avenues for CoV-induced diseases. We have identified several unique pyrrolo-pyrimidine-based compounds as Mac1 inhibitors. Notably, at least two of these compounds inhibited both murine hepatitis virus (MHV) and SARS-CoV-2 replication. Furthermore, we identified a drug-resistant mutation in Mac1, confirming target specificity during infection. However, this mutant is highly attenuated in mice, indicating that drug-resistance appears to come at a fitness cost. These results emphasize the potential of Mac1 as a drug target and the promise of structure-based inhibitor design in combating coronavirus infections.
Collapse
|
7
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O’Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental to infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574082. [PMID: 38260573 PMCID: PMC10802294 DOI: 10.1101/2024.01.03.574082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Peter R. McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas 66047, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas 66047, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
8
|
Jabeen M, Shoukat S, Shireen H, Bao Y, Khan A, Abbasi AA. Unraveling the genetic variations underlying virulence disparities among SARS-CoV-2 strains across global regions: insights from Pakistan. Virol J 2024; 21:55. [PMID: 38449001 PMCID: PMC10916261 DOI: 10.1186/s12985-024-02328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.
Collapse
Affiliation(s)
- Momina Jabeen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Shifa Shoukat
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Huma Shireen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
9
|
Stoll GA, Nikolopoulos N, Zhai H, Zhang L, Douse CH, Modis Y. Crystal structure and biochemical activity of the macrodomain from rubella virus p150. J Virol 2024; 98:e0177723. [PMID: 38289106 PMCID: PMC10878246 DOI: 10.1128/jvi.01777-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 02/13/2024] Open
Abstract
Rubella virus encodes a nonstructural polyprotein with RNA polymerase, methyltransferase, and papain-like cysteine protease activities, along with a putative macrodomain of unknown function. Macrodomains bind ADP-ribose adducts, a post-translational modification that plays a key role in host-virus conflicts. Some macrodomains can also remove the mono-ADP-ribose adduct or degrade poly-ADP-ribose chains. Here, we report high-resolution crystal structures of the macrodomain from rubella virus nonstructural protein p150, with and without ADP-ribose binding. The overall fold is most similar to macroD-type macrodomains from various nonviral species. The specific composition and structure of the residues that coordinate ADP-ribose in the rubella virus macrodomain are most similar to those of macrodomains from alphaviruses. Isothermal calorimetry shows that the rubella virus macrodomain binds ADP-ribose in solution. Enzyme assays show that the rubella virus macrodomain can hydrolyze both mono- and poly-ADP-ribose adducts. Site-directed mutagenesis identifies Asn39 and Cys49 required for mono-ADP-ribosylhydrolase (de-MARylation) activity.IMPORTANCERubella virus remains a global health threat. Rubella infections during pregnancy can cause serious congenital pathology, for which no antiviral treatments are available. Our work demonstrates that, like alpha- and coronaviruses, rubiviruses encode a mono-ADP-ribosylhydrolase with a structurally conserved macrodomain fold to counteract MARylation by poly (ADP-ribose) polymerases (PARPs) in the host innate immune response. Our structural data will guide future efforts to develop novel antiviral therapeutics against rubella or infections with related viruses.
Collapse
Affiliation(s)
- Guido A. Stoll
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nikos Nikolopoulos
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Haoming Zhai
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Liao Zhang
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Curran CS, Cui X, Li Y, Jeakle M, Sun J, Demirkale CY, Minkove S, Hoffmann V, Dhamapurkar R, Chumbris S, Bolyard C, Iheanacho A, Eichacker PQ, Torabi-Parizi P. Anti-PD-L1 therapy altered inflammation but not survival in a lethal murine hepatitis virus-1 pneumonia model. Front Immunol 2024; 14:1308358. [PMID: 38259435 PMCID: PMC10801642 DOI: 10.3389/fimmu.2023.1308358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Because prior immune checkpoint inhibitor (ICI) therapy in cancer patients presenting with COVID-19 may affect outcomes, we investigated the beta-coronavirus, murine hepatitis virus (MHV)-1, in a lethal pneumonia model in the absence (Study 1) or presence of prior programmed cell death ligand-1 (PD-L1) antibody (PD-L1mAb) treatment (Study 2). Methods In Study 1, animals were inoculated intratracheally with MHV-1 or vehicle and evaluated at day 2, 5, and 10 after infection. In Study 2, uninfected or MHV-1-infected animals were pretreated intraperitoneally with control or PD-L1-blocking antibodies (PD-L1mAb) and evaluated at day 2 and 5 after infection. Each study examined survival, physiologic and histologic parameters, viral titers, lung immunophenotypes, and mediator production. Results Study 1 results recapitulated the pathogenesis of COVID-19 and revealed increased cell surface expression of checkpoint molecules (PD-L1, PD-1), higher expression of the immune activation marker angiotensin converting enzyme (ACE), but reduced detection of the MHV-1 receptor CD66a on immune cells in the lung, liver, and spleen. In addition to reduced detection of PD-L1 on all immune cells assayed, PD-L1 blockade was associated with increased cell surface expression of PD-1 and ACE, decreased cell surface detection of CD66a, and improved oxygen saturation despite reduced blood glucose levels and increased signs of tissue hypoxia. In the lung, PD-L1mAb promoted S100A9 but inhibited ACE2 production concomitantly with pAKT activation and reduced FOXO1 levels. PD-L1mAb promoted interferon-γ but inhibited IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production, contributing to reduced bronchoalveolar lavage levels of eosinophils and neutrophils. In the liver, PD-L1mAb increased viral clearance in association with increased macrophage and lymphocyte recruitment and liver injury. PD-L1mAb increased the production of virally induced mediators of injury, angiogenesis, and neuronal activity that may play role in COVID-19 and ICI-related neurotoxicity. PD-L1mAb did not affect survival in this murine model. Discussion In Study 1 and Study 2, ACE was upregulated and CD66a and ACE2 were downregulated by either MHV-1 or PD-L1mAb. CD66a is not only the MHV-1 receptor but also an identified immune checkpoint and a negative regulator of ACE. Crosstalk between CD66a and PD-L1 or ACE/ACE2 may provide insight into ICI therapies. These networks may also play role in the increased production of S100A9 and neurological mediators in response to MHV-1 and/or PD-L1mAb, which warrant further study. Overall, these findings support observational data suggesting that prior ICI treatment does not alter survival in patients presenting with COVID-19.
Collapse
Affiliation(s)
- Colleen S. Curran
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Mark Jeakle
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Samuel Minkove
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, United States
| | - Rhea Dhamapurkar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Symya Chumbris
- Texcell North-America, Inc., Frederick, MD, United States
| | | | | | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Ortega Granda O, Alvarez K, Mate-Perez MJ, Canard B, Ferron F, Rabah N. Macro1 domain residue F156: A hallmark of SARS-CoV-2 de-MARylation specificity. Virology 2023; 587:109845. [PMID: 37517331 DOI: 10.1016/j.virol.2023.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
SARS-CoV-2 is a large, enveloped and positive sense single stranded RNA virus. Its genome codes for 16 non-structural proteins. The largest protein of this complex is nsp3, that contains a well conserved Macro1 domain. Viral Macro domains were shown to bind to mono-ADP-ribose (MAR) and poly-ADP-ribose (PAR) in their free form or conjugated to protein substrates. They carry ADP-ribose hydrolase activities implicated in the regulation of innate immunity. SARS-CoV-2 and SARS-CoV show widely different induction and handling of the host interferon response. Herein, we have conducted a mutational study on the key amino-acid residue F156 in SARS-CoV-2, pinpointed by bioinformatic and structural studies, and its cognate residue N157 in SARS-CoV. Our data suggest that the exchange of these residues slightly modifies ADP-ribose binding, but drastically impacts de-MARylation activity. Alanine substitutions at this position hampers PAR binding, abolishes MAR hydrolysis of SARS-CoV-2, and reduces by 70% this activity in the case of SARS-CoV.
