1
|
Nourazarian A, Yousefi H, Biray Avci C, Shademan B, Behboudi E. The Interplay Between Viral Infection and Cell Death: A Ping-Pong Effect. Adv Virol 2025; 2025:5750575. [PMID: 39959654 PMCID: PMC11824611 DOI: 10.1155/av/5750575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/05/2024] [Accepted: 01/10/2025] [Indexed: 02/18/2025] Open
Abstract
Programmed cell death (PCD) is a well-studied cellular mechanism that plays a critical role in immune responses, developmental processes, and the maintenance of tissue homeostasis. However, viruses have developed diverse strategies to bypass or manipulate the host apoptotic machinery to enhance their replication and survival. As a result, the interaction between PCD pathways and viruses has garnered increased interest, leading to many studies being published in recent years. This study aims to provide an overview of the current understanding of PCD pathways and their significance in viral infections. We will discuss various forms of cell death pathways, including apoptosis, autophagy, necroptosis, and pyroptosis, as well as their corresponding molecular mechanisms. In addition, we will show how viruses manipulate host PCD pathways to prevent or delay cell death or facilitate viral replication. This study emphasizes the importance of investigating the mechanisms by which viruses control the host's PCD machinery to gain insight into the evolutionary dynamics of host-pathogen interactions and to develop new approaches for predicting and managing viral threats. Overall, we aimed to highlight new research areas in PCD and viruses, including introduction of new targets for the development of new antiviral drugs to modulate the cellular apoptotic machinery and novel inhibitors of host cell death pathways.
Collapse
Affiliation(s)
- Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
2
|
Nguyen SK, Long E, Edgar JR, Firth AE, Stewart H. The EMCV protein 2B* is required for efficient cell lysis via both caspase-3-dependent and -independent pathways during infection. J Gen Virol 2025; 106:002075. [PMID: 39928567 PMCID: PMC11811419 DOI: 10.1099/jgv.0.002075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/12/2025] Open
Abstract
2B* is a poorly characterized protein encoded by an overlapping ORF in the genome of encephalomyocarditis virus (EMCV). We have previously found 2B* to have a role in innate immune antagonism; however, this role is distinct from an earlier described phenotype whereby 2B*KO viruses exhibit extremely small plaques compared to WT. Here, we report that the small plaque phenotype is recapitulated by novel EMCV mutant viruses harbouring mutations across the C-terminal domain of 2B*, confirming a functional role of 2B* in promoting viral spread. We found that 2B*KO EMCV displays impaired extracellular virus titres compared to WT EMCV, despite producing a similar number of infectious particles overall. This correlates with a reduction in cell lysis and lower levels of caspase-3 cleavage occurring during infection. Further investigation using caspase inhibitors and knockout cells revealed that WT EMCV can utilize both caspase-3-dependent and caspase-3-independent pathways to achieve cell lysis, the former of which is likely to be GSDME-mediated pyroptosis. 2B* increases the efficiency of both lytic pathways through an as-yet-undefined mechanism. This work reveals 2B*, a protein only found in EMCV, to be a key regulator of multiple lytic cell death pathways, leading to enhanced rates of virus release. This explains the rapid cell death observed during WT EMCV infection and the small plaque phenotype seen in both 2B*KO and previously described 2B* mutant viruses.
Collapse
Affiliation(s)
| | - Edward Long
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Zhao F, Cong X, Huang X, Zheng Y, Zhao Q, Wen Y, Wu R, Du S, Cao S, Cong F, Wang Y. Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity. Vet Res 2025; 56:5. [PMID: 39789633 PMCID: PMC11720510 DOI: 10.1186/s13567-024-01436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 01/12/2025] Open
Abstract
Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity. To date, there are no vaccines and drugs approved to prevent or treat SADS-CoV infection. Understanding of the mutual relationship between SADS-CoV infection and host immunity is crucial for the development of novel vaccines and drugs against SADS-CoV. Here, we review recent advancements in our understanding of the interplay between SADS-CoV infection and the host intrinsic and innate immunity. The extensive and in-depth investigation on their interactive relationship will contribute to the identification of new targets for developing intervention strategies to control SADS-CoV infection.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China
| | - Xiaobo Huang
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Zheng
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiping Wen
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Wu
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Senyan Du
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sanjie Cao
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China.
| | - Yiping Wang
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N, Flores-Romero H. Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol 2025; 35:33-45. [PMID: 39379268 DOI: 10.1016/j.tcb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) function as transient signaling platforms that regulate essential cellular functions. MERCS are enriched in specific proteins and lipids that connect mitochondria and the ER together and modulate their activities. Dysregulation of MERCS is associated with several human pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. BCL-2 family proteins can locate at MERCS and control essential cellular functions such as calcium signaling and autophagy in addition to their role in mitochondrial apoptosis. Moreover, the BCL-2-mediated apoptotic machinery was recently found to trigger cGAS-STING pathway activation and a proinflammatory response, a recognized hallmark of these diseases that requires mitochondria-ER interplay. This review underscores the pivotal role of MERCS in regulating essential cellular functions, focusing on their crosstalk with BCL-2 family proteins, and discusses how their dysregulation is linked to disease.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hector Flores-Romero
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
5
|
Paludan SR, Pradeu T, Pichlmair A, Wray KB, Mikkelsen JG, Olagnier D, Mogensen TH. Early host defense against virus infections. Cell Rep 2024; 43:115070. [PMID: 39675007 DOI: 10.1016/j.celrep.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Early host defense eliminates many viruses before infections are established while clearing others so they remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts, including the pattern recognition theory that currently dominates innate immunology. Focusing on early host responses to virus infections, we analyze the literature to build a working hypothesis for the principles that govern the early line of cellular antiviral defense. Aiming to ultimately arrive at a criteria-based theory with strong explanatory power, we propose that both controlling infection and limiting inflammation are key drivers for the early cellular antiviral response. This response, which we suggest is exerted by a set of "microbe- and inflammation-restricting mechanisms," directly restrict viral replication while also counteracting inflammation. Exploring the mechanisms and physiological importance of the early layer of cellular antiviral defense may open further lines of research in immunology.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Chapman University, Orange, CA, USA
| | - Andreas Pichlmair
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - K Brad Wray
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Centre for Science Studies, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
7
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Sellaththurai SR, Jung S, Nadarajapillai K, Kim MJ, Lee J. Functional characterization of irf3 against viral hemorrhagic septicemia virus infection using a CRISPR/Cas9-mediated zebrafish knockout model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105208. [PMID: 38834141 DOI: 10.1016/j.dci.2024.105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/11/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Interferon regulatory factors (IRFs) are transcription factors involved in immune responses, such as pathogen response regulation, immune cell growth, and differentiation. IRFs are necessary for the synthesis of type I interferons through a signaling cascade when pathogen recognition receptors identify viral DNA or RNA. We discovered that irf3 is expressed in the early embryonic stages and in all immune organs of adult zebrafish. We demonstrated the antiviral immune mechanism of Irf3 against viral hemorrhagic septicemia virus (VHSV) using CRISPR/Cas9-mediated knockout zebrafish (irf3-KO). In this study, we used a truncated Irf3 protein, encoded by irf3 with a 10 bp deletion, for further investigation. Upon VHSV injection, irf3-KO zebrafish showed dose-dependent high and early mortality compared with zebrafish with the wild-type Irf3 protein (WT), confirming the antiviral activity of Irf3. Based on the results of expression analysis of downstream genes upon VHSV challenge, we inferred that Irf3 deficiency substantially affects the expression of ifnphi1 and ifnphi2. However, after 5 days post infection (dpi), ifnphi3 expression was not significantly altered in irf3-KO compared to that in WT, and irf7 transcription showed a considerable increase in irf3-KO after 5 dpi, indicating irf7's control over ifnphi3 expression. The significantly reduced expression of isg15, viperin, mxa, and mxb at 3 dpi also supported the effect of Irf3 deficiency on the antiviral activity in the early stage of infection. The higher mortality in irf3-KO zebrafish than in WT might be due to an increased inflammation and tissue damage that occurs in irf3-KO because of delayed immune response. Our results suggest that Irf3 plays a role in antiviral immunity of zebrafish by modulating critical immune signaling molecules and regulating antiviral immune genes.
Collapse
Affiliation(s)
- Sarithaa Raguvaran Sellaththurai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
9
|
Chakravarty S, Varghese M, Fan S, Taylor RT, Chakravarti R, Chattopadhyay S. IRF3 inhibits inflammatory signaling pathways in macrophages to prevent viral pathogenesis. SCIENCE ADVANCES 2024; 10:eadn2858. [PMID: 39121222 PMCID: PMC11313863 DOI: 10.1126/sciadv.adn2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 08/11/2024]
Abstract
Viral inflammation contributes to pathogenesis and mortality during respiratory virus infections. IRF3, a critical component of innate antiviral immune responses, interacts with pro-inflammatory transcription factor NF-κB, and inhibits its activity. This mechanism helps suppress inflammatory gene expression in virus-infected cells and mice. We evaluated the cells responsible for IRF3-mediated suppression of viral inflammation using newly engineered conditional Irf3Δ/Δ mice. Irf3Δ/Δ mice, upon respiratory virus infection, showed increased susceptibility and mortality. Irf3 deficiency caused enhanced inflammatory gene expression, lung inflammation, immunopathology, and damage, accompanied by increased infiltration of pro-inflammatory macrophages. Deletion of Irf3 in macrophages (Irf3MKO) displayed, similar to Irf3Δ/Δ mice, increased inflammatory responses, macrophage infiltration, lung damage, and lethality, indicating that IRF3 in these cells suppressed lung inflammation. RNA-seq analyses revealed enhanced NF-κB-dependent gene expression along with activation of inflammatory signaling pathways in infected Irf3MKO lungs. Targeted analyses revealed activated MAPK signaling in Irf3MKO lungs. Therefore, IRF3 inhibited inflammatory signaling pathways in macrophages to prevent viral inflammation and pathogenesis.
