1
|
Dremel SE, Jimenez AR, Tucker JM. "Transfer" of power: The intersection of DNA virus infection and tRNA biology. Semin Cell Dev Biol 2023; 146:31-39. [PMID: 36682929 PMCID: PMC10101907 DOI: 10.1016/j.semcdb.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Transfer RNAs (tRNAs) are at the heart of the molecular biology central dogma, functioning to decode messenger RNAs into proteins. As obligate intracellular parasites, viruses depend on the host translation machinery, including host tRNAs. Thus, the ability of a virus to fine-tune tRNA expression elicits the power to impact the outcome of infection. DNA viruses commonly upregulate the output of RNA polymerase III (Pol III)-dependent transcripts, including tRNAs. Decades after these initial discoveries we know very little about how mature tRNA pools change during viral infection, as tRNA sequencing methodology has only recently reached proficiency. Here, we review perturbation of tRNA biogenesis by DNA virus infection, including an emerging player called tRNA-derived fragments (tRFs). We discuss how tRNA dysregulation shifts the power landscape between the host and virus, highlighting the potential for tRNA-based antivirals as a future therapeutic.
Collapse
Affiliation(s)
- Sarah E Dremel
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariana R Jimenez
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Jessica M Tucker
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Yang Y, McKerlie C, Borenstein SH, Lu Z, Schito M, Chamberlain JW, Buchwald M. Transgenic expression in mouse lung reveals distinct biological roles for the adenovirus type 5 E1A 243- and 289-amino-acid proteins. J Virol 2002; 76:8910-9. [PMID: 12163610 PMCID: PMC136987 DOI: 10.1128/jvi.76.17.8910-8919.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the biological significance of human adenovirus type 5 (Ad5) E1A in vivo. However, Ad5 E1A is well defined in vitro and can be detected frequently in the lungs of patients with pulmonary disease. Transgenic expression of the Ad5 E1A gene targeted to the mouse lung reveals distinct biological effects caused by two Ad5 E1A products. Either of two Ad5 E1A proteins was preferentially expressed in vivo in the transgenic lungs. The preferential expression of the Ad5 E1A 243-amino-acid (aa) protein at a moderate level was associated with cellular hyperplasia, nodular lesions of proliferating lymphocyte-like cells, and a low level of p53-dependent apoptosis in the lungs of transgenic mice. In contrast, the preferential expression of the Ad5 E1A 289-aa protein at a moderate level resulted in a proapoptotic injury and an acute pulmonary proinflammation in the lungs of transgenic mice, mediated by multiple apoptotic pathways, as well as an enhancement of the host immune cell response. Expression of the Ad5 E1A 243-aa protein resulted in proliferation-stimulated p53 upregulation, while expression of the Ad5 E1A 289-aa protein led to DNA damage-induced p53 activation. These data suggest that the Ad5 E1A 243- and 289-aa proteins lead to distinct biological roles in vivo.
Collapse
Affiliation(s)
- Yongping Yang
- Programs in Genetics and Genomic Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
3
|
Fu Y, Ishii KK, Munakata Y, Saitoh T, Kaku M, Sasaki T. Regulation of tumor necrosis factor alpha promoter by human parvovirus B19 NS1 through activation of AP-1 and AP-2. J Virol 2002; 76:5395-403. [PMID: 11991968 PMCID: PMC137035 DOI: 10.1128/jvi.76.11.5395-5403.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human parvovirus B19 frequently causes acute and chronic arthritis in adults. The molecular mechanism of B19 arthritis, however, remains poorly understood. We previously showed that the transmission of B19 from rheumatoid synoviocytes to monocytic cells is associated with enhanced secretion of tumor necrosis factor alpha (TNF-alpha), which triggers inflammation, and interleukin-6. To determine the role of B19 in the production of TNF-alpha, we focused on the function of its nonstructural protein, NS1, and established monocytic U937 lines transduced with the NS1 gene under the control of an inducible promoter. Production of TNF-alpha mRNA and protein was elevated in a manner associated with NS1 expression. Reporter assays revealed that AP-1 and AP-2 motifs on the TNF-alpha promoter were responsible for NS1-mediated up-regulation. Electrophoretic mobility shift assay showed specific binding of nuclear proteins from NS1 gene-transduced cells with the AP-1 or AP-2 probe. Antibodies against transcription factors AP-1 and AP-2 and anti-NS1 antibody inhibited the binding of nuclear proteins to the corresponding probes. These data indicate that NS1 up-regulates TNF-alpha transcription via activation of AP-1 and AP-2 in monocytic cells. The molecular mechanisms of NS1-mediated TNF-alpha expression would explain the pathogenesis of B19-associated inflammation.