Collapse
Affiliation(s)
| | - Karine Alvarez
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Nadia Rabah
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France; Previous Affiliation: Université de Toulon, 83130, La Garde, France.
| |
Collapse
|
12
|
Kerr CM, Parthasarathy S, Schwarting N, O'Connor JJ, Pfannenstiel JJ, Giri E, More S, Orozco RC, Fehr AR. PARP12 is required to repress the replication of a Mac1 mutant coronavirus in a cell- and tissue-specific manner. J Virol 2023; 97:e0088523. [PMID: 37695054 PMCID: PMC10537751 DOI: 10.1128/jvi.00885-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD+ to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a murine hepatitis virus (MHV) Mac1 mutant virus in bone-marrow-derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo, we produced PARP12-/-mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and mice. In addition, liver pathology was also increased in A59-infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Nancy Schwarting
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Joseph J. O'Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Emily Giri
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Sunil More
- Department of Veterinary Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Robin C. Orozco
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
13
|
Alhammad YM, Parthasarathy S, Ghimire R, Kerr CM, O’Connor JJ, Pfannenstiel JJ, Chanda D, Miller CA, Baumlin N, Salathe M, Unckless RL, Zuñiga S, Enjuanes L, More S, Channappanavar R, Fehr AR. SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice. Proc Natl Acad Sci U S A 2023; 120:e2302083120. [PMID: 37607224 PMCID: PMC10468617 DOI: 10.1073/pnas.2302083120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in these drug targets is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein encoded as a small domain at the N terminus of nonstructural protein 3. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and IFN-stimulated gene expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.
Collapse
Affiliation(s)
- Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | | | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | | | - Debarati Chanda
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Caden A. Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS66160
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS66160
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology, Madrid28049, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology, Madrid28049, Spain
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | | | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| |
Collapse
|
14
|
Iqbal S, Lin SX. Deep Drug Discovery of Mac Domain of SARS-CoV-2 (WT) Spike Inhibitors: Using Experimental ACE2 Inhibition TR-FRET Assay, Screening, Molecular Dynamic Simulations and Free Energy Calculations. Bioengineering (Basel) 2023; 10:961. [PMID: 37627846 PMCID: PMC10451221 DOI: 10.3390/bioengineering10080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
SARS-CoV-2 exploits the homotrimer transmembrane Spike glycoproteins (S protein) during host cell invasion. The Omicron XBB subvariant, delta, and prototype SARS-CoV-2 receptor-binding domain show similar binding strength to hACE2 (human Angiotensin-Converting Enzyme 2). Here we utilized multiligand virtual screening to identify small molecule inhibitors for their efficacy against SARS-CoV-2 virus using QPLD, pseudovirus ACE2 Inhibition -Time Resolved Forster/Fluorescence energy transfer (TR-FRET) Assay Screening, and Molecular Dynamics simulations (MDS). Three hundred and fifty thousand compounds were screened against the macrodomain of the nonstructural protein 3 of SARS-CoV-2. Using TR-FRET Assay, we filtered out two of 10 compounds that had no reported activity in in vitro screen against Spike S1: ACE2 binding assay. The percentage inhibition at 30 µM was found to be 79% for "Compound F1877-0839" and 69% for "Compound F0470-0003". This first of its kind study identified "FILLY" pocket in macrodomains. Our 200 ns MDS revealed stable binding poses of both leads. They can be used for further development of preclinical candidates.
Collapse
Affiliation(s)
- Saleem Iqbal
- Axe Molecular Endocrinology and Nephrology, CHU Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| |
Collapse
|
15
|
Taha TY, Suryawanshi RK, Chen IP, Correy GJ, McCavitt-Malvido M, O’Leary PC, Jogalekar MP, Diolaiti ME, Kimmerly GR, Tsou CL, Gascon R, Montano M, Martinez-Sobrido L, Krogan NJ, Ashworth A, Fraser JS, Ott M. A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo. PLoS Pathog 2023; 19:e1011614. [PMID: 37651466 PMCID: PMC10499221 DOI: 10.1371/journal.ppat.1011614] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals.
Collapse
Affiliation(s)
- Taha Y. Taha
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Rahul K. Suryawanshi
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Irene P. Chen
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Galen J. Correy
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Maria McCavitt-Malvido
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Patrick C. O’Leary
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Manasi P. Jogalekar
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Morgan E. Diolaiti
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Gabriella R. Kimmerly
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Chia-Lin Tsou
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Ronnie Gascon
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Mauricio Montano
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Luis Martinez-Sobrido
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Alan Ashworth
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - James S. Fraser
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
16
|
Santinelli-Pestana DV, Aikawa E, Singh SA, Aikawa M. PARPs and ADP-Ribosylation in Chronic Inflammation: A Focus on Macrophages. Pathogens 2023; 12:964. [PMID: 37513811 PMCID: PMC10386340 DOI: 10.3390/pathogens12070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant adenosine diphosphate-ribose (ADP)-ribosylation of proteins and nucleic acids is associated with multiple disease processes such as infections and chronic inflammatory diseases. The poly(ADP-ribose) polymerase (PARP)/ADP-ribosyltransferase (ART) family members promote mono- or poly-ADP-ribosylation. Although evidence has linked PARPs/ARTs and macrophages in the context of chronic inflammation, the underlying mechanisms remain incompletely understood. This review provides an overview of literature focusing on the roles of PARP1/ARTD1, PARP7/ARTD14, PARP9/ARTD9, and PARP14/ARTD8 in macrophages. PARPs/ARTs regulate changes in macrophages during chronic inflammatory processes not only via catalytic modifications but also via non-catalytic mechanisms. Untangling complex mechanisms, by which PARPs/ARTs modulate macrophage phenotype, and providing molecular bases for the development of new therapeutics require the development and implementation of innovative technologies.
Collapse
Affiliation(s)
- Diego V. Santinelli-Pestana
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Kerr CM, Parthasarathy S, Schwarting N, O’Connor JJ, Giri E, More S, Orozco RC, Fehr AR. PARP12 is required to repress the replication of a Mac1 mutant coronavirus in a cell and tissue specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545351. [PMID: 37398292 PMCID: PMC10312760 DOI: 10.1101/2023.06.16.545351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD + to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon, indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a MHV Mac1 mutant virus in bone-marrow derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo , we produced PARP12 -/- mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and in mice. In addition, liver pathology was also increased in A59 infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Here, using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Nancy Schwarting
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Emily Giri
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Sunil More
- Department of Veterinary Pathology, Oklahoma State University, Stillwater Oklahoma 74048, USA
| | - Robin C. Orozco
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
18
|
Taha TY, Suryawanshi RK, Chen IP, Correy GJ, O’Leary PC, Jogalekar MP, McCavitt-Malvido M, Diolaiti ME, Kimmerly GR, Tsou CL, Martinez-Sobrido L, Krogan NJ, Ashworth A, Fraser JS, Ott M. A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication and pathogenesis in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537104. [PMID: 37131711 PMCID: PMC10153184 DOI: 10.1101/2023.04.18.537104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the therapeutic potential of Mac1 inhibition, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wildtype. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, N40D replicated at >1000-fold lower levels compared to the wildtype virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection and showed no signs of lung pathology. Our data validate the SARS-CoV-2 NSP3 Mac1 domain as a critical viral pathogenesis factor and a promising target to develop antivirals.
Collapse
Affiliation(s)
| | | | - Irene P. Chen
- Gladstone Institutes, San Francisco, CA 94158
- University of California San Francisco, San Francisco, CA 94158
| | - Galen J. Correy
- University of California San Francisco, San Francisco, CA 94158
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158
| | | | | | | | | | | | | | | | - Nevan J. Krogan
- University of California San Francisco, San Francisco, CA 94158
| | - Alan Ashworth
- University of California San Francisco, San Francisco, CA 94158
| | - James S. Fraser
- University of California San Francisco, San Francisco, CA 94158
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158
- University of California San Francisco, San Francisco, CA 94158
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158
| |
Collapse
|
19
|
Yılmaz B, Çakmak Genç G, Karakaş Çelik S, Pişkin N, Horuz E, Dursun A. The 3'UTR region of the DNA repair gene PARP-1 May increase the severity of COVID-19 by altering the binding of antiviral miRNAs. Virology 2023; 583:29-35. [PMID: 37087842 PMCID: PMC10110933 DOI: 10.1016/j.virol.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
COVID-19 may cause the release of systemic inflammatory cytokines resulting in severe inflammation. PARP-1 has been identified as a nuclear enzyme that is activated by DNA strand breaks. It has been suggested that PARP-1 has a role in the cytokine storm shown as a cause of mortality in COVID-19, and its inhibition may adversely affect the replication of SARS -CoV-2. We aimed to investigate the relationship between PARP-1 gene polymorphisms and the clinical severity of COVID-19. rs8679 TT genotype was found to increase with the COVID-19 disease severity. The 3'UTR polymorphism rs8679 may cause PARP-1 activity as a result of viral replication increase by changing the binding site of antiviral or anti-inflammatory miRNAs. PARP-1 may affect the severity of COVID-19 by cytokine release and maybe a possible treatment target.
