1
|
Staller DW, Gawargi FI, Panigrahi SS, Mishra PK, Mahato RI. Pharmaceutical perspectives on oligonucleotide therapeutics and delivery systems. Pharmacol Rev 2025; 77:100065. [PMID: 40513184 DOI: 10.1016/j.pharmr.2025.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/09/2025] [Accepted: 05/07/2025] [Indexed: 06/16/2025] Open
Abstract
Gene therapy has a pivotal role in treating new diseases. In addition to the recent mRNA-based COVID-19 vaccines produced by Pfizer-BioNTech and Moderna against severe acute respiratory syndrome corona virus 2, several new gene therapies have recently been approved as effective treatments for fatal genetic disorders such as Duchenne's muscular dystrophy, familial transthyretin amyloidosis, hemophilia A, hemophilia B, spinal muscle atrophy, early cerebral autoleukodystrophy, and β-thalassemia. This review provides novel insights into RNA therapeutics focusing on endogenous RNA species, RNA structure and function, and chemical modifications that improve the stability and distribution of RNAs. Furthermore, it includes updated knowledge on clinically approved gene therapies rendering a comprehensive understanding of the biochemical basis and clinical application of gene therapies. SIGNIFICANCE STATEMENT: There have recently been significant advances in clinical translation of RNA therapeutics. This review discusses the diverse types of RNA species, RNA structure and function, backbone and chemical modifications to RNAs, and every RNA therapeutic approved for clinical use at the time of writing.
Collapse
Affiliation(s)
- Dalton W Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Flobater I Gawargi
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sanjali S Panigrahi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ram I Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
2
|
Chauhan P, Begum MY, Narapureddy BR, Gupta S, Wadhwa K, Singh G, Kumawat R, Sharma N, Ballal S, Jha SK, Abomughaid MM, B D, Ojha S, Jha NK. Unveiling the Involvement of Herpes Simplex Virus-1 in Alzheimer's Disease: Possible Mechanisms and Therapeutic Implications. Mol Neurobiol 2025; 62:5850-5874. [PMID: 39648189 DOI: 10.1007/s12035-024-04535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/01/2024] [Indexed: 12/10/2024]
Abstract
Viruses pose a significant challenge and threat to human health, as demonstrated by the current COVID-19 pandemic. Neurodegeneration, particularly in the case of Alzheimer's disease (AD), is significantly influenced by viral infections. AD is a neurodegenerative disease that affects people of all ages and poses a significant threat to millions of individuals worldwide. The precise mechanism behind its development is not yet fully understood; however, the emergence and advancement of AD can be hastened by various environmental factors, such as bacterial and viral infections. There has been a longstanding suspicion that the herpes simplex virus-1 (HSV-1) may have a role to play in the development or advancement of AD. Reactivation of HSV-1 could potentially lead to damage to neurons, either by direct means or indirectly by triggering inflammation. This article provides an overview of the connection between HSV-1 infections and immune cells (astrocytes, microglia, and oligodendrocytes) in the progression of AD. It summarizes recent scientific research on how HSV-1 affects neurons, which could potentially shed light on the clinical features and treatment options for AD. In addition, the paper has explored the impact of HSV-1 on neurons and its role in various aspects of AD, such as Aβ secretion, tau hyperphosphorylation, metabolic dysregulation, oxidative damage, apoptosis, and autophagy. It is believed that the immune response triggered by HSV-1 reactivation plays a role in the development of neurodegeneration in AD. Despite the lack of a cure for AD, researchers have made significant efforts to study the clinical and pathological aspects of the disease, identify biomarkers, and gain insight into its underlying causes. The goal is to achieve early diagnosis and develop treatments that can modify the progression of the disease. The current article discusses the most promising therapy for combating the viral impacts, which provides additional evidence for the frequent reactivations of latent HSV-1 in the AD brain. However, further research is still required to establish the molecular and cellular mechanisms underlying the development of AD through the reactivation of HSV-1. This could potentially lead to new insights in drug development aimed at preventing HSV-1 reactivation and the subsequent development and progression of AD.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Bayapa Reddy Narapureddy
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Rohit Kumawat
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajsthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Suhas Ballal
- Departmant of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Dheepak B
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences & Technology, Galgotias University, Greater Noida, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
3
|
Le Hars M, Joussain C, Jégu T, Epstein AL. Non-replicative herpes simplex virus genomic and amplicon vectors for gene therapy - an update. Gene Ther 2025; 32:173-183. [PMID: 39533042 DOI: 10.1038/s41434-024-00500-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Two major types of defective vectors have been derived from herpes simplex virus type 1 (HSV-1), non-replicative genomic vectors (nrHSV-1), and amplicon vectors. This review recapitulates the main features of both vector types and summarizes recent improvements in our understanding of virus/vector biology, particularly with regard to the critical role played by the overpowering of antiviral cellular defenses and the epigenetic control of viral gene expression. Over the past years, significant breakthroughs in vector design, genetic engineering, and HSV-1 biology have accelerated the development of nrHSV-1 vectors. The low immunogenicity and enhanced safety profiles allowed the successful translation of these vectors into several clinical trials, with some being approved by the FDA. Regarding amplicons, despite their advantage in carrying very large or multiple transgenes, and their potential to avoid genome dilution in dividing cells, the absence of production procedures capable of generating large amounts of helper-free amplicons at reasonable cost with GMP compliance, still limits the translation of these outstanding vectors to clinical trials.
Collapse
Affiliation(s)
- Matthieu Le Hars
- UMR U1179 INSERM - University of Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, Montigny-le-Bretonneux, France
| | - Charles Joussain
- UMR U1179 INSERM - University of Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, Montigny-le-Bretonneux, France
| | | | | |
Collapse
|
4
|
Sutter J, Hope JL, Wigdahl B, Miller V, Krebs FC. Immunological Control of Herpes Simplex Virus Type 1 Infection: A Non-Thermal Plasma-Based Approach. Viruses 2025; 17:600. [PMID: 40431612 PMCID: PMC12115788 DOI: 10.3390/v17050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Herpes simplex virus type 1 (HSV-1) causes a lifelong infection due to latency established in the trigeminal ganglia, which is the source of recurrent outbreaks of cold sores. The lifelong persistence of HSV-1 is further facilitated by the lack of cure strategies, unsuccessful vaccine development, and the inability of the host immune system to clear HSV-1. Despite the inefficiencies of the immune system, the course of HSV-1 infection remains under strict immunological control. Specifically, HSV-1 is controlled by a CD8+ T cell response that is cytotoxic to HSV-1-infected cells, restricts acute infection, and uses noncytolytic mechanisms to suppress reactivation in the TG. When this CD8+ T cell response is disrupted, reactivation of latent HSV-1 occurs. With antiviral therapies unable to cure HSV-1 and prophylactic vaccine strategies failing to stimulate a protective response, we propose non-thermal plasma (NTP) as a potential therapy effective against recurrent HSV-1 infection. We have demonstrated that NTP, when applied directly to HSV-1-infected cells, has antiviral effects and stimulates cellular stress and immunomodulatory responses. We further propose that the direct effects of NTP will lead to long-lasting indirect effects such as reduced viral seeding into the TG and enhanced HSV-1-specific CD8+ T cell responses that exert greater immune control over HSV-1 infection.
Collapse
Affiliation(s)
- Julia Sutter
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (J.S.); (J.L.H.); (B.W.); (V.M.)
| | - Jennifer L. Hope
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (J.S.); (J.L.H.); (B.W.); (V.M.)
- Immune Cell Regulation and Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium at Jefferson Health, Philadelphia, PA 19107, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (J.S.); (J.L.H.); (B.W.); (V.M.)
- Immune Cell Regulation and Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium at Jefferson Health, Philadelphia, PA 19107, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (J.S.); (J.L.H.); (B.W.); (V.M.)
- Immune Cell Regulation and Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium at Jefferson Health, Philadelphia, PA 19107, USA
| | - Fred C. Krebs
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (J.S.); (J.L.H.); (B.W.); (V.M.)
| |
Collapse
|
5
|
Nguyen NM, Conrady CD. A Better Understanding of the Clinical and Pathological Changes in Viral Retinitis: Steps to Improve Visual Outcomes. Microorganisms 2024; 12:2513. [PMID: 39770716 PMCID: PMC11678148 DOI: 10.3390/microorganisms12122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Infectious retinitis, though rare, poses a significant threat to vision, often leading to severe and irreversible damage. Various pathogens, including viruses, bacteria, tick-borne agents, parasites, and fungi, can cause this condition. Among these, necrotizing herpetic retinitis represents a critical spectrum of retinal infections primarily caused by herpes viruses such as varicella-zoster virus (VZV), herpes simplex virus (HSV), and cytomegalovirus (CMV). This review underscores the retina's susceptibility to viral infections, focusing on the molecular mechanisms through which herpetic viruses invade and damage retinal tissue, supported by clinical and preclinical evidence. We also identify existing knowledge gaps and propose future research directions to deepen our understanding and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Nghi M. Nguyen
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Su D, Han L, Shi C, Li Y, Qian S, Feng Z, Yu L. An updated review of HSV-1 infection-associated diseases and treatment, vaccine development, and vector therapy application. Virulence 2024; 15:2425744. [PMID: 39508503 PMCID: PMC11562918 DOI: 10.1080/21505594.2024.2425744] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a globally widespread virus that causes and associates with a wide range of diseases, including herpes simplex encephalitis, herpes simplex keratitis, and herpes labialis. The interaction between HSV-1 and the host involves complex immune response mechanisms, including recognition of viral invasion, maintenance of latent infection, and triggering of reactivation. Antiviral therapy is the core treatment for HSV-1 infections. Meanwhile, vaccine development employs different strategies and methods, and several promising vaccine types have emerged, such as live attenuated, protein subunit, and nucleic acid vaccines, offering new possibilities for the prevention of HSV-1 infection. Moreover, HSV-1 can be modified into a therapeutic vector for gene therapy and tumour immunotherapy. This review provides an in-depth summary of HSV-1 infection-associated innate and adaptive immune responses, disease pathogenesis, current therapeutic approaches, recent advances in vaccine development, and vector therapy applications for cancer treatment. Through a systematic review of multiple aspects of HSV-1, this study aims to provide a comprehensive and detailed reference for the public on the prevention, control, and treatment of HSV-1.
