1
|
Guo H, Li Q, Li C, Hou Y, Ding Y, Liu D, Ni Y, Tang R, Zheng K, Urban S, Wang W. Molecular determinants within the C-termini of L-HDAg that regulate hepatitis D virus replication and assembly. JHEP Rep 2024; 6:100961. [PMID: 38192534 PMCID: PMC10772390 DOI: 10.1016/j.jhepr.2023.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 01/10/2024] Open
Abstract
Background & Aims Hepatitis D virus (HDV) is the causative agent of chronic hepatitis delta, the most severe form of viral hepatitis. HDV encodes one protein, hepatitis delta antigen (HDAg), in two isoforms: S- and L-HDAg. They are identical in sequence except that L-HDAg contains an additional 19-20 amino acids at its C-terminus, which confer regulatory roles that are distinct from those of S-HDAg. Notably, these residues are divergent between different genotypes. We aimed to elucidate the molecular determinants within the C-termini that are essential for the regulatory role of L-HDAg in HDV replication and assembly. Methods Northern blot, reverse-transcription quantitative PCR, and a newly established HDV trans-complementary system were used in this study. Results C-termini of L-HDAg, albeit with high sequence variation among different genotypes, are interchangeable with respect to the trans-inhibitory function of L-HDAg and HDV assembly. The C-terminus of L-HDAg features a conserved prenylation CXXQ motif and is enriched with proline and hydrophobic residues. Abolishment of the CXXQ motif attenuated the inhibitory effect of L-HDAg on HDV replication. In contrast, the enrichment of proline and hydrophobic residues per se does not modify the trans-inhibitory function of L-HDAg. Nevertheless, these residues are essential for HDV assembly. Mechanistically, prolines and hydrophobic residues contribute to HDV assembly via a mode of action independent of the prenylated CXXQ motif. Conclusions Within the C-terminus of L-HDAg, the CXXQ motif and the enrichment of proline and hydrophobic residues are all essential determinants of L-HDAg's regulatory roles in HDV replication and assembly. This intrinsic viral regulatory mechanism we elucidated deepens our understanding of the unique life cycle of HDV. Impact and implications Hepatitis D virus (HDV) encodes one protein, hepatitis delta antigen (HDAg), in two isoforms: S- and L-HDAg. They are identical in sequence except that L-HDAg contains an additional 19-20 amino acids at its C-terminus. This C-terminal extension in L-HDAg confers regulatory roles in the HDV life cycle that are distinct from those of S-HDAg. Herein, we found that C-termini of L-HDAg, although with high sequence variation, are interchangeable among different HDV genotypes. Within the C-terminus of L-HDAg, the prenylation motif, and the enrichment of proline and hydrophobic residues are all essential determinants of L-HDAg's regulatory roles in HDV replication and assembly.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Chunyang Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yao Hou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yibo Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Smirnova OA, Ivanova ON, Mukhtarov F, Valuev-Elliston VT, Fedulov AP, Rubtsov PM, Zakirova NF, Kochetkov SN, Bartosch B, Ivanov AV. Hepatitis Delta Virus Antigens Trigger Oxidative Stress, Activate Antioxidant Nrf2/ARE Pathway, and Induce Unfolded Protein Response. Antioxidants (Basel) 2023; 12:974. [PMID: 37107349 PMCID: PMC10136299 DOI: 10.3390/antiox12040974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis delta virus (HDV) is a viroid-like satellite that may co-infect individuals together with hepatitis B virus (HBV), as well as cause superinfection by infecting patients with chronic hepatitis B (CHB). Being a defective virus, HDV requires HBV structural proteins for virion production. Although the virus encodes just two forms of its single antigen, it enhances the progression of liver disease to cirrhosis in CHB patients and increases the incidence of hepatocellular carcinoma. HDV pathogenesis so far has been attributed to virus-induced humoral and cellular immune responses, while other factors have been neglected. Here, we evaluated the impact of the virus on the redox status of hepatocytes, as oxidative stress is believed to contribute to the pathogenesis of various viruses, including HBV and hepatitis C virus (HCV). We show that the overexpression of large HDV antigen (L-HDAg) or autonomous replication of the viral genome in cells leads to increased production of reactive oxygen species (ROS). It also leads to the upregulated expression of NADPH oxidases 1 and 4, cytochrome P450 2E1, and ER oxidoreductin 1α, which have previously been shown to mediate oxidative stress induced by HCV. Both HDV antigens also activated the Nrf2/ARE pathway, which controls the expression of a spectrum of antioxidant enzymes. Finally, HDV and its large antigen also induced endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR). In conclusion, HDV may enhance oxidative and ER stress induced by HBV, thus aggravating HBV-associated pathologies, including inflammation, liver fibrosis, and the development of cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Furkat Mukhtarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Artemy P. Fedulov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Petr M. Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| | - Birke Bartosch
- Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69434 Lyon, France;
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (O.A.S.); (O.N.I.); (F.M.); (V.T.V.-E.); (A.P.F.); (P.M.R.); (N.F.Z.); (S.N.K.)
| |
Collapse
|
3
|
The Nuclear Transporter Importin 13 Can Regulate Stress-Induced Cell Death through the Clusterin/KU70 Axis. Cells 2023; 12:cells12020279. [PMID: 36672214 PMCID: PMC9857240 DOI: 10.3390/cells12020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The cellular response to environmental stresses, such as heat and oxidative stress, is dependent on extensive trafficking of stress-signalling molecules between the cytoplasm and nucleus, which potentiates stress-activated signalling pathways, eventually resulting in cell repair or death. Although Ran-dependent nucleocytoplasmic transport mediated by members of the importin (IPO) super family of nuclear transporters is believed to be responsible for nearly all macromolecular transit between nucleus and cytoplasm, it is paradoxically known to be significantly impaired under conditions of stress. Importin 13 (IPO13) is a unique bidirectional transporter that binds to and releases cargo in a Ran-dependent manner, but in some cases, cargo release from IPO13 is affected by loading of another cargo. To investigate IPO13's role in stress-activated pathways, we performed cell-based screens to identify a multitude of binding partners of IPO13 from human brain, lung, and testes. Analysis of the IPO13 interactome intriguingly indicated more than half of the candidate binding partners to be annotated for roles in stress responses; these included the pro-apoptotic protein nuclear clusterin (nCLU), as well as the nCLU-interacting DNA repair protein KU70. Here, we show, for the first time, that unlike other IPOs which are mislocalised and non-functional, IPO13 continues to translocate between the nucleus and cytoplasm under stress, retaining the capacity to import certain cargoes, such as nCLU, but not export others, such as KU70, as shown by analysis using fluorescence recovery after photobleaching. Importantly, depletion of IPO13 reduces stress-induced import of nCLU and protects against stress-induced cell death, with concomitant protection from DNA damage during stress. Overexpression/FACS experiments demonstrate that nCLU is dependent on IPO13 to trigger stress-induced cell death via apoptosis. Taken together, these results implicate IPO13 as a novel functional nuclear transporter in cellular stress, with a key role thereby in cell fate decision.
Collapse
|
4
|
Medical Advances in Hepatitis D Therapy: Molecular Targets. Int J Mol Sci 2022; 23:ijms231810817. [PMID: 36142728 PMCID: PMC9506394 DOI: 10.3390/ijms231810817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
An approximate number of 250 million people worldwide are chronically infected with hepatitis B virus, making them susceptible to a coinfection with hepatitis D virus. The superinfection causes the most severe form of a viral hepatitis and thus drastically worsens the course of the disease. Until recently, the only available therapy consisted of interferon-α, only eligible for a minority of patients. In July 2020, the EMA granted Hepcludex conditional marketing authorization throughout the European Union. This first-in-class entry inhibitor offers the promise to prevent the spread in order to gain control and eventually participate in curing hepatitis B and D. Hepcludex is an example of how understanding the viral lifecycle can give rise to new therapy options. Sodium taurocholate co-transporting polypeptide, the virus receptor and the target of Hepcludex, and other targets of hepatitis D therapy currently researched are reviewed in this work. Farnesyltransferase inhibitors such as Lonafarnib, targeting another essential molecule in the HDV life cycle, represent a promising target for hepatitis D therapy. Farnesyltransferase attaches a farnesyl (isoprenyl) group to proteins carrying a C-terminal Ca1a2X (C: cysteine, a: aliphatic amino acid, X: C-terminal amino acid) motif like the large hepatitis D virus antigen. This modification enables the interaction of the HBV/HDV particle and the virus envelope proteins. Lonafarnib, which prevents this envelopment, has been tested in clinical trials. Targeting the lifecycle of the hepatitis B virus needs to be considered in hepatitis D therapy in order to cure a patient from both coexisting infections. Nucleic acid polymers target the hepatitis B lifecycle in a manner that is not yet understood. Understanding the possible targets of the hepatitis D virus therapy is inevitable for the improvement and development of a sufficient therapy that HDV patients are desperately in need of.
Collapse
|
5
|
Szirovicza L, Hetzel U, Kipar A, Hepojoki J. Short '1.2× Genome' Infectious Clone Initiates Kolmiovirid Replication in Boa constrictor Cells. Viruses 2022; 14:107. [PMID: 35062311 PMCID: PMC8778117 DOI: 10.3390/v14010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
Human hepatitis D virus (HDV) depends on hepatitis B virus co-infection and its glycoproteins for infectious particle formation. HDV was the sole known deltavirus for decades and believed to be a human-only pathogen. However, since 2018, several groups reported finding HDV-like agents from various hosts but without co-infecting hepadnaviruses. In vitro systems enabling helper virus-independent replication are key for studying the newly discovered deltaviruses. Others and we have successfully used constructs containing multimers of the deltavirus genome for the replication of various deltaviruses via transfection in cell culture. Here, we report the establishment of deltavirus infectious clones with 1.2× genome inserts bearing two copies of the genomic and antigenomic ribozymes. We used Swiss snake colony virus 1 as the model to compare the ability of the previously reported "2× genome" and the "1.2× genome" infectious clones to initiate replication in cell culture. Using immunofluorescence, qRT-PCR, immuno- and northern blotting, we found the 2× and 1.2× genome clones to similarly initiate deltavirus replication in vitro and both induced a persistent infection of snake cells. The 1.2× genome constructs enable easier introduction of modifications required for studying deltavirus replication and cellular interactions.