Collapse
Affiliation(s)
- Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Merina Varghese
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Roger Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
10
|
Li TW, Park Y, Watters EG, Wang X, Zhou D, Fiches GN, Wu Z, Badley AD, Sacha JB, Ho WZ, Santoso NG, Qi J, Zhu J. KDM5A/B contribute to HIV-1 latent infection and survival of HIV-1 infected cells. Antiviral Res 2024; 228:105947. [PMID: 38925368 PMCID: PMC11927087 DOI: 10.1016/j.antiviral.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Combinational antiretroviral therapy (cART) suppresses human immunodeficiency virus type 1 (HIV-1) viral replication and pathogenesis in acquired immunodeficiency syndrome (AIDS) patients. However, HIV-1 remains in the latent stage of infection by suppressing viral transcription, which hinders an HIV-1 cure. One approach for an HIV-1 cure is the "shock and kill" strategy. The strategy focuses on reactivating latent HIV-1, inducing the viral cytopathic effect and facilitating the immune clearance for the elimination of latent HIV-1 reservoirs. Here, we reported that the H3K4 trimethylation (H3K4me3)-specific demethylase KDM5A/B play a role in suppressing HIV-1 Tat/LTR-mediated viral transcription in HIV-1 latent cells. Furthermore, we evaluated the potential of KDM5-specific inhibitor JQKD82 as an HIV-1 "shock and kill" agent. Our results showed that JQKD82 increases the H3K4me3 level at HIV-1 5' LTR promoter regions, HIV-1 reactivation, and the cytopathic effects in an HIV-1-latent T cell model. In addition, we identified that the combination of JQKD82 and AZD5582, a non-canonical NF-κB activator, generates a synergistic impact on inducing HIV-1 lytic reactivation and cell death in the T cell. The latency-reversing potency of the JQKD82 and AZD5582 pair was also confirmed in peripheral blood mononuclear cells (PBMCs) isolated from HIV-1 aviremic patients and in an HIV-1 latent monocyte. In latently infected microglia (HC69) of the brain, either deletion or inhibition of KDM5A/B results in a reversal of the HIV-1 latency. Overall, we concluded that KDM5A/B function as a host repressor of the HIV-1 lytic reactivation and thus promote the latency and the survival of HIV-1 infected reservoirs.
Collapse
Affiliation(s)
- Tai-Wei Li
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Youngmin Park
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily G Watters
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Dawei Zhou
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Guillaume N Fiches
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhenyu Wu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jonah B Sacha
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Netty G Santoso
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jun Qi
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Jian Zhu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Luo M, Chen N, Han D, Hu B, Zuo H, Weng S, He J, Xu X. A Negative Regulatory Feedback Loop within the JAK-STAT Pathway Mediated by the Protein Tyrosine Phosphatase DUSP14 in Shrimp. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:63-74. [PMID: 38767414 DOI: 10.4049/jimmunol.2300871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The JAK-STAT pathway is a central communication node for various biological processes. Its activation is characterized by phosphorylation and nuclear translocation of the transcription factor STAT. The regulatory balance of JAK-STAT signaling is important for maintenance of immune homeostasis. Protein tyrosine phosphatases (PTPs) induce dephosphorylation of tyrosine residues in intracellular proteins and generally function as negative regulators in cell signaling. However, the roles of PTPs in JAK-STAT signaling, especially in invertebrates, remain largely unknown. Pacific white shrimp Penaeus vannamei is currently an important model for studying invertebrate immunity. This study identified a novel member of the dual-specificity phosphatase (DUSP) subclass of the PTP superfamily in P. vannamei, named PvDUSP14. By interacting with and dephosphorylating STAT, PvDUSP14 inhibits the excessive activation of the JAK-STAT pathway, and silencing of PvDUSP14 significantly enhances humoral and cellular immunity in shrimp. The promoter of PvDUSP14 contains a STAT-binding motif and can be directly activated by STAT, suggesting that PvDUSP14 is a regulatory target gene of the JAK-STAT pathway and mediates a negative feedback regulatory loop. This feedback loop plays a role in maintaining homeostasis of JAK-STAT signaling and is involved in antibacterial and antiviral immune responses in shrimp. Therefore, the current study revealed a novel inhibitory mechanism of JAK-STAT signaling, which is of significance for studying the regulatory mechanisms of immune homeostasis in invertebrates.
Collapse
Affiliation(s)
- Mengting Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nuo Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Deyu Han
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bangping Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongliang Zuo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Gemez-Mata J, Moreno P, Alvarez-Torres D, Garcia-Rosado E, Bejar J, Alonso MC. Comparative Analysis of Immune Gene Transcription in Sea Bream ( Sparus aurata) Challenged with RGNNV or RGNNV/SJNNV Betanodaviruses. Pathogens 2024; 13:478. [PMID: 38921776 PMCID: PMC11207047 DOI: 10.3390/pathogens13060478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
Gilthead sea bream and European sea bass display different resistance-susceptibility patterns during infection with different nervous necrosis virus (NNV) species, which may derive from differences in the triggered immune response. Based on this premise, we analysed the transcription of several selected immune-related genes in sea bream experimentally infected with NNV isolates obtained from sea bass (DlNNV, RGNNV) or sea bream (SaNNV, RGNNV/SJNNV). Viral replication only occurred in SaNNV-inoculated fish; therefore, the differences between the immune response elicited by both viruses may be the key to understanding the mechanism behind the inhibition of DlNNV replication. Principal component analysis clustered samples according to the viral isolate from 1 day post infection onwards and evidenced differences in the immune response against both viruses, even though no mortalities or symptoms were recorded. The response against DlNNV is characterized by higher rtp3 transcription early after the infection, longer-lasting il-10 transcription and stronger induction of casp1 and hsp70. These genes should be targets for future studies in order to elucidate their role in hampering NNV replication in sea bream, which is essential for developing effective prophylactic measures.
Collapse
Affiliation(s)
- Juan Gemez-Mata
- Instituto de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 29071 Málaga, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Patricia Moreno
- Instituto de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 29071 Málaga, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Daniel Alvarez-Torres
- Instituto de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 29071 Málaga, Spain
| | - Esther Garcia-Rosado
- Instituto de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 29071 Málaga, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Julia Bejar
- Instituto de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 29071 Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - M. Carmen Alonso
- Instituto de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 29071 Málaga, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
13
|
Drzeniek NM, Kahwaji N, Picht S, Dimitriou IM, Schlickeiser S, Moradian H, Geissler S, Schmueck-Henneresse M, Gossen M, Volk HD. In Vitro Transcribed mRNA Immunogenicity Induces Chemokine-Mediated Lymphocyte Recruitment and Can Be Gradually Tailored by Uridine Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308447. [PMID: 38491873 DOI: 10.1002/advs.202308447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Beyond SARS-CoV2 vaccines, mRNA drugs are being explored to overcome today's greatest healthcare burdens, including cancer and cardiovascular disease. Synthetic mRNA triggers immune responses in transfected cells, which can be reduced by chemically modified nucleotides. However, the side effects of mRNA-triggered immune activation on cell function and how different nucleotides, such as the N1-methylpseudouridine (m1Ψ) used in SARS-CoV2 vaccines, can modulate cellular responses is not fully understood. Here, cellular responses toward a library of uridine-modified mRNAs are investigated in primary human cells. Targeted proteomics analyses reveal that unmodified mRNA induces a pro-inflammatory paracrine pattern marked by the secretion of chemokines, which recruit T and B lymphocytes toward transfected cells. Importantly, the magnitude of mRNA-induced changes in cell function varies quantitatively between unmodified, Ψ-, m1Ψ-, and 5moU-modified mRNA and can be gradually tailored, with implications for deliberately exploiting this effect in mRNA drug design. Indeed, both the immunosuppressive effect of stromal cells on T-cell proliferation, and the anti-inflammatory effect of IL-10 mRNA are enhanced by appropriate uridine modification. The results provide new insights into the effects of mRNA drugs on cell function and cell-cell communication and open new possibilities to tailor mRNA-triggered immune activation to the desired pro- or anti-inflammatory application.
Collapse
Affiliation(s)
- Norman M Drzeniek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Nourhan Kahwaji
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Samira Picht
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT; graduate school 203 of the German Excellence Initiative), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ioanna Maria Dimitriou
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT; graduate school 203 of the German Excellence Initiative), Augustenburger Platz 1, 13353, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Stephan Schlickeiser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- CheckImmune GmbH, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hanieh Moradian
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hans-Dieter Volk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- CheckImmune GmbH, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
14
|
Fan S, Popli S, Chakravarty S, Chakravarti R, Chattopadhyay S. Non-transcriptional IRF7 interacts with NF-κB to inhibit viral inflammation. J Biol Chem 2024; 300:107200. [PMID: 38508315 PMCID: PMC11040127 DOI: 10.1016/j.jbc.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.
Collapse
Affiliation(s)
- Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Sonam Popli
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
15
|
Chauhan M, Osbron CA, Koehler HS, Goodman AG. STING dependent BAX-IRF3 signaling results in apoptosis during late-stage Coxiella burnetii infection. Cell Death Dis 2024; 15:195. [PMID: 38459007 PMCID: PMC10924102 DOI: 10.1038/s41419-024-06573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
STING (STimulator of Interferon Genes) is a cytosolic sensor for cyclic dinucleotides (CDNs) and initiates an innate immune response upon binding to CDNs. Coxiella burnetii is a Gram-negative obligate intracellular bacterium and the causative agent of the zoonotic disease Q fever. The ability of C. burnetii to inhibit host cell death is a critical factor in disease development. Previous studies have shown that C. burnetii inhibits host cell apoptosis at early stages of infection. However, during the late-stages of infection, there is host cell lysis resulting in the release of bacteria to infect bystander cells. Thus, we investigated the role of STING during late-stages of C. burnetii infection and examined STING's impact on host cell death. We show that the loss of STING results in higher bacterial loads and abrogates IFNβ and IL6 induction at 12 days post-infection. The absence of STING during C. burnetii infection significantly reduces apoptosis through decreased caspase-8 and -3 activation. During infection, STING activates IRF3 which interacts with BAX. BAX then translocates to the mitochondria, which is followed by mitochondrial membrane depolarization. This results in increased cytosolic mtDNA in a STING-dependent manner. The presence of increased cytosolic mtDNA results in greater cytosolic 2'-3' cGAMP, creating a positive feedback loop and leading to further increases in STING activation and its downstream signaling. Taken together, we show that STING signaling is critical for BAX-IRF3-mediated mitochondria-induced apoptosis during late-stage C. burnetii infection.