Collapse
Affiliation(s)
- Dan Su
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Liping Han
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengyu Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Yaoxin Li
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Lili Yu
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| |
Collapse
|
7
|
Zhang SY, Casanova JL. Genetic defects of brain immunity in childhood herpes simplex encephalitis. Nature 2024; 635:563-573. [PMID: 39567785 PMCID: PMC11822754 DOI: 10.1038/s41586-024-08119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
Herpes simplex virus 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in humans. It is life-threatening and has a first peak of incidence in childhood, during primary infection. Children with HSE are not particularly prone to other infections, including HSV-1 infections of tissues other than the brain. About 8-10% of childhood cases are due to monogenic inborn errors of 19 genes, two-thirds of which are recessive, and most of which display incomplete clinical penetrance. Childhood HSE can therefore be sporadic but genetic, enabling new diagnostic and therapeutic approaches. In this Review, we examine essential cellular and molecular mechanisms of cell-intrinsic antiviral immunity in the brain that are disrupted in individuals with HSE. These mechanisms include both known (such as mutations in the TLR3 pathway) and previously unknown (such as the TMEFF1 restriction factor) antiviral pathways, which may be dependent (for example, IFNAR1) or independent (for example, through RIPK3) of type I interferons. They operate in cortical or brainstem neurons, and underlie forebrain and brainstem infections, respectively. Conversely, the most severe inborn errors of leukocytes, including a complete lack of myeloid and/or lymphoid blood cells, do not underlie HSE. Thus congenital defects in intrinsic immunity in brain-resident neurons that underlie HSE broaden natural host defences against HSV-1 from the leukocytes of the immune system to other cells in the organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.
| |
Collapse
|
8
|
Uribe FR, González VPI, Kalergis AM, Soto JA, Bohmwald K. Understanding the Neurotrophic Virus Mechanisms and Their Potential Effect on Systemic Lupus Erythematosus Development. Brain Sci 2024; 14:59. [PMID: 38248274 PMCID: PMC10813552 DOI: 10.3390/brainsci14010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.
Collapse
Affiliation(s)
- Felipe R. Uribe
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Valentina P. I. González
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago 8910060, Chile
| |
Collapse
|
9
|
Bricio-Moreno L, Kurt-Jones EA, Sorensen EW, Luster AD, Michael BD. Using Multiphoton Intravital Microscopy to Study Neutrophil Transmigration and Blood-Brain Barrier Permeability in a Mouse Model of Herpes Simplex Virus Encephalitis. Methods Mol Biol 2024; 2828:45-55. [PMID: 39147969 DOI: 10.1007/978-1-0716-4023-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Multiphoton intravital microscopy (MP-IVM) is an imaging technique used for the observation of living organisms at a microscopic resolution. The tissue of interest is exposed through a window allowing imaging of cells in real time. Using MP-IVM, the temporospatial kinetics of leukocyte transendothelial migration can be visualized and quantitated using reporter mice and cell-specific fluorophore-conjugated monoclonal antibodies to track the leukocytes within and outside of vascular beds. Here we describe a method used to study neutrophil transendothelial migration and blood-brain barrier permeability in a mouse model of herpes simplex virus I (HSV) encephalitis.
Collapse
Affiliation(s)
- Laura Bricio-Moreno
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Evelyn A Kurt-Jones
- Department of Medicine, Division of Infectious Disease and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Elizabeth W Sorensen
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benedict D Michael
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK.
- The National Institute for Health Research Health Protection Research Unit for Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Salazar S, Luong KTY, Koyuncu OO. Cell Intrinsic Determinants of Alpha Herpesvirus Latency and Pathogenesis in the Nervous System. Viruses 2023; 15:2284. [PMID: 38140525 PMCID: PMC10747186 DOI: 10.3390/v15122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency-reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus-host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS.
Collapse
Affiliation(s)
| | | | - Orkide O. Koyuncu
- Department of Microbiology & Molecular Genetics, School of Medicine and Center for Virus Research, University of California, Irvine, CA 92697, USA; (S.S.); (K.T.Y.L.)
| |
Collapse
|
11
|
Zhang B, Ding J, Ma Z. ICP4-Associated Activation of Rap1b Facilitates Herpes Simplex Virus Type I (HSV-1) Infection in Human Corneal Epithelial Cells. Viruses 2023; 15:1457. [PMID: 37515145 PMCID: PMC10385634 DOI: 10.3390/v15071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The strong contribution of RAS-related protein 1b (Rap1b) to cytoskeleton remodeling determines intracellular and extracellular physiological activities, including the successful infection of viruses in permissive cells, but its role in the HSV-1 life cycle is still unclear. Here, we demonstrated that the HSV-1 immediate early (IE) gene ICP4 inhibits protein kinase A (PKA) phosphorylation to induce Rap1b-activation-mediated viral infection. Rap1b activation and membrane enrichment begin at the early stage of HSV-1 infection and remain active during the proliferation period of the virus. Treating the cells with Rap1b small interfering RNA (siRNA) showed a dose-dependent decrease in viral infection levels, but no dose-dependent increase was observed after Rap1b overexpression. Further investigation indicated that the suppression of Rap1b activation derives from phosphorylated PKA and Rap1b mutants with partial or complete prenylation instead of phosphorylation, which promoted viral infection in a dose-dependent manner. Furthermore, the PKA agonist Forskolin disturbed Rap1b activation in a dose-dependent manner, accompanied by a decreasing trend in viral infection. Moreover, the HSV-1 IE gene ICP4 induced PKA dephosphorylation, leading to continuous Rap1b activation, followed by cytoskeleton rearrangement induced by cell division control protein 42 (CDC42) and Ras-related C3 botulinum toxin substrate 1 (RAC1). These further stimulated membrane-triggered physiological processes favoring virus infection. Altogether, we show the significance of Rap1b during HSV-1 infection and uncover the viral infection mechanism determined by the posttranslational regulation of the viral ICP4 gene and Rap1b host protein.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
12
|
Li Z, Feng Z, Fang Z, Chen J, Chen W, Liang W, Chen Q. Herpes simplex virus type I glycoprotein L evades host antiviral innate immunity by abrogating the nuclear translocation of phosphorylated NF-κB sub-unit p65. Front Microbiol 2023; 14:1178249. [PMID: 37228366 PMCID: PMC10203706 DOI: 10.3389/fmicb.2023.1178249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023] Open
Abstract
Nuclear factor (NF)-κB plays an important role in the innate immune response by inducing antiviral genes' expression. However, the herpes simplex virus 1 (HSV-1) virus has developed multiple ways to interfere with NF-κB activity to escape the host antiviral response. Here, we found that HSV-1 envelope glycoprotein L(gL) markedly inhibits interferon (IFN) production and its downstream antiviral genes. Our results showed that ectopic expression of gL inhibited IFN-β promoter activation, and decreased IFN-β production, the expression of IFN-stimulated genes (ISGs), and inhibited immunologic stimulant (poly I:C) induced activation of IFN signaling pathway. Depletion of gL by short interfering RNA (siRNA) significantly upregulated IFN-β and ISG production. Further study showed that the N-terminus of the gL bound to the Rel homology domain (RHD) of the p65 and concealed the nuclear localization signal of p65, thereby impeding the translocation of phosphorylated p65 to the nucleus. In summary, our findings indicated that the N-terminal of HSV-1 gL contributes to immune invasion by inhibiting the nuclear translocation of p65.
Collapse
Affiliation(s)
- Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Zhou Fang
- Fujian Key Laboratory of Innate Immune Biology, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Jianghua Chen
- Fujian Key Laboratory of Innate Immune Biology, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Wengzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Wangwang Liang
- Fujian Key Laboratory of Innate Immune Biology, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| |
Collapse
|
13
|
Hatton AA, Guerra FE. Scratching the Surface Takes a Toll: Immune Recognition of Viral Proteins by Surface Toll-like Receptors. Viruses 2022; 15:52. [PMID: 36680092 PMCID: PMC9863796 DOI: 10.3390/v15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Early innate viral recognition by the host is critical for the rapid response and subsequent clearance of an infection. Innate immune cells patrol sites of infection to detect and respond to invading microorganisms including viruses. Surface Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) that can be activated by viruses even before the host cell becomes infected. However, the early activation of surface TLRs by viruses can lead to viral clearance by the host or promote pathogenesis. Thus, a plethora of research has attempted to identify specific viral ligands that bind to surface TLRs and mediate progression of viral infection. Herein, we will discuss the past two decades of research that have identified specific viral proteins recognized by cell surface-associated TLRs, how these viral proteins and host surface TLR interactions affect the host inflammatory response and outcome of infection, and address why controversy remains regarding host surface TLR recognition of viral proteins.
Collapse
Affiliation(s)
- Alexis A. Hatton
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Fermin E. Guerra
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Development of a Bicistronic Yellow Fever Live Attenuated Vaccine with Reduced Neurovirulence and Viscerotropism. Microbiol Spectr 2022; 10:e0224622. [PMID: 35980184 PMCID: PMC9602263 DOI: 10.1128/spectrum.02246-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The yellow fever (YF) live attenuated vaccine strain 17D (termed 17D) has been widely used for the prevention and control of YF disease. However, 17D retains significant neurovirulence and viscerotropism in mice, which is probably linked to the increased occurrences of serious adverse events following 17D vaccination. Thus, the development of an updated version of the YF vaccine with an improved safety profile is of high priority. Here, we generated a viable bicistronic YF virus (YFV) by incorporating the internal ribosome entry site (IRES) from Encephalomyocarditis virus into an infectious clone of YFV 17D. The resulting recombinant virus, 17D-IRES, exhibited similar replication efficiency to its parental virus (17D) in mammalian cell lines, while it was highly restricted in mosquito cells. Serial passage of 17D-IRES in BHK-21 cells showed good genetic stability. More importantly, in comparison with the parental 17D, 17D-IRES displayed significantly decreased mouse neurovirulence and viscerotropism in type I interferon (IFN)-signaling-deficient and immunocompetent mouse models. Interestingly, 17D-IRES showed enhanced sensitivity to type I IFN compared with 17D. Moreover, immunization with 17D-IRES provided solid protection for mice against a lethal challenge with YFV. These preclinical data support further development of 17D-IRES as an updated version for the approved YF vaccine. This IRES-based attenuation strategy could be also applied to the design of live attenuated vaccines against other mosquito-borne flaviviruses. IMPORTANCE Yellow fever (YF) continually spreads and causes epidemics around the world, posing a great threat to human health. The YF live attenuated vaccine 17D is considered the most efficient vaccine available and helps to successfully control disease epidemics. However, side effects may occur after vaccination, such as viscerotropic disease (YEL-AVD) and neurotropic adverse disease (YEL-AND). Thus, there is an urgent need for a safer YF vaccine. Here, an IRES strategy was employed, and a bicistronic YFV was successfully developed (named 17D-IRES). 17D-IRES showed effective replication and genetic stability in vitro and high attenuation in vivo. Importantly, 17D-IRES induced humoral and cellular immune responses and conferred full protection against lethal YFV challenge. Our study provides data suggesting that 17D-IRES, with its prominent advantages, could be a vaccine candidate against YF. Moreover, this IRES-based bicistronic technology platform represents a promising strategy for developing other live attenuated vaccines against emerging viruses.
