1
|
Parsons R. Discovery of the PTEN Tumor Suppressor and Its Connection to the PI3K and AKT Oncogenes. Cold Spring Harb Perspect Med 2020; 10:a036129. [PMID: 31932465 PMCID: PMC7397838 DOI: 10.1101/cshperspect.a036129] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN (phosphatase and tensin homolog on chromosome 10) was discovered over 20 years ago in 1997 and linked to the phosphatidylinositol 3-kinase (PI3K) and AKT oncogenes the following year. The discovery of PTEN emerged from the linked concepts of oncogenes and tumor suppressor genes that cause and prevent cancer and the fields of tumor viruses and human cancer genetics from which these two concepts arose. While much has been learned since, the initial discovery and characterization, including the discovery that PTEN is a regulator of PI3K and AKT, provide the foundation on which we continue to build our knowledge. To provide the context in which these cancer genes were discovered, background information that led to their discovery will also be discussed, which will hopefully be a useful guide for readers seeking to build on the work of others.
Collapse
Affiliation(s)
- Ramon Parsons
- Department of Oncological Sciences, Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
2
|
Wang Y, Liu Y, Deng W, Fu F, Yan S, Yang H, Liu R, Geng J, Xu J, Wu Y, Ma J, Zhou J, Liu N, Jin Y, Xia R, Elias N, Lee RJ, Feldman AS, Blute ML, Colvin RB, Wu CL, Miao Y. Viral integration in BK polyomavirus-associated urothelial carcinoma in renal transplant recipients: multistage carcinogenesis revealed by next-generation virome capture sequencing. Oncogene 2020; 39:5734-5742. [PMID: 32724161 DOI: 10.1038/s41388-020-01398-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
BK polyomavirus (BKPyV)-associated cancer after transplantation has gained increasing attention. However, the role of BKPyV integration on oncogenesis is still unclear. In this study, next-generation virome capture sequencing of primary and metastatic tumors were performed in three patients with BKPyV-associated urothelial carcinoma after renal transplantation. As a result, a total of 332 viral integration sites were identified in the six tumors. Integration of BKPyV in both primary and metastatic tumors followed the mechanism of microhomology-mediated end joining mostly, since microhomologies between human and BKPyV genomes were significantly enriched in flanking regions of 84% of the integration sites. Viral DNA breakpoints were nonrandom and tended to assemble in large T gene, small T gene and viral protein 2 gene. There were three, one and one consensus integration sites between the primary and metastatic tumors, which affected LINC01924, eIF3c, and NEIL2 genes in the three cases respectively. Thus, we concluded that integration of BKPyV was a continuous process occurring in both primary and metastatic tumors, generating heterogenous tumor cell populations. Through this ongoing process, certain cell populations might have gained growth advantage or metastatic potential, as a result of viral integration either affecting the cellular genes where the viral DNA integrated to or altering the expression or function of the viral genes.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanna Liu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Deng
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangxiang Fu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Susha Yan
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rumin Liu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Xu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihan Wu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | - Na Liu
- Mygenostics Co., Beijing, China
| | - Yu Jin
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Renfei Xia
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nahel Elias
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard J Lee
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam S Feldman
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael L Blute
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert B Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Yun Miao
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
McNees AL, Harrigal LJ, Kelly A, Minard CG, Wong C, Butel JS. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40. PLoS One 2018; 13:e0192799. [PMID: 29432481 PMCID: PMC5809058 DOI: 10.1371/journal.pone.0192799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40-human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. RESULTS SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. CONCLUSION These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. SIGNIFICANCE Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human lymphocytes.
Collapse
Affiliation(s)
- Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay J. Harrigal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aoife Kelly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles G. Minard
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
4
|
Zhuang Y, Nguyen HT, Burow ME, Zhuo Y, El-Dahr SS, Yao X, Cao S, Flemington EK, Nephew KP, Fang F, Collins-Burow B, Rhodes LV, Yu Q, Jayawickramarajah J, Shan B. Elevated expression of long intergenic non-coding RNA HOTAIR in a basal-like variant of MCF-7 breast cancer cells. Mol Carcinog 2014; 54:1656-67. [PMID: 25328122 DOI: 10.1002/mc.22237] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/29/2014] [Accepted: 09/11/2014] [Indexed: 01/12/2023]
Abstract
Epigenetic regulation of gene expression is critical to phenotypic maintenance and transition of human breast cancer cells. HOX antisense intergenic RNA (HOTAIR) is a long intergenic non-coding RNA that epigenetically represses gene expression via recruitment of enhancer of zeste homolog 2 (EZH2), a histone methyltransferase. Elevated expression of HOTAIR promotes progression of breast cancer. In the current study we examined the expression and function of HOTAIR in MCF-7-TNR cells, a derivative of the luminal-like breast cancer cell line MCF-7 that acquired resistance to TNF-α-induced cell death. The expression of HOTAIR, markers of the luminal-like and basal-like subtypes, and growth were compared between MCF-7 and MCF-7-TNR cells. These variables were further assessed upon inhibition of HOTAIR, EZH2, p38 MAPK, and SRC kinase in MCF-7-TNR cells. When compared with MCF-7 cells, MCF-7-TNR cells exhibited an increase in the expression of HOTAIR, which correlated with characteristics of a luminal-like to basal-like transition as evidenced by dysregulated gene expression and accelerated growth. MCF-7-TNR cells exhibited reduced suppressive histone H3 lysine27 trimethylation on the HOTAIR promoter. Inhibition of HOTAIR and EZH2 attenuated the luminal-like to basal-like transition in terms of gene expression and growth in MCF-7-TNR cells. Inhibition of p38 and SRC diminished HOTAIR expression and the basal-like phenotype in MCF-7-TNR cells. HOTAIR was robustly expressed in the native basal-like breast cancer cells and inhibition of HOTAIR reduced the basal-like gene expression and growth. Our findings suggest HOTAIR-mediated regulation of gene expression and growth associated with the basal-like phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Yan Zhuang
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hong T Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ying Zhuo
- Kadlec Regional Medical Center, Richland, Washington
| | - Samir S El-Dahr
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Xiao Yao
- Kadlec Regional Medical Center, Richland, Washington
| | - Subing Cao
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kenneth P Nephew
- Department of Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Fang Fang
- Department of Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | | | - Lyndsay V Rhodes
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Qiang Yu
- Genome Institute of Singapore, Singapore, Singapore
| | | | - Bin Shan
- Washington State University at Spokane, Spokane, Washington
| |
Collapse
|
5
|
Delbue S, Ferrante P, Provenzano M. Polyomavirus BK and prostate cancer: an unworthy scientific effort? Oncoscience 2014; 1:296-303. [PMID: 25594022 PMCID: PMC4278296 DOI: 10.18632/oncoscience.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
The Polyomavirus BK (BKV) has been proposed to be one of the possible co-factors in the genesis of prostate cancer (PCa) but, so far, the only convincing suggestion is the hypothesis of a “hit and run” carcinogenic mechanism induced by the virus at early stages of this disease. To support this hypothesis we conducted an updated systematic review on previous studies regarding the association between BKV and PCa, in order to interpret the contrasting results and to explore whether there might be a significant virus-disease link. This updated analysis provides evidence for a significant link between BKV expression and PCa development, particularly between the BKV infection and the cancer risk. Forthcoming scientific efforts that take cue from this study might overcome the atavistic and fruitless debate regarding the BKV-PCa association.
