1
|
Singh S, Liu Y, Burke M, Rayaprolu V, Stein SE, Hasan SS. Production and cryo-electron microscopy structure of an internally tagged SARS-CoV-2 spike ecto-domain construct. J Struct Biol X 2025; 11:100123. [PMID: 40046771 PMCID: PMC11880631 DOI: 10.1016/j.yjsbx.2025.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
The SARS-CoV-2 spike protein is synthesized in the endoplasmic reticulum of host cells, from where it undergoes export to the Golgi and the plasma membrane or retrieval from the Golgi to the endoplasmic reticulum. Elucidating the fundamental principles of this bidirectional secretion are pivotal to understanding virus assembly and designing the next generation of spike genetic vaccine with enhanced export properties. However, the widely used strategy of C-terminal affinity tagging of the spike cytosolic tail interferes with proper bidirectional trafficking. Hence, the structural and biophysical investigations of spike protein trafficking have been hindered by a lack of appropriate spike constructs. Here we describe a strategy for the internal tagging of the spike protein. Using sequence analyses and AlphaFold modeling, we identified a site down-stream of the signal sequence for the insertion of a twin-strep-tag, which facilitates purification of an ecto-domain construct from the extra-cellular medium of mammalian Expi293F cells. Mass spectrometry analyses show that the internal tag has minimal impact on N-glycan modifications, which are pivotal for spike-host interactions. Single particle cryo-electron microscopy reconstructions of the spike ecto-domain reveal conformational states compatible for ACE2 receptor interactions, further solidifying the feasibility of the internal tagging strategy. Collectively, these results present a substantial advance towards reagent development for the investigations of spike protein trafficking during coronavirus infection and genetic vaccination.
Collapse
Affiliation(s)
- Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Yi Liu
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - Meghan Burke
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - Vamseedhar Rayaprolu
- Pacific Northwest Cryo-EM Center, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Stephen E. Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville MD 20850, USA
| |
Collapse
|
2
|
Fahoum J, Billan M, Varga JK, Padawer D, Britan-Rosich Y, Elgrably-Weiss M, Basu P, Stolovich-Rain M, Baraz L, Cohen-Kfir E, Kumari S, Oiknine-Djian E, Kumar M, Zelig O, Mayer G, Isupov MN, Wolf DG, Altuvia S, Wiener R, Schueler-Furman O, Rouvinski A. Transfer of SARS-CoV-2 nucleocapsid protein to uninfected epithelial cells induces antibody-mediated complement deposition. Cell Rep 2025; 44:115512. [PMID: 40343796 DOI: 10.1016/j.celrep.2025.115512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/28/2024] [Accepted: 03/12/2025] [Indexed: 05/11/2025] Open
Abstract
SARS-CoV-2 infection triggers a strong antibody response toward nucleocapsid protein (NP), suggesting its extracellular presence beyond intravirion RNA binding. Our co-culture experiments show NP decorates infected and proximal uninfected cell surfaces. We propose a mechanism whereby extracellular NP on uninfected cells contributes to COVID-19 pathogenicity. We show that NP binds to cell-surface sulfated glycosaminoglycans using its RNA-binding sites, facilitated by the flexible, positively charged linker. Coating uninfected lung-derived cells with NP attracted anti-NP IgG from lung fluids and sera of COVID-19 patients. Immune recognition was significantly higher in moderate versus mild COVID-19. Binding of anti-NP IgG in sera generated clusters, triggering C3b deposition via the classical complement pathway on SARS-CoV-2 non-susceptible cells co-cultured with infected cells. The heparin analog enoxaparin outcompeted NP binding, rescuing cells from anti-NP IgG-mediated complement deposition. Our findings reveal how extracellular NP may exacerbate COVID-19 damage and suggest preventative therapy avenues.
Collapse
Affiliation(s)
- Jamal Fahoum
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Billan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia K Varga
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dan Padawer
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Institute of Pulmonary Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yelena Britan-Rosich
- Barry Skolnick Biosafety Level 3 (BSL3) Unit, Core Research Facility, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Elgrably-Weiss
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pallabi Basu
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Dove Laboratory, Boston Children's Hospital, Boston, MA 02115, USA
| | - Miri Stolovich-Rain
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leah Baraz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Medical Laboratory Sciences, Jerusalem Multidisciplinary College, Jerusalem, Israel
| | - Einav Cohen-Kfir
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sujata Kumari
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Israel Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Manoj Kumar
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Zelig
- Blood Bank, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Guy Mayer
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, UK
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Israel Hadassah Hebrew University Medical Center, Jerusalem, Israel; Lautenberg Centre for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shoshy Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Liang R, Tian J, Liu K, Ma L, Yang R, Sun L, Zhao J, Zhao Y, Zhang G. The cytoplasmic tail of IBV spike mediates intracellular retention via interaction with COPI-coated vesicles in retrograde trafficking. J Virol 2025; 99:e0216424. [PMID: 39840971 PMCID: PMC11852926 DOI: 10.1128/jvi.02164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/29/2024] [Indexed: 01/23/2025] Open
Abstract
Coronaviruses are characterized by their progeny assembly and budding in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). Our previous studies demonstrated that truncation of 9 amino acids in the cytoplasmic tail (CT) of the infectious bronchitis virus (IBV) spike (S) protein impairs its localization to the ERGIC, resulting in increased expression at the plasma membrane. However, the precise mechanism underlying this phenomenon remained elusive. In this study, we provide evidence that the IBV S protein could utilize coatomer protein-I (COPI)-coated vesicles for retrograde transport from the Golgi to the endoplasmic reticulum (ER). We identified the KKSV motif as the critical binding site within the CT domain of IBV S protein for COPI interaction. Further analysis reveals that IBV infection does not modulate host COPI expression. However, when COPI expression is disrupted, a higher proportion of S protein escapes to the plasma membrane. Moreover, inhibition of COPI-mediated transport during viral infection severely impairs progeny virion production and leads to increased S protein accumulation at the plasma membrane, inducing cell-cell fusion and syncytia formation. Our findings contribute to a deeper understanding of S protein intracellular trafficking during coronavirus infection, and offer valuable insights into the molecular mechanisms of viral replication and host cell biology.IMPORTANCEViruses hijack or modify host cellular machinery and associated pathways to facilitate their own replication. Here, we demonstrate that the infectious bronchitis virus (IBV) S protein directly interacts with coatomer protein-I (COPI)-coated vesicles through the KKSV motif in its cytoplasmic tail. COPI-coated vesicles mediate the retrograde transport of S protein from the Golgi apparatus to the endoplasmic reticulum-Golgi intermediate compartment, where viral particle assembly occurs. Our findings not only advance our understanding of IBV S protein trafficking mechanisms but also provide valuable insights for developing more effective vaccine strategies.
Collapse
Affiliation(s)
- Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kangchengyin Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Liman Ma
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruihua Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Burkova EE, Bakhno IA. Sequences in the Cytoplasmic Tail Contribute to the Intracellular Trafficking and the Cell Surface Localization of SARS-CoV-2 Spike Protein. Biomolecules 2025; 15:280. [PMID: 40001583 PMCID: PMC11853650 DOI: 10.3390/biom15020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Spike protein is a surface glycoprotein of the SARS-CoV-2 coronavirus, providing interaction of the coronavirus with angiotensin-converting enzyme 2 (ACE2) on the host cell. The cytoplasmic tail of the S protein plays an important role in an intracellular transport and translocation of the glycoprotein to the plasma membrane. The cytoplasmic domain of the S protein contains binding sites for COPI, COPII, and SNX27, which are required for the intracellular trafficking of this glycoprotein. In addition, the cytoplasmic domain of the S protein contains S-palmitoylation sites. S-palmitoylation increases the hydrophobicity of the S protein by regulating its transport to the plasma membrane. The cytoplasmic tail of the S protein has a signaling sequence that provides interaction with the ERM family proteins, which may mediate communication between the cell membrane and the actin cytoskeleton. This review examines the role of the cytoplasmic tail of the SARS-CoV-2 S protein in its intracellular transport and translocation to the plasma membrane. Understanding these processes is necessary not only for the development of vaccines based on mRNA or adenovirus vectors encoding the full-length spike (S) protein, but also for the therapy of the new coronavirus infection (COVID-19).
Collapse
Affiliation(s)
- Evgeniya E. Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
5
|
Hirabayashi A, Muramoto Y, Takenaga T, Tsunoda Y, Wakazaki M, Sato M, Fujita-Fujiharu Y, Nomura N, Yamauchi K, Onishi C, Nakano M, Toyooka K, Noda T. Coatomer complex I is required for the transport of SARS-CoV-2 progeny virions from the endoplasmic reticulum-Golgi intermediate compartment. mBio 2025; 16:e0333124. [PMID: 39611845 PMCID: PMC11708035 DOI: 10.1128/mbio.03331-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
SARS-CoV-2 undergoes budding within the lumen of the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), and the progeny virions are delivered to the cell surface via vesicular transport. However, the molecular mechanisms remain poorly understood. Using three-dimensional electron microscopic analysis, such as array tomography and electron tomography, we found that virion-transporting vesicles possessed protein coats on their membrane and demonstrated that the protein coat was coatomer complex I (COPI). During the later stages of SARS-CoV-2 infection, we observed a notable alteration in the distribution of COPI and ERGIC throughout the cytoplasm, suggesting their potential involvement in virus replication. Depletion of COPB2, a key component of COPI, led to the confinement of SARS-CoV-2 progeny virions within the ERGIC at the perinuclear region. While the expression levels of viral proteins within cells were comparable, this depletion significantly reduced the efficiency of virion release, leading to the significant reduction of viral replication. Hence, our findings suggest COPI as a critical player in facilitating the transport of SARS-CoV-2 progeny virions from the ERGIC. Thus, COPI could be a promising target for the development of antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2 virions are synthesized within the ERGIC and are transported to the cell surface via vesicular transport for release. However, the precise mechanisms remain unclear. Through various electron microscopic techniques, we identified the presence of COPI on virion-transporting vesicles. Alterations in the distribution of COPI and ERGIC in SARS-CoV-2 infected cells are evident, suggesting their involvement in virus replication. When COPB2, a component of COPI, is depleted, progeny virions become trapped within the ERGIC, leading to a reduction in the efficiency of virion release. These findings highlight COPI's crucial role in mediating SARS-CoV-2 vesicular transport from the ERGIC and suggest it as a potential antiviral target.
