1
|
Liu C, Cook SJ, Craigo JK, Cook FR, Issel CJ, Montelaro RC, Horohov DW. Epitope shifting of gp90-specific cellular immune responses in EIAV-infected ponies. Vet Immunol Immunopathol 2014; 161:161-9. [PMID: 25176006 DOI: 10.1016/j.vetimm.2014.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/02/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
Abstract
Unlike other lentiviruses, EIAV replication can be controlled in most infected horses leading to an inapparent carrier state free of overt clinical signs which lasts for many years. While the resolution of the initial infection is correlated with the appearance of virus specific cellular immune responses, the precise immune mechanisms responsible for control of the infection are not yet identified. Since the virus undergoes rapid mutation following infection, the immune response must also adapt to meet this challenge. We hypothesize that this adaptation involves peptide-specific recognition shifting from immunodominant variable determinants to conserved immunorecessive determinants following EIAV infection. Forty-four peptides, spanning the entire surface unit protein (gp90) of EIAV, were used to monitor peptide-specific T cell responses in vivo over a six-month period following infection. Peptides were injected intradermally and punch biopsies were collected for real-time PCR analysis to monitor the cellular peptide-specific immune responses in vivo. Similar to the CMI response to HIV infection, peptide-specific T cell recognition patterns changed over time. Early post infection (1 month), immune responses were directed to the peptides in the carboxyl-terminus variable region. By six months post infection, the peptide recognition spanned the entire gp90 sequence. These results indicate that peptide recognition broadens during EIAV infection.
Collapse
Affiliation(s)
- Chong Liu
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Sheila J Cook
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Jodi K Craigo
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank R Cook
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Charles J Issel
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Ronald C Montelaro
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David W Horohov
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Craigo JK, Montelaro RC. Lessons in AIDS vaccine development learned from studies of equine infectious, anemia virus infection and immunity. Viruses 2013; 5:2963-76. [PMID: 24316675 PMCID: PMC3967156 DOI: 10.3390/v5122963] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022] Open
Abstract
Equine infectious anemia (EIA), identified in 1843 [1] as an infectious disease of horses and as a viral infection in 1904, remains a concern in veterinary medicine today. Equine infectious anemia virus (EIAV) has served as an animal model of HIV-1/AIDS research since the original identification of HIV. Similar to other lentiviruses, EIAV has a high propensity for genomic sequence and antigenic variation, principally in its envelope (Env) proteins. However, EIAV possesses a unique and dynamic disease presentation that has facilitated comprehensive analyses of the interactions between the evolving virus population, progressive host immune responses, and the definition of viral and host correlates of immune control and vaccine efficacy. Summarized here are key findings in EIAV that have provided important lessons toward understanding long term immune control of lentivirus infections and the parameters for development of an enduring broadly protective AIDS vaccine.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
3
|
Amplification of complete gag gene sequences from geographically distinct equine infectious anemia virus isolates. J Virol Methods 2013; 189:41-6. [DOI: 10.1016/j.jviromet.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 09/22/2012] [Accepted: 12/17/2012] [Indexed: 11/17/2022]
|
4
|
Tenaya IWM, Heel K, Stumbles PA, Wilcox GE. Flow cytometric analysis of lymphocyte subset kinetics in Bali cattle experimentally infected with Jembrana disease virus. Vet Immunol Immunopathol 2012; 149:167-76. [PMID: 22776774 DOI: 10.1016/j.vetimm.2012.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 04/24/2012] [Accepted: 06/11/2012] [Indexed: 11/17/2022]
Abstract
Jembrana disease virus (JDV) is an unusual bovine lentivirus that causes an acute and sometimes fatal disease after a short incubation period in Bali cattle (Bos javanicus). The pathological changes occur primarily in lymphoid tissues, which feature proliferating lymphoblastoid-like cells predominantly throughout parafollicular (T-cell) areas, and atrophy of follicles (B-cell) areas. Five Bali cattle were experimentally infected with JDV and all developed typical clinical signs of Jembrana disease characterised by a transient febrile response, enlargement of superficial lymph nodes and a significant leukopenia. Flow cytometric analysis of PBMC during the acute (febrile) disease phase showed that the reduced number of lymphocytes was due to a significant decrease in both the proportion and absolute numbers of CD4(+) T cells, but not CD8(+) T-cells or CD21(+) B-cells. At the end of the febrile phase, total numbers of both CD8(+) T-cells and CD21(+) B-cells increased significantly, while CD4(+) T-cell numbers remained below normal values, resulting in a significantly reduced CD4(+):CD8(+) ratio. We speculate that the persistent depletion of CD4(+) T cells following JDV infection, through lack of CD4(+) T cell help to B cells, may explain the lack of production of JDV-specific antibodies for several weeks after recovery despite an increase in CD21(+) B cell numbers. Further, our previous data showing that IgG(+) plasma cells are targets for JDV infection, correlated with our current data demonstrating an increase in CD8(+) T cell numbers, supports the suggestion that anti-viral cytotoxic T cell or other cell-mediated immune responses may be critical in the recovery process, although this remains to be formally demonstrated for JDV.