Collapse
Affiliation(s)
- Yi Fu
- Division of Rheumatology and Hematology, Department of Clinical Medicine, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Mal A, Piotrkowski A, Harter ML. Cyclin-dependent kinases phosphorylate the adenovirus E1A protein, enhancing its ability to bind pRb and disrupt pRb-E2F complexes. J Virol 1996; 70:2911-21. [PMID: 8627766 PMCID: PMC190149 DOI: 10.1128/jvi.70.5.2911-2921.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The adenovirus E1A protein of 243 amino acids has been shown to affect a variety of cellular functions, most notably the immortalization of primary cells and the promotion of quiescent cells into S phase. The activity of E1A is derived, in part, from its association with various cellular proteins, many of which play important roles in regulating cell cycle progression. E1A is known to have multiple sites of phosphorylation. It has been suggested that cell cycle-dependent phosphorylation may also control some of E1A's functions. We find now that immune complexes of cyclin-dependent kinases such as cdk4, cdk2, and cdc2 are all capable of phosphorylating E1A in vitro. Additionally, the sites on E1A phosphorylated by these kinases in vitro are similar to the E1A sites phosphorylated in vivo. We have also found that a phosphorylated E1A is far more efficient than an unphosphorylated E1A in associating with pRB and in disrupting E2F/DP-pRB complexes as well. On the basis of our findings and the differences in timing and expression levels of the various cyclins regulating cdks, we suggest that E1A functions at different control points in the cell cycle and that phosphorylation controls, to some extent, its biological functions.
Collapse
Affiliation(s)
- A Mal
- Department of Molecular Biology, Cleveland Clinic Research Institute, Ohio 44195, USA
| | | | | |
Collapse
|
5
|
Gottesfeld JM, Johnson DL, Nyborg JK. Transcriptional activation of RNA polymerase III-dependent genes by the human T-cell leukemia virus type 1 tax protein. Mol Cell Biol 1996; 16:1777-85. [PMID: 8657153 PMCID: PMC231164 DOI: 10.1128/mcb.16.4.1777] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human T-cell leukemia virus-encoded tax protein is a potent activator of many viral and cellular genes transcribed by RNA polymerase II. We find that both chromatin and cell extracts derived from human T-cell leukemia virus type 1-infected human T lymphocytes support higher levels of 5S rRNA and tRNA gene transcription than chromatin or extracts from uninfected T lymphocytes. The viral protein Tax was likely responsible for this higher level of class II gene transcription, as purified Tax was found to stimulate both genes when added to the uninfected cell extract or in reconstituted systems. Both limiting-component transcription assays and DNA binding assays identified the class III gene transcription factor TFIIIB as the principle target of Tax activity. Surprisingly, we find that Tax increases the effective concentration of active TFIIIB molecules. These data suggest that Tax stimulates RNA polymerase III-dependent gene expression by accelerating the rate and/or extent of transcription initiation complex assembly.
Collapse
Affiliation(s)
- J M Gottesfeld
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
6
|
Rhoades KL, Golub SH, Economou JS. The adenoviral transcription factor, E1A 13S, trans-activates the human tumor necrosis factor-alpha promoter. Virus Res 1996; 40:65-74. [PMID: 8725122 DOI: 10.1016/0168-1702(95)01260-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The 1311 bp TNF-alpha promoter region fused to a luciferase reporter vector was used in a transient transfection system to study the regulation of TNF-alpha promoter activity by E1A 13S in the U937 macrophage cell line and the MLA 144 T cell line. Co-transfections of the TNF-alpha promoter with an E1A expression vector resulted in a strong trans-activation of the promoter in both cell lines. Sequential truncation of the promoter mapped the E1A responsive region to sequences contained between -120 bp and the transcription start site. Truncation to -95 bp caused a dramatic 87% reduction of E1A activation in MLA 144 cells and further truncation to -36 bp caused a complete loss of E1A activation. In U937 cells, each truncation lowered E1A responsiveness but activity was never completely abolished. Site-directed mutagenesis of putative cis-acting sequences in the TNF-alpha promoter identified the AP-1 site as important for E1A trans-activation in the U937 cell line; the AP-2 and CRE sites also appeared to contribute to a lesser degree. In contrast, only the CRE mutation caused a reduction in E1A induced activity in the MLA 144 cell line. Co-transfection of the E1A expression vector with expression vectors for the cellular transcription factors AP-1, AP-2 and CREB indicated that none of these transcription factors showed any co-operativity with E1A. Thus, cis-acting sequences which contribute to E1A trans-activation of the TNF-alpha promoter have been delineated.