Collapse
Affiliation(s)
- Manish Chauhan
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Chelsea A Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Heather S Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
16
|
He X, Wedn A, Wang J, Gu Y, Liu H, Zhang J, Lin Z, Zhou R, Pang X, Cui Y. IUPHAR ECR review: The cGAS-STING pathway: Novel functions beyond innate immune and emerging therapeutic opportunities. Pharmacol Res 2024; 201:107063. [PMID: 38216006 DOI: 10.1016/j.phrs.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Stimulator of interferon genes (STING) is a crucial innate immune sensor responsible for distinguishing pathogens and cytosolic DNA, mediating innate immune signaling pathways to defend the host. Recent studies have revealed additional regulatory functions of STING beyond its innate immune-related activities, including the regulation of cellular metabolism, DNA repair, cellular senescence, autophagy and various cell deaths. These findings highlight the broader implications of STING in cellular physiology beyond its role in innate immunity. Currently, approximately 10 STING agonists have entered the clinical stage. Unlike inhibitors, which have a maximum inhibition limit, agonists have the potential for infinite amplification. STING signaling is a complex process that requires precise regulation of STING to ensure balanced immune responses and prevent detrimental autoinflammation. Recent research on the structural mechanism of STING autoinhibition and its negative regulation by adaptor protein complex 1 (AP-1) provides valuable insights into its different effects under physiological and pathological conditions, offering a new perspective for developing immune regulatory drugs. Herein, we present a comprehensive overview of the regulatory functions and molecular mechanisms of STING beyond innate immune regulation, along with updated details of its structural mechanisms. We discuss the implications of these complex regulations in various diseases, emphasizing the importance and feasibility of targeting the immunity-dependent or immunity-independent functions of STING. Moreover, we highlight the current trend in drug development and key points for clinical research, basic research, and translational research related to STING.
Collapse
Affiliation(s)
- Xu He
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Abdalla Wedn
- School of Medicine, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA, USA
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanlun Gu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
| | - Hongjin Liu
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Juqi Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China; Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven CT06519, USA.
| | - Xiaocong Pang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
17
|
Huang E, Gao L, Yu R, Xu K, Wang L. A bibliometric analysis of programmed cell death in acute lung injury/acute respiratory distress syndrome from 2000 to 2022. Heliyon 2023; 9:e19759. [PMID: 37809536 PMCID: PMC10559065 DOI: 10.1016/j.heliyon.2023.e19759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Acute lung injury (ALI) is a prevalent critical disorder that disrupts the body's homeostasis in patients. The progression from ALI to acute respiratory distress syndrome (ARDS) is often accompanied by programmed cell death (PCD). However, there has been a lack of systematic research and comprehensive analysis on the role of different types of PCD in ALI/ARDS. This study aims to analyze the research status, trends, research hotspots, and compare the contribution of publications from different countries, institutions, journals and authors in the field of PCD in ALI/ARDS using bibliometric analysis. We collected publications regard to PCD and ALI/ARDS from Web of Science during 2000-2022. VOSviewer, Citespace, Scimago Graphica, Pajek, and GraphPad Prism 9.0 software were used for further analyzed and visualized. We identified a total of 3495 publications. The number of publications has increased since the beginning of the new century. China produced the most publications (1965), while the United States ranks first in the number of citations (40141). Shanghai Jiao Tong University and American Journal of Physiology-Lung Cellular and Molecular Physiology were the most prolific institution and journal, respectively. Wang, Ping has published most papers (23) while publications from Lee, Pj have most citations (2016). In terms of keywords, "apoptosis" and "inflammation" are the most frequently occurring, but there has been a recent shift from "apoptosis" and "autophagy" to "necroptosis", "pyroptosis", and "ferroptosis". Additionally, COVID-19 and long noncoding RNA (lncRNA) have become research hotspots in recent years. In conclusion, this bibliometric analysis reveals the research directions and frontier hotspots of PCD in ALI/ARDS. China and the United States have made important contributions to the development of this field. The research hotspots have recently focused on necroptosis, pyroptosis, ferroptosiss, COVID-19 and lncRNA.
Collapse
Affiliation(s)
- Enyao Huang
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, 210009, China
| | - Li Gao
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, 210009, China
| | - Ruiyu Yu
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, 210009, China
| | - Keying Xu
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, 210009, China
| | - Lihong Wang
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Nanjing, 210009, China
| |
Collapse
|
18
|
Tang X, Zhang Y, Xing J, Sheng X, Chi H, Zhan W. Proteomic and Phosphoproteomic Analysis Reveals Differential Immune Response to Hirame Novirhabdovirus (HIRRV) Infection in the Flounder ( Paralichthys olivaceus) under Different Temperature. BIOLOGY 2023; 12:1145. [PMID: 37627029 PMCID: PMC10452491 DOI: 10.3390/biology12081145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Hirame novirhabdovirus (HIRRV) is one of most serious viral pathogens causing significant economic losses to the flounder (Paralichthys olivaceus)-farming industry. Previous studies have shown that the outbreak of HIRRV is highly temperature-dependent, and revealed the viral replication was significantly affected by the antiviral response of flounders under different temperatures. In the present study, the proteome and phosphoproteome was used to analyze the different antiviral responses in the HIRRV-infected flounder under 10 °C and 20 °C. Post viral infection, 472 differentially expressed proteins (DEPs) were identified in the spleen of flounder under 10 °C, which related to NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, RNA transport and so on. Under 20 °C, 652 DEPs were identified and involved in focal adhesion, regulation of actin cytoskeleton, phagosome, NOD-like receptor signaling pathway and RIG-I-like receptor signaling pathway. Phosphoproteome analysis showed that 675 differentially expressed phosphoproteins (DEPPs) were identified in the viral infected spleen under 10 °C and significantly enriched in Spliceosome, signaling pathway, necroptosis and RNA transport. Under 20 °C, 1304 DEPPs were identified and significantly enriched to Proteasome, VEGF signaling pathway, apoptosis, Spliceosome, mTOR signaling pathway, mRNA surveillance pathway, and RNA transport. To be noted, the proteins and phosphoproteins involved in interferon production and signaling showed significant upregulations in the viral infected flounder under 20 °C compared with that under 10 °C. Furthermore, the temporal expression profiles of eight selected antiviral-related mRNA including IRF3, IRF7, IKKβ, TBK1, IFIT1, IFI44, MX1 and ISG15 were detected by qRT-PCR, which showed a significantly stronger response at early infection under 20 °C. These results provided fundamental resources for subsequent in-depth research on the HIRRV infection mechanism and the antiviral immunity of flounder, and also gives evidences for the high mortality of HIRRV-infected flounder under low temperature.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yingfeng Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
19
|
Tang L, Liu X, Wang C, Shu C. USP18 promotes innate immune responses and apoptosis in influenza A virus-infected A549 cells via cGAS-STING pathway. Virology 2023; 585:240-247. [PMID: 37422930 DOI: 10.1016/j.virol.2023.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Influenza A virus (IAV) can infect respiratory epithelial cells where it replicates, triggers cellular innate immune responses, and even induces cell apoptosis. Ubiquitin-specific peptidase 18 (USP18) was reported to be associated with IAV replication and immune response homeostasis. Therefore, this study aimed to investigate the role of USP18 in IAV-infected lung epithelial cells. The cell viability was determined by the CCK-8 method. Viral titers were quantified by standard plaque assay. Innate immune response-associated cytokines were detected by RT-qPCR and ELISA and cell apoptosis was assessed by flow cytometry. The results showed that overexpression of USP18 promoted viral replication, innate immune factor secretion and apoptosis in IAV-infected A549 cells. Mechanistically, USP18 reduced cGAS degradation by decreasing its K48-linked ubiquitination to promote IAV-induced cGAS-STING pathway activation. In conclusion, USP18 is a pathological mediator of IAV in lung epithelial cells.
Collapse
Affiliation(s)
- Li Tang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, 710002, Shaanxi, China
| | - Xi Liu
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, 710002, Shaanxi, China
| | - Ce Wang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, 710002, Shaanxi, China
| | - Chang Shu
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, 710002, Shaanxi, China.
| |
Collapse
|
20
|
Ji W, Zhang L, Ma C, Xu X, Li S, Xia H, Zhou W, Liu X. Newly synthesized AIFM1 determines the hypersensitivity of T lymphocytes to STING activation-induced cell apoptosis. Cell Rep 2023; 42:112327. [PMID: 37000625 DOI: 10.1016/j.celrep.2023.112327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/02/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
STING is a well-known signaling adaptor essential for sensing cytosolic dsDNA to produce type I interferon. Although the detailed underlying mechanisms remain enigmatic, recent studies show that STING activation can lead to T lymphocyte apoptosis. Here, we report that AIFM1 facilitates STING activation-induced cell apoptosis in T lymphocytes. Mechanistically, AIFM1 is upregulated after STING activation in T cells but not in HEK293T-STING and THP-1 cells, rendering T cells more sensitive to apoptosis. In contrast to the canonical role of AIFM1 in the caspase-independent parthanatos, the function of AIFM1 is operated by the formation of an AIFM1/IRF3/BAX complex and mitochondrial outer membrane permeabilization, which cause cytochrome c release and caspase activation. Furthermore, supplementation with newly synthesized AIFM1 can reconstitute STING activation-induced cell apoptosis in HEK293T-STING and THP-1 cells. Our study identifies AIFM1 as a key regulating factor determining the hypersensitivity of T lymphocytes to STING activation-induced cell apoptosis.
Collapse
Affiliation(s)
- Wangsheng Ji
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Lianfei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chengxin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyu Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuai Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Huan Xia
- Department of Infectious Diseases, Nankai University Second People's Hospital, Tianjin 300071, China
| | - Weihong Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
21
|
Zheng W, Liu A, Xia N, Chen N, Meurens F, Zhu J. How the Innate Immune DNA Sensing cGAS-STING Pathway Is Involved in Apoptosis. Int J Mol Sci 2023; 24:3029. [PMID: 36769349 PMCID: PMC9917431 DOI: 10.3390/ijms24033029] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The cGAS-STING signaling axis can be activated by cytosolic DNA, including both non-self DNA and self DNA. This axis is used by the innate immune system to monitor invading pathogens and/or damage. Increasing evidence has suggested that the cGAS-STING pathway not only facilitates inflammatory responses and the production of type I interferons (IFN), but also activates other cellular processes, such as apoptosis. Recently, many studies have focused on analyzing the mechanisms of apoptosis induced by the cGAS-STING pathway and their consequences. This review gives a detailed account of the interplay between the cGAS-STING pathway and apoptosis. The cGAS-STING pathway can induce apoptosis through ER stress, NLRP3, NF-κB, IRF3, and IFN signals. Conversely, apoptosis can feed back to regulate the cGAS-STING pathway, suppressing it via the activation of caspases or promoting it via mitochondrial DNA (mtDNA) release. Apoptosis mediated by the cGAS-STING pathway plays crucial roles in balancing innate immune responses, resisting infections, and limiting tumor growth.