Collapse
|
15
|
Vaccinium bracteatum Thunb Extract Inhibits HSV-1 Infection by Regulating ER Stress and Apoptosis. Antioxidants (Basel) 2022; 11:antiox11091773. [PMID: 36139847 PMCID: PMC9495922 DOI: 10.3390/antiox11091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
Herpes simplex Type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous system. Usually, after primary infection in epithelial cells, HSV-1 migrates retrograde to the peripheral nervous system (PNS), where it establishes a latent infection. HSV-1 can remain latent in the nervous system, and its reactivation in the brain can rarely cause acute HSV-1 encephalitis, often a life-threatening condition, or asymptomatic reactivations that could lead to neuronal damage and ultimately neurodegenerative disorders. Acyclovir and related nucleoside analogs have been used as therapeutic agents for HSV-1 infection, but resistance to the drug can arise, and the protective effect of HSV-1 on brain cells is limited. Therefore, there is an urgent need for research into safe and effective new antiviral agents that can protect brain cells from the damage that is caused by HSV-1 infection. Vaccinium bracteatum Thunb. (VBT) is widely distributed in Korea and China, and has pharmacological actions such as anti-inflammatory, antioxidant, and antidiabetic activity. Studies on the antiviral effect of VBT on HSV-1 infection have not been reported so far. Therefore, we sought to determine the HSV-1 antiviral effect and molecular mechanism of VBT at the cellular level. We confirmed that VBT repressed the VP16 and IE genes in both Vero and SK-N-SH cells. We also found that the generation of HSV-1 virions was inhibited by VBT treatment. VBT inhibited the activities of the HSV-1-induced endoplasmic reticulum (ER) stressors PERK, ATF4, and CHOP. We confirmed that VBT inhibited the activity of apoptosis factors by regulating the expression of death receptor (DR) after HSV-1 infection. As HSV-1 is closely associated with brain diseases, the study of the antiviral drug effects and mechanism of VBT is meaningful. Further studies using animal models of infection will also be performed to determine the potential of VBT as an antiviral agent.
Collapse
|
16
|
Patrycy M, Chodkowski M, Krzyzowska M. Role of Microglia in Herpesvirus-Related Neuroinflammation and Neurodegeneration. Pathogens 2022; 11:pathogens11070809. [PMID: 35890053 PMCID: PMC9324537 DOI: 10.3390/pathogens11070809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is defined as an inflammatory state within the central nervous system (CNS). Microglia conprise the resident tissue macrophages of the neuronal tissue. Upon viral infection of the CNS, microglia become activated and start to produce inflammatory mediators important for clearance of the virus, but an excessive neuroinflammation can harm nearby neuronal cells. Herpesviruses express several molecular mechanisms, which can modulate apoptosis of infected neurons, astrocytes and microglia but also divert immune response initiated by the infected cells. In this review we also describe the link between virus-related neuroinflammation, and development of neurodegenerative diseases.
Collapse
|
17
|
Tsai MS, Wang LC, Wu HL, Tzeng SF, Conway EM, Hsu SM, Chen SH. Absence of the lectin-like domain of thrombomodulin reduces HSV-1 lethality of mice with increased microglia responses. J Neuroinflammation 2022; 19:66. [PMID: 35277184 PMCID: PMC8915510 DOI: 10.1186/s12974-022-02426-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background Herpes simplex virus 1 (HSV-1) can induce fatal encephalitis. Cellular factors regulate the host immunity to affect the severity of HSV-1 encephalitis. Recent reports focus on the significance of thrombomodulin (TM), especially the domain 1, lectin-like domain (TM-LeD), which modulates the immune responses to bacterial infections and toxins and various diseases in murine models. Few studies have investigated the importance of TM-LeD in viral infections, which are also regulated by the host immunity. Methods In vivo studies comparing wild-type and TM-LeD knockout mice were performed to determine the role of TM-LeD on HSV-1 lethality. In vitro studies using brain microglia cultured from mice or a human microglia cell line to investigate whether and how TM-LeD affects microglia to reduce HSV-1 replication in brain neurons cultured from mice or in a human neuronal cell line. Results Absence of TM-LeD decreased the mortality, tissue viral loads, and brain neuron apoptosis of HSV-1-infected mice with increases in the number, proliferation, and phagocytic activity of brain microglia. Moreover, TM-LeD deficiency enhanced the phagocytic activity of brain microglia cultured from mice or of a human microglia cell line. Co-culture of mouse primary brain microglia and neurons or human microglia and neuronal cell lines revealed that TM-LeD deficiency augmented the capacity of microglia to reduce HSV-1 replication in neurons. Conclusions Overall, TM-LeD suppresses microglia responses to enhance HSV-1 infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02426-w.
Collapse
|
18
|
O'Brien CA, Bennett FC, Bennett ML. Microglia in antiviral immunity of the brain and spinal cord. Semin Immunol 2022; 60:101650. [PMID: 36099864 PMCID: PMC9934594 DOI: 10.1016/j.smim.2022.101650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 01/15/2023]
Abstract
Viral infections of the central nervous system (CNS) are a significant cause of neurological impairment and mortality worldwide. As tissue resident macrophages, microglia are critical initial responders to CNS viral infection. Microglia seem to coordinate brain-wide antiviral responses of both brain resident cells and infiltrating immune cells. This review discusses how microglia may promote this antiviral response at a molecular level, from potential mechanisms of virus recognition to downstream cytokine responses and interaction with antiviral T cells. Recent advancements in genetic tools to specifically target microglia in vivo promise to further our understanding about the precise mechanistic role of microglia in CNS infection.
Collapse
Affiliation(s)
- Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
19
|
Abstract
This article describes procedures for two preclinical animal models for genital herpes infection. The guinea pig model shares many features of genital herpes in humans, including a natural route of inoculation, self-limiting primary vulvovaginitis, spontaneous recurrences, symptomatic and subclinical shedding of HSV-2, and latent infection of the associated sensory ganglia (lumbosacral dorsal root ganglia, DRG). Many humoral and cytokine responses to HSV-2 infection in the guinea pig have been characterized; however, due to the limited availability of immunological reagents, assessments of cellular immune responses are lacking. In contrast, the mouse model has been important in assessing cellular immune responses to herpes infection. Both the mouse and guinea pig models have been extremely useful for evaluating preventative and immunotherapeutic approaches for controlling HSV infection and recurrent disease. In this article, we describe procedures for infecting guinea pigs and mice with HSV-2, scoring subsequent genital disease, and measuring replicating virus to confirm infection. We also provide detailed protocols for dissecting and isolating DRG (the site of HSV-2 latency), quantifying HSV-2 genomic copies in DRG, and assessing symptomatic and subclinical shedding of HSV-2 in the vagina. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Primary and recurrent genital herpes infection in the guinea pig model Support Protocol 1: Blood collection via lateral saphenous vein or by cardiac puncture after euthanasia Support Protocol 2: Dissection and isolation of dorsal root ganglia from guinea pigs Support Protocol 3: PCR amplification and quantification of HSV-2 genomic DNA from samples Basic Protocol 2: Primary genital herpes infection in the mouse model Alternate Protocol: Flank infection with HSV-2 in the mouse model Support Protocol 4: Dissection and isolation of mouse dorsal root ganglia.
Collapse
Affiliation(s)
- Lauren M Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Feige L, Zaeck LM, Sehl-Ewert J, Finke S, Bourhy H. Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses 2021; 13:2364. [PMID: 34960633 PMCID: PMC8708193 DOI: 10.3390/v13122364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| |
Collapse
|
21
|
Tsai MS, Wang LC, Tsai HY, Lin YJ, Wu HL, Tzeng SF, Hsu SM, Chen SH. Microglia Reduce Herpes Simplex Virus 1 Lethality of Mice with Decreased T Cell and Interferon Responses in Brains. Int J Mol Sci 2021; 22:ijms222212457. [PMID: 34830340 PMCID: PMC8624831 DOI: 10.3390/ijms222212457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects the majority of the human population and can induce encephalitis, which is the most common cause of sporadic, fatal encephalitis. An increase of microglia is detected in the brains of encephalitis patients. The issues regarding whether and how microglia protect the host and neurons from HSV-1 infection remain elusive. Using a murine infection model, we showed that HSV-1 infection on corneas increased the number of microglia to outnumber those of infiltrating leukocytes (macrophages, neutrophils, and T cells) and enhanced microglia activation in brains. HSV-1 antigens were detected in brain neurons, which were surrounded by microglia. Microglia depletion increased HSV-1 lethality of mice with elevated brain levels of viral loads, infected neurons, neuron loss, CD4 T cells, CD8 T cells, neutrophils, interferon (IFN)-β, and IFN-γ. In vitro studies demonstrated that microglia from infected mice reduced virus infectivity. Moreover, microglia induced IFN-β and the signaling pathway of signal transducer and activator of transcription (STAT) 1 to inhibit viral replication and damage of neurons. Our study reveals how microglia protect the host and neurons from HSV-1 infection.
Collapse
Affiliation(s)
- Meng-Shan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (M.-S.T.); (H.-L.W.)
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
| | - Hsien-Yang Tsai
- Department of Ophthalmology, Tzu Chi Hospital, Taichung 427, Taiwan;
| | - Yu-Jheng Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hua-Lin Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (M.-S.T.); (H.-L.W.)
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan;
| | - Sheng-Min Hsu
- Department of Ophthalmology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (S.-M.H.); (S.-H.C.)
| | - Shun-Hua Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (M.-S.T.); (H.-L.W.)