Collapse
Affiliation(s)
- Leonora Szirovicza
- Medicum, Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (U.H.); (A.K.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (U.H.); (A.K.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (U.H.); (A.K.)
| |
Collapse
|
6
|
Hepatitis Delta Antigen Regulates mRNA and Antigenome RNA Levels during Hepatitis Delta Virus Replication. J Virol 2019; 93:JVI.01989-18. [PMID: 30728256 DOI: 10.1128/jvi.01989-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of acute and chronic liver disease. HDV produces three processed RNAs that accumulate in infected cells: the circular genome; the circular antigenome, which serves as a replication intermediate; and lesser amounts of the mRNA, which encodes the sole viral protein, hepatitis delta antigen (HDAg). The HDV genome and antigenome RNAs form ribonucleoprotein complexes with HDAg. Although HDAg is required for HDV replication, it is not known how the relative amounts of HDAg and HDV RNA affect replication, or whether HDAg synthesis is regulated by the virus. Using a novel transfection system in which HDV replication is initiated using in vitro-synthesized circular HDV RNAs, HDV replication was found to depend strongly on the relative amounts of HDV RNA and HDAg. HDV controls these relative amounts via differential effects of HDAg on the production of HDV mRNA and antigenome RNA, both of which are synthesized from the genome RNA template. mRNA synthesis is favored at low HDAg levels but becomes saturated at high HDAg concentrations. Antigenome RNA accumulation increases linearly with HDAg and dominates at high HDAg levels. These results provide a conceptual model for how HDV antigenome RNA production and mRNA transcription are controlled from the earliest stage of infection onward and also demonstrate that, in this control, HDV behaves similarly to other negative-strand RNA viruses, even though there is no genetic similarity between them.IMPORTANCE Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of liver disease; approximately 15 million people are chronically infected worldwide. There are no licensed therapies available. HDV is not related to any known virus, and few details regarding its replication cycle are known. One key question is whether and how HDV regulates the relative amounts of viral RNA and protein in infected cells. Such regulation might be important because the HDV RNA and protein form complexes that are essential for HDV replication, and the proper stoichiometry of these complexes could be critical for their function. Our results show that the relative amounts of HDV RNA and protein in cells are indeed important for HDV replication and that the virus does control them. These observations indicate that further study of these regulatory mechanisms is required to better understand replication of this serious human pathogen.
Collapse
|
7
|
Down-regulation of hepatitis delta virus super-infection in the woodchuck model. Virology 2019; 531:100-113. [PMID: 30856482 DOI: 10.1016/j.virol.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
Mechanisms mediating clearance of hepatitis delta virus (HDV) are poorly understood. This study analyzed in detail profound down-regulation of HDV infection in the woodchuck model. Super-infection with HDV of woodchucks chronically infected with HBV-related woodchuck hepatitis virus produced two patterns. In the first, HDV viremia had a sharp peak followed by a considerable decline, and initial rise of HDV virions' infectivity followed by abrupt infectivity loss. In the second, HDV titer rose and later displayed plateau-like profile with high HDV levels; and HDV infectivity became persistently high when HDV titer reached the plateau. The infectivity loss was not due to defects in the virions' envelope, binding to anti-envelope antibodies, or mutations in HDV genome, but it correlated with profound reduction of the replication capacity of virion-associated HDV genomes. Subsequent finding that in virions with reduced infectivity most HDV RNAs were not full-length genomes suggests possible HDV clearance via RNA fragmentation.
Collapse
|
8
|
Wille M, Netter HJ, Littlejohn M, Yuen L, Shi M, Eden JS, Klaassen M, Holmes EC, Hurt AC. A Divergent Hepatitis D-Like Agent in Birds. Viruses 2018; 10:E720. [PMID: 30562970 PMCID: PMC6315422 DOI: 10.3390/v10120720] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is currently only found in humans and is a satellite virus that depends on hepatitis B virus (HBV) envelope proteins for assembly, release, and entry. Using meta-transcriptomics, we identified the genome of a novel HDV-like agent in ducks. Sequence analysis revealed secondary structures that were shared with HDV, including self-complementarity and ribozyme features. The predicted viral protein shares 32% amino acid similarity to the small delta antigen of HDV and comprises a divergent phylogenetic lineage. The discovery of an avian HDV-like agent has important implications for the understanding of the origins of HDV and sub-viral agents.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Hans J Netter
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Margaret Littlejohn
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Lilly Yuen
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3220, Australia.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
9
|
Abeywickrama-Samarakoon N, Cortay JC, Sureau C, Alfaiate D, Levrero M, Dény P. [Hepatitis delta virus replication and the role of the small hepatitis delta protein S-HDAg]. Med Sci (Paris) 2018; 34:833-841. [PMID: 30451678 DOI: 10.1051/medsci/2018209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is a mammalian defective virus. Its genome is a small single-stranded circular RNA of approximately 1,680 nucleotides. To spread, HDV relies on hepatitis B virus envelope proteins that are needed for viral particle assembly and egress. Severe clinical features of HBV-HDV infection include acute fulminant hepatitis and chronic liver fibrosis leading to cirrhosis and hepatocellular carcinoma. One uniqueness of HDV relies on its genome similarity to viroids, small plant infectious uncoated RNAs. Devoid of viral replicase activity, HDV has to use host DNA-dependant RNA Pol II to replicate its genomic RNA. Thus, one can ask how does this replication occur? We describe first here the major steps of the viral RNA transcription and replication and then we detail the role of the Small HD protein in these processes, especially with regard to the Pol II recruitment.
Collapse
Affiliation(s)
| | - Jean-Claude Cortay
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Camille Sureau
- Laboratoire de virologie moléculaire, Inserm UMR S_1134, Institut National de Transfusion Sanguine, Paris, France
| | - Dulce Alfaiate
- Département de pathologie et immunologie, université de Genève, Suisse
| | - Massimo Levrero
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France - Service d'hépato-gastroentérologie, Hôpital de la Croix Rousse, université Lyon-I, France
| | - Paul Dény
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France - Laboratoire de microbiologie clinique, groupe des Hôpitaux universitaires de Paris-Seine Saint Denis, UFR santé médecine, biologie humaine, université Paris 13, Bobigny, France
| |
Collapse
|
10
|
Tunitskaya VL, Eliseeva OV, Valuev-Elliston VT, Tyurina DA, Zakirova NF, Khomich OA, Kalis M, Latyshev OE, Starodubova ES, Ivanova ON, Kochetkov SN, Isaguliants MG, Ivanov AV. Prokaryotic Expression, Purification and Immunogenicity in Rabbits of the Small Antigen of Hepatitis Delta Virus. Int J Mol Sci 2016; 17:1721. [PMID: 27775592 PMCID: PMC5085752 DOI: 10.3390/ijms17101721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 01/10/2023] Open
Abstract
Hepatitis delta virus (HDV) is a viroid-like blood-borne human pathogen that accompanies hepatitis B virus infection in 5% patients. HDV has been studied for four decades; however, the knowledge on its life-cycle and pathogenesis is still sparse. The studies are hampered by the absence of the commercially-available HDV-specific antibodies. Here, we describe a set of reproducible methods for the expression in E. coli of His-tagged small antigen of HDV (S-HDAg), its purification, and production of polyclonal anti-S-HDAg antibodies in rabbits. S-HDAg was cloned into a commercial vector guiding expression of the recombinant proteins with the C-terminal His-tag. We optimized S-HDAg protein purification procedure circumventing a low affinity of the His-tagged S-HDAg to the Ni-nitrilotriacetyl agarose (Ni-NTA-agarose) resin. Optimization allowed us to obtain S-HDAg with >90% purity. S-HDAg was used to immunize Shinchilla grey rabbits which received 80 μg of S-HDAg in two subcutaneous primes in the complete, followed by four 40 μg boosts in incomplete Freunds adjuvant. Rabbits were bled two weeks post each boost. Antibody titers determined by indirect ELISA exceeded 10⁷. Anti-S-HDAg antibodies detected the antigen on Western blots in the amounts of up-to 100 pg. They were also successfully used to characterize the expression of S-HDAg in the eukaryotic cells by immunofluorescent staining/confocal microscopy.
Collapse
Affiliation(s)
- Vera L Tunitskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Olesja V Eliseeva
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleja str. 16, Moscow 123098, Russia.
| | - Vladimir T Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Daria A Tyurina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Olga A Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Martins Kalis
- A Kirchenstein Institute of Microbiology and Virology, Research Department, Riga Stradins University, Dzirciema iela 16, Riga LV-1007, Latvia.
| | - Oleg E Latyshev
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleja str. 16, Moscow 123098, Russia.
| | - Elizaveta S Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Olga N Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Maria G Isaguliants
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleja str. 16, Moscow 123098, Russia.
- A Kirchenstein Institute of Microbiology and Virology, Research Department, Riga Stradins University, Dzirciema iela 16, Riga LV-1007, Latvia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| |
Collapse
|
11
|
Han M, Littlejohn M, Yuen L, Edwards R, Devi U, Bowden S, Ning Q, Locarnini S, Jackson K. Molecular epidemiology of hepatitis delta virus in the Western Pacific region. J Clin Virol 2014; 61:34-9. [PMID: 24973283 DOI: 10.1016/j.jcv.2014.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hepatitis delta virus (HDV) is a defective RNA virus requiring the presence of the hepatitis B virus (HBV) for the completion of its life cycle. Active replication of HDV can lead to severe hepatitis, and although present worldwide has an irregular geographical distribution, especially in the Asian Pacific region. OBJECTIVES The aim of this study was to determine the prevalence and molecular epidemiology of HDV isolates in Oceania following the 1998 evaluation of the hepatitis B vaccine program. STUDY DESIGN Sera collected from 184 hepatitis B surface antigen (HBsAg) positive Pacific Islanders living in Micronesia, Polynesia and Melanesia were tested for HDV RNA. RESULTS Twenty of 54 patients with chronic hepatitis B (CHB) from Kiribati were positive for serum HDV RNA (37%), whilst sera from patients with CHB from Tonga (59), Fiji (42) and Vanuatu (29) were negative. The mean HDV RNA load for the 20 samples was 7.00log10copies/mL. Phylogenetic analysis revealed that the Kiribati HDV isolates were of genotype 1 and clustered with a previously published isolate from Nauru forming a distinct clade of Pacific HDV. All Micronesian isolates contained a serine at codon 202 of large hepatitis delta antigen (L-HDAg) demonstrating possible relatedness to strains of HDV-1 of African origin. CONCLUSIONS This study has confirmed endemic HDV infection in Micronesia and identified Kiribati as having amongst the highest prevalence for HDV viraemia in patients with CHB. Further investigations are ongoing into the origins of this unique HDV Pacific strain, and its inter-relationship with HBV.