Collapse
Affiliation(s)
- Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Italy
| | - Maurizio Provenzano
- Oncology Unit, Division of Urology, University Hospital of Zurich, Switzerland
| |
Collapse
|
6
|
Zhang S, Sroller V, Zanwar P, Chen CJ, Halvorson SJ, Ajami NJ, Hecksel CW, Swain JL, Wong C, Sullivan CS, Butel JS. Viral microRNA effects on pathogenesis of polyomavirus SV40 infections in syrian golden hamsters. PLoS Pathog 2014; 10:e1003912. [PMID: 24516384 PMCID: PMC3916418 DOI: 10.1371/journal.ppat.1003912] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/18/2013] [Indexed: 12/05/2022] Open
Abstract
Effects of polyomavirus SV40 microRNA on pathogenesis of viral infections in vivo are not known. Syrian golden hamsters are the small animal model for studies of SV40. We report here effects of SV40 microRNA and influence of the structure of the regulatory region on dynamics of SV40 DNA levels in vivo. Outbred young adult hamsters were inoculated by the intracardiac route with 1×107 plaque-forming units of four different variants of SV40. Infected animals were sacrificed from 3 to 270 days postinfection and viral DNA loads in different tissues determined by quantitative real-time polymerase chain reaction assays. All SV40 strains displayed frequent establishment of persistent infections and slow viral clearance. SV40 had a broad tissue tropism, with infected tissues including liver, kidney, spleen, lung, and brain. Liver and kidney contained higher viral DNA loads than other tissues; kidneys were the preferred site for long-term persistent infection although detectable virus was also retained in livers. Expression of SV40 microRNA was demonstrated in wild-type SV40-infected tissues. MicroRNA-negative mutant viruses consistently produced higher viral DNA loads than wild-type SV40 in both liver and kidney. Viruses with complex regulatory regions displayed modestly higher viral DNA loads in the kidney than those with simple regulatory regions. Early viral transcripts were detected at higher levels than late transcripts in liver and kidney. Infectious virus was detected infrequently. There was limited evidence of increased clearance of microRNA-deficient viruses. Wild-type and microRNA-negative mutants of SV40 showed similar rates of transformation of mouse cells in vitro and tumor induction in weanling hamsters in vivo. This report identified broad tissue tropism for SV40 in vivo in hamsters and provides the first evidence of expression and function of SV40 microRNA in vivo. Viral microRNA dampened viral DNA levels in tissues infected by SV40 strains with simple or complex regulatory regions. The recent discovery of virally encoded microRNAs (miRNAs) raises the possibility of additional regulatory processes being involved in viral replication, immune recognition, and host cell survival. In this study, we sought to characterize the effect of SV40-encoded miRNAs and the structure of the viral regulatory region on infections in outbred Syrian golden hamsters. Results revealed that SV40 has a wide tissue tropism, including liver, kidney, spleen, lung, and brain, with kidney the preferred site for long-term persistent infection. Significant increases in tissue-associated viral DNA loads were observed with miRNA-negative mutant strains, whereas the presence of SV40 miRNAs had no effect on tumor induction and little effect on viral clearance. Our results provide the first evidence for SV40 miRNA expression and function in an in vivo animal model and highlight the complexity of regulation of SV40 viral replication and persistent infections.
Collapse
Affiliation(s)
- Shaojie Zhang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vojtech Sroller
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Preeti Zanwar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chun Jung Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Steven J. Halvorson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nadim J. Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Corey W. Hecksel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jody L. Swain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christopher S. Sullivan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Brugge J. Joan Brugge: running rings around cancer. Interview by Caitlin Sedwick. J Cell Biol 2010; 189:922-3. [PMID: 20548098 PMCID: PMC2886354 DOI: 10.1083/jcb.1896pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Brugge has devoted her career to uncovering how perturbations in normal cellular processes give rise to cancer.
Collapse
|
8
|
Bergonzini V, Salata C, Calistri A, Parolin C, Palù G. View and review on viral oncology research. Infect Agent Cancer 2010; 5:11. [PMID: 20497566 PMCID: PMC2881002 DOI: 10.1186/1750-9378-5-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 05/24/2010] [Indexed: 01/05/2023] Open
Abstract
To date, almost one and a half million cases of cancer are diagnosed every year in the US and nearly 560,000 Americans are expected to die of cancer in the current year, more than 1,500 people a day (data from the American Cancer Society at http://www.cancer.org/). According to the World Health Organization (WHO), roughly 20% of all cancers worldwide results from chronic infections; in particular, up to 15% of human cancers is characterized by a viral aetiology with higher incidence in Developing Countries. The link between viruses and cancer was one of the pivotal discoveries in cancer research during the past Century. Indeed, the infectious nature of specific tumors has important implications in terms of their prevention, diagnosis, and therapy. In the 21st Century, the research on viral oncology field continues to be vigorous, with new significant and original studies on viral oncogenesis and translational research from basic virology to treatment of cancer. This review will cover different viral oncology aspects, starting from the history of viral oncology and moving to the peculiar features of oncogenic RNA and DNA viruses, with a special focus on human pathogens.
Collapse
Affiliation(s)
- Valeria Bergonzini
- Department of Histology, Microbiology and Medical Biotechnologies, Division of Microbiology and Virology, University of Padova, Via A Gabelli 63, Padova 35121, Italy
| | - Cristiano Salata
- Department of Histology, Microbiology and Medical Biotechnologies, Division of Microbiology and Virology, University of Padova, Via A Gabelli 63, Padova 35121, Italy
| | - Arianna Calistri
- Department of Histology, Microbiology and Medical Biotechnologies, Division of Microbiology and Virology, University of Padova, Via A Gabelli 63, Padova 35121, Italy
| | - Cristina Parolin
- Department of Biology, University of Padova, Via Ugo Bassi 58B, Padova 35123, Italy
| | - Giorgio Palù
- Department of Histology, Microbiology and Medical Biotechnologies, Division of Microbiology and Virology, University of Padova, Via A Gabelli 63, Padova 35121, Italy
| |
Collapse
|
9
|
The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 2009; 384:285-93. [DOI: 10.1016/j.virol.2008.09.034] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/30/2008] [Indexed: 11/21/2022]
|
10
|
How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 2009; 384:274-84. [PMID: 19150725 DOI: 10.1016/j.virol.2008.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
The review recounts the history of how the study of the DNA tumor viruses including polyoma, SV40 and Adenovirus brought key insights into the structure and function of the Retinoblastoma protein (Rb). Knudsen's model of the two-hit hypothesis to explain patterns of hereditary and sporadic retinoblastoma provided the foundation for the tumor suppressor hypothesis that ultimately led to the cloning of the Rb gene. The discovery that SV40 and Adenovirus could cause tumors when inoculated into animals was startling not only because SV40 had contaminated the poliovirus vaccine and Adenovirus was a common cause of viral induced pneumonia but also because they provided an opportunity to study the genetics and biochemistry of cancer. Studies of mutant forms of these viruses led to the identification of the E1A and Large T antigen (LT) oncogenes and their small transforming elements including the Adenovirus Conserved Regions (CR), the SV40 J domain and the LxCxE motif. The immunoprecipitation studies that initially revealed the size and ultimately the identity of cellular proteins that could bind to these transforming elements were enabled by the widespread development of highly specific monoclonal antibodies against E1A and LT. The identification of Rb as an E1A and LT interacting protein quickly led to the cloning of p107, p130, p300, CBP, p400 and TRRAP and the concept that viral transformation was due, at least in part, to the perturbation of the function of normal cellular proteins. In addition, studies on the ability of E1A to transactivate the Adenovirus E2 promoter led to the cloning of the heterodimeric E2F and DP transcription factor and recognition that Rb repressed transcription of cellular genes required for cell cycle entry and progression. More recent studies have revealed how E1A and LT combine the activity of Rb and the other cellular associated proteins to perturb expression of many genes during viral infection and tumor formation.
Collapse
|
11
|
Pipas JM. SV40: Cell transformation and tumorigenesis. Virology 2008; 384:294-303. [PMID: 19070883 DOI: 10.1016/j.virol.2008.11.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The story of SV40-induced tumorigenesis and cellular transformation is intimately entwined with the development of modern molecular biology. Because SV40 and other viruses have small genomes and are relatively easy to manipulate in the laboratory, they offered tractable systems for molecular analysis. Thus, many of the early efforts to understand how eukaryotes replicate their DNA, regulate expression of their genes, and translate mRNA were focused on viral systems. The discovery that SV40 induces tumors in certain laboratory animals and transforms many types of cultured cells offered the first opportunity to explore the molecular basis for cancer. The goal of this article is to highlight some of the experiments that have led to our current view of SV40-induced transformation and to provide some context as to how they contributed to basic research in molecular biology and to our understanding of cancer.