Collapse
Affiliation(s)
- K L Rhoades
- Department of Microbiology and Immunology, UCLA School of Medicine 90024, USA
| | | | | |
Collapse
|
7
|
Meissner W, Ahlers A, Seifart KH. The activity of transcription factor PBP, which binds to the proximal sequence element of mammalian U6 genes, is regulated during differentiation of F9 cells. Mol Cell Biol 1995; 15:5888-97. [PMID: 7565741 PMCID: PMC230840 DOI: 10.1128/mcb.15.11.5888] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mouse F9 embryonic carcinoma (EC) cells differentiate in culture to parietal endoderm (PE) cells upon induction with retinoic acid and cyclic AMP. In the course of this process, the expression of polymerase III transcripts, e.g., 5S rRNA and U6 small nuclear RNA, is dramatically reduced. This reduction of endogenous RNA content is accompanied by a loss of transcriptional capacity in cell extracts from PE cells. Partial purification of such extracts reveals that the DNA-binding activity of transcription factor PBP, binding specifically to the proximal sequence element (PSE) sequence of vertebrate U6 genes, is significantly reduced. This finding is corroborated by a loss in the transcriptional activity of this factor in reconstitution assays with partially purified polymerase III transcription components. In contrast, the activity of TFIIIA and TFIIIB and the amount of free TATA-binding protein remain unchanged during the differentiation process analyzed here. These data show for the first time that the PSE-binding protein PBP is essentially involved in the differential regulation of polymerase III genes governed by external promoters.
Collapse
Affiliation(s)
- W Meissner
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Germany
| | | | | |
Collapse
|
8
|
Russanova VR, Driscoll CT, Howard BH. Adenovirus type 2 preferentially stimulates polymerase III transcription of Alu elements by relieving repression: a potential role for chromatin. Mol Cell Biol 1995; 15:4282-90. [PMID: 7623822 PMCID: PMC230667 DOI: 10.1128/mcb.15.8.4282] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The number of Alu transcripts that accumulate in HeLa and other human cells is normally very low; however, infection with adenovirus type 5 increases the expression of Alu elements dramatically, indicating that the potential for polymerase III (pol III)-dependent Alu transcription in vivo is far greater than generally observed (B. Panning and J.R. Smiley, Mol. Cell. Biol. 13:3231-3244, 1993). In this study, we employed nuclear run-on in combination with a novel RNase H-based assay to investigate transcription from uninfected and adenovirus type 2-infected nuclei, as well as genomic DNAs from uninfected and infected cells. When performed in the presence of excess uninfected nuclear extract, such assays revealed that (i) the vast majority of transcriptionally competent Alu elements in nuclei are masked from the pol III transcriptional machinery and (ii) the induction of Alu expression upon adenovirus infection can be largely accounted for by an increased availability of these elements to the pol III transcription machinery. We also investigated the role of H1 histone for silencing of Alu genes and, in comparison, mouse B2 repetitive elements. Depletion of H1 led to an approximately 17-fold activation of B2 repetitive elements but did not change Alu transcription relative to that of constitutively expressed 5S rRNA genes. These results are consistent with the view that Alu repeats are efficiently sequestered by chromatin proteins, that such masking cannot be accounted for by nonspecific H1-dependent repression, and that adenovirus infection at least partially overrides the repressive mechanism(s).