Collapse
Affiliation(s)
- Meifang Han
- Research & Molecular Development, VIDRL, 10 Wreckyn Street, North Melbourne 3051, Australia; Department of Infectious Diseases, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Margaret Littlejohn
- Research & Molecular Development, VIDRL, 10 Wreckyn Street, North Melbourne 3051, Australia.
| | - Lilly Yuen
- Research & Molecular Development, VIDRL, 10 Wreckyn Street, North Melbourne 3051, Australia.
| | - Rosalind Edwards
- Research & Molecular Development, VIDRL, 10 Wreckyn Street, North Melbourne 3051, Australia.
| | - Uma Devi
- Research & Molecular Development, VIDRL, 10 Wreckyn Street, North Melbourne 3051, Australia.
| | - Scott Bowden
- Research & Molecular Development, VIDRL, 10 Wreckyn Street, North Melbourne 3051, Australia.
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Stephen Locarnini
- Research & Molecular Development, VIDRL, 10 Wreckyn Street, North Melbourne 3051, Australia.
| | - Kathy Jackson
- Research & Molecular Development, VIDRL, 10 Wreckyn Street, North Melbourne 3051, Australia.
| |
Collapse
|
12
|
Support of the infectivity of hepatitis delta virus particles by the envelope proteins of different genotypes of hepatitis B virus. J Virol 2014; 88:6255-67. [PMID: 24648462 DOI: 10.1128/jvi.00346-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED This study examined how the envelope proteins of 25 variants of hepatitis B virus (HBV) genotypes A to I support hepatitis delta virus (HDV) infectivity. The assembled virions bore the same HDV ribonucleoprotein and differed only by the HBV variant-specific envelope proteins coating the particles. The total HDV yields varied within a 122-fold range. A residue Y (position 374) in the HDV binding site was identified as critical for HDV assembly. Virions that bound antibodies, which recognize the region that includes the HBV matrix domain and predominantly but not exclusively immunoprecipitate the PreS1-containing virions, were termed PreS1*-HDVs. Using in vitro infection of primary human hepatocytes (PHH), we measured the specific infectivity (SI), which is the number of HDV genomes/cell produced by infection and normalized by the PreS1*-MOI, which is the multiplicity of infection that reflects the number of PreS1*-HDVs per cell in the inoculum used. The SI values varied within a 160-fold range and indicated a probable HBV genotype-specific trend of D > B > E > A in supporting HDV infectivity. Three variants, of genotypes B, C, and D, supported the highest SI values. We also determined the normalized index (NI) of infected PHH, which is the percentage of HDV-infected hepatocytes normalized by the PreS1*-MOI. Comparison of the SI and NI values revealed that, while a particular HBV variant may facilitate the infection of a relatively significant fraction of PHH, it may not always result in a considerable number of genomes that initiated replication after entry. The potential implications of these findings are discussed in the context of the mechanism of attachment/entry of HBV and HDV. IMPORTANCE The study advances the understanding of the mechanisms of (i) attachment and entry of HDV and HBV and (ii) transmission of HDV infection/disease.
Collapse
|
13
|
Arginine-rich motifs are not required for hepatitis delta virus RNA binding activity of the hepatitis delta antigen. J Virol 2013; 87:8665-74. [PMID: 23740973 DOI: 10.1128/jvi.00929-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) replication and packaging require interactions between the unbranched rodlike structure of HDV RNA and hepatitis delta antigen (HDAg), a basic, disordered, oligomeric protein. The tendency of the protein to bind nonspecifically to nucleic acids has impeded analysis of HDV RNA protein complexes and conclusive determination of the regions of HDAg involved in RNA binding. The most widely cited model suggests that RNA binding involves two proposed arginine-rich motifs (ARMs I and II) in the middle of HDAg. However, other studies have questioned the roles of the ARMs. Here, binding activity was analyzed in vitro using HDAg-160, a C-terminal truncation that binds with high affinity and specificity to HDV RNA segments in vitro. Mutation of the core arginines of ARM I or ARM II in HDAg-160 did not diminish binding to HDV unbranched rodlike RNA. These same mutations did not abolish the ability of full-length HDAg to inhibit HDV RNA editing in cells, an activity that involves RNA binding. Moreover, only the N-terminal region of the protein, which does not contain the ARMs, was cross-linked to a bound HDV RNA segment in vitro. These results indicate that the amino-terminal region of HDAg is in close contact with the RNA and that the proposed ARMs are not required for binding HDV RNA. Binding was not reduced by mutation of additional clusters of basic amino acids. This result is consistent with an RNA-protein complex that is formed via numerous contacts between the RNA and each HDAg monomer.
Collapse
|
14
|
Heinicke LA, Bevilacqua PC. Activation of PKR by RNA misfolding: HDV ribozyme dimers activate PKR. RNA (NEW YORK, N.Y.) 2012; 18:2157-65. [PMID: 23105000 PMCID: PMC3504668 DOI: 10.1261/rna.034744.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/20/2012] [Indexed: 05/22/2023]
Abstract
Protein Kinase R (PKR), the double-stranded RNA (dsRNA)-activated protein kinase, plays important roles in innate immunity. Previous studies have shown that PKR is activated by long stretches of dsRNA, RNA pseudoknots, and certain single-stranded RNAs; however, regulation of PKR by RNAs with globular tertiary structure has not been reported. In this study, the HDV ribozyme is used as a model of a mostly globular RNA. In addition to a catalytic core, the ribozyme contains a peripheral 13-bp pairing region (P4), which, upon shortening, affects neither the catalytic activity of the ribozyme nor its ability to crystallize. We report that the HDV ribozyme sequence alone can activate PKR. To elucidate the RNA structural basis for this, we prepared a number of HDV variants, including those with shortened or lengthened P4 pairing regions, with the anticipation that lengthening the P4 extension would yield a more potent activator since it would offer more base pairs of dsRNA. Surprisingly, the variant with a shortened P4 was the most potent activator. Through native gel mobility and enzymatic structure mapping experiments we implicate misfolded HDV ribozyme dimers as the PKR-activating species, and show that the shortened P4 leads to enhanced occupancy of the RNA dimer. These observations have implications for how RNA misfolding relates to innate immune response and human disease.
Collapse
Affiliation(s)
- Laurie A. Heinicke
- Department of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C. Bevilacqua
- Department of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding authorE-mail
| |
Collapse
|
15
|
Freitas N, Salisse J, Cunha C, Toshkov I, Menne S, Gudima SO. Hepatitis delta virus infects the cells of hepadnavirus-induced hepatocellular carcinoma in woodchucks. Hepatology 2012; 56:76-85. [PMID: 22334419 PMCID: PMC3376664 DOI: 10.1002/hep.25663] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/27/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatitis delta virus (HDV) is a natural subviral agent of human hepatitis B virus (HBV). HDV enhances liver damage during concomitant infection with HBV. The molecular pathogenesis of HDV infection remains poorly understood. To advance our understanding of the relationship between HDV infection and liver cancer, it was determined whether HDV could infect in vivo the cells of hepadnavirus-induced hepatocellular carcinoma (HCC). Woodchucks (Marmota monax) that were chronically infected with HBV-related woodchuck hepatitis virus (WHV) and already developed HCCs were used as an experimental model. The locations of HCCs within the livers were determined using ultrasound imaging followed by open surgery. One week after surgery the WHV carrier woodchucks were superinfected with WHV-enveloped HDV (wHDV). Six weeks later the animals were sacrificed and HDV replication in normal liver tissues and in center masses of HCCs was evidenced by Northern analysis, real-time polymerase chain reaction assay, and immunohistochemistry. Based on accumulation levels of HDV RNAs and numbers of infected cells, the efficiency of wHDV infection appears to be comparable in most HCCs and normal liver tissues. CONCLUSION Cells of WHV-induced HCCs are susceptible to HDV infection in vivo, and therefore express functional putative WHV receptors and support the steps of the attachment/entry governed by the hepadnavirus envelope proteins. Because others previously hypothesized that hepadnavirus-induced HCCs are resistant to reinfection with a hepadnavirus in vivo, our data suggest that if such a resistance exists it likely occurs via a block at the post-entry step. The demonstrated ability of HDV to infect already formed HCCs may facilitate development of novel strategies further dissecting the mechanism of liver pathogenesis associated with HDV infection.
Collapse
Affiliation(s)
- Natalia Freitas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jessica Salisse
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Celso Cunha
- Molecular Biology Unit, Institute of Hygiene and Tropical Medicine, Lisbon, Portugal
| | | | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
16
|
Casaca A, Fardilha M, da Cruz e Silva E, Cunha C. The heterogeneous ribonuclear protein C interacts with the hepatitis delta virus small antigen. Virol J 2011; 8:358. [PMID: 21774814 PMCID: PMC3160407 DOI: 10.1186/1743-422x-8-358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/20/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatitis delta virus (HDV) is considered to be a satellite virus of the Hepatitis B virus. The genome consists of a 1679 nt ssRNA molecule in which a single ORF was identified. This ORF codes for a unique protein, the Delta antigen (HDAg). During transcription, two forms, small (S-HDAg; p24) and large (L-HDAg; p27) of this antigen are derived as a result of an editing mechanism catalyzed by cellular adenosine deaminase 1. Despite its simplicity, little is still known about the host factors that interact with the virus RNA and antigens being to modulate virus replication. METHODS A yeast two-hybrid screening of a human liver cDNA library, using the hepatitis delta virus (HDV) small antigen (S-HDAg) as bait, was performed. Blot overlay and co-immunoprecipitation assays were used in an attempt to confirm the interaction of hnRNPC and S-HDAg. siRNA knockdown assays of hnRNPC were performed to assess the effect on HDV antigen expression. RESULTS Thirty known proteins were identified as S-HDAg interactors in the yeast two-hybrid screening. One of the identified proteins, hnRNPC, was found to interact with S-HDAg in vitro and in vivo in human liver cells. The interaction of the two proteins is mediated by the C-terminal half of the S-HDAg which contains a RNA-binding domain (aa 98-195). HDV RNA, S-HDAg, and hnRNPC, were also found to co-localize in the nucleus of human liver cells. Knockdown of hnRNPC mRNA using siRNAs resulted in a marked decreased expression of HDV antigens. CONCLUSIONS S-HDAg was found to interact with human liver proteins previously assigned to different functional categories. Among those involved in nucleic acid metabolism, hnRNPC was found to interact in vitro and in vivo in human liver cells. Similar to other RNA viruses, it seems plausible that hnRNPC may also be involved in HDV replication. However, further investigation is mandatory to clarify this question.