Collapse
Affiliation(s)
- Ai Hirabayashi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| | - Toru Takenaga
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
| | - Yugo Tsunoda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Prefecture, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Prefecture, Japan
| | - Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, , Kyoto, Kyoto Prefecture, Japan
| | - Koji Yamauchi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| | - Chiho Onishi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Prefecture, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| |
Collapse
|
6
|
Nakayama EE, Shioda T. Detrimental Effects of Anti-Nucleocapsid Antibodies in SARS-CoV-2 Infection, Reinfection, and the Post-Acute Sequelae of COVID-19. Pathogens 2024; 13:1109. [PMID: 39770368 PMCID: PMC11728538 DOI: 10.3390/pathogens13121109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon in which antibodies enhance subsequent viral infections rather than preventing them. Sub-optimal levels of neutralizing antibodies in individuals infected with dengue virus are known to be associated with severe disease upon reinfection with a different dengue virus serotype. For Severe Acute Respiratory Syndrome Coronavirus type-2 infection, three types of ADE have been proposed: (1) Fc receptor-dependent ADE of infection in cells expressing Fc receptors, such as macrophages by anti-spike antibodies, (2) Fc receptor-independent ADE of infection in epithelial cells by anti-spike antibodies, and (3) Fc receptor-dependent ADE of cytokine production in cells expressing Fc receptors, such as macrophages by anti-nucleocapsid antibodies. This review focuses on the Fc receptor-dependent ADE of cytokine production induced by anti-nucleocapsid antibodies, examining its potential role in severe COVID-19 during reinfection and its contribution to the post-acute sequelae of COVID-19, i.e., prolonged symptoms lasting at least three months after the acute phase of the disease. We also discuss the protective effects of recently identified anti-spike antibodies that neutralize Omicron variants.
Collapse
Affiliation(s)
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan;
| |
Collapse
|
7
|
Katiyar H, Arduini A, Li Y, Liang C. SARS-CoV-2 Assembly: Gaining Infectivity and Beyond. Viruses 2024; 16:1648. [PMID: 39599763 PMCID: PMC11598957 DOI: 10.3390/v16111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was responsible for causing the COVID-19 pandemic. Intensive research has illuminated the complex biology of SARS-CoV-2 and its continuous evolution during and after the COVID-19 pandemic. While much attention has been paid to the structure and functions of the viral spike protein and the entry step of viral infection, partly because these are targets for neutralizing antibodies and COVID-19 vaccines, the later stages of SARS-CoV-2 replication, including the assembly and egress of viral progenies, remain poorly characterized. This includes insight into how the activities of the viral structural proteins are orchestrated spatially and temporally, which cellular proteins are assimilated by the virus to assist viral assembly, and how SARS-CoV-2 counters and evades the cellular mechanisms antagonizing virus assembly. In addition to becoming infectious, SARS-CoV-2 progenies also need to survive the hostile innate and adaptive immune mechanisms, such as recognition by neutralizing antibodies. This review offers an updated summary of the roles of SARS-CoV-2 structural proteins in viral assembly, the regulation of assembly by viral and cellular factors, and the cellular mechanisms that restrict this process. Knowledge of these key events often reveals the vulnerabilities of SARS-CoV-2 and aids in the development of effective antiviral therapeutics.
Collapse
Affiliation(s)
- Harshita Katiyar
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Yichen Li
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
8
|
Metko M, Tonne J, Veliz Rios A, Thompson J, Mudrick H, Masopust D, Diaz RM, Barry MA, Vile RG. Intranasal Prime-Boost with Spike Vectors Generates Antibody and T-Cell Responses at the Site of SARS-CoV-2 Infection. Vaccines (Basel) 2024; 12:1191. [PMID: 39460356 PMCID: PMC11511174 DOI: 10.3390/vaccines12101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Long-lived, re-activatable immunity to SARS-CoV-2 and its emerging variants will rely on T cells recognizing conserved regions of viral proteins across strains. Heterologous prime-boost regimens can elicit elevated levels of circulating CD8+ T cells that provide a reservoir of first responders upon viral infection. Although most vaccines are currently delivered intramuscularly (IM), the initial site of infection is the nasal cavity. METHODS Here, we tested the hypothesis that a heterologous prime and boost vaccine regimen delivered intranasally (IN) will generate improved immune responses locally at the site of virus infection compared to intramuscular vaccine/booster regimens. RESULTS In a transgenic human ACE2 murine model, both a Spike-expressing single-cycle adenovirus (SC-Ad) and an IFNß safety-enhanced replication-competent Vesicular Stomatitis Virus (VSV) platform generated anti-Spike antibody and T-cell responses that diminished with age. Although SC-Ad-Spike boosted a prime with VSV-Spike-mIFNß, SC-Ad-Spike alone induced maximal levels of IgG, IgA, and CD8+ T-cell responses. CONCLUSIONS There were significant differences in T-cell responses in spleens compared to lungs, and the intranasal boost was significantly superior to the intramuscular boost in generating sentinel immune effectors at the site of the virus encounter in the lungs. These data show that serious consideration should be given to intranasal boosting with anti-SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Alexa Veliz Rios
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics Program, Mayo Clinic, Rochester, MN 55905, USA;
| | - David Masopust
- Department of Microbiology & Immunology, University of Minnesota Medical School, 2101 6th St. SE, Minneapolis, MN 55455, USA;
| | - Rosa Maria Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Michael A. Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
- Department of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Liang R, Liu K, Li Y, Zhang X, Duan L, Huang M, Sun L, Yuan F, Zhao J, Zhao Y, Zhang G. Adaptive truncation of the S gene in IBV during chicken embryo passaging plays a crucial role in its attenuation. PLoS Pathog 2024; 20:e1012415. [PMID: 39078847 PMCID: PMC11315334 DOI: 10.1371/journal.ppat.1012415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Like all coronaviruses, infectious bronchitis virus, the causative agent of infectious bronchitis in chickens, exhibits a high mutation rate. Adaptive mutations that arise during the production of live attenuated vaccines against IBV often decrease virulence. The specific impact of these mutations on viral pathogenicity, however, has not been fully elucidated. In this study, we identified a mutation at the 3' end of the S gene in an IBV strain that was serially passaged in chicken embryos, and showed that this mutation resulted in a 9-aa truncation of the cytoplasmic tail (CT) of the S protein. This phenomenon of CT truncation has previously been observed in the production of attenuated vaccines against other coronaviruses such as the porcine epidemic diarrhea virus. We next discovered that the 9-aa truncation in the S protein CT resulted in the loss of the endoplasmic-reticulum-retention signal (KKSV). Rescue experiments with recombinant viruses confirmed that the deletion of the KKSV motif impaired the localization of the S protein to the endoplasmic-reticulum-Golgi intermediate compartment (ERGIC) and increased its expression on the cell surface. This significantly reduced the incorporation of the S protein into viral particles, impaired early subgenomic RNA and protein synthesis, and ultimately reduced viral invasion efficiency in CEK cells. In vivo experiments in chickens confirmed the reduced pathogenicity of the mutant IBV strains. Additionally, we showed that the adaptive mutation altered the TRS-B of ORF3 and impacted the transcriptional regulation of this gene. Our findings underscore the significance of this adaptive mutation in the attenuation of IBV infection and provide a novel strategy for the development of live attenuated IBV vaccines.
Collapse
Affiliation(s)
- Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kangchengyin Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yingfei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuehui Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linqing Duan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fang Yuan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Wang S, Ran W, Sun L, Fan Q, Zhao Y, Wang B, Yang J, He Y, Wu Y, Wang Y, Chen L, Chuchuay A, You Y, Zhu X, Wang X, Chen Y, Wang Y, Chen YQ, Yuan Y, Zhao J, Mao Y. Sequential glycosylations at the multibasic cleavage site of SARS-CoV-2 spike protein regulate viral activity. Nat Commun 2024; 15:4162. [PMID: 38755139 PMCID: PMC11099032 DOI: 10.1038/s41467-024-48503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
The multibasic furin cleavage site at the S1/S2 boundary of the spike protein is a hallmark of SARS-CoV-2 and plays a crucial role in viral infection. However, the mechanism underlying furin activation and its regulation remain poorly understood. Here, we show that GalNAc-T3 and T7 jointly initiate clustered O-glycosylations in the furin cleavage site of the SARS-CoV-2 spike protein, which inhibit furin processing, suppress the incorporation of the spike protein into virus-like-particles and affect viral infection. Mechanistic analysis reveals that the assembly of the spike protein into virus-like particles relies on interactions between the furin-cleaved spike protein and the membrane protein of SARS-CoV-2, suggesting a possible mechanism for furin activation. Interestingly, mutations in the spike protein of the alpha and delta variants of the virus confer resistance against glycosylation by GalNAc-T3 and T7. In the omicron variant, additional mutations reverse this resistance, making the spike protein susceptible to glycosylation in vitro and sensitive to GalNAc-T3 and T7 expression in human lung cells. Our findings highlight the role of glycosylation as a defense mechanism employed by host cells against SARS-CoV-2 and shed light on the evolutionary interplay between the host and the virus.
Collapse
Affiliation(s)
- Shengjun Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyu Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qingchi Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanqi Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Foshan Institute for Food and Drug Control, Foshan, China
| | - Bowen Wang
- College of Life Science, Northwest University, Xi'an, China
| | - Jinghong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Luoyi Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Arpaporn Chuchuay
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuyu You
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinhai Zhu
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanqiu Yuan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, China.
| |
Collapse
|
11
|
Xiang Q, Wu J, Zhou Y, Li L, Tian M, Li G, Zhang Z, Fu Y. SARS-CoV-2 Membrane protein regulates the function of Spike by inhibiting its plasma membrane localization and enzymatic activity of Furin. Microbiol Res 2024; 282:127659. [PMID: 38430890 DOI: 10.1016/j.micres.2024.127659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
The presence of a multibasic cleavage site in the Spike protein of SARS-CoV-2 makes it prone to be cleaved by Furin at the S1/S2 junction (aa. 685-686), which enhances the usage of TMPRSS2 to promote cell-cell fusion to form syncytia. Syncytia may contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammation. However, the role of other SARS-CoV-2 encoding viral proteins in syncytia formation remains largely unknown. Here, we report that SARS-CoV-2 M protein effectively inhibits syncytia formation triggered by Spike or its variants (Alpha, Delta, Omicron, etc.) and prevents Spike cleavage into S1 and S2 based on a screen assay of 20 viral proteins. Mechanistically, M protein interacts with Furin and inhibits its enzymatic activity, preventing the cleavage of Spike. In addition, M interacts with Spike independent of its cytoplasmic tail, retaining it within the cytoplasm and reducing cell membrane localization. Our findings offer new insights into M protein's role in regulating Spike's function and underscore the importance of functional interplay among viral proteins, highlighting potential avenues for SARS-CoV-2 therapy development.
Collapse
Affiliation(s)
- Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Jie Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Yuzheng Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Linhao Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Guobao Li
- Department of Tuberculosis, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China.