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Correspondence: (S.-M.H.); (S.-H.C.)
| |
Collapse
|
22
|
The c-Rel transcription factor limits early interferon and neuroinflammatory responses to prevent herpes simplex encephalitis onset in mice. Sci Rep 2021; 11:21171. [PMID: 34707143 PMCID: PMC8551191 DOI: 10.1038/s41598-021-00391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 12/03/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is the predominant cause of herpes simplex encephalitis (HSE), a condition characterized by acute inflammation and viral replication in the brain. Host genetics contribute to HSE onset, including monogenic defects in type I interferon signaling in cases of childhood HSE. Mouse models suggest a further contribution of immune cell-mediated inflammation to HSE pathogenesis. We have previously described a truncating mutation in the c-Rel transcription factor (RelC307X) that drives lethal HSE in 60% of HSV-1-infected RelC307X mice. In this study, we combined dual host-virus RNA sequencing with flow cytometry to explore cell populations and mechanisms involved in RelC307X-driven HSE. At day 5 postinfection, prior to HSE clinical symptom onset, elevated HSV-1 transcription was detected together with augmented host interferon-stimulated and inflammatory gene expression in the brainstems of high-responding RelC307X mice, predictive of HSE development. This early induction of host gene expression preceded pathological infiltration of myeloid and T cells in RelC307X mice at HSE onset by day 7. Thus, we establish c-Rel as an early regulator of viral and host responses during mouse HSE. These data further highlight the importance of achieving a balanced immune response and avoiding excess interferon-driven inflammation to promote HSE resistance.
Collapse
|
23
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Gern OL, Mulenge F, Pavlou A, Ghita L, Steffen I, Stangel M, Kalinke U. Toll-like Receptors in Viral Encephalitis. Viruses 2021; 13:v13102065. [PMID: 34696494 PMCID: PMC8540543 DOI: 10.3390/v13102065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Viral encephalitis is a rare but serious syndrome. In addition to DNA-encoded herpes viruses, such as herpes simplex virus and varicella zoster virus, RNA-encoded viruses from the families of Flaviviridae, Rhabdoviridae and Paramyxoviridae are important neurotropic viruses. Whereas in the periphery, the role of Toll-like receptors (TLR) during immune stimulation is well understood, TLR functions within the CNS are less clear. On one hand, TLRs can affect the physiology of neurons during neuronal progenitor cell differentiation and neurite outgrowth, whereas under conditions of infection, the complex interplay between TLR stimulated neurons, astrocytes and microglia is just on the verge of being understood. In this review, we summarize the current knowledge about which TLRs are expressed by cell subsets of the CNS. Furthermore, we specifically highlight functional implications of TLR stimulation in neurons, astrocytes and microglia. After briefly illuminating some examples of viral evasion strategies from TLR signaling, we report on the current knowledge of primary immunodeficiencies in TLR signaling and their consequences for viral encephalitis. Finally, we provide an outlook with examples of TLR agonist mediated intervention strategies and potentiation of vaccine responses against neurotropic virus infections.
Collapse
Affiliation(s)
- Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Correspondence:
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Imke Steffen
- Department of Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Martin Stangel
- Translational Medicine, Novartis Institute for Biomedical Research (NIBR), 4056 Basel, Switzerland;
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Cluster of Excellence—Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
25
|
Bastard P, Manry J, Chen J, Rosain J, Seeleuthner Y, AbuZaitun O, Lorenzo L, Khan T, Hasek M, Hernandez N, Bigio B, Zhang P, Lévy R, Shrot S, Reino EJG, Lee YS, Boucherit S, Aubart M, Gijsbers R, Béziat V, Li Z, Pellegrini S, Rozenberg F, Marr N, Meyts I, Boisson B, Cobat A, Bustamante J, Zhang Q, Jouangy E, Abel L, Somech R, Casanova JL, Zhang SY. Herpes simplex encephalitis in a patient with a distinctive form of inherited IFNAR1 deficiency. J Clin Invest 2021; 131:139980. [PMID: 32960813 DOI: 10.1172/jci139980] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Inborn errors of TLR3-dependent IFN-α/β- and IFN-λ-mediated immunity in the CNS can underlie herpes simplex virus 1 (HSV-1) encephalitis (HSE). The respective contributions of IFN-α/β and IFN-λ are unknown. We report a child homozygous for a genomic deletion of the entire coding sequence and part of the 3'-UTR of the last exon of IFNAR1, who died of HSE at the age of 2 years. An older cousin died following vaccination against measles, mumps, and rubella at 12 months of age, and another 17-year-old cousin homozygous for the same variant has had other, less severe, viral illnesses. The encoded IFNAR1 protein is expressed on the cell surface but is truncated and cannot interact with the tyrosine kinase TYK2. The patient's fibroblasts and EBV-B cells did not respond to IFN-α2b or IFN-β, in terms of STAT1, STAT2, and STAT3 phosphorylation or the genome-wide induction of IFN-stimulated genes. The patient's fibroblasts were susceptible to viruses, including HSV-1, even in the presence of exogenous IFN-α2b or IFN-β. HSE is therefore a consequence of inherited complete IFNAR1 deficiency. This viral disease occurred in natural conditions, unlike those previously reported in other patients with IFNAR1 or IFNAR2 deficiency. This experiment of nature indicates that IFN-α/β are essential for anti-HSV-1 immunity in the CNS.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | | | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | | | - Mary Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Nicholas Hernandez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France
| | - Shai Shrot
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eduardo J Garcia Reino
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Yoon-Seung Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Department of Pediatric Neurology, Necker Hospital for Sick Children, University of Paris, Paris, France
| | - Rik Gijsbers
- Laboratory of Viral Vector Technology and Gene Therapy and Leuven Viral Vector Core, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Zhi Li
- Unit of Cytokine Signaling, Pasteur Institute, INSERM U1221, Paris, France
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Pasteur Institute, INSERM U1221, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, University of Paris, AP-HP, Cochin Hospital, Paris, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, Leuven, Belgium.,Precision Immunology Institute and Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Emmanuelle Jouangy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Raz Somech
- Pediatric Department and Immunology Unit, Edmond and Lily Safra Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, New York, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| |
Collapse
|
26
|
O’Connor CM, Sen GC. Innate Immune Responses to Herpesvirus Infection. Cells 2021; 10:2122. [PMID: 34440891 PMCID: PMC8394705 DOI: 10.3390/cells10082122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/24/2022] Open
Abstract
Infection of a host cell by an invading viral pathogen triggers a multifaceted antiviral response. One of the most potent defense mechanisms host cells possess is the interferon (IFN) system, which initiates a targeted, coordinated attack against various stages of viral infection. This immediate innate immune response provides the most proximal defense and includes the accumulation of antiviral proteins, such as IFN-stimulated genes (ISGs), as well as a variety of protective cytokines. However, viruses have co-evolved with their hosts, and as such, have devised distinct mechanisms to undermine host innate responses. As large, double-stranded DNA viruses, herpesviruses rely on a multitude of means by which to counter the antiviral attack. Herein, we review the various approaches the human herpesviruses employ as countermeasures to the host innate immune response.
Collapse
Affiliation(s)
- Christine M. O’Connor
- Department of Genomic Medicine, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
27
|
Krenn V, Bosone C, Burkard TR, Spanier J, Kalinke U, Calistri A, Salata C, Rilo Christoff R, Pestana Garcez P, Mirazimi A, Knoblich JA. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell 2021; 28:1362-1379.e7. [PMID: 33838105 PMCID: PMC7611471 DOI: 10.1016/j.stem.2021.03.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/07/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Viral infection in early pregnancy is a major cause of microcephaly. However, how distinct viruses impair human brain development remains poorly understood. Here we use human brain organoids to study the mechanisms underlying microcephaly caused by Zika virus (ZIKV) and herpes simplex virus (HSV-1). We find that both viruses efficiently replicate in brain organoids and attenuate their growth by causing cell death. However, transcriptional profiling reveals that ZIKV and HSV-1 elicit distinct cellular responses and that HSV-1 uniquely impairs neuroepithelial identity. Furthermore, we demonstrate that, although both viruses fail to potently induce the type I interferon system, the organoid defects caused by their infection can be rescued by distinct type I interferons. These phenotypes are not seen in 2D cultures, highlighting the superiority of brain organoids in modeling viral infections. These results uncover virus-specific mechanisms and complex cellular immune defenses associated with virus-induced microcephaly.
Collapse
Affiliation(s)
- Veronica Krenn
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Camilla Bosone
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hanover Medical School, Hanover 30625, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hanover Medical School, Hanover 30625, Germany; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover 30625, Germany
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Raissa Rilo Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Patricia Pestana Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ali Mirazimi
- Department of Laboratory Medicine (LABMED), Karolinska Institute, Stockholm 17177, Sweden; National Veterinary Institute, Uppsala 75189, Sweden
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria; Medical University of Vienna, Vienna 1030, Austria.
| |
Collapse
|
28
|
Verzosa AL, McGeever LA, Bhark SJ, Delgado T, Salazar N, Sanchez EL. Herpes Simplex Virus 1 Infection of Neuronal and Non-Neuronal Cells Elicits Specific Innate Immune Responses and Immune Evasion Mechanisms. Front Immunol 2021; 12:644664. [PMID: 34135889 PMCID: PMC8201405 DOI: 10.3389/fimmu.2021.644664] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Alphaherpesviruses (α-HV) are a large family of double-stranded DNA viruses which cause many human and animal diseases. There are three human α-HVs: Herpes Simplex Viruses (HSV-1 and HSV-2) and Varicella Zoster Virus (VZV). All α-HV have evolved multiple strategies to suppress or exploit host cell innate immune signaling pathways to aid in their infections. All α-HVs initially infect epithelial cells (primary site of infection), and later spread to infect innervating sensory neurons. As with all herpesviruses, α-HVs have both a lytic (productive) and latent (dormant) stage of infection. During the lytic stage, the virus rapidly replicates in epithelial cells before it is cleared by the immune system. In contrast, latent infection in host neurons is a life-long infection. Upon infection of mucosal epithelial cells, herpesviruses immediately employ a variety of cellular mechanisms to evade host detection during active replication. Next, infectious viral progeny bud from infected cells and fuse to neuronal axonal terminals. Here, the nucleocapsid is transported via sensory neuron axons to the ganglion cell body, where latency is established until viral reactivation. This review will primarily focus on how HSV-1 induces various innate immune responses, including host cell recognition of viral constituents by pattern-recognition receptors (PRRs), induction of IFN-mediated immune responses involving toll-like receptor (TLR) signaling pathways, and cyclic GMP-AMP synthase stimulator of interferon genes (cGAS-STING). This review focuses on these pathways along with other mechanisms including autophagy and the complement system. We will summarize and discuss recent evidence which has revealed how HSV-1 is able to manipulate and evade host antiviral innate immune responses both in neuronal (sensory neurons of the trigeminal ganglia) and non-neuronal (epithelial) cells. Understanding the innate immune response mechanisms triggered by HSV-1 infection, and the mechanisms of innate immune evasion, will impact the development of future therapeutic treatments.