Collapse
Affiliation(s)
- Ana Casaca
- Unidade de Microbiologia Médica, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | | |
Collapse
|
17
|
Casaca A, Fardilha M, da Cruz E Silva E, Cunha C. In Vivo Interaction of the Hepatitis Delta Virus Small Antigen with the ELAV-Like Protein HuR. Open Virol J 2011; 5:12-21. [PMID: 21660185 PMCID: PMC3109592 DOI: 10.2174/1874357901105010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/27/2010] [Accepted: 11/04/2010] [Indexed: 01/05/2023] Open
Abstract
The small and large delta antigens (S-HDAg and L-HDAg, respectively) represent two forms of the only protein encoded by the hepatitis delta virus (HDV) RNA genome. Consequently, HDV relies, at a large extent, on the host cell machinery for replication and transcription. Until now, only a limited number of cellular proteins were identified as S-HDAg or L-HDAg partners being involved in the modulation of the virus life cycle. In an attempt to identify cellular S-HDAg-binding proteins we made use of a yeast two-hybrid approach to screen a human liver cDNA library. We were able to identify HuR, a ubiquitously expressed protein involved in RNA stabilization, as an S-HDAg partner both in vitro and in vivo. HuR was found to be overexpressed and colocalize with HDAg in human hepatoma cells. siRNA knockdown of HuR mRNA resulted in inhibition of S-HDAg and L-HDAg expression.
Collapse
Affiliation(s)
- Ana Casaca
- Unidade de Biologia Molecular, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa. Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | | | | | | |
Collapse
|
18
|
Alves C, Cheng H, Roder H, Taylor J. Intrinsic disorder and oligomerization of the hepatitis delta virus antigen. Virology 2010; 407:333-40. [PMID: 20855099 PMCID: PMC2952689 DOI: 10.1016/j.virol.2010.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 12/11/2022]
Abstract
The 195 amino acid basic protein (δAg) of hepatitis delta virus (HDV) is essential for replication of the HDV RNA genome. Numerous properties have been mapped to full-length δAg and attempts made to link these to secondary, tertiary and quaternary structures. Here, for the full-size δAg, extensive intrinsic disorder was predicted using PONDR-FIT, a meta-predictor of intrinsic disorder, and evidenced by circular dichroism measurements. Most δAg amino acids are in disordered configurations with no more than 30% adopting an α-helical structure. In addition, dynamic light scattering studies indicated that purified δAg assembled into structures of as large as dodecamers. Cross-linking followed by denaturing polyacrylamide gel electrophoresis revealed hexamers to octamers for this purified δAg and at least this size for δAg found in virus-like particles. Oligomers of purified δAg were resistant to elevated NaCl and urea concentrations, and bound without specificity to RNA and single- and double-stranded DNAs.
Collapse
|
19
|
Multimerization of hepatitis delta antigen is a critical determinant of RNA binding specificity. J Virol 2009; 84:1406-13. [PMID: 19923178 DOI: 10.1128/jvi.01723-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatitis delta virus (HDV) RNA forms an unbranched rod structure that is associated with hepatitis delta antigen (HDAg) in cells replicating HDV. Previous in vitro binding experiments using bacterially expressed HDAg showed that the formation of a minimal ribonucleoprotein complex requires an HDV unbranched rod RNA of at least about 300 nucleotides (nt) and suggested that HDAg binds the RNA as a multimer of fixed size. The present study specifically examines the role of HDAg multimerization in the formation of the HDV ribonucleoprotein complex (RNP). Disruption of HDAg multimerization by site-directed mutagenesis was found to profoundly alter the nature of RNP formation. Mutant HDAg proteins defective for multimerization exhibited neither the 300-nt RNA size requirement for binding nor specificity for the unbranched rod structure. The results unambiguously demonstrate that HDAg binds HDV RNA as a multimer and that the HDAg multimer is formed prior to binding the RNA. RNP formation was found to be temperature dependent, which is consistent with conformational changes occurring on binding. Finally, analysis of RNPs constructed with unbranched rod RNAs successively longer than the minimum length indicated that multimeric binding is not limited to the first HDAg bound and that a minimum RNA length of between 604 and 714 nt is required for binding of a second multimer. The results confirm the previous proposal that HDAg binds as a large multimer and demonstrate that the multimer is a critical determinant of the structure of the HDV RNP.
Collapse
|
20
|
Hepatitis delta virus RNA replication. Viruses 2009; 1:818-31. [PMID: 21994571 PMCID: PMC3185533 DOI: 10.3390/v1030818] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 12/12/2022] Open
Abstract
Hepatitis delta virus (HDV) is a distant relative of plant viroids in the animal world. Similar to plant viroids, HDV replicates its circular RNA genome using a double rolling-circle mechanism. Nevertheless, the production of hepatitis delta antigen (HDAg), which is indispensible for HDV replication, is a unique feature distinct from plant viroids, which do not encode any protein. Here the HDV RNA replication cycle is reviewed, with emphasis on the function of HDAg in modulating RNA replication and the nature of the enzyme involved.
Collapse
|
21
|
Han Z, Alves C, Gudima S, Taylor J. Intracellular localization of hepatitis delta virus proteins in the presence and absence of viral RNA accumulation. J Virol 2009; 83:6457-63. [PMID: 19369324 PMCID: PMC2698582 DOI: 10.1128/jvi.00008-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 04/11/2009] [Indexed: 02/08/2023] Open
Abstract
Hepatitis delta virus (HDV) encodes one protein, hepatitis delta antigen (deltaAg), a 195-amino-acid RNA binding protein essential for the accumulation of HDV RNA-directed RNA transcripts. It has been accepted that deltaAg localizes predominantly to the nucleolus in the absence of HDV genome replication while in the presence of replication, deltaAg facilitates HDV RNA transport to the nucleoplasm and helps redirect host RNA polymerase II (Pol II) to achieve transcription and accumulation of processed HDV RNA species. This study used immunostaining and confocal microscopy to evaluate factors controlling the localization of deltaAg in the presence and absence of replicating and nonreplicating HDV RNAs. When deltaAg was expressed in the absence of full-length HDV RNAs, it colocalized with nucleolin, a predominant nucleolar protein. With time, or more quickly after induced cell stress, there was a redistribution of both deltaAg and nucleolin to the nucleoplasm. Following expression of nonreplicating HDV RNAs, deltaAg moved to the nucleoplasm, but nucleolin was unchanged. When deltaAg was expressed along with replicating HDV RNA, it was found predominantly in the nucleoplasm along with Pol II. This localization was insensitive to inhibitors of HDV replication, suggesting that the majority of deltaAg in the nucleoplasm reflects ribonucleoprotein accumulation rather than ongoing transcription. An additional approach was to reevaluate several forms of deltaAg altered at specific locations considered to be essential for protein function. These studies provide evidence that deltaAg does not interact directly with either Pol II or nucleolin and that forms of deltaAg which support replication are also capable of prior nucleolar transit.
Collapse
Affiliation(s)
- Ziying Han
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | |
Collapse
|
22
|
Sikora D, Greco-Stewart VS, Miron P, Pelchat M. The hepatitis delta virus RNA genome interacts with eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2. Virology 2009; 390:71-8. [PMID: 19464723 DOI: 10.1016/j.virol.2009.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 03/26/2009] [Accepted: 04/29/2009] [Indexed: 02/08/2023]
Abstract
Because of its extremely limited coding capacity, the hepatitis delta virus (HDV) takes over cellular machineries for its replication and propagation. Despite the functional importance of host factors in both HDV biology and pathogenicity, little is known about proteins that associate with its RNA genome. Here, we report the identification of several host proteins interacting with an RNA corresponding to the right terminal stem-loop domain of HDV genomic RNA, using mass spectrometry on a UV crosslinked ribonucleoprotein complex, RNA affinity chromatography, and screening of a library of purified RNA-binding proteins. Co-immunoprecipitation was used to confirm the interactions of eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2 with the right terminal stem-loop domain of HDV genomic RNA in vitro, and with both polarities of HDV RNA within HeLa cells. Our discovery that HDV RNA associates with RNA-processing pathways and translation machinery during its replication provides new insights into HDV biology and its pathogenicity.
Collapse
Affiliation(s)
- Dorota Sikora
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4111A, Ottawa, Ontario, Canada, K1H 8M5
| | | | | | | |
Collapse
|
23
|
Abstract
The key to the discovery of the Hepatitis D Virus (HDV) was the description in Turin, Italy in the mid-1970s of the delta antigen and antibody in carriers of the hepatitis B surface antigen. The new antigen was first thought to be a marker of the Hepatitis B Virus (HBV) and in view of its intricate true nature, it would have possibly died away as another odd antigenic subtype of HBV, like many that were described in the 1970s. Fortunately, instead, a collaboration started in 1978 between the Turin group, and the National Institute of Health and Georgetown University in the US. With American facilities and expertise this collaboration led just a year later, in 1979, to the unfolding of an unexpected and amazing chapter in virology. Experiments in chimpanzees demonstrated that the delta antigen was not a component of the HBV but of a separate defective virus requiring HBV for its infection; it was named the hepatitis D virus to conform to the nomenclature of hepatitis viruses and classified within the genus Deltavirus. The animal experiments were also seminal in proposing to future clinical interpretation, the paradigm of a pathogenic infection (hepatitis D), that could develop only in HBV-infected patients, was mainly transmitted by superinfection of HDV on chronic HBV carriers and had the ability to strongly inhibit the helper HBV. The discovery of the HDV has driven three directions of further research: (1) The understanding of the replicative and infectious mechanisms of the HDV. (2) The assessment of its epidemiological and medical impact. (3) The search for a therapy for chronic hepatitis D (CHD). This review summarizes the progress achieved in each field of research in the thirty years that have passed since the discovery of HDV.