Collapse
Affiliation(s)
- James M Pipas
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
12
|
Abstract
In the century since its inception, the field of tumor virology has provided groundbreaking insights into the causes of human cancer. Peyton Rous founded this scientific field in 1911 by discovering an avian virus that induced tumors in chickens; however, it took 40 years for the scientific community to comprehend the effect of this seminal finding. Later identification of mammalian tumor viruses in the 1930s by Richard Shope and John Bittner, and in the 1950s by Ludwik Gross, sparked the first intense interest in tumor virology by suggesting the possibility of a similar causal role for viruses in human cancers. This change in attitude opened the door in the 1960s and 1970s for the discovery of the first human tumor viruses--EBV, hepatitis B virus, and the papillomaviruses. Such knowledge proved instrumental to the development of the first cancer vaccines against cancers having an infectious etiology. Tumor virologists additionally recognized that viruses could serve as powerful discovery tools, leading to revolutionary breakthroughs in the 1970s and 1980s that included the concept of the oncogene, the identification of the p53 tumor suppressor, and the function of the retinoblastoma tumor suppressor. The subsequent availability of more advanced molecular technologies paved the way in the 1980s and 1990s for the identification of additional human tumor viruses--human T-cell leukemia virus type 1, hepatitis C virus, and Kaposi's sarcoma virus. In fact, current estimates suggest that viruses are involved in 15% to 20% of human cancers worldwide. Thus, viruses not only have been shown to represent etiologic agents for many human cancers but have also served as tools to reveal mechanisms that are involved in all human malignancies. This rich history promises that tumor virology will continue to contribute to our understanding of cancer and to the development of new therapeutic and preventive measures for this disease in the 21st century.
Collapse
Affiliation(s)
- Ronald T Javier
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
13
|
Sabbioni S, Callegari E, Spizzo R, Veronese A, Altavilla G, Corallini A, Negrini M. Anticancer activity of an adenoviral vector expressing short hairpin RNA against BK virus T-ag. Cancer Gene Ther 2007; 14:297-305. [PMID: 17218949 DOI: 10.1038/sj.cgt.7701014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human polyomavirus BK (BKV) is oncogenic in rodents and induces malignant transformation of rodent cells in vitro. Although its role in human tumorigenesis is still debated, BKV represents an excellent model to evaluate molecularly targeted antineoplastic approaches. Here, we have tested whether stable suppression of the T antigen (T-ag) oncogene expression could inhibit the in vitro and in vivo malignant phenotype of BKV-transformed mouse cells. An adenovirus vector system that expresses small hairpin RNAs (shRNAs), which are converted into active small interfering RNAs (siRNA) molecules against the BKV T-ag, was developed. This vector was able to inhibit the expression of BKV T-ag through a highly efficient in vitro and in vivo delivery of the siRNA molecule. In addition, it allowed a stable expression of siRNA for a period of time sufficient to elicit a biological effect. Inhibition of T-ag expression results in reduction of the in vitro growth rate of BKV-transformed cells, which is, at least in part, caused by restoration of p53 activity and induction of apoptosis. In vivo studies proved that adenovirus vectors expressing anti-T-ag siRNA were able to suppress tumorigenicity of BKV-transformed cells. Moreover, adenovirus vector direct treatment of growing tumors resulted in a significant reduction of tumor growth. This study indicates that siRNAs delivery via a viral vector have a potential usefulness as in vivo anticancer tool against viral and cellular oncogenes.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Antigens, Polyomavirus Transforming/chemistry
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Antigens, Viral, Tumor/genetics
- BK Virus/immunology
- Cell Transformation, Viral/genetics
- Genetic Therapy
- Genetic Vectors
- Humans
- Mice
- Mice, Inbred BALB C
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/therapy
- Neoplasms, Experimental/virology
- RNA, Small Interfering/genetics
- Survival Rate
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- S Sabbioni
- Dipartimento di Medicina Sperimentale e diagnostica e Centro Interdipartimentale per la Ricerca sul Cancro, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Barbanti-Brodano G, Sabbioni S, Martini F, Negrini M, Corallini A, Tognon M. BK virus, JC virus and Simian Virus 40 infection in humans, and association with human tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 577:319-41. [PMID: 16626046 DOI: 10.1007/0-387-32957-9_23] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Abstract
Although the small DNA tumor virus SV40 (simian virus 40) fails to replicate in human cells, understanding how SV40 transforms human and murine cells has and continues to provide important insights into cancer initiation and maintenance. The early region of SV40 encodes two oncoproteins: the large T (LT) and small t (ST) antigens. SV40 LT contributes to murine and human cell transformation in part by inactivating the p53 and retinoblastoma protein tumor suppressor proteins. SV40 ST inhibits the activity of the protein phosphatase 2A (PP2A) family of serine-threonine phosphatases, and this interaction is required for SV40-mediated transformation of human cells. PP2A regulates multiple signaling pathways, suggesting many possible targets important for viral replication and cell transformation. Genetic manipulation of particular PP2A subunits has confirmed a role for specific complexes in transformation, and recent work implicates the perturbation of the phosphatidylinositol 3-kinase/Akt pathway and c-Myc stability in transformation by ST and PP2A. Mutations in PP2A subunits occur at low frequency in human tumors, suggesting that alterations of PP2A signaling play a role in both experimentally induced and spontaneously arising cancers. Unraveling the complexity of PP2A signaling will not only provide further insights into cancer development but may identify novel targets with promise for therapeutic manipulation.
Collapse
Affiliation(s)
- Jason D Arroyo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
16
|
|
17
|
Davis TH. Biography of Arthur L. Horwich. Proc Natl Acad Sci U S A 2004; 101:15002-4. [PMID: 15479759 PMCID: PMC524080 DOI: 10.1073/pnas.0406924101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Adamec T, Palková Z, Forstová J. Mouse polyomavirus large T antigen inhibits cell growth and alters cell and colony morphology in Saccharomyces cerevisiae. FEBS Lett 2004; 555:268-73. [PMID: 14644426 DOI: 10.1016/s0014-5793(03)01246-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The gene for mouse polyomavirus large tumor (LT) antigen, a potent oncoprotein, was expressed in Saccharomyces cerevisiae from the inducible GAL1 promoter. Substantial cell growth inhibition as well as colony and cell morphology changes dependent on cyclic adenosine monophosphate (cAMP) were observed. In contrast to cell and colony morphology alterations, the growth inhibition appeared to be transient, thus indicating the existence of an active adaptation of yeast cells to the LT antigen presence.