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China.
| |
Collapse
|
12
|
Das PK, Gonzalez PA, Jangra RK, Yin P, Kielian M. A single-point mutation in the rubella virus E1 glycoprotein promotes rescue of recombinant vesicular stomatitis virus. mBio 2024; 15:e0237323. [PMID: 38334805 PMCID: PMC10936182 DOI: 10.1128/mbio.02373-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Rubella virus (RuV) is an enveloped plus-sense RNA virus and a member of the Rubivirus genus. RuV infection in pregnant women can lead to miscarriage or an array of severe birth defects known as congenital rubella syndrome. Novel rubiviruses were recently discovered in various mammals, highlighting the spillover potential of other rubiviruses to humans. Many features of the rubivirus infection cycle remain unexplored. To promote the study of rubivirus biology, here, we generated replication-competent recombinant VSV-RuV (rVSV-RuV) encoding the RuV transmembrane glycoproteins E2 and E1. Sequencing of rVSV-RuV showed that the RuV glycoproteins acquired a single-point mutation W448R in the E1 transmembrane domain. The E1 W448R mutation did not detectably alter the intracellular expression, processing, glycosylation, colocalization, or dimerization of the E2 and E1 glycoproteins. Nonetheless, the mutation enhanced the incorporation of RuV E2/E1 into VSV particles, which bud from the plasma membrane rather than the RuV budding site in the Golgi. Neutralization by E1 antibodies, calcium dependence, and cell tropism were comparable between WT-RuV and either rVSV-RuV or RuV containing the E1 W448R mutation. However, the E1 W448R mutation strongly shifted the threshold for the acid pH-triggered virus fusion reaction, from pH 6.2 for the WT RuV to pH 5.5 for the mutant. These results suggest that the increased resistance of the mutant RuV E1 to acidic pH promotes the ability of viral envelope proteins to generate infectious rVSV and provide insights into the regulation of RuV fusion during virus entry and exit.IMPORTANCERubella virus (RuV) infection in pregnant women can cause miscarriage or severe fetal birth defects. While a highly effective vaccine has been developed, RuV cases are still a significant problem in areas with inadequate vaccine coverage. In addition, related viruses have recently been discovered in mammals, such as bats and mice, leading to concerns about potential virus spillover to humans. To facilitate studies of RuV biology, here, we generated and characterized a replication-competent vesicular stomatitis virus encoding the RuV glycoproteins (rVSV-RuV). Sequence analysis of rVSV-RuV identified a single-point mutation in the transmembrane region of the E1 glycoprotein. While the overall properties of rVSV-RuV are similar to those of WT-RuV, the mutation caused a marked shift in the pH dependence of virus membrane fusion. Together, our studies of rVSV-RuV and the identified W448R mutation expand our understanding of rubivirus biology and provide new tools for its study.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Rohit K. Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
13
|
Keep S, Stevenson-Leggett P, Webb I, Fones A, Kirk J, Britton P, Bickerton E. The spike protein of the apathogenic Beaudette strain of avian coronavirus can elicit a protective immune response against a virulent M41 challenge. PLoS One 2024; 19:e0297516. [PMID: 38265985 PMCID: PMC10807761 DOI: 10.1371/journal.pone.0297516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
The avian Gammacoronavirus infectious bronchitis virus (IBV) causes major economic losses in the poultry industry as the aetiological agent of infectious bronchitis, a highly contagious respiratory disease in chickens. IBV causes major economic losses to poultry industries across the globe and is a concern for global food security. IBV vaccines are currently produced by serial passage, typically 80 to 100 times in chicken embryonated eggs (CEE) to achieve attenuation by unknown molecular mechanisms. Vaccines produced in this manner present a risk of reversion as often few consensus level changes are acquired. The process of serial passage is cumbersome, time consuming, solely dependent on the supply of CEE and does not allow for rapid vaccine development in response to newly emerging IBV strains. Both alternative rational attenuation and cell culture-based propagation methods would therefore be highly beneficial. The majority of IBV strains are however unable to be propagated in cell culture proving a significant barrier to the development of cell-based vaccines. In this study we demonstrate the incorporation of a heterologous Spike (S) gene derived from the apathogenic Beaudette strain of IBV into a pathogenic M41 genomic backbone generated a recombinant IBV denoted M41K-Beau(S) that exhibits Beaudette's unique ability to replicate in Vero cells, a cell line licenced for vaccine production. The rIBV M41K-Beau(S) additionally exhibited an attenuated in vivo phenotype which was not the consequence of the presence of a large heterologous gene demonstrating that the Beaudette S not only offers a method for virus propagation in cell culture but also a mechanism for rational attenuation. Although historical research suggested that Beaudette, and by extension the Beaudette S protein was poorly immunogenic, vaccination of chickens with M41K-Beau(S) induced a complete cross protective immune response in terms of clinical disease and tracheal ciliary activity against challenge with a virulent IBV, M41-CK, belonging to the same serogroup as Beaudette. This implies that the amino acid sequence differences between the Beaudette and M41 S proteins have not distorted important protective epitopes. The Beaudette S protein therefore offers a significant avenue for vaccine development, with the advantage of a propagation platform less reliant on CEE.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Surrey, United Kingdom
| | | | - Isobel Webb
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, The University of Bristol, Bristol, United Kingdom
| | | | - James Kirk
- The Pirbright Institute, Surrey, United Kingdom
| | | | | |
Collapse
|
14
|
Guo C, Sachithanandham J, Zhong W, Craney M, Villano J, Pekosz A, Gould SJ. Antigen-display exosomes provide adjuvant-free protection against SARS-CoV-2 disease at nanogram levels of spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574272. [PMID: 38328234 PMCID: PMC10849639 DOI: 10.1101/2024.01.04.574272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As the only bionormal nanovesicle, exosomes have high potential as a nanovesicle for delivering vaccines and therapeutics. We show here that the loading of type-1 membrane proteins into the exosome membrane is induced by exosome membrane anchor domains, EMADs, that maximize protein delivery to the plasma membrane, minimize protein sorting to other compartments, and direct proteins into exosome membranes. Using SARS-CoV-2 spike as an example and EMAD13 as our most effective exosome membrane anchor, we show that cells expressing a spike-EMAD13 fusion protein produced exosomes that carry dense arrays of spike trimers on 50% of all exosomes. Moreover, we find that immunization with spike-EMAD13 exosomes induced strong neutralizing antibody responses and protected hamsters against SARS-CoV-2 disease at doses of just 0.5-5 ng of spike protein, without adjuvant, demonstrating that antigen-display exosomes are particularly immunogenic, with important implications for both structural and expression-dependent vaccines.
Collapse
Affiliation(s)
- Chenxu Guo
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jaiprasath Sachithanandham
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - William Zhong
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Morgan Craney
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jason Villano
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andrew Pekosz
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Stephen J Gould
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
15
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
16
|
Dey D, Qing E, He Y, Chen Y, Jennings B, Cohn W, Singh S, Gakhar L, Schnicker NJ, Pierce BG, Whitelegge JP, Doray B, Orban J, Gallagher T, Hasan SS. A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs. Nat Commun 2023; 14:8358. [PMID: 38102143 PMCID: PMC10724246 DOI: 10.1038/s41467-023-44076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The spike (S) protein of SARS-CoV-2 is delivered to the virion assembly site in the ER-Golgi Intermediate Compartment (ERGIC) from both the ER and cis-Golgi in infected cells. However, the relevance and modulatory mechanism of this bidirectional trafficking are unclear. Here, using structure-function analyses, we show that S incorporation into virus-like particles (VLP) and VLP fusogenicity are determined by coatomer-dependent S delivery from the cis-Golgi and restricted by S-coatomer dissociation. Although S mimicry of the host coatomer-binding dibasic motif ensures retrograde trafficking to the ERGIC, avoidance of the host-like C-terminal acidic residue is critical for S-coatomer dissociation and therefore incorporation into virions or export for cell-cell fusion. Because this C-terminal residue is the key determinant of SARS-CoV-2 assembly and fusogenicity, our work provides a framework for the export of S protein encoded in genetic vaccines for surface display and immune activation.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Yanan He
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Yihong Chen
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Benjamin Jennings
- Department of Internal Medicine, Hematology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lokesh Gakhar
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- PAQ Therapeutics, Burlington, MA, 01803, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Balraj Doray
- Department of Internal Medicine, Hematology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Orban
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, 20850, USA.
| |
Collapse
|
17
|
Dey D, Hasan SS. Strategies for rapid production of crystallization quality coatomer WD40 domains. Protein Expr Purif 2023; 212:106358. [PMID: 37625737 PMCID: PMC10529451 DOI: 10.1016/j.pep.2023.106358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The vesicular secretion of soluble cargo proteins from the endoplasmic reticulum (ER) is accompanied by the export of ER-resident membrane proteins that are co-packaged in secretory vesicles. The cytosolic coatomer protein complex I (COPI) utilizes the N-terminal WD40 domains of α-COPI and β'-COPI subunits to bind these membrane protein "clients" for ER retrieval. These "αWD40" and "β'WD40" domains are structural homologs that demonstrate distinct selectivity for client proteins. However, elucidation of the atomic-level principles of coatomer-client interactions has been challenging due to the tendency of αWD40 domain to undergo aggregation during expression and purification. Here we describe a rapid recombinant production strategy from E. coli, which substantially enhances the quality of the purified αWD40 domain. The αWD40 purification and crystallization are completed within one day, which minimizes aggregation losses and yields a 1.9 Å resolution crystal structure. We demonstrate the versatility of this strategy by applying it to purify the β'WD40 domain, which yields crystal structures in the 1.2-1.3 Å resolution range. As an alternate recombinant production system, we develop a cost-effective strategy for αWD40 production in human Expi293 cells. Finally, we suggest a roadmap to simplify these protocols further, which is of significance for the production of WD40 mutants prone to rapid aggregation. The WD40 production strategies presented here are likely to have broad applications because the WD40 domain represents one of the largest families of biomolecular interaction modules in the eukaryotic proteome and is critical for trafficking of host as well as viral proteins such as the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, 20850, USA.
| |
Collapse
|
18
|
Ke Y, Zhang E, Guo J, Zhang X, Wang L, Chen D, Fang X, Zhu J, Li F, Sun T, Zhang B. Immunogenicity of mucosal COVID-19 vaccine candidates based on the highly attenuated vesicular stomatitis virus vector (VSV MT) in golden syrian hamster. Acta Pharm Sin B 2023; 13:4856-4874. [PMID: 38045049 PMCID: PMC10692390 DOI: 10.1016/j.apsb.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
COVID-19 is caused by coronavirus SARS-CoV-2. Current systemic vaccines generally provide limited protection against viral replication and shedding within the airway. Recombinant VSV (rVSV) is an effective vector which inducing potent and comprehensive immunities. Currently, there are two clinical trials investigating COVID-19 vaccines based on VSV vectors. These vaccines were developed with spike protein of WA1 which administrated intramuscularly. Although intranasal route is ideal for activating mucosal immunity with VSV vector, safety is of concern. Thus, a highly attenuated rVSV with three amino acids mutations in matrix protein (VSVMT) was developed to construct safe mucosal vaccines against multiple SARS-CoV-2 variants of concern. It demonstrated that spike protein mutant lacking 21 amino acids in its cytoplasmic domain could rescue rVSV efficiently. VSVMT indicated improved safeness compared with wild-type VSV as the vector encoding SARS-CoV-2 spike protein. With a single-dosed intranasal inoculation of rVSVΔGMT-SΔ21, potent SARS-CoV-2 specific neutralization antibodies could be stimulated in animals, particularly in term of mucosal and cellular immunity. Strikingly, the chimeric VSV encoding SΔ21 of Delta-variant can induce more potent immune responses compared with those encoding SΔ21 of Omicron- or WA1-strain. VSVMT is a promising platform to develop a mucosal vaccine for countering COVID-19.