Collapse
Affiliation(s)
- Büşra Yılmaz
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey.
| | - Güneş Çakmak Genç
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Sevim Karakaş Çelik
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Nihal Pişkin
- Department of Infectious Disease, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Emre Horuz
- Department of Infectious Disease, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ahmet Dursun
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
20
|
Alhammad YM, Parthasarathy S, Ghimire R, O’Connor JJ, Kerr CM, Pfannenstiel JJ, Chanda D, Miller CA, Unckless RL, Zuniga S, Enjuanes L, More S, Channappanavar R, Fehr AR. SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535927. [PMID: 37066301 PMCID: PMC10104158 DOI: 10.1101/2023.04.06.535927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in this set of proteins is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and interferon-stimulated gene (ISG) expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target. SIGNIFICANCE All CoVs, including SARS-CoV-2, encode for a conserved macrodomain (Mac1) that counters host ADP-ribosylation. Prior studies with SARS-CoV-1 and MHV found that Mac1 blocks IFN production and promotes CoV pathogenesis, which has prompted the development of SARS-CoV-2 Mac1 inhibitors. However, development of these compounds into antivirals requires that we understand how SARS-CoV-2 lacking Mac1 replicates and causes disease in vitro and in vivo . Here we found that SARS-CoV-2 containing a complete Mac1 deletion replicates normally in cell culture but induces an elevated IFN response, has reduced viral loads in vivo , and does not cause significant disease in mice. These results will provide a roadmap for testing Mac1 inhibitors, help identify Mac1 functions, and open additional avenues for coronavirus therapies.
Collapse
Affiliation(s)
- Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| | | | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| | - Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| | | | - Debarati Chanda
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Caden A. Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| | - Sonia Zuniga
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Enjuanes
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
21
|
Grabherr S, Waltenspühl A, Büchler L, Lütge M, Cheng HW, Caviezel-Firner S, Ludewig B, Krebs P, Pikor NB. An Innate Checkpoint Determines Immune Dysregulation and Immunopathology during Pulmonary Murine Coronavirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:774-785. [PMID: 36715496 PMCID: PMC9986052 DOI: 10.4049/jimmunol.2200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023]
Abstract
Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1β and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.
Collapse
Affiliation(s)
- Sarah Grabherr
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alexandra Waltenspühl
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lorina Büchler
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Sonja Caviezel-Firner
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Natalia B. Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
22
|
Chea C, Lee DY, Kato J, Ishiwata-Endo H, Moss J. Macrodomain Mac1 of SARS-CoV-2 Nonstructural Protein 3 Hydrolyzes Diverse ADP-ribosylated Substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527501. [PMID: 36945431 PMCID: PMC10028740 DOI: 10.1101/2023.02.07.527501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that resulted in more than 6-million deaths worldwide. The virus encodes several non-structural proteins (Nsps) that contain elements capable of disrupting cellular processes. Among these Nsp proteins, Nsp3 contains macrodomains, e.g., Mac1, Mac2, Mac3, with potential effects on host cells. Mac1 has been shown to increase SARS-CoV-2 virulence and disrupt ADP-ribosylation pathways in mammalian cells. ADP-ribosylation results from the transfer of the ADP-ribose moiety of NAD + to various acceptors, e.g., proteins, DNA, RNA, contributing on a cell's biological processes. ADP-ribosylation is the mechanism of action of bacterial toxins, e.g., Pseudomonas toxins, diphtheria toxin that disrupt protein biosynthetic and signaling pathways. On the other hand, some viral macrodomains cleavage ADP-ribose-acceptor bond, generating free ADP-ribose. By this reaction, the macrodomain-containing proteins interfere ADP-ribose homeostasis in host cells. Here, we examined potential hydrolytic activities of SARS-CoV-2 Mac1, 2, and 3 on substrates containing ADP-ribose. Mac1 cleaved α-NAD + , but not β-NAD + , consistent with stereospecificity at the C-1" bond. In contrast to ARH1 and ARH3, Mac1 did not require Mg 2+ for optimal activity. Mac1 also hydrolyzed O -acetyl-ADP-ribose and ADP-ribose-1"-phosphat, but not Mac2 and Mac3. However, Mac1 did not cleave α-ADP-ribose-(arginine) and ADP-ribose-(serine)-histone H3 peptide, suggesting that Mac1 hydrolyzes ADP-ribose attached to O- and N-linked functional groups, with specificity at the catalytic site in the ADP-ribose moiety. We conclude that SARS-CoV-2 Mac1 may exert anti-viral activity by reversing host-mediated ADP-ribosylation. New insights on Nsp3 activities may shed light on potential SARS-CoV-2 therapeutic targets. IMPORTANCE SARS-CoV-2, the virus responsible for COVID-19, encodes 3 macrodomain-containing proteins, e.g., Mac1, Mac2, Mac3, within non-structural proteins 3 (Nsp3). Mac1 was shown previously to hydrolyze ADP-ribose-phosphate. Inactivation of Mac1 reduced viral proliferation. Here we report that Mac1, but not Mac2 and Mac3, has multiple activities, i.e., Mac1 hydrolyzed. α-NAD + and O -acetyl-ADP-ribose. However, Mac1 did not hydrolyze β-NAD + , ADP-ribose-serine on a histone 3 peptide (aa1-21), and ADP-ribose-arginine, exhibiting substrate selectivity. These data suggest that Mac1 may have multi-function as a α-NAD + consumer for viral replication and a disruptor of host-mediated ADP-ribosylation pathways. Understanding Mac1's mechanisms of action is important to provide possible therapeutic targets for COVID-19.
Collapse
|
23
|
Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Immunobiology 2023; 228:152302. [PMID: 36434912 PMCID: PMC9663145 DOI: 10.1016/j.imbio.2022.152302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a highly transmittable and pathogenic human coronavirus that first emerged in China in December 2019. The unprecedented outbreak of SARS-CoV-2 devastated human health within a short time leading to a global public health emergency. A detailed understanding of the viral proteins including their structural characteristics and virulence mechanism on human health is very crucial for developing vaccines and therapeutics. To date, over 1800 structures of non-structural, structural, and accessory proteins of SARS-CoV-2 are determined by cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy. Designing therapeutics to target the viral proteins has several benefits since they could be highly specific against the virus while maintaining minimal detrimental effects on humans. However, for ongoing and future research on SARS-CoV-2, summarizing all the viral proteins and their detailed structural information is crucial. In this review, we compile comprehensive information on viral structural, non-structural, and accessory proteins structures with their binding and catalytic sites, different domain and motifs, and potential drug target sites to assist chemists, biologists, and clinicians finding necessary details for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmuda Kabir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue NW, Kennesaw, GA 30144, USA
| |
Collapse
|
24
|
Hossain A, Akter S, Rashid AA, Khair S, Alam ASMRU. Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion. Microb Pathog 2022; 170:105699. [PMID: 35944840 PMCID: PMC9356572 DOI: 10.1016/j.micpath.2022.105699] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 is the causative agent behind the ongoing COVID-19 pandemic. This virus is a cumulative outcome of mutations, leading to frequent emergence of new variants and their subvariants. Some of them are a matter of high concern, while others are variants of interest for studying the mutational effect. The major five variants of concern (VOCs) are Alpha (B.1.1.7), Beta (B.1.315), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529.*/BA.*). Omicron itself has >100 subvariants at present, among which BA.1 (21K), BA.2 (21L), BA.4 (22A), BA.5 (22B), and BA.2.12.1 (22C) are the dominant ones. Undoubtedly, these variants and sometimes their progeny subvariants have significant differences in their spike region that impart them the unique properties they harbor. But alongside, the mutations in their non-spike regions could also be responsible elements behind their characteristics, such as replication time, virulence, survival, host immune evasion, and such. There exists a probability that these mutations of non-spike proteins may also impart epistatic effects that are yet to be brought to light. The focus of this review encompasses the non-spike mutations of Omicron, especially in its widely circulating subvariants (BA.1, BA.2, BA.4, BA.5, and BA.2.12.1). The mutations such as in NSP3, NSP6, NSP13, M protein, ORF7b, and ORF9b are mentioned few of all, which might have led to the varying properties, including growth advantages, higher transmission rate, lower infectivity, and most importantly better host immune evasion through natural killer cell inactivation, autophagosome-lysosome fusion prevention, host protein synthesis disruption, and so on. This aspect of Omicron subvariants has not yet been explored. Further study of alteration of expression or interaction profile of these non-spike mutations bearing proteins, if present, can add a great deal of knowledge to the current understanding of the viral properties and thus effective prevention strategies.