Collapse
Affiliation(s)
- Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Anjing Liu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Nengwen Xia
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - François Meurens
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
22
|
Kelly JN, Laloli L, V’kovski P, Holwerda M, Portmann J, Thiel V, Dijkman R. Comprehensive single cell analysis of pandemic influenza A virus infection in the human airways uncovers cell-type specific host transcriptional signatures relevant for disease progression and pathogenesis. Front Immunol 2022; 13:978824. [PMID: 36268025 PMCID: PMC9576848 DOI: 10.3389/fimmu.2022.978824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
The respiratory epithelium constitutes the first line of defense against invading respiratory pathogens, such as the 2009 pandemic strain of influenza A virus (IAV, H1N1pdm09), and plays a crucial role in the host antiviral response to infection. Despite its importance, however, it remains unknown how individual cell types within the respiratory epithelium respond to IAV infection or how the latter may influence IAV disease progression and pathogenesis. Here, we used single cell RNA sequencing (scRNA-seq) to dissect the host response to IAV infection in its natural target cells. scRNA-seq was performed on human airway epithelial cell (hAEC) cultures infected with either wild-type pandemic IAV (WT) or with a mutant version of IAV (NS1R38A) that induced a robust innate immune response. We then characterized both the host and viral transcriptomes of more than 19,000 single cells across the 5 major cell types populating the human respiratory epithelium. For all cell types, we observed a wide spectrum of viral burden among single infected cells and a disparate host response between infected and bystander populations. Interestingly, we also identified multiple key differences in the host response to IAV among individual cell types, including high levels of pro-inflammatory cytokines and chemokines in secretory and basal cells and an important role for luminal cells in sensing and restricting incoming virus. Multiple infected cell types were shown to upregulate interferons (IFN), with type III IFNs clearly dominating the antiviral response. Transcriptional changes in genes related to cell differentiation, cell migration, and tissue repair were also identified. Strikingly, we also detected a shift in viral host cell tropism from non-ciliated cells to ciliated cells at later stages of infection and observed major changes in the cellular composition. Microscopic analysis of both WT and NS1R38A virus-infected hAECs at various stages of IAV infection revealed that the transcriptional changes we observed at 18 hpi were likely driving the downstream histopathological alterations in the airway epithelium. To our knowledge, this is the first study to provide a comprehensive analysis of the cell type-specific host antiviral response to influenza virus infection in its natural target cells – namely, the human respiratory epithelium.
Collapse
Affiliation(s)
- Jenna N. Kelly
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Laura Laloli
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philip V’kovski
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melle Holwerda
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Jasmine Portmann
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Ronald Dijkman
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
- *Correspondence: Ronald Dijkman,
| |
Collapse
|
23
|
IRF3 inhibits nuclear translocation of NF-κB to prevent viral inflammation. Proc Natl Acad Sci U S A 2022; 119:e2121385119. [PMID: 36067309 PMCID: PMC9478676 DOI: 10.1073/pnas.2121385119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interferon (IFN) regulatory factor 3 (IRF3) is a transcription factor activated by phosphorylation in the cytoplasm of a virus-infected cell; by translocating to the nucleus, it induces transcription of IFN-β and other antiviral genes. We have previously reported IRF3 can also be activated, as a proapoptotic factor, by its linear polyubiquitination mediated by the RIG-I pathway. Both transcriptional and apoptotic functions of IRF3 contribute to its antiviral effect. Here, we report a nontranscriptional function of IRF3, namely, the repression of IRF3-mediated NF-κB activity (RIKA), which attenuated viral activation of NF-κB and the resultant inflammatory gene induction. In Irf3-/- mice, consequently, Sendai virus infection caused enhanced inflammation in the lungs. Mechanistically, RIKA was mediated by the direct binding of IRF3 to the p65 subunit of NF-κB in the cytoplasm, which prevented its nuclear import. A mutant IRF3 defective in both the transcriptional and the apoptotic activities was active in RIKA and inhibited virus replication. Our results demonstrated IRF3 deployed a three-pronged attack on virus replication and the accompanying inflammation.
Collapse
|
24
|
Chiu YF, Huang YW, Chen CY, Chen YC, Gong YN, Kuo RL, Huang CG, Shih SR. Visualizing Influenza A Virus vRNA Replication. Front Microbiol 2022; 13:812711. [PMID: 35733972 PMCID: PMC9207383 DOI: 10.3389/fmicb.2022.812711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) has caused recurrent epidemics and severe pandemics. In this study, we adapted an MS2-MCP live-cell imaging system to visualize IAV replication. A reporter plasmid, pHH-PB2-vMSL, was constructed by replacing a part of the PB2-coding sequence in pHH-PB2 with a sequence encoding 24 copies of a stem-loop structure from bacteriophage MS2 (MSL). Binding of MS2 coat protein (MCP) fused to green fluorescent protein (GFP) to MSL enabled the detection of vRNA as fluorescent punctate signals in live-cell imaging. The introduction of pHH-PB2-vMSL into A549 cells transduced to express an MCP-GFP fusion protein lacking the nuclear localization signal (MCP-GFPdN), subsequently allowed tracking of the distribution and replication of PB2-vMSL vRNA after IAV PR8 infection. Spatial and temporal measurements revealed exponential increases in vRNA punctate signal intensity, which was only observed after membrane blebbing in apoptotic cells. Similar signal intensity increases in apoptotic cells were also observed after MDCK cells, transduced to express MCP-GFPdN, were infected with IAV carrying PB2-vMSL vRNA. Notably, PB2-vMSL vRNA replication was observed to occur only in apoptotic cells, at a consistent time after apoptosis initiation. There was a lack of observable PB2-vMSL vRNA replication in non-apoptotic cells, and vRNA replication was suppressed in the presence of apoptosis inhibitors. These findings point to an important role for apoptosis in IAV vRNA replication. The utility of the MS2-imaging system for visualizing time-sensitive processes such as viral replication in live host cells is also demonstrated in this study.
Collapse
Affiliation(s)
- Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Wen Huang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chia Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
25
|
Guo Y, Gan D, Hu F, Cheng Y, Yu J, Lei B, Shu Q, Gu R, Xu G. Intravitreal injection of mitochondrial DNA induces cell damage and retinal dysfunction in rats. Biol Res 2022; 55:22. [PMID: 35659309 PMCID: PMC9164539 DOI: 10.1186/s40659-022-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background Retinal neurodegeneration is induced by a variety of environmental insults and stresses, but the exact mechanisms are unclear. In the present study, we explored the involvement of cytosolic mitochondrial DNA (mtDNA), resulting in the cGAS-STING dependent inflammatory response and apoptosis in retinal damage in vivo. Methods Retinal injury was induced with white light or intravitreal injection of lipopolysaccharide (LPS). After light- or LPS-induced injury, the amount of cytosolic mtDNA in the retina was detected by PCR. The mtDNA was isolated and used to transfect retinas in vivo. WB and real-time PCR were used to evaluate the activation of cGAS-STING pathway and the levels of apoptosis-associated protein at different times after mtDNA injection. Retinal cell apoptosis rate was detected by TUNEL staining. Full-field electroretinography (ERG) was used to assess the retinal function. Results Light injury and the intravitreal injection of LPS both caused the leakage of mtDNA into the cytoplasm in retinal tissue. After the transfection of mtDNA in vivo, the levels of cGAS, STING, and IFN-β mRNAs and the protein levels of STING, phosph-TBK1, phospho-IRF3, and IFN-β were upregulated. mtDNA injection also induced the activation of caspase 3 and caspase 9. BAX and BAK were increased at both the mRNA and protein levels. The release of cytochrome c from the mitochondria to the cytosol was increased after mtDNA injection. The wave amplitudes on ERG decreased and retinal cell apoptosis was detected after mtDNA injection. Conclusions Cytosolic mtDNA triggers an inflammatory response. It also promotes apoptosis and the dysfunction of the retina. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00390-6.
Collapse
|
26
|
Samir P, Kanneganti TD. DEAD/H-Box Helicases in Immunity, Inflammation, Cell Differentiation, and Cell Death and Disease. Cells 2022; 11:1608. [PMID: 35626643 PMCID: PMC9139286 DOI: 10.3390/cells11101608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 12/21/2022] Open
Abstract
DEAD/H-box proteins are the largest family of RNA helicases in mammalian genomes, and they are present in all kingdoms of life. Since their discovery in the late 1980s, DEAD/H-box family proteins have been a major focus of study. They have been found to play central roles in RNA metabolism, gene expression, signal transduction, programmed cell death, and the immune response to bacterial and viral infections. Aberrant functions of DEAD/H-box proteins have been implicated in a wide range of human diseases that include cancer, neurodegeneration, and inherited genetic disorders. In this review, we provide a historical context and discuss the molecular functions of DEAD/H-box proteins, highlighting the recent discoveries linking their dysregulation to human diseases. We will also discuss the state of knowledge regarding two specific DEAD/H-box proteins that have critical roles in immune responses and programmed cell death, DDX3X and DDX58, also known as RIG-I. Given their importance in homeostasis and disease, an improved understanding of DEAD/H-box protein biology and protein-protein interactions will be critical for informing strategies to counteract the pathogenesis associated with several human diseases.