Collapse
Affiliation(s)
- I W Masa Tenaya
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | | | | | | |
Collapse
|
5
|
Harris SP, Hines MT, Mealey RH, Alperin DC, Hines SA. Early development of cytotoxic T lymphocytes in neonatal foals following oral inoculation with Rhodococcus equi. Vet Immunol Immunopathol 2011; 141:312-6. [PMID: 21481947 DOI: 10.1016/j.vetimm.2011.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 02/28/2011] [Accepted: 03/14/2011] [Indexed: 11/28/2022]
Abstract
Rhodococcus equi is an important respiratory pathogen of young foals for which a vaccine has long been sought. Two major impediments to effective vaccination are the functionally immature type I immune responses of neonatal foals and early exposure to the bacterium via the environment. Despite these obstacles, it appears that under specific circumstances foals can develop a protective immune response. In this study we investigated the protective mechanisms behind oral inoculation of foals with virulent R. equi bacteria. Two foals receiving an oral inoculum demonstrated accelerated development of R. equi specific cytotoxic T lymphocytes (CTL) as evidenced by significant lysis of R. equi infected, ELA-A mismatched cells at 3 weeks of age. As in a previous study, CTL were not detected until 5-6 weeks of age in two control foals. At each time point the ability of foal peripheral blood mononuclear cells (PBMC) to produce IFN-γ following stimulation with live R. equi or extracted cell wall lipids was similar to that of an adult horse control and between foals, regardless of treatment. These results provide a potential mechanism of protection which has previously been shown to occur following oral inoculation, and suggest that the early detection of CTL may be a useful marker for induction of protective immunity.
Collapse
Affiliation(s)
- Seth P Harris
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, PO Box 647040, Pullman, WA 99164-7040, USA
| | | | | | | | | |
Collapse
|
6
|
Harris SP, Fujiwara N, Mealey RH, Alperin DC, Naka T, Goda R, Hines SA. Identification of Rhodococcus equi lipids recognized by host cytotoxic T lymphocytes. MICROBIOLOGY-SGM 2010; 156:1836-1847. [PMID: 20299405 DOI: 10.1099/mic.0.035915-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Immune adult horses have CD8(+) cytotoxic T lymphocytes (CTLs) that recognize and lyse Rhodococcus equi-infected cells in an equine lymphocyte alloantigen (ELA)-A [classical major histocompatibility complex (MHC) class I]-unrestricted fashion. As protein antigens are MHC class I-restricted, the lack of restriction suggests that the bacterial antigens being recognized by the host are not proteins. The goals of this study were to test the hypothesis that these CTLs recognize unique R. equi cell-wall lipids related to mycobacterial lipids. Initial experiments showed that treatment of soluble R. equi antigen with broadly reactive proteases did not significantly diminish the ability of the antigen to stimulate R. equi-specific CTLs. R. equi-specific CTLs were also shown to lyse target cells (equine macrophages) pulsed with an R. equi lipid extract. Analysis of the R. equi lipid by TLC and MS (MALDI-TOF and ES) indicated that the extracted antigen consisted of three primary fractions: trehalose monomycolate (TMM), trehalose dimycolate (TDM) and cardiolipin (CL). ELA-A-mismatched cells pulsed with purified TMM and CL, but not the TDM fraction, were recognized and lysed by R. equi-specific CTLs. Because of their role in immune clearance and pathogenesis, transcription of the cytokines gamma interferon (IFN-gamma) and interleukin-4 (IL-4) was also measured in response to R. equi lipids by using real-time PCR; elevated IFN-gamma, but not IL-4, was associated with host clearance of the bacteria. The whole-cell R. equi lipid and all three R. equi lipid fractions resulted in marked increases in IFN-gamma transcription, but no increase in IL-4 transcription. Together, these data support the hypothesis that immune recognition of unique lipids in the bacterial cell wall is an important component of the protective immune response to R. equi. The results also identify potential lipid antigens not previously shown to be recognized by CTLs in an important, naturally occurring actinomycete bacterial pathogen.