Collapse
Affiliation(s)
- Anamica Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shammi Akter
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Alfi Anjum Rashid
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sabik Khair
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - A S M Rubayet Ul Alam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
25
|
Sherrill LM, Joya EE, Walker A, Roy A, Alhammad YM, Atobatele M, Wazir S, Abbas G, Keane P, Zhuo J, Leung AKL, Johnson DK, Lehtiö L, Fehr AR, Ferraris D. Design, synthesis and evaluation of inhibitors of the SARS-CoV-2 nsp3 macrodomain. Bioorg Med Chem 2022; 67:116788. [PMID: 35597097 PMCID: PMC9093066 DOI: 10.1016/j.bmc.2022.116788] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
Abstract
A series of amino acid based 7H-pyrrolo[2,3-d]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp22 and the amide backbone NH of Ile23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe157 and Asp156, part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low µM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.
Collapse
Affiliation(s)
- Lavinia M Sherrill
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Elva E Joya
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - AnnMarie Walker
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Anuradha Roy
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, KS 66047, USA
| | - Yousef M Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Moriama Atobatele
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, KS 66047, USA
| | - Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - George Abbas
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Patrick Keane
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Junlin Zhuo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, McKusick-Nathans Department of Genetic Medicine and Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - David K Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, KS 66047, USA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | - Dana Ferraris
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA.
| |
Collapse
|
26
|
Roy A, Alhammad YM, McDonald P, Johnson DK, Zhuo J, Wazir S, Ferraris D, Lehtiö L, Leung AKL, Fehr AR. Discovery of compounds that inhibit SARS-CoV-2 Mac1-ADP-ribose binding by high-throughput screening. Antiviral Res 2022; 203:105344. [PMID: 35598780 PMCID: PMC9119168 DOI: 10.1016/j.antiviral.2022.105344] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023]
Abstract
The emergence of several zoonotic viruses in the last twenty years, especially the pandemic outbreak of SARS-CoV-2, has exposed a dearth of antiviral drug therapies for viruses with pandemic potential. Developing a diverse drug portfolio will be critical to rapidly respond to novel coronaviruses (CoVs) and other viruses with pandemic potential. Here we focus on the SARS-CoV-2 conserved macrodomain (Mac1), a small domain of non-structural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that cleaves mono-ADP-ribose (MAR) from target proteins, protects the virus from the anti-viral effects of host ADP-ribosyltransferases, and is critical for the replication and pathogenesis of CoVs. In this study, a luminescent-based high-throughput assay was used to screen ∼38,000 small molecules for those that could inhibit Mac1-ADP-ribose binding. We identified 5 compounds amongst 3 chemotypes that inhibit SARS-CoV-2 Mac1-ADP-ribose binding in multiple assays with IC50 values less than 100 μM, inhibit ADP-ribosylhydrolase activity, and have evidence of direct Mac1 binding. These chemotypes are strong candidates for further derivatization into highly effective Mac1 inhibitors.
Collapse
Affiliation(s)
- Anu Roy
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, KS, 66047, USA
| | - Yousef M Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Peter McDonald
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, KS, 66047, USA
| | - David K Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, KS, 66047, USA
| | - Junlin Zhuo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, MD, USA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; McKusick-Nathans Department of Genetics Medicine, Department of Oncology, And Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
27
|
Lüscher B, Verheirstraeten M, Krieg S, Korn P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol Life Sci 2022; 79:288. [PMID: 35536484 PMCID: PMC9087173 DOI: 10.1007/s00018-022-04290-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023]
Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Maud Verheirstraeten
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Korn
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
28
|
Goławski M, Lewandowski P, Jabłońska I, Delijewski M. The Reassessed Potential of SARS-CoV-2 Attenuation for COVID-19 Vaccine Development—A Systematic Review. Viruses 2022; 14:v14050991. [PMID: 35632736 PMCID: PMC9146402 DOI: 10.3390/v14050991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Live-attenuated SARS-CoV-2 vaccines received relatively little attention during the COVID-19 pandemic. Despite this, several methods of obtaining attenuated coronaviruses are known. In this systematic review, the strategies of coronavirus attenuation, which may potentially be applied to SARS-CoV-2, were identified. PubMed, Scopus, Web of Science and Embase databases were searched to identify relevant articles describing attenuating mutations tested in vivo. In case of coronaviruses other than SARS-CoV-2, sequence alignment was used to exclude attenuating mutations that cannot be applied to SARS-CoV-2. Potential immunogenicity, safety and efficacy of the attenuated SARS-CoV-2 vaccine were discussed based on animal studies data. A total of 27 attenuation strategies, used to create 101 different coronaviruses, have been described in 56 eligible articles. The disruption of the furin cleavage site in the SARS-CoV-2 spike protein was identified as the most promising strategy. The replacement of core sequences of transcriptional regulatory signals, which prevents recombination with wild-type viruses, also appears particularly advantageous. Other important attenuating mutations encompassed mostly the prevention of evasion of innate immunity. Sufficiently attenuated coronaviruses typically caused no meaningful disease in susceptible animals and protected them from challenges with virulent virus. This indicates that attenuated COVID-19 vaccines may be considered as a potential strategy to fight the threat posed by SARS-CoV-2.
Collapse
Affiliation(s)
- Marcin Goławski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
- Correspondence:
| | - Piotr Lewandowski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
| | - Iwona Jabłońska
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
| |
Collapse
|
29
|
Fan W, Chen J, Zhang Y, Deng Q, Wei L, Zhao C, Lv D, Lin L, Zhang B, Wei T, Huang T, Wei P, Mo M. Phylogenetic and Spatiotemporal Analyses of the Complete Genome Sequences of Avian Coronavirus Infectious Bronchitis Virus in China During 1985-2020: Revealing Coexistence of Multiple Transmission Chains and the Origin of LX4-Type Virus. Front Microbiol 2022; 13:693196. [PMID: 35444624 PMCID: PMC9013971 DOI: 10.3389/fmicb.2022.693196] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Infectious bronchitis (IB) virus (IBV) causes considerable economic losses to poultry production. The data on transmission dynamics of IBV in China are limited. The complete genome sequences of 212 IBV isolates in China during 1985–2020 were analyzed as well as the characteristics of the phylogenetic tree, recombination events, dN/dS ratios, temporal dynamics, and phylogeographic relationships. The LX4 type (GI-19) was found to have the highest dN/dS ratios and has been the most dominant genotype since 1999, and the Taiwan-I type (GI-7) and New type (GVI-1) showed an increasing trend. A total of 59 recombinants were identified, multiple recombination events between the field and vaccine strains were found in 24 isolates, and the 4/91-type (GI-13) isolates were found to be more prone to being involved in the recombination. Bayesian phylogeographic analyses indicated that the Chinese IBVs originated from Liaoning province in the early 1900s. The LX4-type viruses were traced back to Liaoning province in the late 1950s and had multiple transmission routes in China and two major transmission routes in the world. Viral phylogeography identified three spread regions for IBVs (including LX4 type) in China: Northeastern China (Heilongjiang, Liaoning, and Jilin), north and central China (Beijing, Hebei, Shanxi, Shandong, and Jiangsu), and Southern China (Guangxi and Guangdong). Shandong has been the epidemiological center of IBVs (including LX4 type) in China. Overall, our study highlighted the reasons why the LX4-type viruses had become the dominant genotype and its origin and transmission routes, providing more targeted strategies for the prevention and control of IB in China.