Collapse
Affiliation(s)
- T Adamec
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicná 5, 128 44, Prague 2, Czech Republic
| | | | | |
Collapse
|
19
|
Barbanti-Brodano G, Sabbioni S, Martini F, Negrini M, Corallini A, Tognon M. Simian virus 40 infection in humans and association with human diseases: results and hypotheses. Virology 2004; 318:1-9. [PMID: 15015494 DOI: 10.1016/j.virol.2003.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Simian virus 40 (SV40) is a monkey virus that was introduced in the human population by contaminated poliovaccines, produced in SV40-infected monkey cells, between 1955 and 1963. Epidemiological evidence now suggests that SV40 may be contagiously transmitted in humans by horizontal infection, independent of the earlier administration of SV40-contaminated poliovaccines. This evidence includes detection of SV40 DNA sequences in human tissues and of SV40 antibodies in human sera, as well as rescue of infectious SV40 from a human tumor. Detection of SV40 DNA sequences in blood and sperm and of SV40 virions in sewage points to the hematic, sexual, and orofecal routes as means of virus transmission in humans. The site of latent infection in humans is not known, but the presence of SV40 in urine suggests the kidney as a possible site of latency, as it occurs in the natural monkey host. SV40 in humans is associated with inflammatory kidney diseases and with specific tumor types: mesothelioma, lymphoma, brain, and bone. These human tumors correspond to the neoplasms that are induced by SV40 experimental inoculation in rodents and by generation of transgenic mice with the SV40 early region gene directed by its own early promoter-enhancer. The mechanisms of SV40 tumorigenesis in humans are related to the properties of the two viral oncoproteins, the large T antigen (Tag) and the small t antigen (tag). Tag acts mainly by blocking the functions of p53 and RB tumor suppressor proteins, as well as by inducing chromosomal aberrations in the host cell. These chromosome alterations may hit genes important in oncogenesis and generate genetic instability in tumor cells. The clastogenic activity of Tag, which fixes the chromosome damage in the infected cells, may explain the low viral load in SV40-positive human tumors and the observation that Tag is expressed only in a fraction of tumor cells. "Hit and run" seems the most plausible mechanism to support this situation. The small tag, like large Tag, displays several functions, but its principal role in transformation is to bind the protein phosphatase PP2A. This leads to constitutive activation of the Wnt pathway, resulting in continuous cell proliferation. The possibility that SV40 is implicated as a cofactor in the etiology of some human tumors has stimulated the preparation of a vaccine against the large Tag. Such a vaccine may represent in the future a useful immunoprophylactic and immunotherapeutic intervention against human tumors associated with SV40.
Collapse
Affiliation(s)
- Giuseppe Barbanti-Brodano
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, Center of Biotechnology, University of Ferrara, I-44100, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
An increasing number of scientific reports have described evidence for a polyomavirus, simian virus 40, in a highly select group of human tumours. How did a simian virus infect humans and is the virus a passenger in tumours or is it important in their pathogenesis?
Collapse
Affiliation(s)
- Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Centre, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
21
|
Abstract
A large variety of mass lesions have been reported in the region of the pineal gland. Pineal parenchymal tumors and germ cell tumors (GCTs) are especially characteristic of this region. Despite their rarity, a number of excellent studies on the cytogenetics and molecular genetics of pineal parenchymal tumors and pineal region GCTs have been published. These studies draw attention to a number of distinct genomic regions recurrently involved in the various subtypes of malignancies of the pineal gland. Outcomes for tumors in this location vary widely between patients and among differing histologies. Development of novel therapies for patients with poor prognoses will depend on the acquisition of a more detailed understanding of the molecular basis associated with the etiopathogenesis of these neoplasms. We review the literature on cytogenetics, familial syndromes, animal models and molecular genetics of pineal region neoplasms.
Collapse
Affiliation(s)
- M D Taylor
- Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Canada
| | | | | | | |
Collapse
|
22
|
Schwab TS, Stewart T, Lehr J, Pienta KJ, Rhim JS, Macoska JA. Phenotypic characterization of immortalized normal and primary tumor-derived human prostate epithelial cell cultures. Prostate 2000; 44:164-71. [PMID: 10881026 DOI: 10.1002/1097-0045(20000701)44:2<164::aid-pros9>3.0.co;2-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cell lines can provide powerful model systems for the study of human tumorigenesis. However, the human prostate cancer cell lines studied most intensively by investigators (PC3, DU145, and LNCaP) were established from metastatic lesions, and it is unlikely that they accurately recapitulate the genetic composition or biological behavior of primary prostate tumors. Cell lines more appropriate for the study of human prostate primary tumors would be those derived from spontaneously immortalized cells; unfortunately, explanted prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we examined whether cell lines developed through viral gene-mediated immortalization of human normal or primary tumor prostate epithelium express aspects of the normal or malignant phenotypes, and could serve as appropriate models for normal or transformed human prostatic epithelium. METHODS To accomplish these goals, we assessed the phenotypic expression of cell cultures established through the immortalization of normal (1532N, 1535N, 1542N, and PrEC-T) or malignant (1532T, 1535T, and 1542T) human prostate epithelium with the E6 and E7 genes of HPV-16, or the large T antigen gene of SV40. RESULTS Examination of these cell lines for their proliferative rates and their abilities to grow with or without serum or androgen stimulation, to form colonies in soft agar, or to form tumors in vivo, suggests that they may serve as valid, useful tools for the elucidation of prostate tumorigenesis. Moreover, the observation of structural alterations involving chromosome 8, including gain of 8q in 3 of the 4 cell lines expressing aspects of the malignant phenotype, implies that these cell lines accurately recapitulate the genetic composition of primary prostate tumors. CONCLUSIONS Taken together, these data suggest that cell lines generated from immortalized normal or primary tumor epithelium may be useful for the elucidation of early transforming events in the prostate.
Collapse
Affiliation(s)
- T S Schwab
- Section of Urology, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
23
|
Butel JS, Lednicky JA. Cell and molecular biology of simian virus 40: implications for human infections and disease. J Natl Cancer Inst 1999; 91:119-34. [PMID: 9923853 DOI: 10.1093/jnci/91.2.119] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.
Collapse
Affiliation(s)
- J S Butel
- Division of Molecular Virology, Baylor College of Medicine, Houston, TX 77030-3498, USA.
| | | |
Collapse
|
24
|
Bodine PV, Trailsmith M, Komm BS. Development and characterization of a conditionally transformed adult human osteoblastic cell line. J Bone Miner Res 1996; 11:806-19. [PMID: 8725178 DOI: 10.1002/jbmr.5650110612] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Many osteoblastic cell lines are currently in use, but these have limitations either in terms of their relevance to adult human biology and disease or in terms of their suitability for biochemical and molecular analyses. Consequently, we undertook the development of conditionally transformed adult human osteoblastic cell lines. Osteoblasts were obtained from a normal explant cancellous bone chip culture. These cells were infected with adenovirus-ori-SV40 tsA 209, which encodes a temperature-sensitive large T-antigen mutant. Cells immortalized with this virus express a transformed phenotype at the permissive temperature of 34 degrees C but revert to a normal phenotype at the nonpermissive temperature of 40 degrees C. Using this approach, we have isolated several cell clones and describe the characterization of one that was designated HOB-02-C1. Immunocytochemistry revealed that > 95% of the cells express the large T-antigen at both temperatures. These cells exponentially proliferate at 34 degrees C with a doubling time of approximately 2 days but irreversibly stop dividing at 40 degrees C. However, cell volume increases > 2-fold when the cells are maintained for 6 days at the higher temperature. This clone expresses alpha 1 type (I) procollagen mRNA and secretes type I procollagen C-peptide at both temperatures, although the levels were slightly elevated at 40 degrees C. The cell line expresses alkaline phosphatase activity at 34 degrees C, and the basal level of this enzyme increases 2- to 6-fold at 40 degrees C. Alkaline phosphatase activity is induced 4- to 8-fold by 1 alpha,25-dihydroxyvitamin D3 (vitamin D3) at both temperatures, but transforming growth factor-beta 1 (TGF-beta 1) suppresses enzyme expression > 90% at 40 degrees C. Vitamin D3 also induces a 10-fold increase in osteocalcin secretion when the clone is maintained at 34 degrees C, and this induction is enhanced > 8-fold at 40 degrees C. Parathyroid hormone and forskolin stimulate a 4- to 6-fold increase in the production of intracellular cyclic AMP (cAMP) by the cells at 34 degrees C, and this stimulation is enhanced 2- to 4-fold at 40 degrees C. In contrast, prostaglandin E2 stimulates a 7- to 8-fold increase in cAMP only when the cells are maintained at 34 degrees C. This cell line secretes TGF-beta 1 and interleukin-6 (IL-6) at 34 degrees C, but only the basal secretion of IL-6 increases 70% at 40 degrees C. Finally, alizarin red-S histochemical staining demonstrates that these cells produce mineralized nodules at both temperatures. In summary, the results of this study indicate that the HOB-02-C1 cells have a mature osteoblastic phenotype. Consequently, this new cell line and others obtained in a similar fashion should be valuable in vitro tools for cellular, biochemical, and molecular studies of adult human osteoblast biology.