Collapse
Affiliation(s)
- Amanda L Verzosa
- Biology Department, College of Science and Engineering, San Francisco State University, San Francisco, CA, United States
| | - Lea A McGeever
- Biology Department, College of Science and Engineering, San Francisco State University, San Francisco, CA, United States
| | - Shun-Je Bhark
- Biology Department, Seattle Pacific University, Seattle, WA, United States
| | - Tracie Delgado
- Biology Department, Seattle Pacific University, Seattle, WA, United States
| | - Nicole Salazar
- Biology Department, College of Science and Engineering, San Francisco State University, San Francisco, CA, United States
| | - Erica L Sanchez
- Biology Department, College of Science and Engineering, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
29
|
Lebratti T, Lim YS, Cofie A, Andhey P, Jiang X, Scott J, Fabbrizi MR, Ozantürk AN, Pham C, Clemens R, Artyomov M, Dinauer M, Shin H. A sustained type I IFN-neutrophil-IL-18 axis drives pathology during mucosal viral infection. eLife 2021; 10:e65762. [PMID: 34047696 PMCID: PMC8163503 DOI: 10.7554/elife.65762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophil responses against pathogens must be balanced between protection and immunopathology. Factors that determine these outcomes are not well-understood. In a mouse model of genital herpes simplex virus-2 (HSV-2) infection, which results in severe genital inflammation, antibody-mediated neutrophil depletion reduced disease. Comparative single-cell RNA-sequencing analysis of vaginal cells against a model of genital HSV-1 infection, which results in mild inflammation, demonstrated sustained expression of interferon-stimulated genes (ISGs) only after HSV-2 infection primarily within the neutrophil population. Both therapeutic blockade of IFNα/β receptor 1 (IFNAR1) and genetic deletion of IFNAR1 in neutrophils concomitantly decreased HSV-2 genital disease severity and vaginal IL-18 levels. Therapeutic neutralization of IL-18 also diminished genital inflammation, indicating an important role for this cytokine in promoting neutrophil-dependent immunopathology. Our study reveals that sustained type I interferon (IFN) signaling is a driver of pathogenic neutrophil responses and identifies IL-18 as a novel component of disease during genital HSV-2 infection.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Chlorocebus aethiops
- Disease Models, Animal
- Female
- Herpes Genitalis/immunology
- Herpes Genitalis/metabolism
- Herpes Genitalis/prevention & control
- Herpes Genitalis/virology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 2, Human/immunology
- Herpesvirus 2, Human/pathogenicity
- Host-Pathogen Interactions
- Immunity, Mucosal/drug effects
- Interferon Type I/metabolism
- Interleukin-18/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Mucous Membrane/drug effects
- Mucous Membrane/innervation
- Mucous Membrane/metabolism
- Mucous Membrane/virology
- Neutrophil Activation/drug effects
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/virology
- Receptor, Interferon alpha-beta/antagonists & inhibitors
- Receptor, Interferon alpha-beta/metabolism
- Signal Transduction
- Vagina/drug effects
- Vagina/immunology
- Vagina/metabolism
- Vagina/virology
- Vero Cells
- Mice
Collapse
Affiliation(s)
- Tania Lebratti
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Ying Shiang Lim
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Adjoa Cofie
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Prabhakar Andhey
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Xiaoping Jiang
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Jason Scott
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Maria Rita Fabbrizi
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Ayşe Naz Ozantürk
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Christine Pham
- Department of Medicine/Division of Rheumatology, Washington University School of MedicineSt LouisUnited States
| | - Regina Clemens
- Department of Pediatrics/Division of Critical Care Medicine, Washington University School of MedicineSt LouisUnited States
| | - Maxim Artyomov
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Mary Dinauer
- Department of Pediatrics/Hematology and Oncology, Washington University School of MedicineSt LouisUnited States
| | - Haina Shin
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
30
|
Laval K, Enquist LW. The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer's Disease. Front Neurol 2021; 12:658695. [PMID: 33889129 PMCID: PMC8055853 DOI: 10.3389/fneur.2021.658695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting ~50 million people worldwide. To date, there is no cure and current therapies have not been effective in delaying disease progression. Therefore, there is an urgent need for better understanding of the pathogenesis of AD and to rethink possible therapies. Herpes simplex virus type 1 (HSV1) has recently received growing attention for its potential role in sporadic AD. The virus is a ubiquitous human pathogen that infects mucosal epithelia and invades the peripheral nervous system (PNS) of its host to establish a reactivable, latent infection. Upon reactivation, HSV1 spreads back to the epithelium and initiates a new infection, causing epithelial lesions. Occasionally, the virus spreads from the PNS to the brain after reactivation. In this review, we discuss current work on the pathogenesis of AD and summarize research results that support a potential role for HSV1 in the infectious hypothesis of AD. We also highlight recent findings on the neuroinflammatory response, which has been proposed to be the main driving force of AD, starting early in the course of the disease. Relevant rodent models to study neuroinflammation in AD and novel therapeutic approaches are also discussed. Throughout this review, we focus on several aspects of HSV1 pathogenesis, including its primary role as an invader of the PNS, that should be considered in the etiology of AD. We also point out some of the contradictory data and remaining knowledge gaps that require further research to finally fully understand the cause of AD in humans.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
31
|
Mesquita LP, Costa RC, Zanatto DA, Bruhn FRP, Mesquita LLR, Lara MCCSH, Villalobos EMC, Massoco CO, Mori CMC, Mori E, Maiorka PC. Equine herpesvirus 1 elicits a strong pro-inflammatory response in the brain of mice. J Gen Virol 2021; 102. [PMID: 33528354 DOI: 10.1099/jgv.0.001556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Equine herpesvirus type 1 (EHV-1) is an emerging pathogen that causes encephalomyelitis in horses and non-equid species. Several aspects of the immune response in the central nervous system (CNS), mainly regarding the role of inflammatory mediators during EHV-1 encephalitis, remain unknown. Moreover, understanding the mechanisms underlying extensive neuropathology induced by viruses would be helpful to establish therapeutic strategies. Therefore, we aimed to evaluate some aspects of the innate immune response during highly neurovirulent EHV-1 infection. C57BL/6 mice infected intranasally with A4/72 and A9/92 EHV-1 strains developed a fulminant neurological disease at 3 days post-inoculation with high viral titres in the brain. These mice developed severe encephalitis with infiltration of monocytes and CD8+ T cells to the brain. The inflammatory infiltrate followed the detection of the chemokines CCL2, CCL3, CCL4, CCL5, CXCL2, CXCL9 and CXCL-10 in the brain. Notably, the levels of CCL3, CCL4, CCL5 and CXCL9 were higher in A4/72-infected mice, which presented higher numbers of inflammatory cells within the CNS. Pro-inflammatory cytokines, such as interleukins (ILs) IL-1α, IL-1β, IL-6, IL-12β, and tumour necrosis factor (TNF), were also detected in the CNS, and Toll-like receptor (TLR) TLR2, TLR3 and TLR9 genes were also upregulated within the brain of EHV-1-infected mice. However, no expression of interferon-γ (IFN-γ) and IL-12α, which are important for controlling the replication of other herpesviruses, was detected in EHV-1-infected mice. The results show that the activated innate immune mechanisms could not prevent EHV-1 replication within the CNS, but most likely contributed to the extensive neuropathology. The mouse model of viral encephalitis proposed here will also be useful to study the mechanisms underlying extensive neuropathology.
Collapse
Affiliation(s)
- Leonardo P Mesquita
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - Rafael C Costa
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - Dennis A Zanatto
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - Fábio R P Bruhn
- College of Veterinary Medicine, Federal University of Pelotas, Campus Universitário, Capão do Leão, Rio Grande do Sul, RS, 96160-000, Brazil
| | - Laís L R Mesquita
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - M C C S H Lara
- Biological Institute, Av. Conselheiro Rodrigues Alves, 1252, São Paulo, SP, 04014-002, Brazil
| | - E M C Villalobos
- Biological Institute, Av. Conselheiro Rodrigues Alves, 1252, São Paulo, SP, 04014-002, Brazil
| | - Cristina O Massoco
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - Claudia M C Mori
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - Enio Mori
- Pasteur Institute, Av. Paulista, 393, São Paulo, SP, 01311-000, Brazil
| | - Paulo C Maiorka
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| |
Collapse
|
32
|
Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun 2021; 91:740-755. [PMID: 33039660 PMCID: PMC7543714 DOI: 10.1016/j.bbi.2020.10.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Central nervous system (CNS) innate immunity plays essential roles in infections, neurodegenerative diseases, and brain or spinal cord injuries. Astrocytes and microglia are the principal cells that mediate innate immunity in the CNS. Pattern recognition receptors (PRRs), expressed by astrocytes and microglia, sense pathogen-derived or endogenous ligands released by damaged cells and initiate the innate immune response. Toll-like receptors (TLRs) are a well-characterized family of PRRs. The contribution of microglial TLR signaling to CNS pathology has been extensively investigated. Even though astrocytes assume a wide variety of key functions, information about the role of astroglial TLRs in CNS disease and injuries is limited. Because astrocytes display heterogeneity and exhibit phenotypic plasticity depending on the effectors present in the local milieu, they can exert both detrimental and beneficial effects. TLRs are modulators of these paradoxical astroglial properties. The goal of the current review is to highlight the essential roles played by astroglial TLRs in CNS infections, injuries and diseases. We discuss the contribution of astroglial TLRs to host defense as well as the dissemination of viral and bacterial infections in the CNS. We examine the link between astroglial TLRs and the pathogenesis of neurodegenerative diseases and present evidence showing the pivotal influence of astroglial TLR signaling on sterile inflammation in CNS injury. Finally, we define the research questions and areas that warrant further investigations in the context of astrocytes, TLRs, and CNS dysfunction.