Collapse
Affiliation(s)
- Wensheng Fan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiming Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qiaomu Deng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lanping Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Changrun Zhao
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Di Lv
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Liting Lin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bingsha Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tianchao Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Teng Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ping Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Meilan Mo
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
30
|
Roy A, Alhammad YM, McDonald P, Johnson DK, Zhuo J, Wazir S, Ferraris D, Lehtiö L, Leung AKL, Fehr AR. Discovery of compounds that inhibit SARS-CoV-2 Mac1-ADP-ribose binding by high-throughput screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.01.482536. [PMID: 35262075 PMCID: PMC8902866 DOI: 10.1101/2022.03.01.482536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emergence of several zoonotic viruses in the last twenty years, especially the pandemic outbreak of SARS-CoV-2, has exposed a dearth of antiviral drug therapies for viruses with pandemic potential. Developing a diverse drug portfolio will be critical for our ability to rapidly respond to novel coronaviruses (CoVs) and other viruses with pandemic potential. Here we focus on the SARS-CoV-2 conserved macrodomain (Mac1), a small domain of non-structural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that cleaves mono-ADP-ribose (MAR) from target proteins, protects the virus from the anti-viral effects of host ADP-ribosyltransferases, and is critical for the replication and pathogenesis of CoVs. In this study, a luminescent-based high-throughput assay was used to screen ∼38,000 small molecules for those that could inhibit Mac1-ADP-ribose binding. We identified 5 compounds amongst 3 chemotypes that inhibit SARS-CoV-2 Mac1-ADP-ribose binding in multiple assays with IC 50 values less than 100 µ M, inhibit ADP-ribosylhydrolase activity, and have evidence of direct Mac1 binding. These chemotypes are strong candidates for further derivatization into highly effective Mac1 inhibitors.
Collapse
|
31
|
Sherrill LM, Joya EE, Walker A, Roy A, Alhammad YM, Atobatele M, Wazir S, Abbas G, Keane P, Zhuo J, Leung AKL, Johnson DK, Lehtiö L, Fehr AR, Ferraris D. Design, Synthesis and Evaluation of Inhibitors of the SARS-CoV2 nsp3 Macrodomain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.27.482176. [PMID: 35262078 PMCID: PMC8902877 DOI: 10.1101/2022.02.27.482176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of amino acid based 7H -pyrrolo[2,3- d ]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp 22 and the amide backbone NH of Ile 23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe 157 and Asp 156 , part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low μM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.
Collapse
|
32
|
Dasovich M, Zhuo J, Goodman JA, Thomas A, McPherson RL, Jayabalan AK, Busa VF, Cheng SJ, Murphy BA, Redinger KR, Alhammad YMO, Fehr AR, Tsukamoto T, Slusher BS, Bosch J, Wei H, Leung AKL. High-Throughput Activity Assay for Screening Inhibitors of the SARS-CoV-2 Mac1 Macrodomain. ACS Chem Biol 2022; 17:17-23. [PMID: 34904435 PMCID: PMC8691451 DOI: 10.1021/acschembio.1c00721] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Macrodomains are a class of conserved ADP-ribosylhydrolases expressed by viruses of pandemic concern, including coronaviruses and alphaviruses. Viral macrodomains are critical for replication and virus-induced pathogenesis; therefore, these enzymes are a promising target for antiviral therapy. However, no potent or selective viral macrodomain inhibitors currently exist, in part due to the lack of a high-throughput assay for this class of enzymes. Here we developed a high-throughput ADP-ribosylhydrolase assay using the SARS-CoV-2 macrodomain Mac1. We performed a pilot screen that identified dasatinib and dihydralazine as ADP-ribosylhydrolase inhibitors. Importantly, dasatinib inhibits SARS-CoV-2 and MERS-CoV Mac1 but not the closest human homologue, MacroD2. Our study demonstrates the feasibility of identifying selective inhibitors based on ADP-ribosylhydrolase activity, paving the way for the screening of large compound libraries to identify improved macrodomain inhibitors and to explore their potential as antiviral therapies for SARS-CoV-2 and future viral threats.
Collapse
Affiliation(s)
- Morgan Dasovich
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
- Department of Chemistry, Krieger School of Arts and
Sciences, Johns Hopkins University, Baltimore, Maryland 21218,
United States
| | - Junlin Zhuo
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Jack A. Goodman
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Ajit Thomas
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Aravinth Kumar Jayabalan
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Veronica F. Busa
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
- McKusick-Nathans Department of Genetics Medicine,
School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21205, United
States
| | - Shang-Jung Cheng
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Brennan A. Murphy
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
| | - Karli R. Redinger
- Center for Global Health and Diseases, Case
Western Reserve University, Cleveland, Ohio 44106, United
States
| | - Yousef M. O. Alhammad
- Department of Molecular Biosciences,
University of Kansas, Lawrence, Kansas 66045, United
States
| | - Anthony R. Fehr
- Department of Molecular Biosciences,
University of Kansas, Lawrence, Kansas 66045, United
States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case
Western Reserve University, Cleveland, Ohio 44106, United
States
- InterRayBio, LLC,
Cleveland, Ohio 44106, United States
| | - Huijun Wei
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
- McKusick-Nathans Department of Genetics Medicine,
School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21205, United
States
- Department of Oncology and Department of
Molecular Biology and Genetics, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21205, United
States
| |
Collapse
|
33
|
Babar Z, Khan M, Zahra M, Anwar M, Noor K, Hashmi HF, Suleman M, Waseem M, Shah A, Ali S, Ali SS. Drug similarity and structure-based screening of medicinal compounds to target macrodomain-I from SARS-CoV-2 to rescue the host immune system: a molecular dynamics study. J Biomol Struct Dyn 2022; 40:523-537. [PMID: 32897173 PMCID: PMC7544951 DOI: 10.1080/07391102.2020.1815583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/21/2020] [Indexed: 01/17/2023]
Abstract
The outbreak of the recent coronavirus (SARS-CoV-2), which causes a severe pneumonia infection, first identified in Wuhan, China, imposes significant risks to public health. Around the world, researchers are continuously trying to identify small molecule inhibitors or vaccine candidates by targeting different drug targets. The SARs-CoV-2 macrodomain-I, which helps in viral replication and hijacking the host immune system, is also a potential drug target. Hence, this study targeted viral macrodomain-I by using drug similarity, virtual screening, docking and re-docking approaches. A total of 64,043 compounds were screened, and potential hits were identified based on the docking score and interactions with the key residues. The top six hits were subjected to molecular dynamics simulation and Free energy calculations and repeated three times each. The per-residue energy decomposition analysis reported that these compounds significantly interact with Asp22, Ala38, Asn40, Val44, Phe144, Gly46, Gly47, Leu127, Ser128, Gly130, Ile131, Phe132 and Ala155 which are the critical active site residues. Here, we also used ADPr as a positive control to compare our results. Our results suggest that our identified hits by using such a complicated computational pipeline could inhibit the SARs-CoV-2 by targeting the macrodomain-1. We strongly recommend the experimental testing of these compounds, which could rescue the host immune system and could help to contain the disease caused by SARs-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zainib Babar
- Department of Botany, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Mazhar Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Mubeen Zahra
- Department of Botany, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Munazza Anwar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kashif Noor
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Punjab, Pakistan
| | - Huma Farooque Hashmi
- School of Life Sciences, Shandong University, Shandong, People's Republic of China
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
34
|
Guerra JVDS, Ribeiro-Filho HV, Jara GE, Bortot LO, Pereira JGDC, Lopes-de-Oliveira PS. pyKVFinder: an efficient and integrable Python package for biomolecular cavity detection and characterization in data science. BMC Bioinformatics 2021; 22:607. [PMID: 34930115 PMCID: PMC8685811 DOI: 10.1186/s12859-021-04519-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biomolecular interactions that modulate biological processes occur mainly in cavities throughout the surface of biomolecular structures. In the data science era, structural biology has benefited from the increasing availability of biostructural data due to advances in structural determination and computational methods. In this scenario, data-intensive cavity analysis demands efficient scripting routines built on easily manipulated data structures. To fulfill this need, we developed pyKVFinder, a Python package to detect and characterize cavities in biomolecular structures for data science and automated pipelines. RESULTS pyKVFinder efficiently detects cavities in biomolecular structures and computes their volume, area, depth and hydropathy, storing these cavity properties in NumPy arrays. Benefited from Python ecosystem interoperability and data structures, pyKVFinder can be integrated with third-party scientific packages and libraries for mathematical calculations, machine learning and 3D visualization in automated workflows. As proof of pyKVFinder's capabilities, we successfully identified and compared ADRP substrate-binding site of SARS-CoV-2 and a set of homologous proteins with pyKVFinder, showing its integrability with data science packages such as matplotlib, NGL Viewer, SciPy and Jupyter notebook. CONCLUSIONS We introduce an efficient, highly versatile and easily integrable software for detecting and characterizing biomolecular cavities in data science applications and automated protocols. pyKVFinder facilitates biostructural data analysis with scripting routines in the Python ecosystem and can be building blocks for data science and drug design applications.