Collapse
Affiliation(s)
- P V Bodine
- Women's Health Research Institute, Wyeth-Ayerst, Radnor, Pennsylvania, USA
| | | | | |
Collapse
|
25
|
Ludlow JW. Use of sequential immunoprecipitation to reveal discrete, separable populations of SV40 T-antigen binding to host cellular proteins. J Virol Methods 1996; 59:105-12. [PMID: 8793836 DOI: 10.1016/0166-0934(96)02027-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sequential immunoprecipitations were carried out to determine the usefulness of this method for separating subpopulations of SV40 T-antigen complexed to various combinations of the cellular growth regulatory proteins pRB, p107, and p53. This approach was used successfully to separate discrete populations of SV40 T-antigen in a quatramolecular complex with pRB, p53, and p107, a trimolecular complex with pRB and p107, and a trimolecular complex with p107 and p53. This method was used as the first step towards isolating T-antigen for subsequent phosphopeptide mapping to address whether alterations in the overt phosphorylation of this viral oncoprotein is a major determinating factor to separation of T-antigen populations by complexing with different combinations of cellular growth regulatory proteins.
Collapse
Affiliation(s)
- J W Ludlow
- University of Rochester Cancer Center, Division of Developmental Therapeutics, NY 14642, USA.
| |
Collapse
|
26
|
|
27
|
Affiliation(s)
- A G Knudson
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
28
|
Affiliation(s)
- A J Levine
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, New Jersey 08540
| |
Collapse
|
29
|
Ray S, Anderson ME, Loeber G, McVey D, Tegtmeyer P. Functional characterization of temperature-sensitive mutants of simian virus 40 large T antigen. J Virol 1992; 66:6509-16. [PMID: 1328677 PMCID: PMC240144 DOI: 10.1128/jvi.66.11.6509-6516.1992] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated the molecular properties of eight temperature-sensitive mutants of simian virus 40 large T antigen (tsA mutants). The mutants have single amino acid substitutions that block DNA replication at 39 to 41 degrees C in vivo. In vitro, five of the mutant proteins were highly sensitive to a brief heat shock at 39 degrees C, while the three remaining proteins were only partially sensitive at 41 degrees C. We characterized the five most defective mutant proteins, using a variety of biochemical assays for replication functions of T antigen. Heat shock of purified T antigen with a mutation at amino acid 422 significantly impaired the oligomerization, origin-binding, origin-unwinding, ATPase, and helicase functions of T antigen. In contrast, substitution of amino acid 186, 357, 427, or 438 had more selective, temperature-sensitive effects on T-antigen functions. Our findings are consistent with the conclusion that T antigen functions via a hierarchy of interrelated domains. Only the ATPase activity remained intact in the absence of all other functions. Hexamer formation appears to be necessary for core origin-unwinding and helicase activities; the helicase function also requires ATPase activity. All five tsA mutants were impaired in functions important for the initiation of DNA replication, but three mutants retained significant elongation functions.
Collapse
Affiliation(s)
- S Ray
- Department of Microbiology, State University of New York, Stony Brook 11794-8621
| | | | | | | | | |
Collapse
|
30
|
Reynisdóttir I, Prives C. Two conditional tsA mutant simian virus 40 T antigens display marked differences in thermal inactivation. J Virol 1992; 66:6517-26. [PMID: 1328678 PMCID: PMC240145 DOI: 10.1128/jvi.66.11.6517-6526.1992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have characterized the simian virus 40 (SV40) origin-containing DNA (ori-DNA) replication functions of two SV40 conditional mutant T antigens: tsA438 A-V (tsA58) and tsA357 R-K (tsA30). Both tsA mutant T antigens, immunopurified from recombinant baculovirus-infected insect cells, mediated replication of SV40 ori-DNA in vitro to similar extents as did wild-type T antigen in reactions at 33 degrees C. However, at 41 degrees C, the restrictive temperature, while tsA438 T antigen still generated substantial levels of replication products, tsA357 T antigen did not support any detectable DNA synthesis. Furthermore, preincubation for approximately fourfold-longer time periods at 41 degrees C was required to heat inactivate tsA438 T antigen than to heat inactivate tsA357 T antigen. Unexpectedly, results of analyses of the various DNA replication activities of the two mutant T antigens did not correlate with results from ori-DNA replication reactions. In particular, although tsA357 T antigen was incapable of mediating replication at 41 degrees C at all protein concentrations examined, it displayed either wild-type levels or only partial reductions of the several T-antigen replication-associated activities. These data suggest either that tsA357 T antigen is defective in an as yet unidentified replication function of T antigen or that the combination of its partial defects result in a protein that is unable to support replication. The data also show that two conditional mutant T antigens can be markedly different with respect to thermal sensitivity.
Collapse
Affiliation(s)
- I Reynisdóttir
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | |
Collapse
|
31
|
Shay JW, West MD, Wright WE. Re-expression of senescent markers in deinduced reversibly immortalized cells. Exp Gerontol 1992; 27:477-92. [PMID: 1330670 DOI: 10.1016/0531-5565(92)90003-i] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have developed a simian virus 40 (SV40) T-antigen immortalized human cell line, 1MR90-D305.2H4 (IDH4), in which the expression of T-antigen is controlled by the mouse mammary tumor virus (MMTV) promoter and thus regulated by steroids such as dexamethasone. Studies on the regulation of proliferation by T-antigen led to the formulation of a two-stage model for human cell immortalization, in which a mortality stage 1 mechanism (M1) was the target of T-antigen action, and an independent mortality stage 2 mechanism (M2) produced crisis and prevented T-antigen from directly immortalizing cells. Rarely, a cell expressing T-antigen escaped crisis (e.g., M2) and was capable of indefinite proliferation. This model predicted that the deinduction of T-antigen in IDH4 cells would lead to the reexpression of the M1 mechanism, and thus a reexpression of the senescent phenotype. Our study confirms the prediction that, in the absence of steroids, IDH4 cells express a variety of morphological and biochemical markers characteristic of normal senescent human fibroblasts.
Collapse
Affiliation(s)
- J W Shay
- University of Texas Southwestern Medical Center, Department of Cell Biology and Neuroscience, Dallas 75235-9039
| | | | | |
Collapse
|
32
|
Lin JY, Simmons DT. The ability of large T antigen to complex with p53 is necessary for the increased life span and partial transformation of human cells by simian virus 40. J Virol 1991; 65:6447-53. [PMID: 1658353 PMCID: PMC250682 DOI: 10.1128/jvi.65.12.6447-6453.1991] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Simian virus 40 (SV40) T antigen binds to the tumor suppressor p53 protein, and this association may contribute to oncogenic transformation by the virus. We investigated the importance of this binding on transformation by examining three replication-competent mutants of SV40 (402DE, 402DN, and 402DH). These mutants express T antigens defective in binding to human and monkey p53s but retain some binding with mouse p53. All showed significant reduction in their ability to induce transformed cell foci of two normal human cell lines as well as a slight reduction with mouse embryo cells. Other comparable mutants which express T antigens retaining the ability to complex with p53 were able to induce foci at wild-type levels in both human and mouse cells. Further studies were performed with five T-antigen-positive clones isolated from the few human cell foci that appeared after transfection with 402 mutant DNAs. All five clones reached senescence at about the same point as did the parental untransformed cells. However, six other human cell clones obtained after transfection with DNA from nondefective mutants or wild-type virus were still growing well at more than 10 passages beyond their expected life span. These results suggest that the ability of T antigen to form stable complexes with p53 is necessary for SV40 to extend the life span and partially transform human cells in culture.