Collapse
Affiliation(s)
- V R Russanova
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
9
|
Cotten M. Adenovirus-augmented, receptor-mediated gene delivery and some solutions to the common toxicity problems. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):283-95. [PMID: 7555081 DOI: 10.1007/978-3-642-79586-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M Cotten
- research Institute of Molecular Pathology, Vienna, Austria
| |
Collapse
|
10
|
Pruzan R, Flint SJ. Transcription of adenovirus RNA polymerase III genes. Curr Top Microbiol Immunol 1995; 199 ( Pt 1):201-26. [PMID: 7555055 DOI: 10.1007/978-3-642-79496-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Pruzan
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|
11
|
Kawamura H, Wada N, Makino Y, Tamura TA, Koikeda S, Shiroki K, Masamune Y, Nakanishi Y. Transcription stimulation of the adenovirus type 12 E1a gene in vitro by the 266-amino-acid E1A protein. J Virol 1994; 68:5056-62. [PMID: 8035506 PMCID: PMC236448 DOI: 10.1128/jvi.68.8.5056-5062.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously showed that the 13S but not the 12S mRNA product of the E1a gene of the highly oncogenic type 12 adenovirus (Ad12) stimulates the expression of its own gene. In this study, the mechanism for the autoregulation of the Ad12 E1a gene was investigated in vitro. The 266-amino-acid E1A protein of Ad12 was synthesized in yeast cells and purified as a 57-kDa polypeptide. The purified Ad12 E1A protein stimulated transcription from the proximal promoter of its own gene but had almost no effect on that from the distal promoter. A 35-bp upstream region including a TATA box for the proximal promoter seemed to be sufficient for transcription stimulation by the E1A protein. The Ad12 E1A protein formed a complex with a TATA box-binding protein (TBP), as does the E1A protein of nononcogenic Ad serotypes. Moreover, the E1A protein significantly reduced the binding of TBP to a TATA sequence, while it did not affect the DNA-binding activity of nuclear factor I, a stimulatory protein of the distal transcription of the Ad12 E1a gene. These results suggest that the 13S mRNA product of the Ad12 E1a gene regulates the transcription of its own gene by modulating the activity of TBP.
Collapse
Affiliation(s)
- H Kawamura
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Faruqi R, de la Motte C, DiCorleto PE. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells. J Clin Invest 1994; 94:592-600. [PMID: 7518838 PMCID: PMC296135 DOI: 10.1172/jci117374] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Antioxidants have been proposed to be anti-atherosclerotic agents; however, the mechanisms underlying their beneficial effects are poorly understood. We have examined the effect of alpha-tocopherol (alpha-tcp) on one cellular event in atherosclerotic plaque development, monocyte adhesion to stimulated endothelial cells (ECs). Human umbilical vein ECs were pretreated with alpha-tcp before stimulation with known agonists of monocyte adhesion: IL-1 (10 ng/ml), LPS (10 ng/ml), thrombin (30 U/ml), or PMA (10 nM). Agonist-induced monocytic cell adhesion, but not basal adhesion, was inhibited in a time- and concentration-dependent manner by alpha-tcp. The IC50 of alpha-tcp on an IL-1-induced response was 45 microM. The inhibition correlated with a decrease in steady state levels of E-selectin mRNA and cell surface expression of E-selectin which is consistent with the ability of a monoclonal antibody to E-selectin to inhibit monocytic cell adhesion in this system. Probucol (50 microM) and N-acetylcysteine (20 mM) also inhibited agonist-induced monocytic cell adhesion; whereas, several other antioxidants had no significant effect. Protein kinase C (PKC) does not appear to play a role in the alpha-tcp effect since no suppression of phosphorylation of PKC substrates was observed. Activation of the transcription factor NF-kappa B is reported to be necessary but not sufficient for E-selectin expression in EC. Electrophoretic mobility shift assays failed to show an alpha-tcp-induced decrease in activation of this transcription factor after cytokine stimulation. It has been hypothesized that alpha-tcp acts as an anti-atherosclerotic molecule by inhibiting generation of oxidized LDL--a putative triggering molecule in the atherosclerotic process. Our results point to a novel alternative mechanism of action of alpha-tcp.
Collapse
Affiliation(s)
- R Faruqi
- Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195
| | | | | |
Collapse
|
13
|
Abstract
Eukaryotic genomes frequently contain large numbers of repetitive RNA polymerase III (pol III) promoter elements interspersed between and within RNA pol II transcription units, and in several instances a regulatory relationship between the two types of promoter has been postulated. In the budding yeast Saccharomyces cerevisiae, tRNA genes are the only known interspersed pol III promoter-containing repetitive elements, and we find that they strongly inhibit transcription from adjacent pol II promoters in vivo. This inhibition requires active transcription of the upstream tRNA gene but is independent of its orientation and appears not to involve simple steric blockage of the pol II upstream activator sites. Evidence is presented that different pol II promoters can be repressed by different tRNA genes placed upstream at varied distances in both orientations. To test whether this phenomenon functions in naturally occurring instances in which tRNA genes and pol II promoters are juxtaposed, we examined the sigma and Ty3 elements. This class of retrotransposons is always found integrated immediately upstream of different tRNA genes. Weakening tRNA gene transcription by means of a temperature-sensitive mutation in RNA pol III increases the pheromone-inducible expression of sigma and Ty3 elements up to 60-fold.