Collapse
Affiliation(s)
- João Victor da Silva Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas, SP, 13083-100, Brazil. .,Graduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil.
| | - Helder Veras Ribeiro-Filho
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas, SP, 13083-100, Brazil
| | - Gabriel Ernesto Jara
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas, SP, 13083-100, Brazil
| | - Leandro Oliveira Bortot
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas, SP, 13083-100, Brazil
| | - José Geraldo de Carvalho Pereira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas, SP, 13083-100, Brazil
| | - Paulo Sérgio Lopes-de-Oliveira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas, SP, 13083-100, Brazil. .,Graduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
35
|
Farooqi T, Malik JA, Mulla AH, Al Hagbani T, Almansour K, Ubaid MA, Alghamdi S, Anwar S. An overview of SARS-COV-2 epidemiology, mutant variants, vaccines, and management strategies. J Infect Public Health 2021; 14:1299-1312. [PMID: 34429257 PMCID: PMC8366110 DOI: 10.1016/j.jiph.2021.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Over the last two decades, humanity has observed the extraordinary anomaly caused by novel, weird coronavirus strains, such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). As the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus has made its entry into the world, it has dramatically affected life in every domain by continuously producing new variants. The vaccine development is an ongoing process, although some vaccines got marketed. The big challenge is now whether the vaccine candidates can provide long-lasting protection or prevention against mutant variants. METHODS The information was gathered from various journals, electronic searches via Internet-based information such as PubMed, Google Scholar, Science Direct, online electronic journals, WHO landscape, world meters, WHO website, and News. RESULTS This review will present and discuss some coronavirus disease 19 (COVID-19) related aspects including: the pathophysiology, epidemiology, mutant variants vaccine candidates, vaccine efficacy, and management strategies. Due to the high death rate, continuous spread, an inadequate workforce, lack of required therapeutics, and incomplete understanding of the viral strain, it becomes crucial to build the knowledge of its biological characteristics and make available the rapid diagnostic and vital therapeutic machinery for the combat and management of an infection. CONCLUSION The data summarizes current research on the COVID 19 infection and therapeutic interventions, which will direct future decision-making on the effort-worthy phases of the COVID 19 and the development of critical therapeutics. The only possible solution is the vaccine development targeting against all variant strains to halt its progress; the identified theoretical and practical knowledge can eliminate the gaps to improve a better understanding of the novel coronavirus structure and its design of a vaccine. In addition, to that the long-lasting protection is another challenging objective that need to be looked into.
Collapse
Affiliation(s)
- Tahmeena Farooqi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical Engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | | | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | | | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Albaha University, Albaha, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
36
|
Kim C, Mahasenan KV, Bhardwaj A, Wiest O, Chang M, Mobashery S. Production of Proteins of the SARS-CoV-2 Proteome for Drug Discovery. ACS OMEGA 2021; 6:19983-19994. [PMID: 34337272 PMCID: PMC8315141 DOI: 10.1021/acsomega.1c02984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/06/2021] [Indexed: 05/09/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the coronavirus disease of 2019 (COVID-19). Its genome encodes two open reading frames for two large proteins, PP1a and PP1ab. Within the two polypeptide stretches, there are two proteases that process the large proteins into 15 discrete proteins essential for the assembly of the virion during its replication. We describe herein the cloning of the genes for these discrete proteins optimized for expression in Escherichia coli, production of the proteins, and their purification to homogeneity. These included all but six: NSP6, which possesses eight transmembrane regions, and five that are small proteins/peptides (E, ORF3b, ORF6, ORF7b, and ORF10). These proteins are intended for experimental validation of small-molecule binders as molecular template hits. The proof of concept was established with the ADP-ribosylhydrolase (ARH) domain of NSP3 in discovery of small-molecule templates that could serve as the basis for further optimization. The hit molecules include one submicromolar and a few low-micromolar binders to the ARH domain. Availability of these proteins in soluble forms opens up the opportunity for discoveries of novel templates with the potential for anti-COVID-19 pharmaceuticals.
Collapse
|
37
|
Unique Mutations in the Murine Hepatitis Virus Macrodomain Differentially Attenuate Virus Replication, Indicating Multiple Roles for the Macrodomain in Coronavirus Replication. J Virol 2021; 95:e0076621. [PMID: 34011547 DOI: 10.1128/jvi.00766-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in nonstructural protein 3 (nsp3) that binds and hydrolyzes mono-ADP-ribose (MAR) covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutation of a highly conserved asparagine residue, which makes contact with the distal ribose of ADP-ribose. To determine if additional Mac1 activities contribute to CoV replication, we compared the replication of murine hepatitis virus (MHV) Mac1 mutants, D1329A and N1465A, to the previously mentioned asparagine mutant, N1347A. These residues contact the adenine and proximal ribose in ADP-ribose, respectively. N1465A had no effect on MHV replication or pathogenesis, while D1329A and N1347A both replicated poorly in bone marrow-derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo. Interestingly, D1329A was also significantly more attenuated than N1347A in all cell lines tested. Conversely, D1329A retained some ability to block beta interferon (IFN-β) transcript accumulation compared to N1347A, indicating that these mutations have different effects on Mac1 functions. Combining these two mutations resulted in a virus that was unrecoverable, suggesting that the combined activities of Mac1 are essential for MHV replication. We conclude that Mac1 has multiple functions that promote the replication of MHV, and that these results provide further evidence that Mac1 is a prominent target for anti-CoV therapeutics. IMPORTANCE In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within nonstructural protein 3. It has received significant attention as a potential drug target, as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the functions of Mac1 during infection remain largely unknown. Here, using targeted mutations in different regions of Mac1, we found that Mac1 has multiple functions that promote the replication of MHV, a model CoV, and, therefore, is more important for MHV replication than previously appreciated. These results will help guide the discovery of these novel functions of Mac1 and the development of inhibitory compounds targeting this domain.
Collapse
|
38
|
Zeng R, Pan W, Lin Y, He J, Luo Z, Li Z, Weng S, He J, Guo C. Development of a gene-deleted live attenuated candidate vaccine against fish virus (ISKNV) with low pathogenicity and high protection. iScience 2021; 24:102750. [PMID: 34278259 PMCID: PMC8261673 DOI: 10.1016/j.isci.2021.102750] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/29/2020] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
Aquaculture provides important food, nutrition, and income sources for humans. However, aquaculture industry is seriously threatened by viral diseases. Infectious spleen and kidney necrosis virus (ISKNV) disease causes high mortality and economic losses to the fish culture industry in Asia and has been listed as a certifiable disease by the International Epizootic Office. Vaccine development is urgent to control this disease. Here, a gene-deleted live attenuated candidate vaccine (ΔORF022L) against ISKNV with low pathogenicity and high protection was developed. ΔORF022L replicated well in mandarin fish fry-1 cells and showed similar structure with wild-type ISKNV. However, the pathogenicity was significantly lower as 98% of the mandarin fish infected with ΔORF022L survived, whereas all those infected with wild-type ISKNV died. Of importance, 100% of the ΔORF022L-infected fish survived the ISKNV challenge. ΔORF022L induced anti-ISKNV specific antibody response and upregulation of immune-related genes. This work could be beneficial to the control of fish diseases.