Collapse
Affiliation(s)
- J Y Lin
- School of Life and Health Sciences, University of Delaware, Newark 19716
| | | |
Collapse
|
33
|
Lin JY, Simmons DT. Stable T-p53 complexes are not required for replication of simian virus 40 in culture or for enhanced phosphorylation of T antigen and p53. J Virol 1991; 65:2066-72. [PMID: 1705996 PMCID: PMC240060 DOI: 10.1128/jvi.65.4.2066-2072.1991] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We generated a number of simian virus 40 (SV40) mutants with single amino acid substitutions in T antigen between residues 388 and 411. All but one mutant (398LV) replicated like wild-type SV40 and gave rise to normal-size plaques. Three different mutations at residue 402 (Asp to Glu, Asn, or His) totally prevented the formation of stable complexes with the cellular protein p53 in monkey cells but had no effect on virus replication. Only one other mutation in this region, involving residue 401 (Met to Thr), slightly inhibited the formation of T-monkey p53 complexes. The three mutant T antigens with substitutions at residue 402 also formed no stable complexes with human p53 but generated low levels of complexes with mouse p53. These results indicate that residue 402 is critical for binding to monkey and human p53 proteins and is important for binding to mouse p53. We suggest that it is one of several points of contact. In cells infected with any one of the three residue 402 mutant viruses. T antigen and p53 became increasingly phosphorylated, as they were in cells infected with wild-type virus. Our data therefore show that stable T-p53 complexes are not required for replication of SV40 in culture or for enhanced phosphorylation of either protein.
Collapse
Affiliation(s)
- J Y Lin
- School of Life and Health Sciences, University of Delaware, Newark 19716
| | | |
Collapse
|
34
|
Goolsby CL, Steiner M, Nemeth J. Viral and cellular oncogene expression during progressive malignant transformation of SV40 transformed human fibroblasts. CYTOMETRY 1991; 12:748-56. [PMID: 1665408 DOI: 10.1002/cyto.990120809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vitro investigation of the multistep neoplastic progression which occurs during transformation of human cells has been hindered by resistance of human cells to both immortalization and tumorigenicity (Mut. Res. 199; 273, 1988). Previously our laboratory established a cell line, HSF4-T12, by transfection of normal human foreskin fibroblasts with the plasmid pSV3-neo which contains the early genes of simian virus 40 (SV40). A multistep progression in karyotypic alterations and transformed phenotype occurred resulting in a neoplastic cell line that was immortal, transformed, and tumorigenic. We have examined changes in the SV40 proteins, large T (T-antigen) and small t (t-antigen) antigens, and in the cellular protein, p53, during progressive transformation of these cells. Total viral protein expression relative to total cellular protein increased following immortalization of HSF4-T12 as did the ratio of T-antigen to t-antigen. Interestingly, no significant change in DNA content accompanied immortalization. However, during the progressive in vitro transformation of HSF4-T12 which occurred primarily post-immortalization, DNA index increased to 1.6 but only small additional increases in T-antigen expression were seen. No consistent or critical role for t-antigen in development of the tumorigenic phenotype was found in this system.
Collapse
Affiliation(s)
- C L Goolsby
- Department of Pathology, Northwestern University Medical School/VA Lakeside Medical Center, Chicago, Illinois 60611
| | | | | |
Collapse
|
35
|
Goolsby CL, Wiley JE, Steiner M, Bartholdi MF, Cram LS, Kraemer PM. Karyotype evolution in a simian virus 40-transformed tumorigenic human cell line. CANCER GENETICS AND CYTOGENETICS 1990; 50:231-48. [PMID: 2176127 DOI: 10.1016/0165-4608(90)90183-b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Normal human foreskin fibroblasts (HSF4) were transfected using the pSV3-neo plasmid. A pool of 10 G418-resistant colonies, HSF4-T12, showed a progressive increase in the expression of a number of in vitro transformation markers with passage in culture and became immortalized. Although no tumors were formed when cells were injected subcutaneously into nude mice, this cell line produced progressive tumors when cells were injected into preimplanted Gelfoam sponges in the mice. When these tumors were cultured in vitro and subsequently injected subcutaneously, progressive tumors were produced with median latency periods as short as 4 weeks. Three phases of cytogenetic change could be distinguished. At early passages after transfection. HSF4-T12 exhibited many random chromosomal changes. At a time just after immortalization, both flow karyotype and G-banded analyses showed the appearance of balanced clonal rearrangements. These included t(2;4), t(2;14), t(3;?), 6p-, i(6p), 8p-, t(14;15), i(15), and t(18;?). These clonal rearrangements were stable with passage in culture, and less variability from cell to cell was noted. The only consistent chromosomal loss observed was -Y. Analysis of three independent tumors showed characteristic loss of chromosomal material rather than balanced chromosomal rearrangements. Frequent loss of 6q and chromosomes #13, 15, 20, and Y was noted.
Collapse
Affiliation(s)
- C L Goolsby
- Department of Pathology, Northwestern University Medical School/VA Lakeside Medical Center, Chicago, Illinois 60611
| | | | | | | | | | | |
Collapse
|
36
|
Reynisdóttir I, O'Reilly DR, Miller LK, Prives C. Thermally inactivated simian virus 40 tsA58 mutant T antigen cannot initiate viral DNA replication in vitro. J Virol 1990; 64:6234-45. [PMID: 2173789 PMCID: PMC248798 DOI: 10.1128/jvi.64.12.6234-6245.1990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mutation in the temperature-sensitive tsA58 mutant T antigen (Ala-438----Val) lies within the presumptive ATP-binding fold. We have constructed a recombinant baculovirus that expresses large quantities of the tsA58 T antigen in infected insect cells. The mutant T antigen mediated simian virus 40 origin-containing DNA (ori-DNA) synthesis in vitro to nearly the same extent as similar quantities of wild-type T antigen at 33 degrees C. However, if wild-type and tsA58 T antigens were heated at 41 degrees C in replication extracts prior to addition of template DNA, the tsA58 T antigen but not the wild type was completely inactivated. The mutant protein displayed greater thermosensitivity for many of the DNA replication activities of T antigen than did the wild-type protein. Some of the replication functions of tsA58 T antigen were differentially affected depending on the presence or absence of ATP during the preheating period. When tsA58 T antigen was preheated in the presence of ATP at 41 degrees C for a time sufficient to completely inactivate its ability to replicate ori-DNA in vitro, it displayed substantial ATPase and normal DNA helicase activities. Conversely, when preheated in the absence of nucleotide, it completely lost both ATPase and helicase activities. Preheating tsA58 T antigen, even in the presence of ATP, led to drastic reductions in its ability to bind to and unwind DNA containing the replication origin. The mutant T antigen also displayed thermosensitivity for binding to and unwinding nonspecific double-stranded DNA in the presence of ATP. Our results suggest that the interactions of T antigen with ATP that are involved in T-antigen DNA binding and DNA helicase activities are different. Moreover, we conclude, consistent with its phenotype in vivo, that the tsA58 T antigen is defective in the initiation but not in the putative elongation functions of T antigen in vitro.
Collapse
Affiliation(s)
- I Reynisdóttir
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | | | |
Collapse
|
37
|
Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol 1989. [PMID: 2779554 DOI: 10.1128/mcb.9.7.3088] [Citation(s) in RCA: 264] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IMR-90 normal human diploid fibroblasts, transfected with a steroid inducible mouse mammary tumor virus-driven simian virus 40 T antigen, were carried through crisis to yield an immortal cell line. Growth was dependent on the presence of the inducer (dexamethasone) during both the extended precrisis life span of the cells and after immortalization. After dexamethasone removal, immortal cells divided once or twice and then accumulated in G1. These results are best explained by a two-stage model for cellular senescence. Mortality stage 1 (M1) causes a loss of mitogen responsiveness and arrest near the G1/S interface and can be bypassed or overcome by the cellular DNA synthesis-stimulating activity of T antigen. Mortality stage 2 (M2) is an independent mechanism that is responsible for the failure of cell division during crisis. The inactivation of M2 is a rare event, probably of mutational origin in human cells, independent of or only indirectly related to the expression of T antigen. Under this hypothesis, T-antigen-immortalized cells contain an active but bypassed M1 mechanism and an inactivated M2 mechanism. These cells are dependent on the continued expression of T antigen for the maintenance of immortality for the same reason that precrisis cells are dependent on T antigen for growth: both contain an active M1 mechanism.