Collapse
Affiliation(s)
- Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Robert F. Heary
- Department of Neurological Surgery, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
33
|
Zheng W, Xu Q, Zhang Y, E X, Gao W, Zhang M, Zhai W, Rajkumar RS, Liu Z. Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways. Virol J 2020; 17:192. [PMID: 33298111 PMCID: PMC7726878 DOI: 10.1186/s12985-020-01463-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system. Main body Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved. Conclusions Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Wenjin Zheng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Qing Xu
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China
| | - Yiyuan Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Xiaofei E
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Mogen Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Weijie Zhai
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | | | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
34
|
Toscano ECDB, Sousa LFDC, Lima GK, Mesquita LA, Vilela MC, Rodrigues DH, Ferreira RN, Soriani FM, Campos MA, Kroon EG, Teixeira MM, de Miranda AS, Rachid MA, Teixeira AL. Neuroinflammation is associated with reduced SOCS2 and SOCS3 expression during intracranial HSV-1 infection. Neurosci Lett 2020; 736:135295. [PMID: 32800922 DOI: 10.1016/j.neulet.2020.135295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is the main etiological agent of acute and sporadic encephalitis. Proteins of the suppressor of cytokine signaling (SOCS) family have shown to regulate the inflammation during HSV-1 infection in the brain. However, the effects of SOCS2 and SOCS3 in viral encephalitis remain unclear. The aim of the current study is to investigate the potential association between SOCS2, SOCS3, cytokines, and hippocampal damage, especially neuronal apoptosis, during acute intracranial HSV-1 infection in mice. Male C57BL/6 mice were infected by intracranial route with 102 plaque-forming units (PFU) inoculum of purified HSV-1. At three days post-infection (3 d.p.i.), mice were euthanized and their hippocampi were collected for histopathological analysis, immunohistochemical reaction against active caspase-3 and quantification of SOCS2, SOCS3 and cytokines (tumoral necrosis factor (TNF), interleukin (IL) 1β, IL-6, IL-10; interferon (IFN) -α, IFN-β, IFN-γ) mRNA expression. Infected mice exhibited neuronal loss and hemorrhagic focus in Cornu Ammonis (CA) region. The apoptotic index was higher in infected mice compared to controls. HSV-1 infection was associated with increased hippocampal expression of TNF, IL1-β, IL-6 and IFNα/IFNβ and decreased expression of IL-10, IFN-γ, SOCS2 and SOCS3. Our results suggest that down regulation of SOCS2 and SOCS3 contributes to a pro-inflammatory environment associated with hippocampal damage and neuronal apoptosis during acute HSV-1 infection in mice.
Collapse
Affiliation(s)
| | | | - Graciela Kunrath Lima
- Departamento De Morfologia, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil
| | - Leonardo Antunes Mesquita
- Departamento De Microbiologia, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil
| | | | | | - Rodrigo Novaes Ferreira
- Departamento De Morfologia, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil
| | | | | | - Erna Geessien Kroon
- Departamento De Microbiologia, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Departamento De Bioquímica e Imunologia, Instituto De Ciências Biológicas, Universidade Federal De Juiz De Fora, Brazil
| | - Aline Silva de Miranda
- Departamento De Morfologia, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil
| | - Milene Alvarenga Rachid
- Departamento De Patologia Geral, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil.
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States
| |
Collapse
|
35
|
Yadav S, Verma V, Singh Dhanda R, Yadav M. Insights into the toll-like receptors in sexually transmitted infections. Scand J Immunol 2020; 93:e12954. [PMID: 32762084 DOI: 10.1111/sji.12954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are like soldiers of an innate immune system, which protects vital biological processes against invading pathogens. TLR signalling pathways help in the removal of pathogens and mediate well-established inflammatory processes. However, these processes may also aid in the development or augmentation of an infection or an autoimmune disease. Recent studies have delineated TLR polymorphism's role in the loss of function, making hosts more resistant or vulnerable to the development of an infection. In this review, we have discussed the association of TLRs with sexually transmitted infections (STIs), especially to the pathogen-specific ligands. We have also assessed the impact on TLR downstream signalling and the maintenance of cellular homeostasis during immune responses. Besides, we have discussed the role of TLRs single nucleotide polymorphisms in various STIs. Since TLRs are known to play a part in defence mechanisms and in aiding infections therefore, a thorough understanding of TLRs structure and molecular mechanisms is required to explain how they can influence the outcome of an STI. Such a strategy may lead to the development of novel and useful immunotherapeutic approaches to control pathogen progression and prevent transmission.
Collapse
Affiliation(s)
- Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
36
|
Herpes Simplex Virus Type 1 Interactions with the Interferon System. Int J Mol Sci 2020; 21:ijms21145150. [PMID: 32708188 PMCID: PMC7404291 DOI: 10.3390/ijms21145150] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) system is one of the first lines of defense activated against invading viral pathogens. Upon secretion, IFNs activate a signaling cascade resulting in the production of several interferon stimulated genes (ISGs), which work to limit viral replication and establish an overall anti-viral state. Herpes simplex virus type 1 is a ubiquitous human pathogen that has evolved to downregulate the IFN response and establish lifelong latent infection in sensory neurons of the host. This review will focus on the mechanisms by which the host innate immune system detects invading HSV-1 virions, the subsequent IFN response generated to limit viral infection, and the evasion strategies developed by HSV-1 to evade the immune system and establish latency in the host.
Collapse
|
37
|
Egan K, Hook LM, LaTourette P, Desmond A, Awasthi S, Friedman HM. Vaccines to prevent genital herpes. Transl Res 2020; 220:138-152. [PMID: 32272093 PMCID: PMC7293938 DOI: 10.1016/j.trsl.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Genital herpes increases the risk of acquiring and transmitting Human Immunodeficiency Virus (HIV), is a source of anxiety for many about transmitting infection to intimate partners, and is life-threatening to newborns. A vaccine that prevents genital herpes infection is a high public health priority. An ideal vaccine will prevent both genital lesions and asymptomatic subclinical infection to reduce the risk of inadvertent transmission to partners, will be effective against genital herpes caused by herpes simplex virus types 1 and 2 (HSV-1, HSV-2), and will protect against neonatal herpes. Three phase 3 human trials were performed over the past 20 years that used HSV-2 glycoproteins essential for virus entry as immunogens. None achieved its primary endpoint, although each was partially successful in either delaying onset of infection or protecting a subset of female subjects that were HSV-1 and HSV-2 uninfected against HSV-1 genital infection. The success of future vaccine candidates may depend on improving the predictive value of animal models by requiring vaccines to achieve near-perfect protection in these models and by using the models to better define immune correlates of protection. Many vaccine candidates are under development, including DNA, modified mRNA, protein subunit, killed virus, and attenuated live virus vaccines. Lessons learned from prior vaccine studies and select candidate vaccines are discussed, including a trivalent nucleoside-modified mRNA vaccine that our laboratory is pursuing. We are optimistic that an effective vaccine for prevention of genital herpes will emerge in this decade.
Collapse
Affiliation(s)
- Kevin Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Lauren M Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Philip LaTourette
- University Laboratory Animal Resources, Philadelphia, PA; Department of Pathobiology, School of Veterinary Medicine, Philadelphia, PA
| | - Angela Desmond
- Infectious Disease Division, Department of Pediatrics, The Children's Hospital of Philadelphia; University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
38
|
The Innate Immune Response to Herpes Simplex Virus 1 Infection Is Dampened in the Newborn Brain and Can Be Modulated by Exogenous Interferon Beta To Improve Survival. mBio 2020; 11:mBio.00921-20. [PMID: 32457247 PMCID: PMC7251210 DOI: 10.1128/mbio.00921-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus (HSV) is a ubiquitous human pathogen affecting 50 to 80% of the population in North America and Europe. HSV infection is commonly asymptomatic in the adult population but can result in fatal encephalitis in the newborn. Current treatment with acyclovir has improved mortality in the newborn; however, severe neurologic sequelae are still a major concern following HSV encephalitis. For this reason, there is a critical need to better understand the underlying differences in the immune response between the two age groups that could be used to develop more effective treatments. In this study, we investigated differences in the innate immune response to viral infection in the brains of newborn and adult mice. We found that, similar to humans, newborn mice are more susceptible to HSV infection than the adult. Increased susceptibility was associated with dampened innate immune responses in the newborn brain that could be rescued by administering interferon beta. Newborns are particularly susceptible to severe forms of herpes simplex virus 1 (HSV-1) infection, including encephalitis and multisystemic disseminated disease. The underlying age-dependent differences in the immune response that explain this increased susceptibility relative to the adult population remain largely understudied. Using a murine model of HSV-1 infection, we found that newborn mice are largely susceptible to intracranial and intraperitoneal challenge while adult mice are highly resistant. This age-dependent difference correlated with differential basal-level expression of components of innate immune signaling pathways, which resulted in dampened interferon (IFN) signaling in the newborn brain. To explore the possibility of modulating the IFN response in the newborn brain to recapitulate the adult phenotype, we administered exogenous IFN-β in the context of disseminated HSV-1 infection. IFN-β treatment resulted in significantly increased survival and delayed viral neuroinvasion in the newborn. These effects were associated with changes in the type I IFN response in the brain, reduced viral replication in the periphery, and the stabilization of the blood-brain barrier (BBB). Our study reveals important age-dependent differences in the innate immune response to HSV-1 infection and suggests a contribution of the BBB and the brain parenchyma in mediating the increased susceptibility to HSV-1 infection observed in the newborn. These results could provide the basis for potential new therapeutic strategies for life-threatening HSV-1 infection in newborns.