Collapse
Affiliation(s)
- Ruoyun Zeng
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Yifan Lin
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Zhiyong Luo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Zhimin Li
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Shaoping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| |
Collapse
|
39
|
Fu W, Yao H, Bütepage M, Zhao Q, Lüscher B, Li J. The search for inhibitors of macrodomains for targeting the readers and erasers of mono-ADP-ribosylation. Drug Discov Today 2021; 26:2547-2558. [PMID: 34023495 DOI: 10.1016/j.drudis.2021.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023]
Abstract
Macrodomains are evolutionarily conserved structural elements. Many macrodomains feature as binding modules of ADP-ribose, thus participating in the recognition and removal of mono- and poly-ADP-ribosylation. Macrodomains are involved in the regulation of a variety of physiological processes and represent valuable therapeutic targets. Moreover, as part of the nonstructural proteins of certain viruses, macrodomains are also pivotal for viral replication and pathogenesis. Thus, targeting viral macrodomains with inhibitors is considered to be a promising antiviral intervention. In this review, we summarize our current understanding of human and viral macrodomains that are related to mono-ADP-ribosylation, with emphasis on the search for inhibitors. The advances summarized here will be helpful for the design of macrodomain-specific agents for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Wei Fu
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China
| | - Huiqiao Yao
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Qianqian Zhao
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany.
| | - Jinyu Li
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China.
| |
Collapse
|
40
|
Weixler L, Schäringer K, Momoh J, Lüscher B, Feijs KLH, Žaja R. ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function. Nucleic Acids Res 2021; 49:3634-3650. [PMID: 33693930 PMCID: PMC8053099 DOI: 10.1093/nar/gkab136] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The functionality of DNA, RNA and proteins is altered dynamically in response to physiological and pathological cues, partly achieved by their modification. While the modification of proteins with ADP-ribose has been well studied, nucleic acids were only recently identified as substrates for ADP-ribosylation by mammalian enzymes. RNA and DNA can be ADP-ribosylated by specific ADP-ribosyltransferases such as PARP1-3, PARP10 and tRNA 2'-phosphotransferase (TRPT1). Evidence suggests that these enzymes display different preferences towards different oligonucleotides. These reactions are reversed by ADP-ribosylhydrolases of the macrodomain and ARH families, such as MACROD1, TARG1, PARG, ARH1 and ARH3. Most findings derive from in vitro experiments using recombinant components, leaving the relevance of this modification in cells unclear. In this Survey and Summary, we provide an overview of the enzymes that ADP-ribosylate nucleic acids, the reversing hydrolases, and the substrates' requirements. Drawing on data available for other organisms, such as pierisin1 from cabbage butterflies and the bacterial toxin-antitoxin system DarT-DarG, we discuss possible functions for nucleic acid ADP-ribosylation in mammals. Hypothesized roles for nucleic acid ADP-ribosylation include functions in DNA damage repair, in antiviral immunity or as non-conventional RNA cap. Lastly, we assess various methods potentially suitable for future studies of nucleic acid ADP-ribosylation.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Katja Schäringer
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Jeffrey Momoh
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| |
Collapse
|
41
|
Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 2021; 19:2366-2383. [PMID: 34025930 PMCID: PMC8120803 DOI: 10.1016/j.csbj.2021.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
Collapse
Affiliation(s)
- Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
42
|
Schuller M, Correy GJ, Gahbauer S, Fearon D, Wu T, Díaz RE, Young ID, Carvalho Martins L, Smith DH, Schulze-Gahmen U, Owens TW, Deshpande I, Merz GE, Thwin AC, Biel JT, Peters JK, Moritz M, Herrera N, Kratochvil HT, Aimon A, Bennett JM, Brandao Neto J, Cohen AE, Dias A, Douangamath A, Dunnett L, Fedorov O, Ferla MP, Fuchs MR, Gorrie-Stone TJ, Holton JM, Johnson MG, Krojer T, Meigs G, Powell AJ, Rack JGM, Rangel VL, Russi S, Skyner RE, Smith CA, Soares AS, Wierman JL, Zhu K, O'Brien P, Jura N, Ashworth A, Irwin JJ, Thompson MC, Gestwicki JE, von Delft F, Shoichet BK, Fraser JS, Ahel I. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. SCIENCE ADVANCES 2021; 7:eabf8711. [PMID: 33853786 PMCID: PMC8046379 DOI: 10.1126/sciadv.abf8711] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 05/19/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.
Collapse
Affiliation(s)
- Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Galen J Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Taiasean Wu
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA 94158, USA
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Luan Carvalho Martins
- Biochemistry Department, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dominique H Smith
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ursula Schulze-Gahmen
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tristan W Owens
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ishan Deshpande
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Gregory E Merz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Aye C Thwin
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Justin T Biel
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jessica K Peters
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michelle Moritz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nadia Herrera
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Huong T Kratochvil
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anthony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - James M Bennett
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
| | - Jose Brandao Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Alexandre Dias
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Oleg Fedorov
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
| | - Matteo P Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Martin R Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Tyler J Gorrie-Stone
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - James M Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Tobias Krojer
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
| | - George Meigs
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ailsa J Powell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | | | - Victor L Rangel
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Rachael E Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Alexei S Soares
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jennifer L Wierman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Peter O'Brien
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, San Francisco, CA 94158, USA
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael C Thompson
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA 94158, USA
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA.
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
43
|
Lin MH, Huang YP, Chang CF, Hsu CH. NMR assignments of the macro domain from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:137-142. [PMID: 33486617 PMCID: PMC7826497 DOI: 10.1007/s12104-020-09996-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/11/2020] [Indexed: 05/05/2023]
Abstract
SARS-CoV-2 is a novel pathogen causing pneumonia named COVID-19 and leading to a severe pandemic since the end of 2019. The genome of SARS-CoV-2 contains a macro domain that may play an important role in regulating ADP-ribosylation in host cells and initiating viral replication. Here, we report the 1H, 13C, and 15N resonance assignments of the SARS-CoV-2 macro domain. This work provides the ground for further structural deciphering and biophysical investigation in protein function and antiviral agent design.
Collapse
Affiliation(s)
- Meng-Hsuan Lin
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Yi-Ping Huang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chun-Hua Hsu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
44
|
An MHV macrodomain mutant predicted to lack ADP-ribose binding activity is severely attenuated, indicating multiple roles for the macrodomain in coronavirus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33821264 DOI: 10.1101/2021.03.30.437796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in non-structural protein 3 (nsp3) which binds and hydrolyzes ADP-ribose covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutant of a highly conserved asparagine-to-alanine mutation, which is known to largely eliminate Mac1 ADP-ribosylhydrolase activity. To determine if Mac1 ADP-ribose binding separately contributes to CoV replication, we compared the replication of a murine hepatitis virus (MHV) Mac1 mutant predicted to dramatically reduce ADP-ribose binding, D1329A, to the previously mentioned asparagine mutant, N1347A. D1329A and N1347A both replicated poorly in bone-marrow derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo . However, D1329A was significantly more attenuated than N1347A in all cell lines tested that were susceptible to MHV infection. In addition, D1329A retained some ability to block IFN-β transcript accumulation compared to N1347A, indicating that these two mutants impacted distinct Mac1 functions. Mac1 mutants predicted to eliminate both binding and hydrolysis activities were unrecoverable, suggesting that the combined activities of Mac1 may be essential for MHV replication. We conclude that Mac1 has multiple roles in promoting the replication of MHV, and that these results provide further evidence that Mac1 could be a prominent target for anti-CoV therapeutics. IMPORTANCE In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate, and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within non-structural protein 3. It has received significant attention as a potential drug target as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the various roles and functions of Mac1 during infection remain largely unknown. Here, utilizing recombinant Mac1 mutant viruses, we have determined that different biochemical functions of Mac1 have distinct roles in the replication of MHV, a model CoV. These results indicate that Mac1 is more important for CoV replication than previously appreciated, and could help guide the development of inhibitory compounds that target unique regions of this protein domain.
Collapse
|
45
|
Grabherr S, Ludewig B, Pikor NB. Insights into coronavirus immunity taught by the murine coronavirus. Eur J Immunol 2021; 51:1062-1070. [PMID: 33687066 PMCID: PMC8250324 DOI: 10.1002/eji.202048984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
Coronaviruses (CoVs) represent enveloped, ss RNA viruses with the ability to infect a range of vertebrates causing mainly lung, CNS, enteric, and hepatic disease. While the infection with human CoV is commonly associated with mild respiratory symptoms, the emergence of SARS‐CoV, MERS‐CoV, and SARS‐CoV‐2 highlights the potential for CoVs to cause severe respiratory and systemic disease. The devastating global health burden caused by SARS‐CoV‐2 has spawned countless studies seeking clinical correlates of disease severity and host susceptibility factors, revealing a complex network of antiviral immune circuits. The mouse hepatitis virus (MHV) is, like SARS‐CoV‐2, a beta‐CoV and is endemic in wild mice. Laboratory MHV strains have been extensively studied to reveal coronavirus virulence factors and elucidate host mechanisms of antiviral immunity. These are reviewed here with the aim to identify translational insights for SARS‐CoV‐2 learned from murine CoVs.