Collapse
|
38
|
Sawai ET, Butel JS. Association of a cellular heat shock protein with simian virus 40 large T antigen in transformed cells. J Virol 1989; 63:3961-73. [PMID: 2760986 PMCID: PMC250993 DOI: 10.1128/jvi.63.9.3961-3973.1989] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The viral oncoprotein of simian virus 40, large T antigen (T-ag), is essential for viral replication and cellular transformation. To understand the mechanisms by which T-ag mediates its multifunctional properties, it is important to identify the cellular targets with which it interacts. A cellular protein of 73 kilodaltons (p73) which specifically associates with T-ag in simian virus 40-transformed BALB/c 3T3E cells has been identified. The binding of p73 to T-ag was demonstrated by coimmunoprecipitation analyses using polyclonal and monoclonal antibodies specific for T-ag. The interaction of p73 with T-ag was independent of T-ag complex formation with the cellular protein p53. Partial V8 protease cleavage maps for p73 and the cellular heat shock protein hsp70 were identical. Immunoblot analyses indicated that p73 complexed to T-ag was antigenically related to hsp70. T-ag deletion mutants were constructed that remove internal, amino-terminal, and carboxy-terminal sequences. These mutants mapped the p73 binding domain to the amino terminus of T-ag. The specific dissociation of p73 from the p73/T-ag complex was mediated by ATP; GTP, CTP, and UTP were also utilized as substrates. These characteristics suggest that p73 may be a member of the hsp70 family of heat shock proteins. The biologic significance of p73/T-ag complex formation has yet to be determined.
Collapse
Affiliation(s)
- E T Sawai
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
39
|
Wright WE, Pereira-Smith OM, Shay JW. Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol 1989; 9:3088-92. [PMID: 2779554 PMCID: PMC362778 DOI: 10.1128/mcb.9.7.3088-3092.1989] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
IMR-90 normal human diploid fibroblasts, transfected with a steroid inducible mouse mammary tumor virus-driven simian virus 40 T antigen, were carried through crisis to yield an immortal cell line. Growth was dependent on the presence of the inducer (dexamethasone) during both the extended precrisis life span of the cells and after immortalization. After dexamethasone removal, immortal cells divided once or twice and then accumulated in G1. These results are best explained by a two-stage model for cellular senescence. Mortality stage 1 (M1) causes a loss of mitogen responsiveness and arrest near the G1/S interface and can be bypassed or overcome by the cellular DNA synthesis-stimulating activity of T antigen. Mortality stage 2 (M2) is an independent mechanism that is responsible for the failure of cell division during crisis. The inactivation of M2 is a rare event, probably of mutational origin in human cells, independent of or only indirectly related to the expression of T antigen. Under this hypothesis, T-antigen-immortalized cells contain an active but bypassed M1 mechanism and an inactivated M2 mechanism. These cells are dependent on the continued expression of T antigen for the maintenance of immortality for the same reason that precrisis cells are dependent on T antigen for growth: both contain an active M1 mechanism.
Collapse
Affiliation(s)
- W E Wright
- epartment of Cell Biology, University of Texas, Southwestern Medical Center, Dallas
| | | | | |
Collapse
|
40
|
Abstract
The human papovavirus BK latently infects a majority of the population worldwide, and its DNA has been found in human tumor tissue. BKV is known to be highly oncogenic in rodents, and is capable of transforming cells in vitro. Rearrangements in the transcriptional regulatory sequences controlling expression of the transforming early gene, T antigen, are known to affect both the tumorigenic and transforming properties of this virus. Little is known about the mechanism by which this occurs. We have examined several aspects of BKV early promoter/enhancer regulation in cell types which the virus transforms, baby hamster kidney (BHK) and newborn rat kidney (NRK) cells, and compare them to the same processes in monkey kidney CV1 cells. We find that BKV early transcriptional efficiency requires the same enhancer repeat elements in all three cell types, but that requirements for sequences to the early and late side of these repeats vary between these cells. While the BKV T antigen was found to repress early gene expression from the BKV early promoter in CV1 cells, this effect was lower in BHK cells and essentially absent in NRK cells. The impaired autoregulation observed in rodent cells may be the result of inefficient T antigen production in these cells. DNA replication from the BKV origin was not detected in either BHK or NRK cells. Finally, we find no correlation between the efficiency of the BKV early regulatory region in directing gene expression and the ability to transform NRK cells.
Collapse
Affiliation(s)
- K L Deyerle
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
41
|
Abstract
We have examined the role of the human papovavirus BK virus (BKV) tumor (T) antigen(s) in the maintenance of transformation and have identified the domain of T antigen essential for transformation. BKV-transformed BHK 21 and NIH 3T3 cells expressing antisense T-antigen RNA lose their ability to grow in soft agar, indicating the need for the continued expression of T antigen for the maintenance of the transformed phenotype. Experiments using translation termination linker insertion and deletion mutagenesis of BKV T antigen demonstrate that amino acids 356 to 384 are essential for transformation. Although BKV T antigen shares 100, 95, and 82% amino acid homology with that of simian virus 40 (SV40) for the nuclear localization signal, p53-binding domain, and DNA-binding domain, respectively, the transformation domains of BKV and SV40 T antigens share only 54% homology. Also, BKV T antigen lacks a substantial portion of the ATPase domain of SV40, and our results indicate the dispensability of the remaining portion for transformation by this protein. We suggest that the differences in the amino acids in the identified transformation domains together with the differences in the ATPase domains may account for the differences in the transformation potentials of the two proteins.