Collapse
|
27
|
The antiviral action of the RIG-I induced pathway of apoptosis (RIPA) is enhanced by its ability to degrade Otulin, which deubiquitinates IRF3. Cell Death Differ 2022; 29:504-513. [PMID: 34545182 PMCID: PMC8901756 DOI: 10.1038/s41418-021-00870-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mammalian innate immune response to virus infection is meditated by many cell-intrinsic pathways. RNA viruses, such as Sendai virus, which replicate in the cytoplasm, trigger the RIG-I-like receptor pathway, which activates the transcription factor, IRF3. Activated IRF3 translocates to the nucleus and induces transcription of the genes which encode interferons, the major antiviral cytokines. Interestingly, IRF3 activates another interferon-independent antiviral pathway, called RIG-I induced pathway of apoptosis (RIPA). For activating RIPA, IRF3 translocates from the cytoplasm to mitochondria. RIPA requires linear polyubiquitination of IRF3 by the enzyme complex, LUBAC; ubiquitinated IRF3 binds to Bax and translocates it to mitochondria causing the release of Cytochrome C, activation of caspases and apoptosis of the infected cell. Here, we report that Otulin, the deubiquitinase that removes linear polyubiquitin chains, inhibits RIPA by deubiquitinating IRF3. Ablation of Otulin expression enhanced RIPA and its overexpression inhibited RIPA. In virus-infected cells, to overcome Otulin-mediated inhibition, RIPA actively degrades Otulin. This degradation required sequential actions of RIPA-activated Caspase 3 and proteasomes. Caspase 3 cleaved Otulin at D31; the D31A mutant was not cleaved at all. The caspase-cleaved fragment was totally degraded by proteasomes, which was preceded by its K48-linked ubiquitination. Mass spectrometric analysis of Otulin identified K64 and K197 as the ubiquitinated residues. Otulin interacted with LUBAC after virus infection and the E3-ubiquitin ligase, HOIP, a component of LUBAC, ubiquitinated Otulin to trigger its proteasome-mediated degradation. To assess the impact of Otulin degradation on RIPA-mediated antiviral action, we expressed, in Otulin-ablated cells, a non-degradable mutant of Otulin, in which D31, K64 and K197 had been mutated. The cells expressing the Otulin mutant were less susceptible to virus-induced apoptosis, because RIPA was less active, and consequently virus replication was more robust. Thus, our study has revealed an important positive feedback loop of RIPA.
Collapse
|
28
|
Gao H, Lin Y, Huang C, Li X, Diamond MS, Liu C, Zhang R, Zhang P. A genome-wide CRISPR screen identifies HuR as a regulator of apoptosis induced by dsRNA and virus. J Cell Sci 2022; 135:274702. [PMID: 35112703 DOI: 10.1242/jcs.258855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
We performed an unbiased whole-genome CRISPR/Cas9 screen in A549 cells to identify potential regulators involved in cell death triggered by dsRNA. Of several top candidate genes, we identified the RNA binding protein ELAV like protein 1 (ELAVL1) that encodes Hu antigen R (HuR). Depletion of HuR led to less cell death induced by dsRNA. HuR is mainly involved in the apoptosis, and all of its RNA recognition motifs are essential for its proapoptotic function. We further showed that the HuR depletion had no influence on the mRNA level of an anti-apoptotic gene, BCL2, instead downregulated its translation in a cap-independent way. Polysome fractionation studies showed that HuR retarded the BCL2 mRNA in the non-translating pool of polysomes. Moreover, protection from dsRNA-induced apoptosis by HuR depletion required the presence of BCL2, indicating that the proapoptotic function of HuR is executed by suppressing BCL2. Consistently, HuR regulated apoptosis induced by infection of encephalomyocarditis or Semliki Forest virus. Collectively, our work identified a suite of proteins that regulate dsRNA-induced cell death, and elucidated the mechanism by which HuR acts as a pro-apoptotic factor.
Collapse
Affiliation(s)
- Huixin Gao
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuxia Lin
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Changbai Huang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaobo Li
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Chao Liu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ping Zhang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
29
|
Chen Q, Ma K, Liu X, Chen SH, Li P, Yu Y, Leung AKL, Yu X. Truncated PARP1 mediates ADP-ribosylation of RNA polymerase III for apoptosis. Cell Discov 2022; 8:3. [PMID: 35039483 PMCID: PMC8764063 DOI: 10.1038/s41421-021-00355-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Caspase-mediated cleavage of PARP1 is a surrogate marker for apoptosis. However, the biological significance of PARP1 cleavage during apoptosis is still unclear. Here, using unbiased protein affinity purification, we show that truncated PARP1 (tPARP1) recognizes the RNA polymerase III (Pol III) complex in the cytosol. tPARP1 mono-ADP-ribosylates RNA Pol III in vitro and mediates ADP-ribosylation of RNA Pol III during poly(dA-dT)-stimulated apoptosis in cells. tPARP1-mediated activation of RNA Pol III facilitates IFN-β production and apoptosis. In contrast, suppression of PARP1 or expressing the non-cleavable form of PARP1 impairs these molecular events. Taken together, these studies reveal a novel biological role of tPARP1 during cytosolic DNA-induced apoptosis.
Collapse
Affiliation(s)
- Qian Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA.
| | - Kai Ma
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Xiuhua Liu
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Shih-Hsun Chen
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan, China
| | - Peng Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China. .,School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China. .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Glanz A, Chakravarty S, Fan S, Chawla K, Subramanian G, Rahman T, Walters D, Chakravarti R, Chattopadhyay S. Autophagic degradation of IRF3 induced by the small-molecule auranofin inhibits its transcriptional and proapoptotic activities. J Biol Chem 2021; 297:101274. [PMID: 34619149 PMCID: PMC8531670 DOI: 10.1016/j.jbc.2021.101274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
The ubiquitously expressed transcription factor interferon (IFN) regulatory factor 3 (IRF3) is critical for the induction of antiviral genes, e.g., type-I IFN. In addition to its transcriptional function, IRF3 also activates a nontranscriptional, proapoptotic signaling pathway. While the proapoptotic function of IRF3 protects against viral infections, it is also involved in harmful immune responses that trigger hepatocyte cell death and promote liver disease. Thus, we hypothesized that a small-molecule inhibitor of the proapoptotic activity of IRF3 could alleviate fatty-acid-induced hepatocyte cell death. We conducted a high-throughput screen, which identified auranofin as a small-molecule inhibitor of the proapoptotic activity of IRF3. In addition to the nontranscriptional apoptotic pathway, auranofin also inhibited the transcriptional activity of IRF3. Using biochemical and genetic tools in human and mouse cells, we uncovered a novel mechanism of action for auranofin, in which it induces cellular autophagy to degrade IRF3 protein, thereby suppressing IRF3 functions. Autophagy-deficient cells were unable to degrade IRF3 upon auranofin treatment, suggesting that the autophagic degradation of IRF3 is a novel approach to regulate IRF3 activities. Using a physiologically relevant in vitro model, we demonstrated that auranofin inhibited fatty-acid-induced apoptotic cell death of hepatocytes. In summary, auranofin is a novel inhibitor of IRF3 functions and may represent a potential therapeutic option in diseases where IRF3 is deleterious.
Collapse
Affiliation(s)
- Anna Glanz
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Tia Rahman
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Dean Walters
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| |
Collapse
|
31
|
Reinert LS, Rashidi AS, Tran DN, Katzilieris-Petras G, Hvidt AK, Gohr M, Fruhwürth S, Bodda C, Thomsen MK, Vendelbo MH, Khan AR, Hansen B, Bergström P, Agholme L, Mogensen TH, Christensen MH, Nyengaard JR, Sen GC, Zetterberg H, Verjans GM, Paludan SR. Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production. J Clin Invest 2021; 131:136824. [PMID: 32990676 DOI: 10.1172/jci136824] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Protection of the brain from viral infections involves the type I IFN (IFN-I) system, defects in which render humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels lead to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we showed that microglia and other immune cells undergo apoptosis in the HSV-1-infected brain through a mechanism dependent on the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, whereas lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1-infected organotypic brain slices or mice treated with a caspase inhibitor exhibited lower viral load and an improved infection outcome. Collectively, we identify an activation-induced apoptosis program in brain immune cells that downmodulates local immune responses.
Collapse
Affiliation(s)
- Line S Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ahmad S Rashidi
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Diana N Tran
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | | | - Astrid K Hvidt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mette Gohr
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | | | | | - Mikkel H Vendelbo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Ahmad R Khan
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.,Centre of Biomedical Research, SGPGI Campus, Lucknow, India
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Petra Bergström
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Germany
| | - Lotta Agholme
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Germany
| | | | | | - Jens R Nyengaard
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Ganes C Sen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| | | | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden
| |
Collapse
|
32
|
Liao KC, Garcia-Blanco MA. Role of Alternative Splicing in Regulating Host Response to Viral Infection. Cells 2021; 10:1720. [PMID: 34359890 PMCID: PMC8306335 DOI: 10.3390/cells10071720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/26/2023] Open
Abstract
The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host-virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Mariano A. Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77550, USA
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77550, USA
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
33
|
Transcriptional and Non-Transcriptional Activation, Posttranslational Modifications, and Antiviral Functions of Interferon Regulatory Factor 3 and Viral Antagonism by the SARS-Coronavirus. Viruses 2021; 13:v13040575. [PMID: 33805458 PMCID: PMC8066409 DOI: 10.3390/v13040575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends against invading pathogens through the rapid activation of innate immune signaling pathways. Interferon regulatory factor 3 (IRF3) is a key transcription factor activated in response to virus infection and is largely responsible for establishing an antiviral state in the infected host. Studies in Irf3−/− mice have demonstrated the absence of IRF3 imparts a high degree of susceptibility to a wide range of viral infections. Virus infection causes the activation of IRF3 to transcribe type-I interferon (e.g., IFNβ), which is responsible for inducing the interferon-stimulated genes (ISGs), which act at specific stages to limit virus replication. In addition to its transcriptional function, IRF3 is also activated to trigger apoptosis of virus-infected cells, as a mechanism to restrict virus spread within the host, in a pathway called RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA). These dual functions of IRF3 work in concert to mediate protective immunity against virus infection. These two pathways are activated differentially by the posttranslational modifications (PTMs) of IRF3. Moreover, PTMs regulate not only IRF3 activation and function, but also protein stability. Consequently, many viruses utilize viral proteins or hijack cellular enzymes to inhibit IRF3 functions. This review will describe the PTMs that regulate IRF3′s RIPA and transcriptional activities and use coronavirus as a model virus capable of antagonizing IRF3-mediated innate immune responses. A thorough understanding of the cellular control of IRF3 and the mechanisms that viruses use to subvert this system is critical for developing novel therapies for virus-induced pathologies.