Collapse
Affiliation(s)
- Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - En Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Jianming Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Xiaoxiao Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Duo Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Xinkui Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Li
- Shanghai Public Health Clinical Center, Fudan Univeristy, Shanghai 201508, China
| | - Tao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Kushwaha ND, Mohan J, Kushwaha B, Ghazi T, Nwabuife JC, Koorbanally N, Chuturgoon AA. A comprehensive review on the global efforts on vaccines and repurposed drugs for combating COVID-19. Eur J Med Chem 2023; 260:115719. [PMID: 37597435 DOI: 10.1016/j.ejmech.2023.115719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
The recently discovered coronavirus, known as SARS-CoV-2, is a highly contagious and potentially lethal viral infection that was declared a pandemic by the World Health Organization on March 11, 2020. Since the beginning of the pandemic, an unprecedented number of COVID-19 vaccine candidates have been investigated for their potential to manage the pandemic. Herein, we reviewed vaccine development and the associated research effort, both traditional and forward-looking, to demonstrate the advantages and disadvantages of their technology, in addition to their efficacy limitations against mutant SARS-CoV-2. Moreover, we report repurposed drug discovery, which mainly focuses on virus-based and host-based targets, as well as their inhibitors. SARS-CoV-2 targets include the main protease (Mpro), and RNA-dependent RNA-polymerase (RdRp), which are the most well-studied and conserved across coronaviruses, enabling the development of broad-spectrum inhibitors of these enzymes.
Collapse
Affiliation(s)
- Narva Deshwar Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Jivanka Mohan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Babita Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Joshua C Nwabuife
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neil Koorbanally
- School of Chemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
20
|
Lusvarghi S, Stauft CB, Vassell R, Williams B, Baha H, Wang W, Neerukonda SN, Wang T, Weiss CD. Effects of N-glycan modifications on spike expression, virus infectivity, and neutralization sensitivity in ancestral compared to Omicron SARS-CoV-2 variants. PLoS Pathog 2023; 19:e1011788. [PMID: 37943965 PMCID: PMC10662749 DOI: 10.1371/journal.ppat.1011788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/21/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
The SARS-CoV-2 spike glycoprotein has 22 potential N-linked glycosylation sites per monomer that are highly conserved among diverse variants, but how individual glycans affect virus entry and neutralization of Omicron variants has not been extensively characterized. Here we compared the effects of specific glycan deletions or modifications in the Omicron BA.1 and D614G spikes on spike expression, processing, and incorporation into pseudoviruses, as well as on virus infectivity and neutralization by therapeutic antibodies. We found that loss of potential glycans at spike residues N717 and N801 each conferred a loss of pseudovirus infectivity for Omicron but not for D614G or Delta variants. This decrease in infectivity correlated with decreased spike processing and incorporation into Omicron pseudoviruses. Oligomannose-enriched Omicron pseudoviruses generated in GnTI- cells or in the presence of kifunensine were non-infectious, whereas D614G or Delta pseudoviruses generated under similar conditions remained infectious. Similarly, growth of live (authentic) SARS-CoV-2 in the presence of kifunensine resulted in a greater reduction of titers for the BA.1.1 variant than Delta or D614G variants relative to their respective, untreated controls. Finally, we found that loss of some N-glycans, including N343 and N234, increased the maximum percent neutralization by the class 3 S309 monoclonal antibody against D614G but not BA.1 variants, while these glycan deletions altered the neutralization potency of the class 1 COV2-2196 and Etesevimab monoclonal antibodies without affecting maximum percent neutralization. The maximum neutralization by some antibodies also varied with the glycan composition, with oligomannose-enriched pseudoviruses conferring the highest percent neutralization. These results highlight differences in the interactions between glycans and residues among SARS-CoV-2 variants that can affect spike expression, virus infectivity, and susceptibility of variants to antibody neutralization.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Charles B. Stauft
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Russell Vassell
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Brittany Williams
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Haseebullah Baha
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Sabari Nath Neerukonda
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Tony Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| | - Carol D. Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring Maryland, United States of America
| |
Collapse
|
21
|
Kumar P, Bhardwaj A, Mukherjee B, Joshi R, Giri R. Coronaviruses spike glycoprotein endodomains: The sequence and structure-based comprehensive study. Protein Sci 2023; 32:e4804. [PMID: 37833239 PMCID: PMC10599102 DOI: 10.1002/pro.4804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Any protein's flexibility or region makes it available to interact with many biomolecules in the cell. Specifically, such interactions in viruses help them to perform more functions despite having a smaller genome. Therefore, these flexible regions can be exciting and essential targets to be explored for their role in pathogenicity and therapeutic developments as they achieve essential interactions. In the continuation with our previous study on disordered analysis of SARS-CoV-2 spike protein's cytoplasmic tail (CTR), or endodomain, here we have explored the endodomain's disordered potential of six other coronaviruses using multiple bioinformatics approaches and molecular dynamics simulations. Based on the comprehensive analysis of its sequence and structural composition, we report the varying disorder propensity in endodomains of spike proteins of coronaviruses. The observations of this study may help to understand the importance of spike glycoprotein endodomain and creating therapeutic interventions against them.
Collapse
Affiliation(s)
- Prateek Kumar
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Aparna Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Bodhidipra Mukherjee
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Richa Joshi
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Rajanish Giri
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| |
Collapse
|
22
|
Boix-Besora A, Gòdia F, Cervera L. Gag Virus-like Particles Functionalized with SARS-CoV-2 Variants: Generation, Characterization and Recognition by COVID-19 Convalescent Patients' Sera. Vaccines (Basel) 2023; 11:1641. [PMID: 38005972 PMCID: PMC10675557 DOI: 10.3390/vaccines11111641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
The robustness, safety, versatility, and high immunogenicity of virus-like particles (VLPs) make them a promising approach for the generation of vaccines against a broad range of pathogens. VLPs are recombinant macromolecular structures that closely mimic the native conformation of viruses without carrying viral genetic material. Particularly, HIV-1 Gag-based VLPs are a suitable platform for the presentation of the SARS-CoV-2 Spike (S) protein on their surface. In this context, this work studies the effect of different rationally engineered mutations of the S protein to improve some of its characteristics. The studied variants harbored mutations such as proline substitutions for S stabilization, D614G from the early dominant pandemic form, the elimination of the S1/S2 furin cleavage site to improve S homogeneity, the suppression of a retention motif to favor its membrane localization, and cysteine substitutions to increase its immunogenicity and avoid potential undesired antibody-dependent enhancement (ADE) effects. The influence of the mutations on VLP expression was studied, as well as their immunogenic potential, by testing the recognition of the generated VLP variants by COVID-19 convalescent patients' sera. The results of this work are conceived to give insights on the selection of S protein candidates for their use as immunogens and to showcase the potential of VLPs as carriers for antigen presentation.
Collapse
Affiliation(s)
- Arnau Boix-Besora
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada ENG4BIO, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | | |
Collapse
|
23
|
Daniels A, Fletcher S, Kerr HEM, Kratzel A, Pinto RM, Kriplani N, Craig N, Hastie CJ, Davies P, Digard P, Thiel V, Tait-Burkard C. One for all-human kidney Caki-1 cells are highly susceptible to infection with corona- and other respiratory viruses. J Virol 2023; 97:e0055523. [PMID: 37668370 PMCID: PMC10537734 DOI: 10.1128/jvi.00555-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 09/06/2023] Open
Abstract
In vitro investigations of host-virus interactions are reliant on suitable cell and tissue culture models. Results are only as good as the model they are generated in. However, choosing cell models for in vitro work often depends on availability and previous use alone. Despite the vast increase in coronavirus research over the past few years, scientists are still heavily reliant on: non-human, highly heterogeneous or not fully differentiated, or naturally unsusceptible cells requiring overexpression of receptors and other accessory factors. Complex primary or stem cell models are highly representative of human tissues but are expensive and time-consuming to develop and maintain with limited suitability for high-throughput experiments.Using tissue-specific expression patterns, we identified human kidney cells as an ideal target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and broader coronavirus infection. We show the use of the well-characterized human kidney cell line Caki-1 for infection with three human coronaviruses (hCoVs): Betacoronaviruses SARS-CoV-2 and Middle Eastern respiratory syndrome coronavirus and Alphacoronavirus hCoV 229E. Caki-1 cells show equal or superior susceptibility to all three coronaviruses when compared to other commonly used cell lines for the cultivation of the respective virus. Antibody staining against SARS-CoV-2 N protein shows comparable replication rates. A panel of 26 custom antibodies shows the location of SARS-CoV-2 proteins during replication using immunocytochemistry. In addition, Caki-1 cells were found to be susceptible to two other human respiratory viruses, influenza A virus and respiratory syncytial virus, making them an ideal model for cross-comparison for a broad range of respiratory viruses. IMPORTANCE Cell lines remain the backbone of virus research, but results are only as good as their originating model. Despite increased research into human coronaviruses following the COVID-19 pandemic, researchers continue to rely on suboptimal cell line models of: non-human origin, incomplete differentiation, or lacking active interferon responses. We identified the human kidney Caki-1 cell line as a potential target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This cell line could be shown to be infectable with a wide range of coronaviruses including common cold virus hCoV-229E, epidemic virus MERS-CoV, and SARS-CoV-2 as well as other important respiratory viruses influenza A virus and respiratory syncytial virus. We could show the localization of 26 SARS-CoV-2 proteins in Caki-1 cells during natural replication and the cells are competent of forming a cellular immune response. Together, this makes Caki-1 cells a unique tool for cross-virus comparison in one cell line.