Collapse
MESH Headings
- Animals
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/immunology
- BK Virus/genetics
- BK Virus/immunology
- BK Virus/physiology
- Blotting, Northern
- Blotting, Southern
- Cell Line, Transformed
- Cell Transformation, Viral
- DNA, Viral/analysis
- Humans
- Mutation
- Plasmids
- Polyomavirus/immunology
- Precipitin Tests
- Protein Biosynthesis
- RNA, Viral/analysis
- RNA, Viral/biosynthesis
- Transfection
Collapse
Affiliation(s)
- H Nakshatri
- Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | | | | |
Collapse
|
42
|
Tennekoon GI, Yoshino J, Peden KW, Bigbee J, Rutkowski JL, Kishimoto Y, DeVries GH, McKhann GM. Transfection of neonatal rat Schwann cells with SV-40 large T antigen gene under control of the metallothionein promoter. J Cell Biol 1987; 105:2315-25. [PMID: 2824529 PMCID: PMC2114872 DOI: 10.1083/jcb.105.5.2315] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Secondary cultures of Schwann cells were transfected with a plasmid containing the SV-40 T antigen gene expressed under the control of the mouse metallothionein-I promoter. We used the calcium phosphate method for transfection and obtained a transfection efficiency of 0.01%. The colonies were cloned by limited dilution, and these cloned cell lines were carried in medium containing zinc chloride (100 microM). One cloned cell line, which has now been carried for 180 doublings, appears to have a transformed phenotype with a doubling time of 20 h. These cells express SV-40 T antigen while maintaining established Schwann cell properties (positive staining for 217c, Ran-2, A5E3, glial fibrillary acidic protein, presence of 2',3'-cyclic nucleotide phosphohydrolase [CNPase] activity, and the ability to synthesize sulfogalactosylceramide and mRNA for the myelin protein, P0). Removal of zinc chloride from the medium resulted in reduced expression of T antigen and a change in the appearance of the cells to a more bipolar shape, although they still did not exhibit contact inhibition and maintained a doubling time of 20 h. These cells now became Ran-2-negative and showed increases in CNPase activity and in their ability to synthesize sulfogalactosylceramide. The amount of P0 mRNA remained unchanged. Transfected Schwann cells, however, stopped dividing when they contacted either basal lamina or neurites and became bipolar in appearance. The Schwann cells in contact with the neurites then extended processes to wrap around bundles of neurites. Transfection with the SV-40 T antigen gene therefore provides a method for obtaining Schwann cell lines that continue to express properties associated with untransfected cells in culture and may be used to study axon-Schwann cell interaction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, Polyomavirus Transforming/genetics
- Cell Transformation, Viral
- Cells, Cultured
- Ganglia, Spinal/cytology
- Ganglia, Spinal/ultrastructure
- Genes
- Genes, Viral
- Metallothionein/genetics
- Microscopy, Electron
- Promoter Regions, Genetic
- Rats
- Rats, Inbred Strains
- Schwann Cells/cytology
- Schwann Cells/immunology
- Schwann Cells/ultrastructure
- Simian virus 40/genetics
Collapse
Affiliation(s)
- G I Tennekoon
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Baksi K, Alkhatib H, Smulson ME. In vivo characterization of the poly(ADP-ribosylation) of SV40 chromatin and large T antigen by immunofractionation. Exp Cell Res 1987; 172:110-23. [PMID: 2820766 DOI: 10.1016/0014-4827(87)90098-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have confirmed the poly(ADP-ribosylation) of large T antigen of SV40 by using antibodies to both large T antigen and poly(ADP-ribose) and consequently have begun to characterize how this post-translational nuclear modification of the viral protein modulates its biological functions. SV40 minichromosomal subpopulation containing replicative intermediate DNA was shown to have a significantly higher affinity for anti-poly(ADP-Rib)-Sepharose than viral chromatin fractions containing mature minichromosomal DNA. An anti-large T-Sepharose column was used to isolate T antigen from crude extracts by two different approaches: (1) large T antigen was labeled with [35S]methionine in vivo and the infected cell extract was immunofractionated to isolate large T antigen and (2) large T antigen from infected cell extracts was immunofractionated followed by immunostaining. Using these techniques, 1-10% of the total T antigen from infected cells was found to be poly(ADP-ribosylated). Minichromosome preparations per se were also subjected to immunofractionation on anti-large T-Sepharose. The high level of retention of poly(ADP-ribosylated) species of minichromosomes on this matrix suggested that this post-translational modification of viral chromatin may be related to those steps in viral replication and transcription under regulation by large T antigen.
Collapse
Affiliation(s)
- K Baksi
- Department of Biochemistry, School of Medicine, Georgetown University, Washington, D.C. 20007
| | | | | |
Collapse
|
44
|
Functional simian virus 40 T antigen is expressed in hybrid cells having finite proliferative potential. Mol Cell Biol 1987. [PMID: 3037326 DOI: 10.1128/mcb.7.4.1541] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40-transformed human cells fused with other independently derived simian virus 40-transformed cells and tumor-derived cells containing activated H-ras and N-ras oncogenes yielded hybrids capable of indefinite division. Fusions with various other immortal cells yielded hybrids that had limited division potential. T antigen expressed in limited-division hybrids was functional for the induction of cellular DNA synthesis.
Collapse
|
45
|
Pereira-Smith OM, Smith JR. Functional simian virus 40 T antigen is expressed in hybrid cells having finite proliferative potential. Mol Cell Biol 1987; 7:1541-4. [PMID: 3037326 PMCID: PMC365243 DOI: 10.1128/mcb.7.4.1541-1544.1987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Simian virus 40-transformed human cells fused with other independently derived simian virus 40-transformed cells and tumor-derived cells containing activated H-ras and N-ras oncogenes yielded hybrids capable of indefinite division. Fusions with various other immortal cells yielded hybrids that had limited division potential. T antigen expressed in limited-division hybrids was functional for the induction of cellular DNA synthesis.
Collapse
|
46
|
Abstract
We constructed a collection of linker insertion mutants in the simian virus 40 (SV40) genome and studied several of these with changes limited to a part of the large T antigen gene corresponding to an amino acid sequence shared with other ATPases. Two of these mutants were found to have a novel phenotype in that they could not be complemented for plaque formation by a late-region deletion mutant. These two mutants, in contrast to other mutants in this region, were able to transform rat cells in culture at a frequency close to that of the wild-type gene. The noncomplementing mutants were found to be potent inhibitors of SV40 DNA replication despite the presence of wild-type T antigen in the transfected cells. This inhibition was shown to be the result of the introduced mutations in the large T antigen gene. We conclude that the large T antigens of the noncomplementing mutants can act as inhibitors of SV40 DNA replication.
Collapse
|
47
|
Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. Mol Cell Biol 1987. [PMID: 3023876 DOI: 10.1128/mcb.6.4.1204] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa.
Collapse
|
48
|
Butel JS, Jarvis DL. The plasma-membrane-associated form of SV40 large tumor antigen: biochemical and biological properties. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 865:171-95. [PMID: 3021222 DOI: 10.1016/0304-419x(86)90027-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Isolation of cellular genes differentially expressed in mouse NIH 3T3 cells and a simian virus 40-transformed derivative: growth-specific expression of VL30 genes. Mol Cell Biol 1986. [PMID: 3016508 DOI: 10.1128/mcb.5.10.2590] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed and screened a cDNA library made from simian virus 40 (SV40)-transformed NIH 3T3 cells, and we isolated cDNAs representing genes that are differentially expressed between the parental cell and its SV40-transformed derivative. We found only a small number of cDNAs representing such genes. Two isolated cDNA clones represented RNAs expressed at elevated levels in the transformed cell line in a manner relatively independent of growth conditions. The expression of two other cDNAs was growth specific because transformed cells and nonconfluent parental cells contained higher levels of the homologous RNAs than did confluent, contact-inhibited parental cells. Another cDNA was well expressed in confluent parental and confluent transformed cells, but not in nonconfluent cells. The expression of some of these cDNAs varied strikingly in different mouse cell lines. Thus the genotype or histories of different cell lines can also affect the expression of certain genes. Interestingly, the only cDNA isolated that was expressed exclusively in the transformed cell was from an SV40 message. We focused on a growth-specific cDNA which we show is derived from a mouse endogenous retrovirus-like family called VL30. We sequenced the 3' long terminal repeat (LTR) of this transcriptionally active VL30 gene. This LTR has good homology with other VL30 LTR sequences, but differences occur, particularly upstream of the VL30 promoter. We found that VL30 gene expression varied in different mouse cell lines such that C3H cell lines had very low levels of VL30 transcripts relative to NIH 3T3 cell lines. However, Southern analysis showed that both cell lines had about the same number of VL30 genes homologous to our probe and that the position of the majority of these genes was conserved. We discuss possible explanations for this difference in VL30 expression.
Collapse
|
50
|
Rutila JE, Imperiale MJ, Brockman WW. Replication and transformation functions of in vitro-generated simian virus 40 large T antigen mutants. J Virol 1986; 58:526-35. [PMID: 3009866 PMCID: PMC252941 DOI: 10.1128/jvi.58.2.526-535.1986] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We used sodium bisulfite mutagenesis to introduce point mutations within the early region of the simian virus 40 genome. Seventeen mutants which contained amino acid changes in the amino-terminal half of the large T antigen coding sequence were assayed for their ability to replicate viral DNA and to induce transformation in the established rodent cell line Rat-3. The mutants fell into four basic classes with respect to these two biological functions. Five mutants had wild-type replication and transformation activities, six were totally defective, three were replication deficient and transformation competent, and two were replication competent and transformation deficient. Within these classes were mutants which displayed intermediate phenotypes, such as four mutants which were not totally deficient in viral replication or cellular transformation but instead showed reduced large T antigen function relative to wild type. Three large T mutants displayed transforming activity that was greater than that of wild type and are called supertransforming mutants. Of the most interest are mutants differentially defective in replication and transformation activities. These results both support and extend previous findings that two important biological functions of large T antigen can be genetically separated.
Collapse
|