Collapse
|
14
|
Abstract
Eukaryotic genomes frequently contain large numbers of repetitive RNA polymerase III (pol III) promoter elements interspersed between and within RNA pol II transcription units, and in several instances a regulatory relationship between the two types of promoter has been postulated. In the budding yeast Saccharomyces cerevisiae, tRNA genes are the only known interspersed pol III promoter-containing repetitive elements, and we find that they strongly inhibit transcription from adjacent pol II promoters in vivo. This inhibition requires active transcription of the upstream tRNA gene but is independent of its orientation and appears not to involve simple steric blockage of the pol II upstream activator sites. Evidence is presented that different pol II promoters can be repressed by different tRNA genes placed upstream at varied distances in both orientations. To test whether this phenomenon functions in naturally occurring instances in which tRNA genes and pol II promoters are juxtaposed, we examined the sigma and Ty3 elements. This class of retrotransposons is always found integrated immediately upstream of different tRNA genes. Weakening tRNA gene transcription by means of a temperature-sensitive mutation in RNA pol III increases the pheromone-inducible expression of sigma and Ty3 elements up to 60-fold.
Collapse
Affiliation(s)
- M W Hull
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606
| | | | | | | |
Collapse
|
15
|
|
16
|
Sollerbrant K, Akusjärvi G, Svensson C. Repression of RNA polymerase III transcription by adenovirus E1A. J Virol 1993; 67:4195-204. [PMID: 8510221 PMCID: PMC237789 DOI: 10.1128/jvi.67.7.4195-4204.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adenovirus E1A encodes two major proteins of 289 and 243 amino acids (289R and 243R), which both have transcription regulatory properties. E1A-289R is a transactivator whereas E1A-243R primarily functions as a repressor of transcription. Here we show that E1A repression is not restricted to RNA polymerase II genes but also includes the adenovirus virus-associated (VA) RNA genes. These genes are transcribed by RNA polymerase III and have previously been suggested to be the target of an E1A-289R-mediated transactivation. Surprisingly, we found that during transient transfection both E1A proteins repressed VA RNA transcription. E1A repression of VA RNA transcription required both conserved regions 1 and 2 and therefore differed from the E1A-mediated inhibition of simian virus 40 enhancer activity which primarily required conserved region 1. The repression was counteracted by the E1B-19K protein, which also, in the absence of E1A, enhanced the accumulation of VA RNA. Importantly, we show that efficient VA RNA transcription requires expression of both E1A and the E1B-19K protein during virus infection.
Collapse
Affiliation(s)
- K Sollerbrant
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 1993. [PMID: 7684492 DOI: 10.1128/mcb.13.6.3231] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We found that transcription of endogenous human Alu elements by RNA polymerase III was strongly stimulated following infection of HeLa cells with adenovirus type 5, leading to the accumulation of high levels of Alu transcripts initiated from Alu polymerase III promoters. In contrast to previously reported cases of adenovirus-induced activation of polymerase III transcription, induction required the E1b 58-kDa protein and the products of E4 open reading frames 3 and 6 in addition to the 289-residue E1a protein. In addition, E1a function was not required at high multiplicities of infection, suggesting that E1a plays an indirect role in Alu activation. These results suggest previously unsuspected regulatory properties of the adenovirus E1b and E4 gene products and provide a novel approach to the study of the biology of the most abundant class of dispersed repetitive DNA in the human genome.
Collapse
|
18
|
Panning B, Smiley JR. Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 1993; 13:3231-44. [PMID: 7684492 PMCID: PMC359768 DOI: 10.1128/mcb.13.6.3231-3244.1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We found that transcription of endogenous human Alu elements by RNA polymerase III was strongly stimulated following infection of HeLa cells with adenovirus type 5, leading to the accumulation of high levels of Alu transcripts initiated from Alu polymerase III promoters. In contrast to previously reported cases of adenovirus-induced activation of polymerase III transcription, induction required the E1b 58-kDa protein and the products of E4 open reading frames 3 and 6 in addition to the 289-residue E1a protein. In addition, E1a function was not required at high multiplicities of infection, suggesting that E1a plays an indirect role in Alu activation. These results suggest previously unsuspected regulatory properties of the adenovirus E1b and E4 gene products and provide a novel approach to the study of the biology of the most abundant class of dispersed repetitive DNA in the human genome.
Collapse
Affiliation(s)
- B Panning
- Pathology Department, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
19
|
Kalvakolanu DV, Liu J, Hanson RW, Harter ML, Sen GC. Adenovirus E1A represses the cyclic AMP-induced transcription of the gene for phosphoenolpyruvate carboxykinase (GTP) in hepatoma cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45912-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|