Collapse
Affiliation(s)
- Alison Daniels
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- Infection Medicine, University of Edinburgh, Little France Crescent, United Kingdom
| | - Sarah Fletcher
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Holly E. M. Kerr
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Annika Kratzel
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rute Maria Pinto
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nisha Kriplani
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nicky Craig
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - C. James Hastie
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Paul Davies
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Paul Digard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christine Tait-Burkard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
24
|
Ali H, Naseem A, Siddiqui ZI. SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication. J Clin Med 2023; 12:6079. [PMID: 37763019 PMCID: PMC10531702 DOI: 10.3390/jcm12186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Zaheenul Islam Siddiqui
- Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, New York, NY 11501, USA
| |
Collapse
|
25
|
Zhang Q, Tang W, Stancanelli E, Jung E, Syed Z, Pagadala V, Saidi L, Chen CZ, Gao P, Xu M, Pavlinov I, Li B, Huang W, Chen L, Liu J, Xie H, Zheng W, Ye Y. Host heparan sulfate promotes ACE2 super-cluster assembly and enhances SARS-CoV-2-associated syncytium formation. Nat Commun 2023; 14:5777. [PMID: 37723160 PMCID: PMC10507024 DOI: 10.1038/s41467-023-41453-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
SARS-CoV-2 infection causes spike-dependent fusion of infected cells with ACE2 positive neighboring cells, generating multi-nuclear syncytia that are often associated with severe COVID. To better elucidate the mechanism of spike-induced syncytium formation, we combine chemical genetics with 4D confocal imaging to establish the cell surface heparan sulfate (HS) as a critical stimulator for spike-induced cell-cell fusion. We show that HS binds spike and promotes spike-induced ACE2 clustering, forming synapse-like cell-cell contacts that facilitate fusion pore formation between ACE2-expresing and spike-transfected human cells. Chemical or genetic inhibition of HS mitigates ACE2 clustering, and thus, syncytium formation, whereas in a cell-free system comprising purified HS and lipid-anchored ACE2, HS stimulates ACE2 clustering directly in the presence of spike. Furthermore, HS-stimulated syncytium formation and receptor clustering require a conserved ACE2 linker distal from the spike-binding site. Importantly, the cell fusion-boosting function of HS can be targeted by an investigational HS-binding drug, which reduces syncytium formation in vitro and viral infection in mice. Thus, HS, as a host factor exploited by SARS-CoV-2 to facilitate receptor clustering and a stimulator of infection-associated syncytium formation, may be a promising therapeutic target for severe COVID.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Virus Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Eduardo Stancanelli
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eunkyung Jung
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zulfeqhar Syed
- Electron Microscopy Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijayakanth Pagadala
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Glycan Therapeutics Corp, 617 Hutton Street, Raleigh, NC, 27606, USA
| | - Layla Saidi
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Z Chen
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Peng Gao
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Miao Xu
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Ivan Pavlinov
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Bing Li
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Wenwei Huang
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Liqiang Chen
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jian Liu
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Virus Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Wei Zheng
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Urmi UL, Attard S, Vijay AK, Willcox MDP, Kumar N, Islam S, Kuppusamy R. Antiviral Activity of Anthranilamide Peptidomimetics against Herpes Simplex Virus 1 and a Coronavirus. Antibiotics (Basel) 2023; 12:1436. [PMID: 37760732 PMCID: PMC10525570 DOI: 10.3390/antibiotics12091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The development of potent antiviral agents is of utmost importance to combat the global burden of viral infections. Traditional antiviral drug development involves targeting specific viral proteins, which may lead to the emergence of resistant strains. To explore alternative strategies, we investigated the antiviral potential of antimicrobial peptidomimetic compounds. In this study, we evaluated the antiviral potential of 17 short anthranilamide-based peptidomimetic compounds against two viruses: Murine hepatitis virus 1 (MHV-1) which is a surrogate of human coronaviruses and herpes simplex virus 1 (HSV-1). The half-maximal inhibitory concentration (IC50) values of these compounds were determined in vitro to assess their potency as antiviral agents. Compounds 11 and 14 displayed the most potent inhibitory effects with IC50 values of 2.38 μM, and 6.3 μM against MHV-1 while compounds 9 and 14 showed IC50 values of 14.8 μM and 13 μM against HSV-1. Multiple antiviral assessments and microscopic images obtained through transmission electron microscopy (TEM) collectively demonstrated that these compounds exert a direct influence on the viral envelope. Based on this outcome, it can be concluded that peptidomimetic compounds could offer a new approach for the development of potent antiviral agents.
Collapse
Affiliation(s)
- Umme Laila Urmi
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
| | - Samuel Attard
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (S.A.); (N.K.)
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (S.A.); (N.K.)
| | - Salequl Islam
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (S.A.); (N.K.)
| |
Collapse
|
27
|
Zeng L, Li J, Lv M, Li Z, Yao L, Gao J, Wu Q, Wang Z, Yang X, Tang G, Qu G, Jiang G. Environmental Stability and Transmissibility of Enveloped Viruses at Varied Animate and Inanimate Interfaces. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:15-31. [PMID: 37552709 PMCID: PMC11504606 DOI: 10.1021/envhealth.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 08/10/2023]
Abstract
Enveloped viruses have been the leading causative agents of viral epidemics in the past decade, including the ongoing coronavirus disease 2019 outbreak. In epidemics caused by enveloped viruses, direct contact is a common route of infection, while indirect transmissions through the environment also contribute to the spread of the disease, although their significance remains controversial. Bridging the knowledge gap regarding the influence of interfacial interactions on the persistence of enveloped viruses in the environment reveals the transmission mechanisms when the virus undergoes mutations and prevents excessive disinfection during viral epidemics. Herein, from the perspective of the driving force, partition efficiency, and viral survivability at interfaces, we summarize the viral and environmental characteristics that affect the environmental transmission of viruses. We expect to provide insights for virus detection, environmental surveillance, and disinfection to limit the spread of severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Li Zeng
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junya Li
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Meilin Lv
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Zikang Li
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Qi Wu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Ziniu Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Yang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Williams JM, Chen YJ, Cho WJ, Tai AW, Tsai B. Reticulons promote formation of ER-derived double-membrane vesicles that facilitate SARS-CoV-2 replication. J Cell Biol 2023; 222:e202203060. [PMID: 37093123 PMCID: PMC10130743 DOI: 10.1083/jcb.202203060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/24/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent for the global COVID-19 pandemic, triggers the formation of endoplasmic reticulum (ER)-derived replication organelles, including double-membrane vesicles (DMVs), in the host cell to support viral replication. Here, we clarify how SARS-CoV-2 hijacks host factors to construct the DMVs. We show that the ER morphogenic proteins reticulon-3 (RTN3) and RTN4 help drive DMV formation, enabling viral replication, which leads to productive infection. Different SARS-CoV-2 variants, including the delta variant, use the RTN-dependent pathway to promote infection. Mechanistically, our results reveal that the membrane-embedded reticulon homology domain (RHD) of the RTNs is sufficient to functionally support viral replication and physically engage NSP3 and NSP4, two viral non-structural membrane proteins known to induce DMV formation. Our findings thus identify the ER morphogenic RTN3 and RTN4 membrane proteins as host factors that help promote the biogenesis of SARS-CoV-2-induced DMVs, which can act as viral replication platforms.
Collapse
Affiliation(s)
- Jeffrey M. Williams
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yu-Jie Chen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Woo Jung Cho
- Biomedical Research Core Facilities, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew W. Tai
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Terasaki K, Narayanan K, Makino S. Identification of a 1.4-kb-Long Sequence Located in the nsp12 and nsp13 Coding Regions of SARS-CoV-2 Genomic RNA That Mediates Efficient Viral RNA Packaging. J Virol 2023:e0065923. [PMID: 37367225 PMCID: PMC10373556 DOI: 10.1128/jvi.00659-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
The specific packaging of the viral RNA genome into virus particles is an essential step in the replication cycle of coronaviruses (CoVs). Using a single-cycle, replicable severe acute respiratory syndrome CoV-2 (SARS-CoV-2) mutant, we demonstrated the preferential packaging of the SARS-CoV-2 genomic RNA into purified virus particles. Furthermore, based on the sequence of an efficiently packaged defective interfering RNA of SARS-CoV, a closely related CoV, that was generated after serial passages of SARS-CoV in cell culture, we designed a series of replication-competent SARS-CoV-2 minigenome RNAs to identify the specific viral RNA region that is important for SARS-CoV-2 RNA packaging into virus particles. We showed that a 1.4-kb-long sequence, derived from the nsp12 and nsp13 coding regions of the SARS-CoV-2 genomic RNA, is required for the efficient packaging of SARS-CoV-2 minigenome RNA into SARS-CoV-2 particles. In addition, we also showed that the presence of possibly the entire 1.4-kb-long sequence is important for the efficient packaging of SARS-CoV-2 RNA. Our findings highlight the differences between the RNA packaging sequence identified in SARS-CoV-2, a Sarbecovirus, and the packaging signal of mouse hepatitis virus (MHV), an Embecovirus, which is a 95-nt-long sequence located at the nsp15 coding region of MHV genomic RNA. Collectively, our data imply that both the location and the sequence/structural features of the RNA element(s) that drives the selective and efficient packaging of viral genomic RNA are not conserved among the subgenera Embecovirus and Sarbecovirus within the Betacoronavirus genus. IMPORTANCE Elucidating the mechanism of SARS-CoV-2 RNA packaging into virus particles is important for the rational design of antiviral drugs that inhibit this vital step in the replication cycle of CoVs. However, our knowledge about the RNA packaging mechanism in SARS-CoV-2, including the identification of the viral RNA region important for SARS-CoV-2 RNA packaging, is limited, primarily due to the logistical challenges of handing SARS-CoV-2 in biosafety level 3 (BSL3) facilities. Our study, using a single-cycle, replicable SARS-CoV-2 mutant, which can be handled in a BSL2 lab, demonstrated the preferential packaging of full-length SARS-CoV-2 genomic RNA into virus particles and identified a specific 1.4-kb-long RNA region in SARS-CoV-2 genomic RNA that is required for the efficient packaging of SARS-CoV-2 RNA into virus particles. The information generated in our study could be valuable for clarifying the mechanisms of SARS-CoV-2 RNA packaging and for the development of targeted therapeutics against SARS-CoV-2 and other related CoVs.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
30
|
Hoffmann MAG, Yang Z, Huey-Tubman KE, Cohen AA, Gnanapragasam PNP, Nakatomi LM, Storm KN, Moon WJ, Lin PJC, West AP, Bjorkman PJ. ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines. Cell 2023; 186:2380-2391.e9. [PMID: 37146611 PMCID: PMC10121106 DOI: 10.1016/j.cell.2023.04.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
Prime-boost regimens for COVID-19 vaccines elicit poor antibody responses against Omicron-based variants and employ frequent boosters to maintain antibody levels. We present a natural infection-mimicking technology that combines features of mRNA- and proteinnanoparticle-based vaccines through encoding self-assembling enveloped virus-like particles (eVLPs). eVLP assembly is achieved by inserting an ESCRT- and ALIX-binding region (EABR) into the SARS-CoV-2 spike cytoplasmic tail, which recruits ESCRT proteins to induce eVLP budding from cells. Purified spike-EABR eVLPs presented densely arrayed spikes and elicited potent antibody responses in mice. Two immunizations with mRNA-LNP encoding spike-EABR elicited potent CD8+ T cell responses and superior neutralizing antibody responses against original and variant SARS-CoV-2 compared with conventional spike-encoding mRNA-LNP and purified spike-EABR eVLPs, improving neutralizing titers >10-fold against Omicron-based variants for 3 months post-boost. Thus, EABR technology enhances potency and breadth of vaccine-induced responses through antigen presentation on cell surfaces and eVLPs, enabling longer-lasting protection against SARS-CoV-2 and other viruses.