Collapse
Affiliation(s)
- Mario Rizzetto
- Division of Gastroenterology, Molinette-University of Turin, Corso Bramante, Turin 10126, Italy.
| |
Collapse
|
24
|
Hepatitis delta antigen requires a minimum length of the hepatitis delta virus unbranched rod RNA structure for binding. J Virol 2009; 83:4548-56. [PMID: 19244338 DOI: 10.1128/jvi.02467-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatitis delta virus (HDV) is a subviral pathogen that increases the severity of liver disease caused by hepatitis B virus. Both the small circular RNA genome and its complement, the antigenome, form a characteristic unbranched rod structure in which approximately 70% of the nucleotides are base paired. These RNAs are associated with the sole virally encoded protein, hepatitis delta antigen (HDAg), in infected cells; however, the nature of the ribonucleoprotein complexes (RNPs) is not well understood. Previous analyses of binding in vitro using native, bacterially expressed HDAg have been hampered by a lack of specificity for HDV RNA. Here, we show that removal of the C-terminal 35 amino acids of HDAg yields a native, bacterially expressed protein, HDAg-160, that specifically binds HDV unbranched rod RNA with high affinity. In an electrophoretic mobility shift assay, this protein produced a discrete, micrococcal nuclease-resistant complex with an approximately 400-nucleotide (nt) segment of HDV unbranched rod RNA. Binding occurred with several segments of HDV RNA, although with various affinities and efficiencies. Analysis of the effects of deleting segments of the unbranched rod indicated that binding did not require one or two specific binding sites within these RNA segments. Rather, a minimum-length HDV RNA unbranched rod approximately 311 nt was essential for RNP formation. The results are consistent with a model in which HDAg binds HDV unbranched rod RNA as multimers of fixed size rather than as individual subunits.
Collapse
|
25
|
Lee CZ, Sheu JC. Histone H1e interacts with small hepatitis delta antigen and affects hepatitis delta virus replication. Virology 2008; 375:197-204. [PMID: 18314153 DOI: 10.1016/j.virol.2008.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 01/12/2008] [Accepted: 02/08/2008] [Indexed: 12/13/2022]
Abstract
Hepatitis delta virus (HDV) encodes two isoforms of delta antigens (HDAgs). The small form of HDAg (SHDAg) is required for HDV RNA replication, while the large form of HDAg (LHDAg) is required for viral assembly. Using tandem affinity purification method combined with mass spectrometry, we found that linker histone H1e bound to SHDAg. The binding domain of SHDAg to histone H1e was mapped to the N-terminal 67 amino acids. Oligomerization of SHDAg was required for its interaction with histone H1e. LHDAg barely bound to histone H1e and was masked at N-terminus. The binding domain of histone H1e to SHDAg was mapped to its central globular domain. HDV replication was inhibited by N- or C-terminal deletion mutants of histone H1e and was rescued by wild-type histone H1e. We conclude that histone H1e plays a significant role in HDV replication through forming protein complex with SHDAg.
Collapse
Affiliation(s)
- Cha-Ze Lee
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | | |
Collapse
|
26
|
Changes in the proteome of Huh7 cells induced by transient expression of hepatitis D virus RNA and antigens. J Proteomics 2008; 71:71-9. [PMID: 18541475 DOI: 10.1016/j.jprot.2007.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) infection of human hepatocytes infected with the hepatitis B virus (HBV) is associated with increased liver damage and risk of fulminant disease. Although considerable progress has been made towards the elucidation of the mechanisms of HDV replication and pathogenesis, little is still known about the host factors involved in the different steps of the replication cycle. Here, we made use of a proteomic approach to analyse the global alterations in protein expression that arise in human hepatocytes separately transfected with each of the HDV components. Huh7 cells were transiently transfected with plasmids that code for the small delta antigen (S-HDAg), large delta antigen (L-HDAg), genomic RNA (gRNA), and antigenomic RNA (agRNA), respectively. Total protein extracts were separated by 2-DE and differentially expressed spots were identified by MALDI-TOF followed by database searching. We identified 32 proteins known to be involved in different pathways namely nucleic acid metabolism, protein metabolism, transport, signal transduction, apoptosis, and cell growth. Moreover, the down regulation of hnRNP D, HSP105, and triosephosphate isomerase was further confirmed by Real time PCR.
Collapse
|
27
|
Greco-Stewart VS, Miron P, Abrahem A, Pelchat M. The human RNA polymerase II interacts with the terminal stem-loop regions of the hepatitis delta virus RNA genome. Virology 2006; 357:68-78. [PMID: 16959288 DOI: 10.1016/j.virol.2006.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/02/2006] [Accepted: 08/07/2006] [Indexed: 12/28/2022]
Abstract
The hepatitis delta virus (HDV) is an RNA virus that depends on DNA-dependent RNA polymerase (RNAP) for its transcription and replication. While it is generally accepted that RNAP II is involved in HDV replication, its interaction with HDV RNA requires confirmation. A monoclonal antibody specific to the carboxy terminal domain of the largest subunit of RNAP II was used to establish the association of RNAP II with both polarities of HDV RNA in HeLa cells. Co-immunoprecipitations using HeLa nuclear extract revealed that RNAP II interacts with HDV-derived RNAs at sites located within the terminal stem-loop domains of both polarities of HDV RNA. Analysis of these regions revealed a strong selection to maintain a rod-like conformation and demonstrated several conserved features. These results provide the first direct evidence of an association between human RNAP II and HDV RNA and suggest two transcription start sites on both polarities of HDV RNA.
Collapse
Affiliation(s)
- Valerie S Greco-Stewart
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
28
|
Abstract
While this volume covers many different aspects of hepatitis delta virus (HDV) replication, the focus in this chapter is on studies of the structure and replication of the HDV RNA genome. An evaluation of such studies is not only an integral part of our understanding of HDV infections but it also sheds new light on some important aspects of cell biology, such as the fidelity of RNA transcription by a host RNA polymerase and on various forms of post-transcriptional RNA processing. Representations of the replication of the RNA genome are frequently simplified to a form of rolling-circle model, analogous to what have been described for plant viroids. One theme of this review is that such models, even after some revision, deceptively simplify the complexity of HDV replication and can fail to make clear major questions yet to be solved.
Collapse
Affiliation(s)
- J M Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| |
Collapse
|
29
|
Abstract
HDV replicates its circular RNA genome using a double rolling-circle mechanism and transcribes a hepatitis delta antigen-encodeing mRNA from the same RNA template during its life cycle. Both processes are carried out by RNA-dependent RNA synthesis despite the fact that HDV does not encode an RNA-dependent RNA polymerase (RdRP). Cellular RNA polymerase II has long been implicated in these processes. Recent findings, however, have shown that the syntheses of genomic and antigenomic RNA strands have different metabolic requirements, including sensitives to alpha-amanitin and the site of synthesis. Evidence is summarized here for the involvement of other cellular polymerases, probably pol I, in the synthesis of antigenomic RNA strand. The ability of mammalian cells to replicate HDV RNA implies that RNA-dependent RNA synthesis was preserved throughout evolution.
Collapse
Affiliation(s)
- T B Macnaughton
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
30
|
Greco-Stewart VS, Thibault CSL, Pelchat M. Binding of the polypyrimidine tract-binding protein-associated splicing factor (PSF) to the hepatitis delta virus RNA. Virology 2006; 356:35-44. [PMID: 16938326 DOI: 10.1016/j.virol.2006.06.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/04/2006] [Accepted: 06/09/2006] [Indexed: 12/17/2022]
Abstract
The hepatitis delta virus (HDV) has a very limited protein coding capacity and must rely on host proteins for its replication. A ribonucleoprotein complex was detected following UV cross-linking between HeLa nuclear proteins and an RNA corresponding to the right terminal stem-loop domain of HDV genomic RNA. Mass spectrometric analysis of the complex revealed the polypyrimidine tract-binding protein-associated splicing factor (PSF) as a novel HDV RNA-interacting protein. Co-immunoprecipitation demonstrated the interaction between HDV RNA and PSF both in vitro in HeLa nuclear extract and in vivo within HeLa cells containing both polarities of the HDV genome. Analysis of the binding of various HDV-derived RNAs to purified, recombinant PSF further confirmed the specificity of the interaction and revealed that PSF directly binds to the terminal stem-loop domains of both polarities of HDV RNA. Our findings provide evidence of the involvement of a host mRNA processing protein in the HDV life cycle.
Collapse
Affiliation(s)
- Valerie S Greco-Stewart
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4223A, Ottawa, ON, Canada K1H 8M5
| | | | | |
Collapse
|
31
|
Gudima SO, Chang J, Taylor JM. Restoration in vivo of defective hepatitis delta virus RNA genomes. RNA (NEW YORK, N.Y.) 2006; 12:1061-73. [PMID: 16618966 PMCID: PMC1464851 DOI: 10.1261/rna.2328806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The 1679-nt single-stranded RNA genome of hepatitis delta virus (HDV) is circular in conformation. It is able to fold into an unbranched rodlike structure via intramolecular base-pairing. This RNA is replicated by host RNA polymerase II (Pol II). Such transcription is unique, because Pol II is known only for its ability to act on DNA templates. The present study addressed the ability of the HDV RNA replication to tolerate insertions of up to 1000 nt of non-HDV sequence either at an end of the rodlike RNA structure or at a site embedded within the rod. The insertions did not interfere with the ability of primary transcripts to be processed in vivo by ribozyme cleavage and ligation. The insertions greatly reduced the ability of genomes to replicate. However, when total RNA from such transfected cells was used to transfect new recipient cells, replicating HDV RNAs could be detected by Northern analyses. The size of the emerged RNAs was consistent with loss of the inserted sequences. RT-PCR, cloning, and sequencing showed that recovery involved removal of inserted sequences with or without small deletions of adjacent RNA sequences. Such restoration of the RNA genome is consistent with a model requiring intramolecular template-switching (RNA recombination) during RNA-directed transcription, in combination with biological selection for maintenance of the rodlike structure of the template.