Collapse
|
34
|
Petro TM. IFN Regulatory Factor 3 in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2021; 205:1981-1989. [PMID: 33020188 DOI: 10.4049/jimmunol.2000462] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Immunity to viruses requires an array of critical cellular proteins that include IFN regulatory factor 3 (IRF3). Consequently, most viruses that infect vertebrates encode proteins that interfere with IRF3 activation. This review describes the cellular pathways linked to IRF3 activation and where those pathways are targeted by human viral pathogens. Moreover, key regulatory pathways that control IRF3 are discussed. Besides viral infections, IRF3 is also involved in resistance to some bacterial infections, in anticancer immunity, and in anticancer therapies involving DNA damage agents. A recent finding shows that IRF3 is needed for T cell effector functions that are involved in anticancer immunity and also in T cell autoimmune diseases. In contrast, unregulated IRF3 activity is clearly not beneficial, considering it is implicated in certain interferonopathies, in which heightened IRF3 activity leads to IFN-β-induced disease. Therefore, IRF3 is involved largely in maintaining health but sometimes contributing to disease.
Collapse
Affiliation(s)
- Thomas M Petro
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583; and Nebraska Center for Virology, University of Nebraska Medical Center, Lincoln, NE 68583
| |
Collapse
|
35
|
Imre G. Cell death signalling in virus infection. Cell Signal 2020; 76:109772. [PMID: 32931899 PMCID: PMC7486881 DOI: 10.1016/j.cellsig.2020.109772] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Apoptosis, necroptosis and pyroptosis represent three major regulated cell death modalities. Apoptosis features cell shrinkage, nuclear fragmentation and cytoplasm-blebbing. Necroptosis and pyroptosis exhibit osmotic imbalances in the cell accompanied by early membrane ruptures, which morphologically resembles necrosis. Importantly, these two lytic cell death forms facilitate the release of damage associated molecular patterns into the extracellular space leading to inflammatory response. Whereas, during apoptosis, the membrane integrity is preserved and the apoptotic cell is removed by neighbouring cells ensuring the avoidance of immune-stimulation. Viruses comprise a versatile group of intracellular pathogens, which elicit various strategies to infect and to propagate. Viruses are recognized by a myriad of pathogen recognition receptors in the human cells, which consequently lead to activation of the immune system and in certain circumstances cell-autonomous cell death. Importantly, the long-standing view that a cell death inducing capacity of a virus is equal to its pathogenic potential seems to be only partially valid. The altruistic cell death of an infected cell may serve the whole organism by ultimately curbing the way of virus manufacturing. In fact, several viruses express "anti-cell death" proteins to avoid this viral-defence mechanism. Conversely, some viruses hijack cell death pathways to selectively destroy cell populations in order to compromise the immune system of the host. This review discusses the pros and cons of virus induced cell death from the perspective of the host cells and attempts to provide a comprehensive overview of the complex network of cell death signalling in virus infection.
Collapse
Affiliation(s)
- Gergely Imre
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.
| |
Collapse
|
36
|
Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res 2020; 163:105297. [PMID: 33181319 PMCID: PMC7962892 DOI: 10.1016/j.phrs.2020.105297] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Necrostatin-1 (Nec-1) is a RIP1-targeted inhibitor of necroptosis, a form of programmed cell death discovered and investigated in recent years. There are already many studies demonstrating the essential role of necroptosis in various diseases, including inflammatory diseases, cardiovascular diseases and neurological diseases. However, the potential of Nec-1 in diseases has not received much attention. Nec-1 is able to inhibit necroptosis signaling pathway and thus ameliorate necroptotic cell death in disease development. Recent research findings indicate that Nec-1 could be applied in several types of diseases to alleviate disease development or improve prognosis. Moreover, we predict that Nec-1 has the potential to protect against the complications of coronavirus disease 2019 (COVID-19). This review summarized the effect of Nec-1 in disease models and the underlying molecular mechanism, providing research evidence for its future application.
Collapse
Affiliation(s)
- Liyuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
37
|
Vogel OA, Han J, Liang CY, Manicassamy S, Perez JT, Manicassamy B. The p150 Isoform of ADAR1 Blocks Sustained RLR signaling and Apoptosis during Influenza Virus Infection. PLoS Pathog 2020; 16:e1008842. [PMID: 32898178 PMCID: PMC7500621 DOI: 10.1371/journal.ppat.1008842] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Signaling through retinoic acid inducible gene I (RIG-I) like receptors (RLRs) is tightly regulated, with activation occurring upon sensing of viral nucleic acids, and suppression mediated by negative regulators. Under homeostatic conditions aberrant activation of melanoma differentiation-associated protein-5 (MDA5) is prevented through editing of endogenous dsRNA by RNA editing enzyme Adenosine Deaminase Acting on RNA (ADAR1). In addition, ADAR1 is postulated to play pro-viral and antiviral roles during viral infections that are dependent or independent of RNA editing activity. Here, we investigated the importance of ADAR1 isoforms in modulating influenza A virus (IAV) replication and revealed the opposing roles for ADAR1 isoforms, with the nuclear p110 isoform restricting versus the cytoplasmic p150 isoform promoting IAV replication. Importantly, we demonstrate that p150 is critical for preventing sustained RIG-I signaling, as p150 deficient cells showed increased IFN-β expression and apoptosis during IAV infection, independent of RNA editing activity. Taken together, the p150 isoform of ADAR1 is important for preventing sustained RIG-I induced IFN-β expression and apoptosis during viral infection.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Julianna Han
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Chieh-Yu Liang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Augusta University, Augusta, Georgia
| | - Jasmine T. Perez
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
38
|
Xu YP, Wang LZ, Zhou YL, Xiao Y, Gu WB, Li B, Zhao XF, Dong WR, Shu MA. Identification and functional analysis of two interferon regulatory factor 3 genes and their involvement in antiviral immune responses in the Chinese giant salamander Andrias davidianus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103710. [PMID: 32311388 DOI: 10.1016/j.dci.2020.103710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Interferon regulatory factor 3 (IRF3), a crucial member of interferon regulatory factor (IRF) family, plays an important role in innate immunity in vertebrates. However, there are no reports on the characterization and especially their respective functional analysis of two IRF3 genes in some species. In this study, two IRF3 genes as well as their roles in the immune response were identified and investigated in Chinese giant salamander, Andrias davidianus. The complete open reading frames of AdIRF3A and AdIRF3B were 1, 113 bp and 1, 380 bp in length, encoding 370 and 459 amino acids, respectively. Both AdIRF3A and AdIRF3B protein contain an IRF and an IRF3 domain. Phylogenetic analysis indicated that AdIRF3s clustered together with other IRF3 proteins. Tissue distribution analysis showed that AdIRF3s were expressed in all tissues tested, with highest expression levels in blood. Both AdIRF3s actively responded to Chinese giant salamander iridovirus (GSIV) and poly (I:C) challenge in A. davidianus. AdIRF3A/B silencing significantly suppressed the DNA virus and viral RNA analog-induced expression of IFN-inducible genes. Luciferase reporter assay further confirmed the regulatory role of AdIRF3s in IFN signaling. These results provide new insights into the origin or evolution of IRF3 in amphibians and even in vertebrates.
Collapse
Affiliation(s)
- Ya-Ping Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lan-Zhi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Feng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Distinct Molecular Mechanisms of Host Immune Response Modulation by Arenavirus NP and Z Proteins. Viruses 2020; 12:v12070784. [PMID: 32708250 PMCID: PMC7412275 DOI: 10.3390/v12070784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Endemic to West Africa and South America, mammalian arenaviruses can cross the species barrier from their natural rodent hosts to humans, resulting in illnesses ranging from mild flu-like syndromes to severe and fatal haemorrhagic zoonoses. The increased frequency of outbreaks and associated high fatality rates of the most prevalent arenavirus, Lassa, in West African countries, highlights the significant risk to public health and to the socio-economic development of affected countries. The devastating impact of these viruses is further exacerbated by the lack of approved vaccines and effective treatments. Differential immune responses to arenavirus infections that can lead to either clearance or rapid, widespread and uncontrolled viral dissemination are modulated by the arenavirus multifunctional proteins, NP and Z. These two proteins control the antiviral response to infection by targeting multiple cellular pathways; and thus, represent attractive targets for antiviral development to counteract infection. The interplay between the host immune responses and viral replication is a key determinant of virus pathogenicity and disease outcome. In this review, we examine the current understanding of host immune defenses against arenavirus infections and summarise the host protein interactions of NP and Z and the mechanisms that govern immune evasion strategies.
Collapse
|
40
|
Orning P, Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J Leukoc Biol 2020; 109:121-141. [PMID: 32531842 DOI: 10.1002/jlb.3mr0420-305r] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Caspase-8 is an apical caspase involved in the programmed form of cell death called apoptosis that is critically important for mammalian development and immunity. Apoptosis was historically described as immunologically silent in contrast to other types of programmed cell death such as necroptosis or pyroptosis. Recent reports suggest considerable crosstalk between these different forms of cell death. It is becoming increasingly clear that caspase-8 has many non-apoptotic roles, participating in multiple processes including regulation of necroptosis (mediated by receptor-interacting serine/threonine kinases, RIPK1-RIPK3), inflammatory cytokine expression, inflammasome activation, and cleavage of IL-1β and gasdermin D, and protection against shock and microbial infection. In this review, we discuss the involvement of caspase-8 in cell death and inflammation and highlight its role in innate immune responses and in the relationship between different forms of cell death. Caspase-8 is one of the central components in this type of crosstalk.