Collapse
Affiliation(s)
- Magnus A G Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kathryn E Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Leesa M Nakatomi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kaya N Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
31
|
Li Y, Yang M, Nan Y, Wang J, Wang S, Cui D, Guo J, He P, Dai W, Zhou S, Zhang Y, Ma W. SARS-CoV-2 spike host cell surface exposure promoted by a COPI sorting inhibitor. Acta Pharm Sin B 2023:S2211-3835(23)00123-5. [PMID: 37360012 PMCID: PMC10110937 DOI: 10.1016/j.apsb.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 06/28/2023] Open
Abstract
Via an insufficient coat protein complex I (COPI) retrieval signal, the majority of SARS-CoV-2 spike (S) is resident in host early secretory organelles and a tiny amount is leaked out in cell surface. Only surface-exposed S can be recognized by B cell receptor (BCR) or anti-S therapeutic monoclonal antibodies (mAbs) that is the trigger step for B cell activation after S mRNA vaccination or infected cell clearance by S mAbs. Now, a drug strategy to promote S host surface exposure is absent. Here, we first combined structural and biochemical analysis to characterize S COPI sorting signals. A potent S COPI sorting inhibitor was then invented, evidently capable of promoting S surface exposure and facilitating infected cell clearance by S antibody-dependent cellular cytotoxicity (ADCC). Importantly, with the inhibitor as a probe, we revealed Omicron BA.1 S is less cell surface exposed than prototypes because of a constellation of S folding mutations, possibly corresponding to its ER chaperone association. Our findings not only suggest COPI is a druggable target against COVID-19, but also highlight SARS-CoV-2 evolution mechanism driven by S folding and trafficking mutations.
Collapse
Affiliation(s)
- Yiqun Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingrui Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanan Nan
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaming Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Sanjiao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongxiao Cui
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiajian Guo
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Pengfei He
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenxin Dai
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuqi Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenfu Ma
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
32
|
Veeck C, Biedenkopf N, Rohde C, Becker S, Halwe S. Inhibition of Rab1B Impairs Trafficking and Maturation of SARS-CoV-2 Spike Protein. Viruses 2023; 15:824. [PMID: 37112806 PMCID: PMC10145535 DOI: 10.3390/v15040824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) utilizes cellular trafficking pathways to process its structural proteins and move them to the site of assembly. Nevertheless, the exact process of assembly and subcellular trafficking of SARS-CoV-2 proteins remains largely unknown. Here, we have identified and characterized Rab1B as an important host factor for the trafficking and maturation of the spike protein (S) after synthesis at the endoplasmic reticulum (ER). Using confocal microscopy, we showed that S and Rab1B substantially colocalized in compartments of the early secretory pathway. Co-expression of dominant-negative (DN) Rab1B N121I leads to an aberrant distribution of S into perinuclear spots after ectopic expression and in SARS-CoV-2-infected cells caused by either structural rearrangement of the ERGIC or Golgi or missing interaction between Rab1B and S. Western blot analyses revealed a complete loss of the mature, cleaved S2 subunit in cell lysates and culture supernatants upon co-expression of DN Rab1B N121I. In sum, our studies indicate that Rab1B is an important regulator of trafficking and maturation of SARS-CoV-2 S, which not only improves our understanding of the coronavirus replication cycle but also may have implications for the development of antiviral strategies.
Collapse
Affiliation(s)
- Christopher Veeck
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (C.V.)
| | - Nadine Biedenkopf
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (C.V.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (C.V.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (C.V.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (C.V.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| |
Collapse
|
33
|
Cytoplasmic Tail Truncation Stabilizes S1-S2 Association and Enhances S Protein Incorporation into SARS-CoV-2 Pseudovirions. J Virol 2023; 97:e0165022. [PMID: 36790205 PMCID: PMC10062125 DOI: 10.1128/jvi.01650-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Truncations of the cytoplasmic tail (CT) of entry proteins of enveloped viruses dramatically increase the infectivity of pseudoviruses (PVs) bearing these proteins. Several mechanisms have been proposed to explain this enhanced entry, including an increase in cell surface expression. However, alternative explanations have also been forwarded, and the underlying mechanisms for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein remain undetermined. Here, we show that the partial or complete deletion of the CT (residues 19 to 35) does not modify SARS-CoV-2 S protein expression on the cell surface when the S2 subunit is measured, whereas it is significantly increased when the S1 subunit is measured. We also show that the higher level of S1 in these CT-truncated S proteins reflects the decreased dissociation of the S1 subunit from the S2 subunit. In addition, we demonstrate that CT truncation further promotes S protein incorporation into PV particles, as indicated by biochemical analyses and cryo-electron microscopy. Thus, our data show that two distinct mechanisms contribute to the markedly increased infectivity of PVs carrying CT-truncated SARS-CoV-2 S proteins and help clarify the interpretation of the results of studies employing such PVs. IMPORTANCE Various forms of PVs have been used as tools to evaluate vaccine efficacy and study virus entry steps. When PV infectivity is inherently low, such as that of SARS-CoV-2, a CT-truncated version of the viral entry glycoprotein is widely used to enhance PV infectivity, but the mechanism underlying this enhanced PV infectivity has been unclear. Here, our study identified two mechanisms by which the CT truncation of the SARS-CoV-2 S protein dramatically increases PV infectivity: a reduction of S1 shedding and an increase in S protein incorporation into PV particles. An understanding of these mechanisms can clarify the mechanistic bases for the differences observed among various assays employing such PVs.
Collapse
|
34
|
Kumar P, Kumar A, Garg N, Giri R. An insight into SARS-CoV-2 membrane protein interaction with spike, envelope, and nucleocapsid proteins. J Biomol Struct Dyn 2023; 41:1062-1071. [PMID: 34913847 DOI: 10.1080/07391102.2021.2016490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Intraviral protein-protein interactions are crucial for replication, pathogenicity, and viral assembly. Among these, virus assembly is a critical step as it regulates the arrangements of viral structural proteins and helps in the encapsulation of genomic material. SARS-CoV-2 structural proteins play an essential role in the self-rearrangement, RNA encapsulation, and mature virus particle formation. In SARS-CoV, the membrane protein interacts with the envelope and spike protein in Endoplasmic Reticulum Golgi Intermediate Complex (ERGIC) to form an assembly in the lipid bilayer, followed by membrane-ribonucleoprotein (nucleocapsid) interaction. In this study, we tried to understand the interaction of membrane protein's interaction with envelope, spike, and nucleocapsid proteins using protein-protein docking. Further, simulation studies were performed up to 100 ns to examine the stability of protein-protein complexes of Membrane-Envelope, Membrane-Spike, and Membrane-Nucleocapsid proteins. Prime MM-GBSA showed high binding energy calculations for the simulated structures than the docked complex. The interactions identified in our study will be of great importance, as it provides valuable insight into the protein-protein complex, which could be the potential drug targets for future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Amit Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| |
Collapse
|
35
|
Hu L, Tang Y, Mei L, Liang M, Huang J, Wang X, Wu L, Jiang J, Li L, Long F, Xiao J, Tan L, Lu S, Peng T. A new intracellular targeting motif in the cytoplasmic tail of the spike protein may act as a target to inhibit SARS-CoV-2 assembly. Antiviral Res 2023; 209:105509. [PMID: 36572190 PMCID: PMC9788845 DOI: 10.1016/j.antiviral.2022.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a threat to global public health, underscoring the urgent need for the development of preventive and therapeutic measures. The spike (S) protein of SARS-CoV-2, which mediates receptor binding and subsequent membrane fusion to promote viral entry, is a major target for current drug development and vaccine design. The S protein comprises a large N-terminal extracellular domain, a transmembrane domain, and a short cytoplasmic tail (CT) at the C-terminus. CT truncation of the S protein has been previously reported to promote the infectivity of SARS-CoV and SARS-CoV-2 pseudoviruses. However, the underlying molecular mechanism has not been precisely elucidated. In addition, the CT of various viral membrane glycoproteins play an essential role in the assembly of virions, yet the role of the S protein CT in SARS-CoV-2 infection remains unclear. In this study, through constructing a series of mutations of the CT of the S protein and analyzing their impact on the packaging of the SARS-CoV-2 pseudovirus and live SARS-CoV-2 virus, we identified V1264L1265 as a new intracellular targeting motif in the CT of the S protein, that regulates the transport and subcellular localization of the spike protein through the interactions with cytoskeleton and vesicular transport-related proteins, ARPC3, SCAMP3, and TUBB8, thereby modulating SARS-CoV-2 pseudovirus and live SARS-CoV-2 virion assembly. Either disrupting the V1264L1265 motif or reducing the expression of ARPC3, SCAMP3, and TUBB8 significantly repressed the assembly of the live SARS-CoV-2 virion, raising the possibility that the V1264L1265 motif and the host responsive pathways involved could be new drug targets for the treatment of SARS-CoV-2 infection. Our results extend the understanding of the role played by the S protein CT in the assembly of pseudoviruses and live SARS-CoV-2 virions, which will facilitate the application of pseudoviruses to the study of SARS-CoV-2 and provide potential strategies for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China,Corresponding author
| | - Yongjie Tang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lingling Mei
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengdi Liang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinxian Huang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xufei Wang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liping Wu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiajing Jiang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Leyi Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fei Long
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Long Tan
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shaohua Lu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China,Guangdong South China Vaccine, Guangzhou, China,Greater Bay Area Innovative Vaccine Technology Development Center, Guangzhou International Bio-island Laboratory, China,Corresponding author. State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
36
|
Hoffmann MAG, Yang Z, Huey-Tubman KE, Cohen AA, Gnanapragasam PNP, Nakatomi LM, Storm KN, Moon WJ, Lin PJ, Bjorkman PJ. ESCRT recruitment to mRNA-encoded SARS-CoV-2 spike induces virus-like particles and enhanced antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.26.521940. [PMID: 36597535 PMCID: PMC9810232 DOI: 10.1101/2022.12.26.521940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Prime-boost regimens for COVID-19 vaccines elicit poor antibody responses against Omicron-based variants and employ frequent boosters to maintain antibody levels. We present a natural infection-mimicking technology that combines features of mRNA- and protein nanoparticle-based vaccines through encoding self-assembling enveloped virus-like particles (eVLPs). eVLP assembly is achieved by inserting an ESCRT- and ALIX-binding region (EABR) into the SARS-CoV-2 spike cytoplasmic tail, which recruits ESCRT proteins to induce eVLP budding from cells. Purified spike-EABR eVLPs presented densely-arrayed spikes and elicited potent antibody responses in mice. Two immunizations with mRNA-LNP encoding spike-EABR elicited potent CD8+ T-cell responses and superior neutralizing antibody responses against original and variant SARS-CoV-2 compared to conventional spike-encoding mRNA-LNP and purified spike-EABR eVLPs, improving neutralizing titers >10-fold against Omicron-based variants for three months post-boost. Thus, EABR technology enhances potency and breadth of vaccine-induced responses through antigen presentation on cell surfaces and eVLPs, enabling longer-lasting protection against SARS-CoV-2 and other viruses.