Collapse
Affiliation(s)
- Sarah Grabherr
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Natalia Barbara Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
46
|
Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten J, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. iScience 2021; 24:102021. [PMID: 33426509 PMCID: PMC7783459 DOI: 10.1016/j.isci.2020.102021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
The unparalleled global effort to combat the continuing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic over the last year has resulted in promising prophylactic measures. However, a need still exists for cheap, effective therapeutics, and targeting multiple points in the viral life cycle could help tackle the current, as well as future, coronaviruses. Here, we leverage our recently developed, ultra-large-scale in silico screening platform, VirtualFlow, to search for inhibitors that target SARS-CoV-2. In this unprecedented structure-based virtual campaign, we screened roughly 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets. In addition to targeting the active sites of viral enzymes, we also targeted critical auxiliary sites such as functionally important protein-protein interactions.
Collapse
Affiliation(s)
- Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Krishna M. Padmanabha Das
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kendra E. Leigh
- Max Planck Institute of Biophysics, Frankfurt am Main, Hessen 60438, Germany
| | | | - Patrick D. Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Saarland 66123, Germany
| | - Zi-Fu Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | | | | | | | - Anthony Calderaio
- VirtualFlow Organization, https://virtual-flow.org/, Boston, MA 02115, USA
| | | | - Alexander Rose
- Mol∗ Consortium, https://molstar.org, San Diego, CA 92109, USA
| | | | | | | | | | - Henry D. Herce
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | - Konstantin Fackeldey
- Zuse Institute Berlin (ZIB), Berlin 14195, Germany
- Institute of Mathematics, Technical University Berlin, Berlin 10587, Germany
| | - J.J. Patten
- Department of Microbiology, Boston University Medical School, Boston University, Boston, MA 02118, USA
| | | | | | | | - Yurii Moroz
- Chemspace, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Dmytro Radchenko
- Enamine, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | | | | | - Christian Gruber
- Innophore GmbH, Graz 8010, Austria
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Ryan Yust
- Google, Mountain View, CA 94043, USA
| | | | - Anders M. Näär
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Mark N. Namchuk
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Robert A. Davey
- Department of Microbiology, Boston University Medical School, Boston University, Boston, MA 02118, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | | | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
47
|
Lin MH, Cho CC, Chiu YC, Chien CY, Huang YP, Chang CF, Hsu CH. Elucidating the tunability of binding behavior for the MERS-CoV macro domain with NAD metabolites. Commun Biol 2021; 4:123. [PMID: 33504944 PMCID: PMC7840908 DOI: 10.1038/s42003-020-01633-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
The macro domain is an ADP-ribose (ADPR) binding module, which is considered to act as a sensor to recognize nicotinamide adenine dinucleotide (NAD) metabolites, including poly ADPR (PAR) and other small molecules. The recognition of macro domains with various ligands is important for a variety of biological functions involved in NAD metabolism, including DNA repair, chromatin remodeling, maintenance of genomic stability, and response to viral infection. Nevertheless, how the macro domain binds to moieties with such structural obstacles using a simple cleft remains a puzzle. We systematically investigated the Middle East respiratory syndrome-coronavirus (MERS-CoV) macro domain for its ligand selectivity and binding properties by structural and biophysical approaches. Of interest, NAD, which is considered not to interact with macro domains, was co-crystallized with the MERS-CoV macro domain. Further studies at physiological temperature revealed that NAD has similar binding ability with ADPR because of the accommodation of the thermal-tunable binding pocket. This study provides the biochemical and structural bases of the detailed ligand-binding mode of the MERS-CoV macro domain. In addition, our observation of enhanced binding affinity of the MERS-CoV macro domain to NAD at physiological temperature highlights the need for further study to reveal the biological functions.
Collapse
Affiliation(s)
- Meng-Hsuan Lin
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Chao-Cheng Cho
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Chih Chiu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ping Huang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Hua Hsu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
48
|
Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, Prashar V, Gupta GD, Panicker L, Kumar M. Structural insights into SARS-CoV-2 proteins. J Mol Biol 2021; 433:166725. [PMID: 33245961 PMCID: PMC7685130 DOI: 10.1016/j.jmb.2020.11.024] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
The unprecedented scale of the ongoing COVID-19 pandemic has catalyzed an intense effort of the global scientific community to unravel different aspects of the disease in a short time. One of the crucial aspects of these developments is the determination of more than three hundred experimental structures of SARS-CoV-2 proteins in the last few months. These include structures of viral non-structural, structural, and accessory proteins and their complexes determined by either X-ray diffraction or cryo-electron microscopy. These structures elucidate the intricate working of different components of the viral machinery at the atomic level during different steps of the viral life cycle, including attachment to the host cell, viral genome replication and transcription, and genome packaging and assembly of the virion. Some of these proteins are also potential targets for drug development against the disease. In this review, we discuss important structural features of different SARS-CoV-2 proteins with their function, and their potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Rimanshee Arya
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Shweta Kumari
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Bharati Pandey
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hiral Mistry
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Subhash C Bihani
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Amit Das
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Vishal Prashar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Gagan D Gupta
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Lata Panicker
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Mukesh Kumar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
49
|
The SARS-CoV-2 Conserved Macrodomain Is a Mono-ADP-Ribosylhydrolase. J Virol 2021; 95:JVI.01969-20. [PMID: 33158944 PMCID: PMC7925111 DOI: 10.1128/jvi.01969-20] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused more than 1.2 million deaths worldwide. With no currently approved treatments, novel therapeutic strategies are desperately needed. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within nonstructural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) Mac1 domains exhibit similar structural folds, and all 3 proteins bound to ADP-ribose with affinities in the low micromolar range. Importantly, using ADP-ribose-detecting binding reagents in both a gel-based assay and novel enzyme-linked immunosorbent assays (ELISAs), we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate than the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity. IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused more than 1.2 million deaths worldwide. With no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic posttranslational process that is increasingly being recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose and describe its ADP-ribose binding and hydrolysis activities in direct comparison to those of SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.
Collapse
|
50
|
Heer CD, Sanderson DJ, Voth LS, Alhammad YMO, Schmidt MS, Trammell SAJ, Perlman S, Cohen MS, Fehr AR, Brenner C. Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity. J Biol Chem 2020; 295:17986-17996. [PMID: 33051211 PMCID: PMC7834058 DOI: 10.1074/jbc.ra120.015138] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Indexed: 11/17/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) superfamily members covalently link either a single ADP-ribose (ADPR) or a chain of ADPR units to proteins using NAD as the source of ADPR. Although the well-known poly(ADP-ribosylating) (PARylating) PARPs primarily function in the DNA damage response, many noncanonical mono(ADP-ribosylating) (MARylating) PARPs are associated with cellular antiviral responses. We recently demonstrated robust up-regulation of several PARPs following infection with murine hepatitis virus (MHV), a model coronavirus. Here we show that SARS-CoV-2 infection strikingly up-regulates MARylating PARPs and induces the expression of genes encoding enzymes for salvage NAD synthesis from nicotinamide (NAM) and nicotinamide riboside (NR), while down-regulating other NAD biosynthetic pathways. We show that overexpression of PARP10 is sufficient to depress cellular NAD and that the activities of the transcriptionally induced enzymes PARP7, PARP10, PARP12 and PARP14 are limited by cellular NAD and can be enhanced by pharmacological activation of NAD synthesis. We further demonstrate that infection with MHV induces a severe attack on host cell NAD+ and NADP+ Finally, we show that NAMPT activation, NAM, and NR dramatically decrease the replication of an MHV that is sensitive to PARP activity. These data suggest that the antiviral activities of noncanonical PARP isozyme activities are limited by the availability of NAD and that nutritional and pharmacological interventions to enhance NAD levels may boost innate immunity to coronaviruses.
Collapse
Affiliation(s)
- Collin D Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa, USA; Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA
| | - Daniel J Sanderson
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, Oregon, USA
| | - Lynden S Voth
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Yousef M O Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Mark S Schmidt
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA
| | | | - Stanley Perlman
- Department of Microbiology & Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Michael S Cohen
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, Oregon, USA
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA.
| | - Charles Brenner
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|