Collapse
|
39
|
Cai M, Liao Z, Zou X, Xu Z, Wang Y, Li T, Li Y, Ou X, Deng Y, Guo Y, Peng T, Li M. Herpes Simplex Virus 1 UL2 Inhibits the TNF-α-Mediated NF-κB Activity by Interacting With p65/p50. Front Immunol 2020; 11:549. [PMID: 32477319 PMCID: PMC7237644 DOI: 10.3389/fimmu.2020.00549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a large double-stranded DNA virus that encodes at least 80 viral proteins, many of which are involved in the virus-host interaction and are beneficial to the viral survival and reproduction. However, the biological functions of some HSV-1-encoded proteins are not fully understood. Nuclear factor κB (NF-κB) activation is the major antiviral innate response, which can be triggered by various signals induced by cellular receptors from different pathways. Here, we demonstrated that HSV-1 UL2 protein could antagonize the tumor necrosis factor α (TNF-α)-mediated NF-κB activation. Co-immunoprecipitation assays showed that UL2 could interact with the NF-κB subunits p65 and p50, which also revealed the region of amino acids 9 to 17 of UL2 could suppress the NF-κB activation and interact with p65 and p50, and UL2 bound to the immunoglobulin-like plexin transcription factor functional domain of p65. However, UL2 did not affect the formation of p65/p50 dimerization and their nuclear localizations. Yet, UL2 was demonstrated to inhibit the NF-κB activity by attenuating TNF-α-induced p65 phosphorylation at Ser536 and therefore decreasing the expression of downstream inflammatory chemokine interleukin 8. Taken together, the attenuation of NF-κB activation by UL2 may contribute to the escape of host's antiviral innate immunity for HSV-1 during its infection.
Collapse
Affiliation(s)
- Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zongmin Liao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Department of Scientific Research and Education, Yuebei People's Hospital, Shaoguan, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tong Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yangxi Deng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yingjie Guo
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.,South China Vaccine Corporation Limited, Guangzhou Science Park, Guangzhou, China
| | - Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Marcocci ME, Napoletani G, Protto V, Kolesova O, Piacentini R, Li Puma DD, Lomonte P, Grassi C, Palamara AT, De Chiara G. Herpes Simplex Virus-1 in the Brain: The Dark Side of a Sneaky Infection. Trends Microbiol 2020; 28:808-820. [PMID: 32386801 DOI: 10.1016/j.tim.2020.03.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Herpes simplex virus-1 (HSV-1) establishes latency preferentially in sensory neurons of peripheral ganglia. A variety of stresses can induce recurrent reactivations of the virus, which spreads and then actively replicates to the site of primary infection (usually the lips or eyes). Viral particles produced following reactivation can also reach the brain, causing a rare but severe form of diffuse acute infection, namely herpes simplex encephalitis. Most of the time, this infection is clinically asymptomatic. However, it was recently correlated with the production and accumulation of neuropathological biomarkers of Alzheimer's disease. In this review we discuss the different cellular and molecular mechanisms underlying the acute and long-term damage caused by HSV-1 infection in the brain.
Collapse
Affiliation(s)
- Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Giorgia Napoletani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Virginia Protto
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Olga Kolesova
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrick Lomonte
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), Lyon, France
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; San Raffaele Pisana, IRCCS, Telematic University, Rome, Italy.
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
41
|
Bibert S, Piret J, Quinodoz M, Collinet E, Zoete V, Michielin O, Menasria R, Meylan P, Bihl T, Erard V, Fellmann F, Rivolta C, Boivin G, Bochud PY. Herpes simplex encephalitis in adult patients with MASP-2 deficiency. PLoS Pathog 2019; 15:e1008168. [PMID: 31869396 PMCID: PMC6944389 DOI: 10.1371/journal.ppat.1008168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/06/2020] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
We report here two cases of Herpes simplex virus encephalitis (HSE) in adult patients with very rare, previously uncharacterized, non synonymous heterozygous G634R and R203W substitution in mannan-binding lectin serine protease 2 (MASP2), a gene encoding a key protease of the lectin pathway of the complement system. None of the 2 patients had variants in genes involved in the TLR3-interferon signaling pathway. Both MASP2 variants induced functional defects in vitro, including a reduced (R203W) or abolished (G634R) protein secretion, a lost capability to cleave MASP-2 precursor into its active form (G634R) and an in vivo reduced antiviral activity (G634R). In a murine model of HSE, animals deficient in mannose binding lectins (MBL, the main pattern recognition molecule associated with MASP-2) had a decreased survival rate and an increased brain burden of HSV-1 compared to WT C57BL/6J mice. Altogether, these data suggest that MASP-2 deficiency can increase susceptibility to adult HSE. Human herpes virus type 1 (HSV-1) infects a large number of individuals during their life, with manifestations usually limited to mild and self-limiting inflammation of the oral mucosa (cold sore). However, HSV-1 can cause a very severe disease of the brain called Herpes simplex encephalitis (HSE) in 1 out of 250’000–500’000 individuals per year. The reasons why HSV-1 can cause such a devastating disease in a very limited number of individuals are unknown. Increasing evidence suggests that susceptibility to HSE in children can results from genetic variations in the immune system, in particular in a viral detection pathway called the Toll-like receptor 3 (TLR3)–interferon (IFN) axis. Fewer data are available to explain HSE in adult patients. Here, we describe two adult patients with HSE who carry mutations in a gene called mannan-binding lectin serine protease 2 (MASP2), which is part of an immune pathway different from the TLR3-IFN axis, called the lectin pathway of the complement system. We demonstrate that MASP2 mutations induce functional defects in immune defense against HSV-1 that prevent viral replication. Mice deficient in the lectin pathway have higher mortality compared to wild-type mice after HSV-1 infection. Altogether, our study suggests that susceptibility to HSE in adults relies of immune deficiencies that are different from those causing HSE in children.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jocelyne Piret
- Research center in Infectious Diseases, CHU of Quebec and Laval University, Quebec city, Canada
| | - Mathieu Quinodoz
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne Switzerland
| | - Emilie Collinet
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer research, University of Lausanne, Lausanne, Switzerland
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Quartier Sorge, Génopode, Lausanne, Switzerland
| | - Olivier Michielin
- Ludwig Institute for Cancer research, University of Lausanne, Lausanne, Switzerland
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Quartier Sorge, Génopode, Lausanne, Switzerland
- Department of Oncology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rafik Menasria
- Research center in Infectious Diseases, CHU of Quebec and Laval University, Quebec city, Canada
| | - Pascal Meylan
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Titus Bihl
- Canton Hospital of Fribourg, Fribourg, Switzerland
| | | | - Florence Fellmann
- Department of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Guy Boivin
- Research center in Infectious Diseases, CHU of Quebec and Laval University, Quebec city, Canada
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Zyzak J, Mitkiewicz M, Leszczyńska E, Reniewicz P, Moynagh PN, Siednienko J. HSV-1/TLR9-Mediated IFNβ and TNFα Induction Is Mal-Dependent in Macrophages. J Innate Immun 2019; 12:387-398. [PMID: 31851971 DOI: 10.1159/000504542] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/31/2019] [Indexed: 11/19/2022] Open
Abstract
Innate immune response is a universal mechanism against invading pathogens. Toll-like receptors (TLRs), being part of a first line of defense, are responsible for detecting a variety of microorganisms. Among them TLR9, which is localized in endosomes, acts as a sensor for unmethylated CpG motifs present in bacteria, DNA viruses (e.g., HSV-1), or fungi. TLRs differ from one another by the use of accessory proteins. MyD88 adapter-like (Mal) adapter molecule is considered a positive regulator of TLR2- and TLR4-dependent pathways. It has been reported that this adapter may also negatively control signal transduction induced by TLR3 anchored in the endosome membrane. So far, the role of Mal adapter protein in the TLR9 signaling pathways has not been clarified. We show for the first time that Mal is engaged in TLR9-de-pendent expression of genes encoding IFNβ and TNFα in HSV-1-infected or CpG-C-treated macrophages and requires a noncanonical NF-κB pathway. Moreover, using inhibitor of ERK1/2 we confirmed involvement of these kinases in TLR9-dependent induction of IFNβ and TNFα. Our study points to a new role of Mal in TLR9 signaling through a hitherto unknown mechanism whereby lack of Mal specifically impairs ERK1/2-mediated induction of noncanonical NF-κB pathway and concomitant IFNβ and TNFα production.
Collapse
Affiliation(s)
- Joanna Zyzak
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Małgorzata Mitkiewicz
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Ewa Leszczyńska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Patryk Reniewicz
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Paul N Moynagh
- Institute of Immunology, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Jakub Siednienko
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland, .,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland,
| |
Collapse
|
43
|
Wang Y, Jia J, Wang Y, Li F, Song X, Qin S, Wang Z, Kitazato K, Wang Y. Roles of HSV-1 infection-induced microglial immune responses in CNS diseases: friends or foes? Crit Rev Microbiol 2019; 45:581-594. [PMID: 31512533 DOI: 10.1080/1040841x.2019.1660615] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microglia, as brain-resident macrophages, are the first line of defense against brain invading pathogens. Further, their dysfunction has been recognized to be closely associated with mounting CNS diseases. Of note, chronic HSV-1 infection leads to the persistent activation of microglia, which elicit a comprehensive response by generating certain factors with neurotoxic and neuroprotective effects. CNS infection with HSV-1 results in herpes simplex encephalitis and herpes simplex keratitis. Microglial immune response plays a crucial role in the development of these diseases. Moreover, HSV-1 infection is strongly associated with several CNS diseases, especially Alzheimer's disease and schizophrenia. These CNS diseases can be effectively ameliorated by eliciting an appropriate immune response, such as inhibition of microglial proliferation and activation. Therefore, it is crucial to reassess the positive and negative roles of microglia in HSV-1 CNS infection for a more comprehensive and detailed understanding of the relationship between microglia and CNS diseases. Hence, the present review focuses on the dual roles of microglia in mediating HSV-1 CNS infection, as well as on the strategy of targeting microglia to ameliorate CNS diseases. Further research in this field can help comprehensively elucidate the dual role of the microglial immune response in HSV-1 CNS infection, providing a theoretical basis for identifying therapeutic targets against overactive microglia in CNS diseases and HSV-1 infection.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| |
Collapse
|
44
|
Zeng Y, Liang J, Weng C, Lu Z, Zhou Y. β-Arrestin 2 protects against neurological function defects in HSV-1-induced encephalitis mice. J Med Virol 2019; 92:78-85. [PMID: 31469177 DOI: 10.1002/jmv.25578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
The pathogenesis of herpes simplex encephalitis (HSE) needs to be fully explored. β-Arrestin 2 (Arrb2) is highly expressed in brain tissues and plays a key role in the regulation of systemic immune reactions by modulating various signaling pathways. However, the expression of Arrb2 in microglial cells and its influence on HSE prognosis is still undefined. We explore the pathophysiological effect of Arrb2 in the brain using experimental HSE mice. The expression of Arrb2 in microglia was decreased significantly 48 hours following HSV-1 infection. Arrb2 overexpression transgenic (TG) mice had a significantly lower mortality and survival rate was improved by 40% compared to wild-type mice. Arrb2 suppressed the generation of proinflammatory cytokines TNF-α and IL-6 and increased anti-inflammatory cytokines IL-10 and IL-4 expression. Arrb2 also inhibited the activation of the transcription factor NF-κB in microglial cells. Arrb2 TG mice attenuated the blood-brain barrier breakdown and relieved cerebral edema, meanwhile, Arrb2 improved mice neurological function compared with wild-type mice. Overall, Arrb2 favored microglia of the M2 phenotype, attenuated brain proinflammatory responses, protected the blood vessel wall integrity, reduced HSV-1-induced neurological impairment, and improved the survival rate in HSE mice.