Collapse
Affiliation(s)
- Magnus A. G. Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kathryn E. Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Leesa M. Nakatomi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kaya N. Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
37
|
Guo C, Tsai SJ, Ai Y, Li M, Anaya E, Pekosz A, Cox A, Gould SJ. The D614G mutation redirects SARS-CoV-2 spike to lysosomes and suppresses deleterious traits of the furin cleavage site insertion mutation. SCIENCE ADVANCES 2022; 8:eade5085. [PMID: 36563151 PMCID: PMC9788772 DOI: 10.1126/sciadv.ade5085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) egress occurs by lysosomal exocytosis. We show that the Spike D614G mutation enhances Spike trafficking to lysosomes, drives Spike-mediated reprogramming of lysosomes, and reduces cell surface Spike expression by ~3-fold. D614G is not a human-specific adaptation. Rather, it is an adaptation to the earlier furin cleavage site insertion (FCSI) mutation that occurred at the genesis of SARS-CoV-2. While advantageous to the virus, furin cleavage of spike has deleterious effects on spike structure and function, inhibiting its trafficking to lysosomes and impairing its infectivity by the transmembrane serine protease 2(TMPRSS2)-independent, endolysosomal pathway. D614G restores spike trafficking to lysosomes and enhances the earliest events in SARS-CoV-2 infectivity, while spike mutations that restore SARS-CoV-2's TMPRSS2-independent infectivity restore spike's trafficking to lysosomes. Together, these and other results show that D614G is an intragenic suppressor of deleterious traits linked to the FCSI and lend additional support to the endolysosomal model of SARS-CoV-2 egress and entry.
Collapse
Affiliation(s)
- Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Shang-Jui Tsai
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Yiwei Ai
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Maggie Li
- Department of Microbiology and Immunology, Johns Hopkins University, School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Eduardo Anaya
- Department of Microbiology and Immunology, Johns Hopkins University, School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- Department of Microbiology and Immunology, Johns Hopkins University, School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Andrea Cox
- Department of Medicine, Department of Microbiology and Immunology, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| |
Collapse
|
38
|
SARS-CoV-2 Spike Protein Mutation at Cysteine-488 Impairs Its Golgi Localization and Intracellular S1/S2 Processing. Int J Mol Sci 2022; 23:ijms232415834. [PMID: 36555473 PMCID: PMC9779352 DOI: 10.3390/ijms232415834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds to the cellular receptor-angiotensin-converting enzyme-2 (ACE2) as the first step in viral cell entry. SARS-CoV-2 spike protein expression in the ACE2-expressing cell surface induces cell-cell membrane fusion, thus forming syncytia. To exert its fusogenic activity, the spike protein is typically processed at a specific site (the S1/S2 site) by cellular proteases such as furin. The C488 residue, located at the spike-ACE2 interacting surface, is critical for the fusogenic and infectious roles of the SARS-CoV-2 spike protein. We have demonstrated that the C488 residue of the spike protein is involved in subcellular targeting and S1/S2 processing. C488 mutant spike localization to the Golgi apparatus and cell surface were impaired. Consequently, the S1/S2 processing of the spike protein, probed by anti-Ser-686-cleaved spike antibody, markedly decreased in C488 mutant spike proteins. Moreover, brefeldin-A-mediated endoplasmic-reticulum-to-Golgi traffic suppression also suppressed spike protein S1/S2 processing. As brefeldin A treatment and C488 mutation inhibited S1/S2 processing and syncytia formation, the C488 residue of spike protein is required for functional spike protein processing.
Collapse
|
39
|
Aloor A, Aradhya R, Venugopal P, Gopalakrishnan Nair B, Suravajhala R. Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochem Pharmacol 2022; 206:115335. [PMID: 36328134 PMCID: PMC9621623 DOI: 10.1016/j.bcp.2022.115335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far. It is the anchor point to the host cell ACE2 receptor, TMPRSS2, and many other host proteins that can be recognized by their immune system; hence, glycosylation is considered the primary target of vaccine development. Therefore, it is essential to know how this surface glycan plays a role in viral entry, infection, transmission, antigen, antibody responses, and disease progression. Although the vaccines are developed and applied against COVID-19, the proficiency of the immunizations is not accomplished with the current mutant variations. The role of glycosylation in SARS-CoV-2 and its receptor ACE2 with respect to other putative cell glycan receptors and the significance of glycan in host cell immunity in COVID-19 are discussed in this paper. Hence, the molecular signature of the glycan in the coronavirus infection can be incorporated into the mainstream therapeutic process.
Collapse
Affiliation(s)
- Arya Aloor
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | | | - Renuka Suravajhala
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| |
Collapse
|
40
|
Tien CF, Tsai WT, Chen CH, Chou HJ, Zhang MM, Lin JJ, Lin EJ, Dai SS, Ping YH, Yu CY, Kuo YP, Tsai WH, Chen HW, Yu GY. Glycosylation and S-palmitoylation regulate SARS-CoV-2 spike protein intracellular trafficking. iScience 2022; 25:104709. [PMID: 35813875 PMCID: PMC9250814 DOI: 10.1016/j.isci.2022.104709] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Post-translational modifications (PTMs), such as glycosylation and palmitoylation, are critical to protein folding, stability, intracellular trafficking, and function. Understanding regulation of PTMs of SARS-CoV-2 spike (S) protein could help the therapeutic drug design. Herein, the VSV vector was used to produce SARS-CoV-2 S pseudoviruses to examine the roles of the 611LYQD614 and cysteine-rich motifs in S protein maturation and virus infectivity. Our results show that 611LY612 mutation alters S protein intracellular trafficking and reduces cell surface expression level. It also changes S protein glycosylation pattern and decreases pseudovirus infectivity. The S protein contains four cysteine-rich clusters with clusters I and II as the main palmitoylation sites. Mutations of clusters I and II disrupt S protein trafficking from ER-to-Golgi, suppress pseudovirus production, and reduce spike-mediated membrane fusion activity. Taken together, glycosylation and palmitoylation orchestrate the S protein maturation processing and are critical for S protein-mediated membrane fusion and infection. 611LY612 mutation alters the glycosylation pattern of the SARS-CoV-2 S protein 611LY612 mutation reduces S protein surface expression level Palmitoylation targets mature S protein to the Golgi and plasma membrane Palmitoylation is required for pseudovirus and SARS-CoV-2 production
Collapse
|
41
|
Zhang C, Meng X, Zhao H. Comparison of Cell Fusions Induced by Influenza Virus and SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23137365. [PMID: 35806369 PMCID: PMC9266613 DOI: 10.3390/ijms23137365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Virus–cell fusion is the key step for viral infection in host cells. Studies on virus binding and fusion with host cells are important for understanding the virus–host interaction and viral pathogenesis for the discovery of antiviral drugs. In this review, we focus on the virus–cell fusions induced by the two major pandemic viruses, including the influenza virus and SARS-CoV-2. We further compare the cell fusions induced by the influenza virus and SARS-CoV-2, especially the pH-dependent fusion of the influenza virus and the fusion of SARS-CoV-2 in the type-II transmembrane serine protease 2 negative (TMPRSS2-) cells with syncytia formation. Finally, we present the development of drugs used against SARA-CoV-2 and the influenza virus through the discovery of anti-fusion drugs and the prevention of pandemic respiratory viruses.
Collapse
Affiliation(s)
- Chuyuan Zhang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
| | - Xinjie Meng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Hanjun Zhao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence: or ; Tel.: +852-2255-4892
| |
Collapse
|
42
|
Saud Z, Tyrrell VJ, Zaragkoulias A, Protty MB, Statkute E, Rubina A, Bentley K, White DA, Rodrigues PDS, Murphy RC, Köfeler H, Griffiths WJ, Alvarez-Jarreta J, Brown RW, Newcombe RG, Heyman J, Pritchard M, Mcleod RW, Arya A, Lynch CA, Owens D, Jenkins PV, Buurma NJ, O'Donnell VB, Thomas DW, Stanton RJ. The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses. J Lipid Res 2022; 63:100208. [PMID: 35436499 PMCID: PMC9010312 DOI: 10.1016/j.jlr.2022.100208] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.
Collapse
Affiliation(s)
- Zack Saud
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Victoria J Tyrrell
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andreas Zaragkoulias
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Majd B Protty
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Evelina Statkute
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anzelika Rubina
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kirsten Bentley
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel A White
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | | | - Jorge Alvarez-Jarreta
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard William Brown
- ENT Department, Betsi Cadwaladr University Health Board, Wrexham Maelor Hospital, Wrexham, United Kingdom
| | - Robert G Newcombe
- Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Heyman
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Manon Pritchard
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Robert Wj Mcleod
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Arvind Arya
- ENT Department, Betsi Cadwaladr University Health Board, Wrexham Maelor Hospital, Wrexham, United Kingdom
| | - Ceri-Ann Lynch
- Anaesthetics and Critical Care Directorate, Cwm Taf University Health Board, Royal Glamorgan Hospital, Llantrisant, United Kingdom
| | - David Owens
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - P Vince Jenkins
- Haemostasis Diagnosis and Research, University Hospital Wales, Cardiff, United Kingdom
| | - Niklaas J Buurma
- Physical Organic Chemistry Centre, School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - David W Thomas
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, United Kingdom.
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
43
|
Prydz K, Saraste J. The life cycle and enigmatic egress of coronaviruses. Mol Microbiol 2022; 117:1308-1316. [PMID: 35434857 PMCID: PMC9321882 DOI: 10.1111/mmi.14907] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
There has been considerable recent interest in the life cycle of Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2), the causative agent of the Covid‐19 pandemic. Practically every step in CoV replication—from cell attachment and uptake via genome replication and expression to virion assembly has been considered as a specific event that potentially could be targeted by existing or novel drugs. Interference with cellular egress of progeny viruses could also be adopted as a possible therapeutic strategy; however, the situation is complicated by the fact that there is no broad consensus on how CoVs find their way out of their host cells. The viral nucleocapsid, consisting of the genomic RNA complexed with nucleocapsid proteins obtains a membrane envelope during virus budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)–Golgi interface. From here, several alternative routes for CoV extracellular release have been proposed. Strikingly, recent studies have shown that CoV infection leads to the disassembly of the Golgi ribbon and the mobilization of host cell compartments and protein machineries that are known to promote Golgi‐independent trafficking to the cell surface. Here, we discuss the life cycle of CoVs with a special focus on different possible pathways for virus egress.
Collapse
Affiliation(s)
- Kristian Prydz
- Department of Biosciences, University of Oslo, Norway and Department of Biomedicine and Molecular Imaging Center University of Bergen Norway
| | | |
Collapse
|
44
|
Gonzalez Lomeli F, Elmaraghy N, Castro A, Osuna Guerrero CV, Newcomb LL. Conserved Targets to Prevent Emerging Coronaviruses. Viruses 2022; 14:v14030563. [PMID: 35336969 PMCID: PMC8949862 DOI: 10.3390/v14030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Novel coronaviruses emerged as zoonotic outbreaks in humans in 2003 (SARS), 2012 (MERS), and notably in 2019 (SARS2), which resulted in the COVID-19 pandemic, causing worldwide health and economic disaster. Vaccines provide the best protection against disease but cannot be developed and engineered quickly enough to prevent emerging viruses, zoonotic outbreaks, and pandemics. Antivirals are the best first line of therapeutic defense against novel emerging viruses. Coronaviruses are plus sense, single stranded, RNA genome viruses that undergo frequent genetic mutation and recombination, allowing for the emergence of novel coronavirus strains and variants. The molecular life cycle of the coronavirus family offers many conserved activities to be exploited as targets for antivirals. Here, we review the molecular life cycle of coronaviruses and consider antiviral therapies, approved and under development, that target the conserved activities of coronaviruses. To identify additional targets to inhibit emerging coronaviruses, we carried out in silico sequence and structure analysis of coronavirus proteins isolated from bat and human hosts. We highlight conserved and accessible viral protein domains and residues as possible targets for the development of viral inhibitors. Devising multiple antiviral therapies that target conserved viral features to be used in combination is the best first line of therapeutic defense to prevent emerging viruses from developing into outbreaks and pandemics.