Collapse
|
32
|
Chang J, Nie X, Gudima S, Taylor J. Action of inhibitors on accumulation of processed hepatitis delta virus RNAs. J Virol 2006; 80:3205-14. [PMID: 16537588 PMCID: PMC1440370 DOI: 10.1128/jvi.80.7.3205-3214.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis delta virus (HDV) replication involves processing and accumulation of three RNA species: the genome, its exact complement (the antigenome), and a polyadenylated mRNA that acts as a template for the small delta antigen (deltaAg), the only protein of HDV and essential for genome replication. In a recently reported experimental system, addition of tetracycline induced synthesis of a DNA-directed source of deltaAg, producing within 24 h a significant increase in accumulation of newly transcribed and processed HDV RNAs. This induction was used here to study the action of various inhibitors on accumulation. For example, potent and HDV-specific inhibition, in the absence of detected host toxicity, could be obtained with ribavirin, mycophenolic acid, and viramidine. An interpretation is that these inhibitors reduced the available GTP pool, leading to a specific inhibition of the synthesis and accumulation of HDV RNA-directed RNA species. In contrast, no inhibition was observed with L-FMAU (2'-fluoro-5-methyl-beta-L-arabinofuranosyl-uridine), alpha interferon, or pegylated alpha interferon. After modifications to the experimental system, it was also possible to examine the effects of three known host RNA polymerase inhibitors on HDV genome replication: amanitin, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), and actinomycin. Of most interest, amanitin at low doses blocked accumulation of HDV RNA-directed mRNA but had less effect on HDV genomic and antigenomic RNAs. Additional experiments indicated that this apparent resistance to amanitin inhibition of genomic and antigenomic RNA relative to mRNA may not reflect a difference in the transcribing polymerase but rather relative differences in the processing and stabilization of nascent RNA transcripts.
Collapse
Affiliation(s)
- Jinhong Chang
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | |
Collapse
|
33
|
O'Malley B, Lazinski DW. Roles of carboxyl-terminal and farnesylated residues in the functions of the large hepatitis delta antigen. J Virol 2005; 79:1142-53. [PMID: 15613342 PMCID: PMC538544 DOI: 10.1128/jvi.79.2.1142-1153.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The large hepatitis delta antigen (HDAg-L) mediates hepatitis delta virus (HDV) assembly and inhibits HDV RNA replication. Farnesylation of the cysteine residue within the HDAg-L carboxyl terminus is required for both functions. Here, HDAg-L proteins from different HDV genotypes and genotype chimeric proteins were analyzed for their ability to incorporate into virus-like particles (VLPs). Observed differences in efficiency of VLP incorporation could be attributed to genotype-specific differences within the HDAg-L carboxyl terminus. Using a novel assay to quantify the extent of HDAg-L farnesylation, we found that genotype 3 HDAg-L was inefficiently farnesylated when expressed in the absence of the small hepatitis delta antigen (HDAg-S). However, as the intracellular ratio of HDAg-S to HDAg-L was increased, so too was the extent of HDAg-L farnesylation for all three genotypes. Single point mutations within the carboxyl terminus of HDAg-L were screened, and three mutants that severely inhibited assembly without affecting farnesylation were identified. The observed assembly defects persisted under conditions where the mutants were known to have access to the site of VLP assembly. Therefore, the corresponding residues within the wild-type protein are likely required for direct interaction with viral envelope proteins. Finally, it was observed that when HDAg-S was artificially myristoylated, it could efficiently inhibit HDV RNA replication. Hence, a general association with membranes enables HDAg to inhibit replication. In contrast, although myristoylated HDAg-S was incorporated into VLPs far more efficiently than HDAg-S or nonfarnesylated HDAg-L, it was incorporated far less efficiently than wild-type HDAg-L; thus, farnesylation was required for efficient assembly.
Collapse
Affiliation(s)
- Brendan O'Malley
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | | |
Collapse
|
34
|
Sato S, Cornillez-Ty C, Lazinski DW. By inhibiting replication, the large hepatitis delta antigen can indirectly regulate amber/W editing and its own expression. J Virol 2004; 78:8120-34. [PMID: 15254184 PMCID: PMC446097 DOI: 10.1128/jvi.78.15.8120-8134.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatitis delta virus (HDV) expresses two essential proteins with distinct functions. The small hepatitis delta antigen (HDAg-S) is expressed throughout replication and is needed to promote that process. The large form (HDAg-L) is farnesylated, is expressed only at later times via RNA editing of the amber/W site, and is required for virion assembly. When HDAg-L is artificially expressed at the onset of replication, it strongly inhibits replication. However, there is controversy concerning whether HDAg-L expressed naturally at later times as a consequence of editing and replication can similarly inhibit replication. Here, by stabilizing the predicted secondary structure downstream from the amber/W site, a replication-competent HDV mutant that exhibited levels of editing higher than those of the wild type was created. This mutant expressed elevated levels of HDAg-L early during replication, and at later times, its replication aborted prematurely. No further increase in amber/W editing was observed following the cessation of replication, indicating that editing was coupled to replication. A mutation in HDAg-L and a farnesyl transferase inhibitor were both used to abolish the ability of HDAg-L to inhibit replication. Such treatments rescued the replication defect of the overediting mutant, and even higher levels of amber/W editing resulted. It was concluded that when expressed naturally during replication, HDAg-L is able to inhibit replication and thereby inhibit amber/W editing and its own synthesis. In addition, the structure adjacent to the amber/W site is suboptimal for editing, and this creates a window of time in which replication can occur in the absence of HDAg-L.
Collapse
Affiliation(s)
- Shuji Sato
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111-1817, USA
| | | | | |
Collapse
|
35
|
Abstract
Intrinsic to the life cycle of hepatitis delta virus (HDV) is the fact that its RNAs undergo different forms of posttranscriptional RNA processing. Transcripts of both the genomic RNA and its exact complement, the antigenomic RNA, undergo ribozyme cleavage and RNA ligation. In addition, antigenomic RNA transcripts can undergo 5' capping, 3' polyadenylation, and even RNA editing by an adenosine deaminase. This study focused on the processing of antigenomic RNA transcripts. Two approaches were used to study the relationship between the events of polyadenylation, ribozyme cleavage, and RNA ligation. The first represented an examination under more controlled conditions of mutations in the poly(A) signal, AAUAAA, which is essential for this processing. We found that when a separate stable source of deltaAg-S, the small delta protein, was provided, the replication ability of the mutated RNA was restored. The second approach involved an examination of the processing in transfected cells of specific Pol II DNA-directed transcripts of HDV antigenomic sequences. The DNA constructs used were such that the RNA transcripts were antigenomic and began at the same 5' site as the mRNA produced during RNA-directed HDV genome replication. A series of such constructs was assembled in order to test the relative abilities of the transcripts to undergo processing by polyadenylation or ribozyme cleavage at sites further 3' on a multimer of HDV sequences. The findings from the two experimental approaches led to significant modifications in the rolling-circle model of HDV genome replication.
Collapse
Affiliation(s)
- Xingcao Nie
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | |
Collapse
|
36
|
Mu JJ, Tsay YG, Juan LJ, Fu TF, Huang WH, Chen DS, Chen PJ. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis. Virology 2004; 319:60-70. [PMID: 14967488 DOI: 10.1016/j.virol.2003.10.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 10/22/2003] [Accepted: 10/23/2003] [Indexed: 12/12/2022]
Abstract
Hepatitis delta virus (HDV) is a single-stranded RNA virus that encodes two viral nucleocapsid proteins named small and large form hepatitis delta antigen (S-HDAg and L-HDAg). The S-HDAg is essential for viral RNA replication while the L-HDAg is required for viral assembly. In this study, we demonstrated that HDAg are acetylated proteins. Metabolic labeling with [(3)H]acetate revealed that both forms of HDAg could be acetylated in vivo. The histone acetyltransferase (HAT) domain of cellular acetyltransferase p300 could acetylate the full-length and the N-terminal 88 amino acids of S-HDAg in vitro. By mass spectrometric analysis of the modified protein, Lys-72 of S-HDAg was identified as one of the acetylation sites. Substitution of Lys-72 to Arg caused the mutant S-HDAg to redistribute from the nucleus to the cytoplasm. The mutant reduced viral RNA accumulation and resulted in the earlier appearance of L-HDAg. These results demonstrated that HDAg is an acetylated protein and mutation of HDAg at Lys-72 modulates HDAg subcellular localization and may participate in viral RNA nucleocytoplasmic shuttling and replication.
Collapse
Affiliation(s)
- Jung-Jung Mu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The endonuclease dicer cleaves RNAs that are 100% double stranded and certain RNAs with extensive but <100% pairing to release approximately 21-nucleotide (nt) fragments. Circular 1,679-nt genomic and antigenomic RNAs of human hepatitis delta virus (HDV) can fold into a rod-like structure with 74% pairing. However, during HDV replication in hepatocytes of human, woodchuck, and mouse origin, no approximately 21-nt RNAs were detected. Likewise, in vitro, purified recombinant dicer gave <0.2% cleavage of unit-length HDV RNAs. Similarly, rod-like RNAs of potato spindle tuber viroid (PSTVd) and avocado sunblotch viroid (ASBVd) were only 0.5% cleaved. Furthermore, when a 66-nt hairpin RNA with 79% pairing, the putative precursor to miR-122, which is an abundant liver micro-RNA, replaced one end of HDV genomic RNA, it was poorly cleaved, both in vivo and in vitro. In contrast, this 66-nt hairpin, in the absence of appended HDV sequences, was >80% cleaved in vitro. Other 66-nt hairpins derived from one end of genomic HDV, PSTVd, or ASBVd RNAs were also cleaved. Apparently, for unit-length RNAs of HDV, PSTVd, and ASBVd, it is the extended structure with <100% base pairing that confers significant resistance to dicer action.
Collapse
Affiliation(s)
- Jinhong Chang
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | |
Collapse
|
38
|
Cornillez-Ty CT, Lazinski DW. Determination of the multimerization state of the hepatitis delta virus antigens in vivo. J Virol 2003; 77:10314-26. [PMID: 12970416 PMCID: PMC228508 DOI: 10.1128/jvi.77.19.10314-10326.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus expresses two essential proteins, the small and large delta antigens, and both are required for viral propagation. Proper function of each protein depends on the presence of a common amino-terminal multimerization domain. A crystal structure, solved using a peptide fragment that contained residues 12 to 60, depicts the formation of an octameric ring composed of antiparallel coiled-coil dimers. Because this crystal structure was solved for only a fragment of the delta antigens, it is unknown whether octamers actually form in vivo at physiological protein concentrations and in the context of either intact delta antigen. To test the relevance of the octameric structure, we developed a new method to probe coiled-coil structures in vivo. We generated a panel of mutants containing cysteine substitutions at strategic locations within the predicted monomer-monomer interface and the dimer-dimer interface. Since the small delta antigen contains no cysteine residues, treatment of cell extracts with a mild oxidizing reagent was expected to induce disulfide bond formation only when the appropriate pairs of cysteine substitution mutants were coexpressed. We indeed found that, in vivo, both the small and large delta antigens assembled as antiparallel coiled-coil dimers. Likewise, we found that both proteins could assume an octameric quaternary structure in vivo. Finally, during the course of these experiments, we found that unprenylated large delta antigen molecules could be disulfide cross-linked via the sole cysteine residue located within the carboxy terminus. Therefore, in vivo, the C terminus likely provides an additional site of protein-protein interaction for the large delta antigen.