Collapse
Affiliation(s)
- Pontus Orning
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Egil Lien
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
41
|
Classical swine fever virus N pro antagonises IRF3 to prevent IFN-independent TLR3 and RIG-I-mediated apoptosis. J Virol 2020; 95:JVI.01136-20. [PMID: 33328306 PMCID: PMC8092839 DOI: 10.1128/jvi.01136-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical swine fever virus (CSFV) is the causative agent of classical swine fever, a notifiable disease of economic importance that causes severe leukopenia, fever and haemorrhagic disease in domesticated pigs and wild boar across the globe. CSFV has been shown to antagonise the induction of type I IFN, partly through a function of its N-terminal protease (Npro) which binds IRF3 and targets it for proteasomal degradation. Additionally, Npro has been shown to antagonise apoptosis triggered by the dsRNA-homolog poly(I:C), however the exact mechanism by which this is achieved has not been fully elucidated. In this study we confirm the ability of Npro to inhibit dsRNA-mediated apoptosis and show that Npro is also able to antagonise Sendai virus-mediated apoptosis in PK-15 cells. Gene edited PK-15 cell lines were used to show the dsRNA-sensing pathogen recognition receptors (PRRs) TLR3 and RIG-I specifically respond to poly(I:C) and SeV respectively, subsequently triggering apoptosis through pathways that converge on IRF3 and culminate in the cleavage of caspase-3. Importantly, this IRF3-mediated apoptosis was found to be dependent on transcription-independent functions of IRF3 and also on Bax, a pro-apoptotic Bcl-2 family protein, through a direct interaction between the two proteins. Deletion of IRF3, stable expression of Npro and infection with wild-type CSFV were found to antagonise the mitochondrial localisation of Bax, a key hallmark of the intrinsic, mitochondrial pathway of apoptosis. Together, these findings show that Npro's putative interaction with IRF3 is involved not only in its antagonism of type I IFN, but also dsRNA-mediated mitochondrial apoptosis.Importance Responsible for severe haemorrhagic disease in domestic pigs and wild boar, classical swine fever is recognised by the World Organisation for Animal Health (OIE) and European Union as a notifiable disease of economic importance. Persistent infection, immunotolerance and early dissemination of the virus at local sites of infection have been linked to the antagonism of type I IFN induction by Npro This protein may further contribute to these phenomena by antagonising the induction of dsRNA-mediated apoptosis. Ultimately, apoptosis is an important innate mechanism by which cells counter viruses at local sites of infection, thus preventing wider spread and dissemination within the host, potentially also contributing to the onset of persistence. Elucidation of the mechanism by which Npro antagonises the apoptotic response will help inform the development of rationally-designed live-attenuated vaccines and antivirals for control of outbreaks in typically CSFV-free countries.
Collapse
|
42
|
High Throughput Screening of FDA-Approved Drug Library Reveals the Compounds that Promote IRF3-Mediated Pro-Apoptotic Pathway Inhibit Virus Replication. Viruses 2020; 12:v12040442. [PMID: 32295140 PMCID: PMC7232324 DOI: 10.3390/v12040442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) regulatory factor 3 (IRF3) is the key transcription factor for the induction of IFN and antiviral genes. The absence of antiviral genes in IRF3 deficiency leads to susceptibility to a wide range of viral infections. Previously, we uncovered a function for nontranscriptional IRF3 (nt-IRF3), RLR (RIG-I-like receptor)-induced IRF3-mediated pathway of apoptosis (RIPA), which triggers apoptotic killing of virus-infected cells. Using knock-in mice expressing a transcriptionally inactive, but RIPA-active, IRF3 mutant, we demonstrated the relative contribution of RIPA to host antiviral defense. Given that RIPA is a cellular antiviral pathway, we hypothesized that small molecules that promote RIPA in virus-infected cells would act as antiviral agents. To test this, we conducted a high throughput screen of a library of FDA-approved drugs to identify novel RIPA activators. Our screen identified doxorubicin as a potent RIPA-activating agent. In support of our hypothesis, doxorubicin inhibited the replication of vesicular stomatitis virus, a model rhabdovirus, and its antiviral activity depended on its ability to activate IRF3 in RIPA. Surprisingly, doxorubicin inhibited the transcriptional activity of IRF3. The antiviral activity of doxorubicin was expanded to flavivirus and herpesvirus that also activate IRF3. Mechanistically, doxorubicin promoted RIPA by activating the extracellular signal-regulated kinase (ERK) signaling pathway. Finally, we validated these results using another RIPA-activating compound, pyrvinium pamoate, which showed a similar antiviral effect without affecting the transcriptional activity of IRF3. Therefore, we demonstrate that the RIPA branch of IRF3 can be targeted therapeutically to prevent virus infection.
Collapse
|
43
|
Maelfait J, Liverpool L, Rehwinkel J. Nucleic Acid Sensors and Programmed Cell Death. J Mol Biol 2020; 432:552-568. [PMID: 31786265 PMCID: PMC7322524 DOI: 10.1016/j.jmb.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
Nucleic acids derived from microorganisms are powerful triggers for innate immune responses. Proteins called RNA and DNA sensors detect foreign nucleic acids and, in mammalian cells, include RIG-I, cGAS, and AIM2. On binding to nucleic acids, these proteins initiate signaling cascades that activate host defense responses. An important aspect of this defense program is the production of cytokines such as type I interferons and IL-1β. Studies conducted over recent years have revealed that nucleic acid sensors also activate programmed cell death pathways as an innate immune response to infection. Indeed, RNA and DNA sensors induce apoptosis, pyroptosis, and necroptosis. Cell death via these pathways prevents replication of pathogens by eliminating the infected cell and additionally contributes to the release of cytokines and inflammatory mediators. Interestingly, recent evidence suggests that programmed cell death triggered by nucleic acid sensors plays an important role in a number of noninfectious pathologies. In addition to nonself DNA and RNA from microorganisms, nucleic acid sensors also recognize endogenous nucleic acids, for example when cells are damaged by genotoxic agents and in certain autoinflammatory diseases. This review article summarizes current knowledge on the links between nucleic acid sensing and cell death and explores important open questions for future studies in this area.
Collapse
Affiliation(s)
- Jonathan Maelfait
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Layal Liverpool
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
44
|
Sanz‐Garcia C, McMullen MR, Chattopadhyay S, Roychowdhury S, Sen G, Nagy LE. Nontranscriptional Activity of Interferon Regulatory Factor 3 Protects Mice From High-Fat Diet-Induced Liver Injury. Hepatol Commun 2019; 3:1626-1641. [PMID: 31832571 PMCID: PMC6887899 DOI: 10.1002/hep4.1441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
Interferon regulatory factor 3 (IRF3) has both transcriptional and nontranscriptional functions. Transcriptional activity is dependent on serine phosphorylation of IRF3, while transcription-independent IRF3-mediated apoptosis requires ubiquitination. IRF3 also binds to inhibitor of nuclear factor kappa B kinase (IKKβ) in the cytosol, restricting nuclear translocation of p65. IRF3-deficient mice are highly sensitive to high-fat diet (HFD)-induced liver injury; however, it is not known if transcriptional and/or nontranscriptional activity of IRF3 confers protection. Using a mouse model only expressing nontranscriptional functions of IRF3 (Irf3 S1/S1), we tested the hypothesis that nontranscriptional activity of IRF3 protects mice from HFD-induced liver injury. C57BL/6, Irf3 -/-, and Irf3 S1/S1 mice were fed an HFD for 12 weeks. In C57BL/6 mice, the HFD increased expression of interferon (IFN)-dependent genes, despite a decrease in IRF3 protein in the liver. The HFD had no impact on IFN-dependent gene expression Irf3 -/- or Irf3 S1/S1 mice, both lacking IRF3 transcriptional activity. Liver injury, apoptosis, and fibrosis were exacerbated in Irf3 -/- compared to C57BL/6 mice following the HFD; this increase was ameliorated in Irf3 S1/S1 mice. Similarly, expression of inflammatory cytokines as well as numbers of neutrophils and infiltrating monocytes was increased in Irf3 -/- mice compared to C57BL/6 and Irf3 S1/S1 mice. While the HFD increased the ubiquitination of IRF3, a response associated with IRF3-mediated apoptosis, in Irf3 S1/S1 mice, protection from liver injury was not due to differences in apoptosis of hepatocytes or immune cells. Instead, protection from HFD-induced liver injury in Irf3 S1/S1 mice was primarily associated with retardation of nuclear translocation of p65 and decreased expression of nuclear factor kappa B (NFκB)-dependent inflammatory cytokines. Conclusion: Taken together, these data identify important contributions of the nontranscriptional function of IRF3, likely by reducing NFκB signaling, in dampening the hepatic inflammatory environment in response to an HFD.
Collapse
Affiliation(s)
- Carlos Sanz‐Garcia
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOH
| | - Megan R. McMullen
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOH
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and ImmunologyUniversity of Toledo College of Medicine and Life SciencesToledoOH
| | - Sanjoy Roychowdhury
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOH
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOH
| | - Ganes Sen
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOH
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOH
| | - Laura E. Nagy
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOH
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOH
- Gastroenterology and HepatologyLerner Research InstituteCleveland ClinicClevelandOH
| |
Collapse
|
45
|
Comparison of the Innate Immune Responses to Pathogenic and Nonpathogenic Clade B New World Arenaviruses. J Virol 2019; 93:JVI.00148-19. [PMID: 31270228 DOI: 10.1128/jvi.00148-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022] Open
Abstract
The New World (NW) arenaviruses are a diverse group of zoonotic viruses, including several causative agents of severe hemorrhagic fevers in humans. All known human-pathogenic NW arenaviruses belong to clade B, where they group into sublineages with phylogenetically closely related nonpathogenic viruses, e.g., the highly pathogenic Junin (JUNV) and Machupo viruses with the nonpathogenic Tacaribe virus (TCRV). Considering the close genetic relationship of nonpathogenic and pathogenic NW arenaviruses, the identification of molecular determinants of virulence is of great importance. The host cell's innate antiviral defense represents a major barrier for zoonotic infection. Here, we performed a side-by-side comparison of the innate immune responses against JUNV and TCRV in human cells. Despite similar levels of viral replication, infection with TCRV consistently induced a stronger type I interferon (IFN-I) response than JUNV infection did. Transcriptome profiling revealed upregulation of a largely overlapping set of interferon-stimulated genes in cells infected with TCRV and JUNV. Both viruses were relatively insensitive to IFN-I treatment of human cells and induced similar levels of apoptosis in the presence or absence of an IFN-I response. However, in comparison to JUNV, TCRV induced stronger activation of the innate sensor double-strand RNA-dependent protein kinase R (PKR), resulting in phosphorylation of eukaryotic translation initiation factor eIF2α. Confocal microscopy studies revealed similar subcellular colocalizations of the JUNV and TCRV viral replication-transcription complexes with PKR. However, deletion of PKR by CRISPR/Cas9 hardly affected JUNV but promoted TCRV multiplication, providing the first evidence for differential innate recognition and control of pathogenic and nonpathogenic NW arenaviruses by PKR.IMPORTANCE New World (NW) arenaviruses are a diverse family of emerging zoonotic viruses that merit significant attention as important public health problems. The close genetic relationship of nonpathogenic NW arenaviruses with their highly pathogenic cousins suggests that few mutations may be sufficient to enhance virulence. The identification of molecular determinants of virulence of NW arenaviruses is therefore of great importance. Here we undertook a side-by-side comparison of the innate immune responses against the highly pathogenic Junin virus (JUNV) and the related nonpathogenic Tacaribe virus (TCRV) in human cells. We consistently found that TCRV induces a stronger type I interferon (IFN-I) response than JUNV. Transcriptome profiling revealed an overlapping pattern of IFN-induced gene expression and similar low sensitivities to IFN-I treatment. However, the double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) contributed to the control of TCRV, but not JUNV, providing the first evidence for differential innate recognition and control of JUNV and TCRV.