Collapse
|
45
|
Kloc M, Uosef A, Wosik J, Kubiak JZ, Ghobrial RM. Virus interactions with the actin cytoskeleton-what we know and do not know about SARS-CoV-2. Arch Virol 2022; 167:737-749. [PMID: 35102456 PMCID: PMC8803281 DOI: 10.1007/s00705-022-05366-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton and actin-dependent molecular and cellular events are responsible for the organization of eukaryotic cells and their functions. Viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), depend on host cell organelles and molecular components for cell entry and propagation. Thus, it is not surprising that they also interact at many levels with the actin cytoskeleton of the host. There have been many studies on how different viruses reconfigure and manipulate the actin cytoskeleton of the host during successive steps of their life cycle. However, we know relatively little about the interactions of SARS-CoV-2 with the actin cytoskeleton. Here, we describe how the actin cytoskeleton is involved in the strategies used by different viruses for entry, assembly, and egress from the host cell. We emphasize what is known and unknown about SARS-CoV-2 in this regard. This review should encourage further investigation of the interactions of SARS-CoV-2 with cellular components, which will eventually be helpful for developing novel antiviral therapies for mitigating the severity of COVID-19.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA.
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| | - Jacek Z Kubiak
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, 04-141, Warsaw, Poland
- Institute of Genetics and Development of Rennes, Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Univ. Rennes, UMR 6290, CNRS, 35000, Rennes, France
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
46
|
Zhang S, Go EP, Ding H, Anang S, Kappes JC, Desaire H, Sodroski JG. Analysis of Glycosylation and Disulfide Bonding of Wild-Type SARS-CoV-2 Spike Glycoprotein. J Virol 2022; 96:e0162621. [PMID: 34817202 PMCID: PMC8827021 DOI: 10.1128/jvi.01626-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
The SARS-CoV-2 coronavirus, the etiologic agent of COVID-19, uses its spike (S) glycoprotein anchored in the viral membrane to enter host cells. The S glycoprotein is the major target for neutralizing antibodies elicited by natural infection and by vaccines. Approximately 35% of the SARS-CoV-2 S glycoprotein consists of carbohydrate, which can influence virus infectivity and susceptibility to antibody inhibition. We found that virus-like particles produced by coexpression of SARS-CoV-2 S, M, E, and N proteins contained spike glycoproteins that were extensively modified by complex carbohydrates. We used a fucose-selective lectin to purify the Golgi-modified fraction of a wild-type SARS-CoV-2 S glycoprotein trimer and determined its glycosylation and disulfide bond profile. Compared with soluble or solubilized S glycoproteins modified to prevent proteolytic cleavage and to retain a prefusion conformation, more of the wild-type S glycoprotein N-linked glycans are processed to complex forms. Even Asn 234, a significant percentage of which is decorated by high-mannose glycans on other characterized S trimer preparations, is predominantly modified in the Golgi compartment by processed glycans. Three incompletely occupied sites of O-linked glycosylation were detected. Viruses pseudotyped with natural variants of the serine/threonine residues implicated in O-linked glycosylation were generally infectious and exhibited sensitivity to neutralization by soluble ACE2 and convalescent antisera comparable to that of the wild-type virus. Unlike other natural cysteine variants, a Cys15Phe (C15F) mutant retained partial, but unstable, infectivity. These findings enhance our understanding of the Golgi processing of the native SARS-CoV-2 S glycoprotein carbohydrates and could assist the design of interventions. IMPORTANCE The SARS-CoV-2 coronavirus, which causes COVID-19, uses its spike glycoprotein to enter host cells. The viral spike glycoprotein is the main target of host neutralizing antibodies that help to control SARS-CoV-2 infection and are important for the protection provided by vaccines. The SARS-CoV-2 spike glycoprotein consists of a trimer of two subunits covered with a coat of carbohydrates (sugars). Here, we describe the disulfide bonds that assist the SARS-CoV-2 spike glycoprotein to assume the correct shape and the composition of the sugar moieties on the glycoprotein surface. We also evaluate the consequences of natural virus variation in O-linked sugar addition and in the cysteine residues involved in disulfide bond formation. This information can expedite the improvement of vaccines and therapies for COVID-19.
Collapse
Affiliation(s)
- Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Dey D, Singh S, Khan S, Martin M, Schnicker NJ, Gakhar L, Pierce BG, Hasan SS. An extended motif in the SARS-CoV-2 spike modulates binding and release of host coatomer in retrograde trafficking. Commun Biol 2022; 5:115. [PMID: 35136165 PMCID: PMC8825798 DOI: 10.1038/s42003-022-03063-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
β-Coronaviruses such as SARS-CoV-2 hijack coatomer protein-I (COPI) for spike protein retrograde trafficking to the progeny assembly site in endoplasmic reticulum-Golgi intermediate compartment (ERGIC). However, limited residue-level details are available into how the spike interacts with COPI. Here we identify an extended COPI binding motif in the spike that encompasses the canonical K-x-H dibasic sequence. This motif demonstrates selectivity for αCOPI subunit. Guided by an in silico analysis of dibasic motifs in the human proteome, we employ mutagenesis and binding assays to show that the spike motif terminal residues are critical modulators of complex dissociation, which is essential for spike release in ERGIC. αCOPI residues critical for spike motif binding are elucidated by mutagenesis and crystallography and found to be conserved in the zoonotic reservoirs, bats, pangolins, camels, and in humans. Collectively, our investigation on the spike motif identifies key COPI binding determinants with implications for retrograde trafficking. The cytosolic tail of β-coronavirus spike proteins contains dibasic motifs that must be able to bind to the host’s coatomer protein-I (COPI) for trafficking and be released for viral assembly in the ER-Golgi intermediate compartment. The critical residues in both the spike cytosolic tail and COPI are identified that modulate the association-dissociation kinetics.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saif Khan
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,PAQ Therapeutics, Cambridge, MA, USA
| | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA. .,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA. .,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, USA.
| |
Collapse
|
48
|
Xiang Q, Li L, Wu J, Tian M, Fu Y. Application of pseudovirus system in the development of vaccine, antiviral-drugs, and neutralizing antibodies. Microbiol Res 2022; 258:126993. [PMID: 35240544 PMCID: PMC8848573 DOI: 10.1016/j.micres.2022.126993] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
Abstract
Pseudoviruses are viral particles coated with a heterologous envelope protein, which mediates the entry of pseudoviruses as efficiently as that of the live viruses possessing high pathogenicity and infectivity. Due to the deletion of the envelope protein gene and the absence of pathogenic genes, pseudoviruses have no autonomous replication ability and can infect host cells for only a single cycle. In addition, pseudoviruses have the desired characteristics of high safety, strong operability, and can be easily used to perform rapid throughput detection. Therefore, pseudoviruses are widely employed in the mechanistic investigation of viral infection, the screening and evaluation of monoclonal antibodies and antiviral drugs, and the detection of neutralizing antibody titers in serum after vaccination. In this review, we will discuss the construction of pseudoviruses based on different packaging systems, their current applications especially in the research of SARS-CoV-2, limitations, and further directions.
Collapse
Affiliation(s)
- Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Linhao Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
49
|
Salazar-García M, Acosta-Contreras S, Rodríguez-Martínez G, Cruz-Rangel A, Flores-Alanis A, Patiño-López G, Luna-Pineda VM. Pseudotyped Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-Coronavirus-2 Spike for the Study of Variants, Vaccines, and Therapeutics Against Coronavirus Disease 2019. Front Microbiol 2022; 12:817200. [PMID: 35095820 PMCID: PMC8795712 DOI: 10.3389/fmicb.2021.817200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
World Health Organization (WHO) has prioritized the infectious emerging diseases such as Coronavirus Disease (COVID-19) in terms of research and development of effective tests, vaccines, antivirals, and other treatments. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiological causative agent of COVID-19, is a virus belonging to risk group 3 that requires Biosafety Level (BSL)-3 laboratories and the corresponding facilities for handling. An alternative to these BSL-3/-4 laboratories is to use a pseudotyped virus that can be handled in a BSL-2 laboratory for study purposes. Recombinant Vesicular Stomatitis Virus (VSV) can be generated with complementary DNA from complete negative-stranded genomic RNA, with deleted G glycoprotein and, instead, incorporation of other fusion protein, like SARS-CoV-2 Spike (S protein). Accordingly, it is called pseudotyped VSV-SARS-CoV-2 S. In this review, we have described the generation of pseudotyped VSV with a focus on the optimization and application of pseudotyped VSV-SARS-CoV-2 S. The application of this pseudovirus has been addressed by its use in neutralizing antibody assays in order to evaluate a new vaccine, emergent SARS-CoV-2 variants (delta and omicron), and approved vaccine efficacy against variants of concern as well as in viral fusion-focused treatment analysis that can be performed under BSL-2 conditions.
Collapse
Affiliation(s)
- Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Samyr Acosta-Contreras
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | | | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Genaro Patiño-López
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Victor M. Luna-Pineda
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| |
Collapse
|
50
|
Scherer KM, Mascheroni L, Carnell GW, Wunderlich LCS, Makarchuk S, Brockhoff M, Mela I, Fernandez-Villegas A, Barysevich M, Stewart H, Suau Sans M, George CL, Lamb JR, Kaminski-Schierle GS, Heeney JL, Kaminski CF. SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress. SCIENCE ADVANCES 2022; 8:eabl4895. [PMID: 34995113 PMCID: PMC10954198 DOI: 10.1126/sciadv.abl4895] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Despite being the target of extensive research efforts due to the COVID-19 (coronavirus disease 2019) pandemic, relatively little is known about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within cells. We investigate and characterize the tightly orchestrated virus assembly by visualizing the spatiotemporal dynamics of the four structural SARS-CoV-2 proteins at high resolution. The nucleoprotein is expressed first and accumulates around folded endoplasmic reticulum (ER) membranes in convoluted layers that contain viral RNA replication foci. We find that, of the three transmembrane proteins, the membrane protein appears at the Golgi apparatus/ER-to-Golgi intermediate compartment before the spike and envelope proteins. Relocation of a lysosome marker toward the assembly compartment and its detection in transport vesicles of viral proteins confirm an important role of lysosomes in SARS-CoV-2 egress. These data provide insights into the spatiotemporal regulation of SARS-CoV-2 assembly and refine the current understanding of SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Katharina M. Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Luca Mascheroni
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - George W. Carnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lucia C. S. Wunderlich
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Marius Brockhoff
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ana Fernandez-Villegas
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Max Barysevich
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hazel Stewart
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maria Suau Sans
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Jacob R. Lamb
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|