Collapse
Affiliation(s)
- Cromwell T Cornillez-Ty
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
39
|
Cheng Q, Jayan GC, Casey JL. Differential inhibition of RNA editing in hepatitis delta virus genotype III by the short and long forms of hepatitis delta antigen. J Virol 2003; 77:7786-95. [PMID: 12829818 PMCID: PMC161914 DOI: 10.1128/jvi.77.14.7786-7795.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatitis delta virus (HDV) produces two essential forms of the sole viral protein from the same open reading frame by using host RNA editing activity at the amber/W site in the antigenomic RNA. The roles of these two forms, HDAg-S and HDAg-L, are opposed. HDAg-S is required for viral RNA replication, whereas HDAg-L, which is produced as a result of editing, inhibits viral RNA replication and is required for virion packaging. Both the rate and amount of editing are important because excessive editing will inhibit viral RNA replication, whereas insufficient editing will reduce virus secretion. Here we show that for HDV genotype III, which is associated with severe HDV disease, HDAg-L strongly inhibits editing of a nonreplicating genotype III reporter RNA, while HDAg-S inhibits only when expressed at much higher levels. The different inhibitory efficiencies are due to RNA structural elements located ca. 25 bp 3' of the editing site in the double-hairpin RNA structure required for editing at the amber/W site in HDV genotype III RNA. These results are consistent with regulation of amber/W editing in HDV genotype III by a negative-feedback mechanism due to differential interactions between structural elements in the HDV genotype III RNA and the two forms of HDAg.
Collapse
Affiliation(s)
- Qiufang Cheng
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, D.C. 20007-2197, USA
| | | | | |
Collapse
|
40
|
Jayan GC, Casey JL. Increased RNA editing and inhibition of hepatitis delta virus replication by high-level expression of ADAR1 and ADAR2. J Virol 2002; 76:3819-27. [PMID: 11907222 PMCID: PMC136091 DOI: 10.1128/jvi.76.8.3819-3827.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA replication. Editing in infected cells is thought to be catalyzed by one or more of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). We examined the effects of increased ADAR1 and ADAR2 expression on HDV RNA editing and replication in transfected Huh7 cells. We found that both ADARs dramatically increased RNA editing, which was correlated with strong inhibition of HDV RNA replication. While increased HDAg-L production was the primary mechanism of inhibition, we observed at least two additional means by which ADARs can suppress HDV replication. High-level expression of both ADAR1 and ADAR2 led to extensive hyperediting at non-amber/W sites and subsequent production of HDAg variants that acted as trans-dominant inhibitors of HDV RNA replication. Moreover, we also observed weak inhibition of HDV RNA replication by mutated forms of ADARs defective for deaminase activity. Our results indicate that HDV requires highly regulated and selective editing and that the level of ADAR expression can play an important role: overexpression of ADARs inhibits HDV RNA replication and compromises virus viability.
Collapse
Affiliation(s)
- Geetha C Jayan
- Division of Molecular Virology and Immunology, Georgetown University Medical Center, Rockville, Maryland 20850, USA
| | | |
Collapse
|
41
|
Gudima S, Chang J, Moraleda G, Azvolinsky A, Taylor J. Parameters of human hepatitis delta virus genome replication: the quantity, quality, and intracellular distribution of viral proteins and RNA. J Virol 2002; 76:3709-19. [PMID: 11907210 PMCID: PMC136113 DOI: 10.1128/jvi.76.8.3709-3719.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Assembly of hepatitis delta virus (HDV) in infected human hepatocytes involves association of the 1,679- nucleotide single-stranded genomic RNA (deltaRNA) with multiple copies of both small and large forms of the delta protein (deltaAg) to form a ribonucleoprotein particle which in turn interacts with envelope proteins of the natural helper virus, hepatitis B virus. Subsequently, for initiation of a new round of replication, the amount of small deltaAg within the assembled HDV particle is both necessary and sufficient. Quantitative assays were used in order to better understand just how much deltaAg is needed. The molar ratio of deltaAg species to genomic deltaRNA in assembled HDV particles was approximately 200. Next, this ratio was determined for cells under several different experimental situations in which HDV genome replication was occurring. These included replication in woodchuck liver and also in mouse liver and skeletal muscle, as well as replication in stably and transiently transfected cultured human hepatoblastoma cells. Surprisingly, in almost all these situations the molar ratios were comparable to that observed for HDV particles. This was true for different times after the initiation of replication and was independent of whether or not virus assembly was occurring. Cell fractionation combined with quantitative assays was used to test whether the majority of deltaAg and deltaRNA were colocalized during HDV replication in transfected cells. The cytoplasmic fraction contained the majority of deltaAg and genomic deltaRNA. Finally, the quality of deltaAg and deltaRNA, especially at relatively late times after the initiation of replication, was examined by using reverse transcription-PCR, cloning, and sequencing through the entire deltaAg open reading frame. When virus assembly and spread were not possible, 20% or less of the predicted deltaAg would have been able to support HDV replication. In summary, an examination of the quantity, quality and intracellular distribution of deltaAg and deltaRNA in several different experimental systems has provided a better understanding of the parameters associated with the initiation, maintenance, and ultimate decline of HDV genome replication.
Collapse
Affiliation(s)
- Severin Gudima
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | | | | | |
Collapse
|
42
|
Hsu SC, Syu WJ, Sheen IJ, Liu HT, Jeng KS, Wu JC. Varied assembly and RNA editing efficiencies between genotypes I and II hepatitis D virus and their implications. Hepatology 2002; 35:665-72. [PMID: 11870382 DOI: 10.1053/jhep.2002.31777] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms that link genotypes of hepatitis D virus (HDV) with clinical outcomes have not yet been elucidated. Genotypic variations are unevenly distributed along the sequences of hepatitis delta antigens (HDAgs). Of these variations, the packaging signal at the C-terminus has a divergence of 74% between genotypes I and II. In this report, we address the issue of whether these high variations between genotypes affect assembly efficiency of HDV particles and editing efficiency of RNA. Viral package systems of transfection with expression plasmids of hepatitis B surface antigen and HDAgs or whole genomes of HDV consistently indicate that the package efficiency of genotype I HDV is higher than that of genotype II. Segment swapping of large-form HDAg indicates that the C-terminal 19-residue region plays a key role for the varied assembly efficiencies. Also, the editing efficiency of genotype I HDV is higher than that of genotype II. The nucleotide and structural changes surrounding the editing site may explain why genotype II HDV has a low RNA editing efficiency. The findings of in vitro assembly systems were further supported by the observations that patients infected with genotype II had significantly lower alanine transaminase (ALT) levels, more favorable outcomes (P <.05), and a trend to have lower serum HDV RNA levels as compared with those infected with genotype I HDV (P =.094). In conclusion, genotype II HDV secretes fewer viral particles than genotype I HDV does, which in turn may reduce the extent of infection of hepatocytes and result in less severe hepatic inflammation.
Collapse
Affiliation(s)
- Sheng-Chieh Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Sato S, Wong SK, Lazinski DW. Hepatitis delta virus minimal substrates competent for editing by ADAR1 and ADAR2. J Virol 2001; 75:8547-55. [PMID: 11507200 PMCID: PMC115100 DOI: 10.1128/jvi.75.18.8547-8555.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A host-mediated RNA-editing event allows hepatitis delta virus (HDV) to express two essential proteins, the small delta antigen (HDAg-S) and the large delta antigen (HDAg-L), from a single open reading frame. One or several members of the ADAR (adenosine deaminases that act on RNA) family are thought to convert the adenosine to an inosine (I) within the HDAg-S amber codon in antigenomic RNA. As a consequence of replication, the UIG codon is converted to a UGG (tryptophan [W]) codon in the resulting HDAg-L message. Here, we used a novel reporter system to monitor the editing of the HDV amber/W site in the absence of replication. In cultured cells, we observed that both human ADAR1 (hADAR1) and hADAR2 were capable of editing the amber/W site with comparable efficiencies. We also defined the minimal HDV substrate required for hADAR1- and hADAR2-mediated editing. Only 24 nucleotides from the amber/W site were sufficient to enable efficient editing by hADAR1. Hence, the HDV amber/W site represents the smallest ADAR substrate yet identified. In contrast, the minimal substrate competent for hADAR2-mediated editing contained 66 nucleotides.
Collapse
Affiliation(s)
- S Sato
- Department of Molecular Biology and Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
44
|
Huang WH, Yung BY, Syu WJ, Lee YH. The nucleolar phosphoprotein B23 interacts with hepatitis delta antigens and modulates the hepatitis delta virus RNA replication. J Biol Chem 2001; 276:25166-75. [PMID: 11309377 DOI: 10.1074/jbc.m010087200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) encodes two isoforms of delta antigens (HDAgs). The small form of HDAg is required for HDV RNA replication, while the large form of HDAg inhibits the viral replication and is required for virion assembly. In this study, we found that the expression of B23, a nucleolar phosphoprotein involved in disparate functions including nuclear transport, cellular proliferation, and ribosome biogenesis, is up-regulated by these two HDAgs. Using in vivo and in vitro experimental approaches, we have demonstrated that both isoforms of HDAg can interact with B23 and their interaction domains were identified as the NH(2)-terminal fragment of each molecule encompassing the nuclear localization signal but not the coiled-coil region of HDAg. Sucrose gradient centrifugation analysis indicated that the majority of small HDAg, but a lesser amount of the large HDAg, co-sedimented with B23 and nucleolin in the large nuclear complex. Transient transfection experiments also indicated that introducing exogenous full-length B23, but not a mutated B23 defective in HDAg binding, enhanced HDV RNA replication. All together, our results reveal that HDAg has two distinct effects on nucleolar B23, up-regulation of its gene expression and the complex formation, which in turn regulates HDV RNA replication. Therefore, this work demonstrates the important role of nucleolar protein in regulating the HDV RNA replication through the complex formation with the key positive regulator being small HDAg.