Collapse
|
46
|
Sanz-Garcia C, Poulsen KL, Bellos D, Wang H, McMullen MR, Li X, Chattopadhyay S, Sen G, Nagy LE. The non-transcriptional activity of IRF3 modulates hepatic immune cell populations in acute-on-chronic ethanol administration in mice. J Hepatol 2019; 70:974-984. [PMID: 30710579 PMCID: PMC6462245 DOI: 10.1016/j.jhep.2019.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Interferon regulatory factor 3 (IRF3) is a transcription factor mediating antiviral responses, yet recent evidence indicates that IRF3 also has critical non-transcriptional functions, including activating RIG-I-like receptors-induced IRF-3-mediated pathway of apoptosis (RIPA) and restricting activity of NF-κB. Using a novel murine model expressing only non-transcriptional IRF3 activity (Irf3S1/S1), we tested the hypothesis that non-transcriptional functions of IRF3 modulate innate immune responses in the Gao-binge (acute-on-chronic) model of alcohol-related liver disease. METHODS IRF3 and IRF3-mediated signals were analysed in liver samples from 5 patients transplanted for alcoholic hepatitis and 5 healthy controls. C57BL/6, Irf3-/- and Irf3S1/S1 mice were exposed to Gao-binge ethanol-induced liver injury. IRF3-mediated RIPA was investigated in cultured macrophages. RESULTS Phospho-IRF3 and IRF3-mediated signals were elevated in livers of patients with alcoholic hepatitis. In C57BL/6 mice, Gao-binge ethanol exposure activated IRF3 signaling and resulted in hepatocellular injury. Indicators of liver injury were differentially impacted by Irf3 genotype. Irf3-/-, but not Irf3S1/S1, mice were protected from steatosis, elevated alanine/aspartate aminotransferase levels and inflammatory cytokine expression. In contrast, neutrophil accumulation and endoplasmic reticulum stress were independent of genotype. Protection from Gao-binge injury in Irf3-/- mice was associated with an increased ratio of Ly6Clow (restorative) to Ly6Chigh (inflammatory) cells compared to C57BL/6 and Irf3S1/S1 mice. Reduced ratios of Ly6Clow/Ly6Chigh in C57BL/6 and Irf3S1/S1 mice were associated with increased apoptosis in the Ly6Clow population in response to Gao-binge. Activation of primary macrophage cultures with Poly (I:C) induced translocation of IRF3 to the mitochondria, where it associated with Bax and activated caspases 3 and 9, processes indicative of activation of the RIPA pathway. CONCLUSIONS Taken together, these data identify that the non-transcriptional function of IRF3 plays an important role in modulating the innate immune environment in response to Gao-binge ethanol exposure, via regulation of immune cell apoptosis. LAY SUMMARY Activation of the innate immune system contributes to inflammation in the progression of alcohol-related liver disease, as well as to the resolution of injury. Here we show that the protein IRF3 modulates the innate immune environment of the liver in a mouse model of alcoholic hepatitis. It does this by increasing the apoptotic cell death of immune cells that promote the resolution of injury.
Collapse
Affiliation(s)
- Carlos Sanz-Garcia
- Departments of Inflammation and Immunity, Case Western Reserve University, Cleveland, Ohio
| | - Kyle L. Poulsen
- Departments of Inflammation and Immunity, Case Western Reserve University, Cleveland, Ohio
| | - Damien Bellos
- Departments of Inflammation and Immunity, Case Western Reserve University, Cleveland, Ohio,,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Han Wang
- Departments of Inflammation and Immunity, Case Western Reserve University, Cleveland, Ohio
| | - Megan R. McMullen
- Departments of Inflammation and Immunity, Case Western Reserve University, Cleveland, Ohio
| | - Xiaoxia Li
- Departments of Inflammation and Immunity, Case Western Reserve University, Cleveland, Ohio,,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ganes Sen
- Departments of Inflammation and Immunity, Case Western Reserve University, Cleveland, Ohio,,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Laura E. Nagy
- Departments of Inflammation and Immunity, Case Western Reserve University, Cleveland, Ohio,,Gastroenterology and Hepatology, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio,,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
47
|
Paludan SR, Reinert LS, Hornung V. DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nat Rev Immunol 2019; 19:141-153. [PMID: 30644449 PMCID: PMC7311199 DOI: 10.1038/s41577-018-0117-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The immune system detects disturbances in homeostasis that occur during infection, sterile tissue damage and cancer. This initiates immune responses that seek to eliminate the trigger of immune activation and to re-establish homeostasis. At the same time, these mechanisms can also play a crucial role in the progression of disease. The occurrence of DNA in the cytosol constitutes a potent trigger for the innate immune system, governing the production of key inflammatory cytokines such as type I interferons and IL-1β. More recently, it has become clear that cytosolic DNA also triggers other biological responses, including various forms of programmed cell death. In this article, we review the emerging literature on the pathways governing DNA-stimulated cell death and the current knowledge on how these processes shape immune responses to exogenous and endogenous challenges.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark.
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Line S Reinert
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
- Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
48
|
Schultz KLW, Troisi EM, Baxter VK, Glowinski R, Griffin DE. Interferon regulatory factors 3 and 7 have distinct roles in the pathogenesis of alphavirus encephalomyelitis. J Gen Virol 2018; 100:46-62. [PMID: 30451651 DOI: 10.1099/jgv.0.001174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) regulatory factors (IRFs) are important determinants of the innate response to infection. We evaluated the role(s) of combined and individual IRF deficiencies in the outcome of infection of C57BL/6 mice with Sindbis virus, an alphavirus that infects neurons and causes encephalomyelitis. The brain and spinal cord levels of Irf7, but not Irf3 mRNAs, were increased after infection. IRF3/5/7-/- and IRF3/7-/- mice died within 3-4 days with uncontrolled virus replication, similar to IFNα receptor-deficient mice, while all wild-type (WT) mice recovered. IRF3-/- and IRF7-/- mice had brain levels of IFNα that were lower, but brain and spinal cord levels of IFNβ and IFN-stimulated gene mRNAs that were similar to or higher than WT mice without detectable serum IFN or increases in Ifna or Ifnb mRNAs in the lymph nodes, indicating that the differences in outcome were not due to deficiencies in the central nervous system (CNS) type I IFN response. IRF3-/- mice developed persistent neurological deficits and had more spinal cord inflammation and higher CNS levels of Il1b and Ifnγ mRNAs than WT mice, but all mice survived. IRF7-/- mice died 5-8 days after infection with rapidly progressive paralysis and differed from both WT and IRF3-/- mice in the induction of higher CNS levels of IFNβ, tumour necrosis factor (TNF) α and Cxcl13 mRNA, delayed virus clearance and more extensive cell death. Therefore, fatal disease in IRF7-/- mice is likely due to immune-mediated neurotoxicity associated with failure to regulate the production of inflammatory cytokines such as TNFα in the CNS.
Collapse
Affiliation(s)
- Kimberly L W Schultz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,†Present address: Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Elizabeth M Troisi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,‡Present address: University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca Glowinski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,§Present address: Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Zhang W, Li Z, Jia P, Liu W, Yi M, Jia K. Interferon regulatory factor 3 from sea perch (Lateolabrax japonicus) exerts antiviral function against nervous necrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:200-205. [PMID: 30016710 DOI: 10.1016/j.dci.2018.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Interferon (IFN) regulatory factor 3 (IRF3) is a major regulator contributing to the host away from viral infection. Here, an IRF3 gene from sea perch (LjIRF3) was identified and its role in regulating early apoptosis signaling and IFN response was investigated during red spotted grouper nervous necrosis virus (RGNNV) infection. The cDNA of LjIRF3 encoded a putative 465 amino acids protein, containing a DNA binding domain, an IRF association domain and a serine-rich domain. Phylogenetic analysis suggested that LjIRF3 shared the closest genetic relationship with Epinephelus coioides IRF3. LjIRF3 was constitutively expressed in all examined tissues with the highest expression level in the liver. Upon RGNNV infection, mRNA transcript level of LjIRF3 was significantly up-regulated in vivo and in vitro, indicating the involvement of LjIRF3 in immune response to RGNNV infection. Furthermore, overexpression of LjIRF3 significantly suppressed RGNNV replication in vitro, meanwhile significantly up-regulating the expression of IFNI and IFN stimulated genes and resulting in the activation of caspase 3 and 9 proteases in the early stage of RGNNV infection. In short, these results demonstrated that LjIRF3 exerted antiviral function against RGNNV infection via triggering early apoptotic cell death and inducing IRF3-dependent IFN immune response.
Collapse
Affiliation(s)
- Wanwan Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Zelin Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
50
|
Emerging Proviral Roles of Caspases during Lytic Replication of Gammaherpesviruses. J Virol 2018; 92:JVI.01011-17. [PMID: 30021896 DOI: 10.1128/jvi.01011-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Due to their roles in the regulation of programmed cell death and inflammation, the cellular caspase proteases are considered antiviral factors. However, recent studies have revealed examples of proviral functions for caspases. Here, we review a growing body of literature on the role of caspases in promoting the replication of human gammaherpesviruses. We propose that gammaherpesviruses have evolved ways to redirect these enzymes and to use their activation to support viral replication and immune evasion.
Collapse
|