Collapse
Affiliation(s)
- Yanping Zeng
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jingjing Liang
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Chao Weng
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yu Zhou
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Fulham MA, Ratna A, Gerstein RM, Kurt-Jones EA, Mandrekar P. Alcohol-induced adipose tissue macrophage phenotypic switching is independent of myeloid Toll-like receptor 4 expression. Am J Physiol Cell Physiol 2019; 317:C687-C700. [PMID: 31268779 DOI: 10.1152/ajpcell.00276.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alcoholic liver disease results from a combination of immune and metabolic pathogenic events. In addition to liver injury, chronic alcohol consumption also causes adipose tissue inflammation. The specific immune mechanisms that drive this process are unknown. Here, we sought to determine the role of the innate immune receptor Toll-like receptor 4 (TLR4) in alcohol-induced adipose tissue inflammation. Using a model of chronic, multiple-binge alcohol exposure, we showed that alcohol-mediated accumulation of proinflammatory adipose tissue macrophages was absent in global TLR4 knockout mice. Proinflammatory macrophage accumulation did not depend on macrophage TLR4 expression; LysMCre-driven deletion of Tlr4 from myeloid cells did not affect circulating endotoxin or the accumulation of M1 macrophages in adipose tissue following alcohol exposure. Proinflammatory cytokine/chemokine production in the adipose stromal vascular fraction also occurred independently of TLR4. Finally, the levels of other adipose immune cells, such as dendritic cells, neutrophils, B cells, and T cells, were modulated by chronic, multiple-binge alcohol and the presence of TLR4. Together, these data indicate that TLR4 expression on cells, other than myeloid cells, is important for the alcohol-induced increase in proinflammatory adipose tissue macrophages.
Collapse
Affiliation(s)
- Melissa A Fulham
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts.,Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anuradha Ratna
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Rachel M Gerstein
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Evelyn A Kurt-Jones
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, Massachusetts.,Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Pranoti Mandrekar
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts.,Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.,Program in Innate Immunity, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
46
|
Jahanban‐Esfahlan R, Seidi K, Majidinia M, Karimian A, Yousefi B, Nabavi SM, Astani A, Berindan‐Neagoe I, Gulei D, Fallarino F, Gargaro M, Manni G, Pirro M, Xu S, Sadeghi M, Nabavi SF, Shirooie S. Toll‐like receptors as novel therapeutic targets for herpes simplex virus infection. Rev Med Virol 2019; 29:e2048. [DOI: 10.1002/rmv.2048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Rana Jahanban‐Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Khaled Seidi
- Immunology Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical Sciences Urmia Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical Sciences Babol Iran
| | - Bahman Yousefi
- Molecular Medicine Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Science Tabriz Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| | - Akram Astani
- Department of MicrobiologyShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Ioana Berindan‐Neagoe
- MEDFUTURE ‐Research Center for Advanced Medicine“Iuliu‐Hatieganu” University of Medicine and Pharmacy Cluj‐Napoca Romania
- Research Centerfor Functional Genomics, Biomedicine and Translational Medicine“Iuliu‐Hatieganu” University of Medicine and Pharmacy Cluj‐Napoca Romania
- Department of Functional Genomics and Experimental PathologyThe Oncology Institute “Prof. Dr. Ion Chiricuţă” Cluj‐Napoca Romania
| | - Diana Gulei
- MEDFUTURE ‐Research Center for Advanced Medicine“Iuliu‐Hatieganu” University of Medicine and Pharmacy Cluj‐Napoca Romania
| | | | - Marco Gargaro
- Department of Experimental MedicineUniversity of Perugia Italy
| | - Giorgia Manni
- Department of Experimental MedicineUniversity of Perugia Italy
| | - Matteo Pirro
- Department of MedicineUniversity of Perugia Italy
| | - Suowen Xu
- Aab Cardiovascular Research InstituteUniversity of Rochester Rochester NY USA
| | - Mahmoud Sadeghi
- Department of Transplantation ImmunologyUniversity of Heidelberg Heidelberg Germany
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| | - Samira Shirooie
- Department of Pharmacology, Faculty of PharmacyKermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
47
|
D'Aiuto L, Bloom DC, Naciri JN, Smith A, Edwards TG, McClain L, Callio JA, Jessup M, Wood J, Chowdari K, Demers M, Abrahamson EE, Ikonomovic MD, Viggiano L, De Zio R, Watkins S, Kinchington PR, Nimgaonkar VL. Modeling Herpes Simplex Virus 1 Infections in Human Central Nervous System Neuronal Cells Using Two- and Three-Dimensional Cultures Derived from Induced Pluripotent Stem Cells. J Virol 2019; 93:e00111-19. [PMID: 30787148 PMCID: PMC6475775 DOI: 10.1128/jvi.00111-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latency in both peripheral nerve ganglia and the central nervous system (CNS). The outcomes of acute and latent infections in these different anatomic sites appear to be distinct. It is becoming clear that many of the existing culture models using animal primary neurons to investigate HSV-1 infection of the CNS are limited and not ideal, and most do not recapitulate features of CNS neurons. Human induced pluripotent stem cells (hiPSCs) and neurons derived from them are documented as tools to study aspects of neuropathogenesis, but few have focused on modeling infections of the CNS. Here, we characterize functional two-dimensional (2D) CNS-like neuron cultures and three-dimensional (3D) brain organoids made from hiPSCs to model HSV-1-human-CNS interactions. Our results show that (i) hiPSC-derived CNS neurons are permissive for HSV-1 infection; (ii) a quiescent state exhibiting key landmarks of HSV-1 latency described in animal models can be established in hiPSC-derived CNS neurons; (iii) the complex laminar structure of the organoids can be efficiently infected with HSV, with virus being transported from the periphery to the central layers of the organoid; and (iv) the organoids support reactivation of HSV-1, albeit less efficiently than 2D cultures. Collectively, our results indicate that hiPSC-derived neuronal platforms, especially 3D organoids, offer an extraordinary opportunity for modeling the interaction of HSV-1 with the complex cellular and architectural structure of the human CNS.IMPORTANCE This study employed human induced pluripotent stem cells (hiPSCs) to model acute and latent HSV-1 infections in two-dimensional (2D) and three-dimensional (3D) CNS neuronal cultures. We successfully established acute HSV-1 infections and infections showing features of latency. HSV-1 infection of the 3D organoids was able to spread from the outer surface of the organoid and was transported to the interior lamina, providing a model to study HSV-1 trafficking through complex neuronal tissue structures. HSV-1 could be reactivated in both culture systems; though, in contrast to 2D cultures, it appeared to be more difficult to reactivate HSV-1 in 3D cultures, potentially paralleling the low efficiency of HSV-1 reactivation in the CNS of animal models. The reactivation events were accompanied by dramatic neuronal morphological changes and cell-cell fusion. Together, our results provide substantive evidence of the suitability of hiPSC-based neuronal platforms to model HSV-1-CNS interactions in a human context.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jennifer N Naciri
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Adam Smith
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Terri G Edwards
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lora McClain
- Magee-Women's Research Institute, Pittsburgh, Pennsylvania, USA
| | - Jason A Callio
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Morgan Jessup
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Kodavali Chowdari
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Matthew Demers
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Luigi Viggiano
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Roberta De Zio
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari, Bari, Italy
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
48
|
Agelidis A, Koujah L, Suryawanshi R, Yadavalli T, Mishra YK, Adelung R, Shukla D. An Intra-Vaginal Zinc Oxide Tetrapod Nanoparticles (ZOTEN) and Genital Herpesvirus Cocktail Can Provide a Novel Platform for Live Virus Vaccine. Front Immunol 2019; 10:500. [PMID: 30949169 PMCID: PMC6435576 DOI: 10.3389/fimmu.2019.00500] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus type-2 (HSV-2) is a common cause of genital infections throughout the world. Currently no prophylactic vaccine or therapeutic cure exists against the virus that establishes a latent infection for the life of the host. Intravaginal microbivac is a developing out-of-the-box strategy that combines instant microbicidal effects with future vaccine-like benefits. We have recently shown that our uniquely designed zinc oxide tetrapod nanoparticles (ZOTEN) show strong microbivac efficacy against HSV-2 infection in a murine model of genital infection. In our attempts to further understand the antiviral and immune bolstering effects of ZOTEN microbivac and to develop ZOTEN as a platform for future live virus vaccines, we tested a ZOTEN/HSV-2 cocktail and found that prior incubation of HSV-2 with ZOTEN inhibits the ability of the virus to infect vaginal tissue in female Balb/c mice and blocks virus shedding as judged by plaque assays. Quite interestingly, the ZOTEN-neutralized virions elicit a local immune response that is highly comparable with the HSV-2 infection alone with reduced inflammation and clinical manifestations of disease. Information provided by our study will pave the way for the further development of ZOTEN as a microbivac and a future platform for live virus vaccines.
Collapse
Affiliation(s)
- Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL, United States
| | - Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL, United States
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States
| | | | - Rainer Adelung
- Institute for Materials Science, Kiel University, Kiel, Germany
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL, United States
| |
Collapse
|
49
|
State of Astrocytes in the Mice Brain under Conditions of Herpes Viral Infection and Modeled Stroke. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Mancini M, Caignard G, Charbonneau B, Dumaine A, Wu N, Leiva-Torres GA, Gerondakis S, Pearson A, Qureshi ST, Sladek R, Vidal SM. Rel-Dependent Immune and Central Nervous System Mechanisms Control Viral Replication and Inflammation during Mouse Herpes Simplex Encephalitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:1479-1493. [DOI: 10.4049/jimmunol.1800063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
|