Collapse
Affiliation(s)
- W H Huang
- Institute of Biochemistry and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | | | | | | |
Collapse
|
45
|
Shih KN, Lo SJ. The HDV large-delta antigen fused with GFP remains functional and provides for studying its dynamic distribution. Virology 2001; 285:138-52. [PMID: 11414814 DOI: 10.1006/viro.2001.0845] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis D virus (HDV) requires the isoprenylated large delta antigen (LDAg) for interaction with hepatitis B surface antigen (HBsAg) to allow packaging and secretion out of the host cell. Phosphorylated LDAg has been found but, as yet, neither localization of LDAg within the nucleus nor any other function has been correlated with modification. In this study, we transfected HuH-7 or HeLa cells with plasmids encoding various lengths of LDAg [designated GFP-LD and GFP-LD(31-214) for full length and a deletion, respectively] or non-isoprenylated mutants of these [designated GFP-LDM and GFP-LD(31-214)M] fused to the green fluorescent protein (GFP). These fusion proteins were then characterized and it was found that: (i) the addition of the GFP did not interfere with the functioning of the full-length or N-terminally deleted LDAgs when interacting with HBsAg for secretion; (ii) the HDV small antigen (SDAg) together with the GFP-LD, but not the GFP-LD(31-214), could be cosecreted by HBsAg; and (iii) the GFP-LD, but not the GFP-LD(31-214), exerted a dominant-negative role on HDV genome replication. Analyses of transiently transfected cells and postmitotic permanent cells revealed the sequential appearance of GFP-LD in the nucleoplasm, then in the nucleolus, and finally in nuclear speckles (NS). Isoprenylation of LDAg seems to be important for targeting to and accumulating in the NS, which was evident from the dynamic and static localization of the non-isoprenylation mutant (GFP-LDM) and the distribution of wild-type (GFP-LD) when treated with an isoprenylation inhibitor, lovastatin, for more than 48 h. Permanently expressing GFP-LD cells allowed us to show the dynamic redistribution of dephosphorylated GFP-LD from the nucleolus to the SC-35 containing NS in the presence of dichlororibofuranosyl benzimidazole (DRB) and then the translocation back of the GFP-LD to the nucleolus within 2 h after removal of DRB. Our studies thus suggest that the various versions of the GFP-LD fusion protein, having the same function as their nonfusion counterparts, can be a powerful tool for the study of the dynamic localization of LDAg when correlated with the functional modification of this protein.
Collapse
Affiliation(s)
- K N Shih
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, ROC
| | | |
Collapse
|
46
|
Chang J, Sigal LJ, Lerro A, Taylor J. Replication of the human hepatitis delta virus genome Is initiated in mouse hepatocytes following intravenous injection of naked DNA or RNA sequences. J Virol 2001; 75:3469-73. [PMID: 11238873 PMCID: PMC114140 DOI: 10.1128/jvi.75.7.3469-3473.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As early as 5 days after DNA copies of the hepatitis delta virus (HDV) genome or even in vitro-transcribed HDV RNA sequences were injected into the mouse tail vein using the hydrodynamics-based transfection procedure of F. Liu et al. (Gene Ther. 6:1258-1266, 1999), it was possible to detect in the liver by Northern analyses of RNA, immunoblots of protein, and immunostaining of liver sections what were considered typical features of HDV genome replication. This transfection strategy should have valuable applications for in vivo studies of HDV replication and pathogenesis and may also be useful for studies of other hepatotropic viruses.
Collapse
Affiliation(s)
- J Chang
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | | | |
Collapse
|
47
|
Chang J, Moraleda G, Taylor J. Limitations to replication of hepatitis delta virus in avian cells. J Virol 2000; 74:8861-6. [PMID: 10982328 PMCID: PMC102080 DOI: 10.1128/jvi.74.19.8861-8866.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2000] [Accepted: 07/06/2000] [Indexed: 02/05/2023] Open
Abstract
Human hepatitis delta virus (HDV) is a natural subviral agent that uses hepatitis B virus as a helper. Experimentally, HDV can be made to replicate in woodchucks, using woodchuck hepatitis B virus as a helper virus. Also, independent of such helper activity, replication of the HDV RNA genome can be achieved in many mammalian cells. In this study we examined whether such replication could also be achieved in avian cells. We used cotransfection strategies and initially found no detectable genome replication in chicken LMH cells relative to the mammalian cell line Huh7, used as a positive control. We also found that, in contrast to transfected Huh7 cells, the avian cell line was readily and efficiently killed by expression of the delta protein. Three strategies were used to reduce such killing: (i) the delta protein was expressed from a separate expression vector, the amount of which was then reduced as much as 33-fold; (ii) the protein was expressed transiently, using a promoter under tetracycline control; and (iii) the transfected cells were treated with Z-VAD-fmk, a broad-spectrum caspase inhibitor, which reduced cell killing. This last result indicated that cell killing occurred via an apoptotic pathway. After application of these three strategies to reduce cell killing, together with a novel procedure to improve the signal-to-noise ratio in Northern analyses, replication of the HDV genome was then detected in LMH cells. However, even after removal of obvious signs of toxicity, the amount was still >50 times lower than in the Huh7 cells. Our findings explain previous unsuccessful attempts to demonstrate replication of the HDV genome in avian cells and establish the precedent that in certain situations HDV replication can be cytotoxic.
Collapse
Affiliation(s)
- J Chang
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | |
Collapse
|
48
|
Abstract
Hepatitis delta virus (HDV) is unique relative to all known animal viruses, especially in terms of its ability to redirect host RNA polymerase(s) to transcribe its 1,679-nucleotide (nt) circular RNA genome. During replication there accumulates not only more molecules of the genome but also its exact complement, the antigenome. In addition, there are relatively smaller amounts of an 800-nt RNA of antigenomic polarity that is polyadenylated and considered to act as mRNA for translation of the single and essential HDV protein, the delta antigen. Characterization of this mRNA could provide insights into the in vivo mechanism of HDV RNA-directed RNA transcription and processing. Previously, we showed that the 5' end of this RNA was located in the majority of species, at nt 1630. The present studies show that (i) at least some of this RNA, as extracted from the liver of an HDV-infected woodchuck, behaved as if it contained a 5'-cap structure; (ii) in the infected liver there were additional polyadenylated antigenomic HDV RNA species with 5' ends located at least 202 nt and even 335 nt beyond the nt 1630 site, (iii) the 5' end at nt 1630 was not detected in transfected cells, following DNA-directed HDV RNA transcription, in the absence of genome replication, and (iv) nevertheless, using in vitro transcription with purified human RNA polymerase II holoenzyme and genomic RNA template, we did not detect initiation of template-dependent RNA synthesis; we observed only low levels of 3'-end addition to the template. These new findings support the interpretation that the 5' end detected at nt 1630 during HDV replication represents a specific site for the initiation of an RNA-directed RNA synthesis, which is then modified by capping.
Collapse
Affiliation(s)
- S Gudima
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | | | | | |
Collapse
|
49
|
Moraleda G, Dingle K, Biswas P, Chang J, Zuccola H, Hogle J, Taylor J. Interactions between hepatitis delta virus proteins. J Virol 2000; 74:5509-15. [PMID: 10823856 PMCID: PMC112036 DOI: 10.1128/jvi.74.12.5509-5515.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The 195- and 214-amino-acid (aa) forms of the delta protein (deltaAg-S and deltaAg-L, respectively) of hepatitis delta virus (HDV) differ only in the 19-aa C-terminal extension unique to deltaAg-L. deltaAg-S is needed for genome replication, while deltaAg-L is needed for particle assembly. These proteins share a region at aa 12 to 60, which mediates protein-protein interactions essential for HDV replication. H. Zuccola et al. (Structure 6:821-830, 1998) reported a crystal structure for a peptide spanning this region which demonstrates an antiparallel coiled-coil dimer interaction with the potential to form tetramers of dimers. Our studies tested whether predictions based on this structure could be extrapolated to conditions where the peptide was replaced by full-length deltaAg-S or deltaAg-L, and when the assays were not in vitro but in vivo. Nine amino acids that are conserved between several isolates of HDV and predicted to be important in multimerization were mutated to alanine on both deltaAg-S and deltaAg-L. We found that the predicted hierarchy of importance of these nine mutations correlated to a significant extent with the observed in vivo effects on the ability of these proteins to (i) support in trans the replication of the HDV genome when expressed on deltaAg-S and (ii) act as dominant-negative inhibitors of replication when expressed on deltaAg-L. We thus infer that these biological activities of deltaAg depend on ordered protein-protein interactions.
Collapse
Affiliation(s)
- G Moraleda
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Bell P, Brazas R, Ganem D, Maul GG. Hepatitis delta virus replication generates complexes of large hepatitis delta antigen and antigenomic RNA that affiliate with and alter nuclear domain 10. J Virol 2000; 74:5329-36. [PMID: 10799610 PMCID: PMC110888 DOI: 10.1128/jvi.74.11.5329-5336.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Accepted: 02/22/2000] [Indexed: 12/15/2022] Open
Abstract
Hepatitis delta virus (HDV), a single-stranded RNA virus, bears a single coding region whose product, the hepatitis delta antigen (HDAg), is expressed in two isoforms, small (S-HDAg) and large (L-HDAg). S-HDAg is required for replication of HDV, while L-HDAg inhibits viral replication and is required for the envelopment of the HDV genomic RNA by hepatitis B virus proteins. Here we have examined the spatial distribution of HDV RNA and proteins in infected nuclei, with particular reference to specific nuclear domains. We found that L-HDAg was aggregated in specific nuclear domains and that over half of these domains were localized beside nuclear domain 10 (ND10). At later times, ND10-associated proteins like PML were found in larger HDAg complexes that had developed into apparently hollow spheres. In these larger complexes, PML was found chiefly in the rims of the spheres, while the known ND10 components Sp100, Daxx, and NDP55 were found in the centers of the spheres. Thus, ND10 proteins that normally are closely linked separate within HDAg-associated complexes. Viral RNA of antigenomic polarity, whether expressed from genomic RNA or directly from introduced plasmids, colocalizes with L-HDAg and the transcriptional repressor PML. In contrast, HDV genomic RNA was distributed more uniformly throughout the nucleus. These results suggest that different host protein complexes may assemble on viral RNA strands of different polarities, and they also suggest that this RNA virus, like DNA viruses, can alter the distribution of ND10-associated proteins. The fact that viral components specifically linked to repression of replication can associate with one of the ND10-associated proteins (PML) raises the possibility that this host protein may play a role in the regulation of HDV RNA synthesis.
Collapse
Affiliation(s)
- P Bell
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|