Collapse
Affiliation(s)
- Seth P Harris
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, PO Box 647040, Pullman, WA 99164-7040, USA
| | - Nagatoshi Fujiwara
- Department of Bacteriology, Osaka City University, Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, PO Box 647040, Pullman, WA 99164-7040, USA
| | - Debra C Alperin
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, PO Box 647040, Pullman, WA 99164-7040, USA
| | - Takashi Naka
- Department of Bacteriology, Osaka City University, Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Reina Goda
- Department of Bacteriology, Osaka City University, Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Stephen A Hines
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, PO Box 647040, Pullman, WA 99164-7040, USA
| |
Collapse
|
7
|
Mealey RH, Leib SR, Littke MH, Wagner B, Horohov DW, McGuire TC. Viral load and clinical disease enhancement associated with a lentivirus cytotoxic T lymphocyte vaccine regimen. Vaccine 2009; 27:2453-68. [PMID: 19368787 DOI: 10.1016/j.vaccine.2009.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/04/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Effective DNA-based vaccines against lentiviruses will likely induce CTL against conserved viral proteins. Equine infectious anemia virus (EIAV) infects horses worldwide, and serves as a useful model for lentiviral immune control. Although attenuated live EIAV vaccines have induced protective immune responses, DNA-based vaccines have not. In particular, DNA-based vaccines have had limited success in inducing CTL responses against intracellular pathogens in the horse. We hypothesized that priming with a codon-optimized plasmid encoding EIAV Gag p15/p26 with co-administration of a plasmid encoding an equine IL-2/IgG fusion protein as a molecular adjuvant, followed by boosting with a vaccinia vector expressing Gag p15/p26, would induce protective Gag-specific CTL responses. Although the regimen induced Gag-specific CTL in four of seven vaccinated horses, CTL were not detected until after the vaccinia boost, and protective effects were not observed in EIAV challenged vaccinates. Unexpectedly, vaccinates had significantly higher viral loads and more severe clinical disease, associated with the presence of vaccine-induced CTL. It was concluded that (1) further optimization of the timing and route of DNA immunization was needed for efficient CTL priming in vivo, (2) co-administration of the IL-2/IgG plasmid did not enhance CTL priming by the Gag p15/p26 plasmid, (3) vaccinia vectors are useful for lentivirus-specific CTL induction in the horse, (4) Gag-specific CTL alone are either insufficient or a more robust Gag-specific CTL response is needed to limit EIAV viremia and clinical disease, and (5) CTL-inducing vaccines lacking envelope immunogens can result in lentiviral disease enhancement. Although the mechanisms for enhancement associated with this vaccine regimen remain to be elucidated, these results have important implications for development of lentivirus T cell vaccines.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, 99164-7040, United States.
| | | | | | | | | | | |
Collapse
|
8
|
Bailat AS, Soutullo AR, García MI, Veaute CM, Garcia L, Racca AL, Malan Borel IS. Effect of two synthetic peptides mimicking conserved regions of equine infectious anemia virus proteins gp90 and gp45 upon cytokine mRNA expression. Arch Virol 2008; 153:1909-15. [PMID: 18825485 DOI: 10.1007/s00705-008-0199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
Gp90 and gp45 synthetic peptides, which mimic conserved sequences of native viral proteins, are recognized by antibodies to equine infectious anemia virus (EIAV) in asymptomatic carrier horses and generate humoral and cellular responses in immunized mice. Cytokine mRNA levels were evaluated in equine peripheral blood mononuclear cells (PBMCs) after in vitro stimulation with gp90 and gp45 with the aim of determining the cytokine profile associated with the proliferative response. Stimulation index (SI) values indicate that 100 and 60% of EIAV-infected horses recognized gp90 and gp45, respectively. A strong positive correlation was found between IL-12p40 and SI, IFN-gamma and SI, and IL-12p40 and IFN-gamma (p < 0.001). These results suggest the presence of specific memory cells that would contribute to maintain reinfection resistance and that conserved viral regions represented by gp90 and gp45 synthetic peptides may be good candidates for inclusion in vaccine strategies against EIAV.
Collapse
Affiliation(s)
- Alejandra S Bailat
- Laboratorio de Inmunología Básica, Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
9
|
Equine infectious anemia virus resists the antiretroviral activity of equine APOBEC3 proteins through a packaging-independent mechanism. J Virol 2008; 82:11889-901. [PMID: 18818324 DOI: 10.1128/jvi.01537-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Equine infectious anemia virus (EIAV), uniquely among lentiviruses, does not encode a vif gene product. Other lentiviruses, including human immunodeficiency virus type 1 (HIV-1), use Vif to neutralize members of the APOBEC3 (A3) family of intrinsic immunity factors that would otherwise inhibit viral infectivity. This suggests either that equine cells infected by EIAV in vivo do not express active A3 proteins or that EIAV has developed a novel mechanism to avoid inhibition by equine A3 (eA3). Here, we demonstrate that horses encode six distinct A3 proteins, four of which contain a single copy of the cytidine deaminase (CDA) consensus active site and two of which contain two CDA motifs. This represents a level of complexity previously seen only in primates. Phylogenetic analysis of equine single-CDA A3 proteins revealed two proteins related to human A3A (hA3A), one related to hA3C, and one related to hA3H. Both equine double-CDA proteins are similar to hA3F and were named eA3F1 and eA3F2. Analysis of eA3F1 and eA3F2 expression in vivo shows that the mRNAs encoding these proteins are widely expressed, including in cells that are natural EIAV targets. Both eA3F1 and eA3F2 inhibit retrotransposon mobility, while eA3F1 is a potent inhibitor of a Vif-deficient HIV-1 mutant and induces extensive editing of HIV-1 reverse transcripts. However, both eA3F1 and eA3F2 are weak inhibitors of EIAV. Surprisingly, eA3F1 and eA3F2 were packaged into EIAV and HIV-1 virions as effectively as hA3G, although only the latter inhibited EIAV infectivity. Moreover, all three proteins bound both the HIV-1 and EIAV nucleocapsid protein specifically in vitro. It therefore appears that EIAV has evolved a novel mechanism to specifically neutralize the biological activities of the cognate eA3F1 and eA3F2 proteins at a step subsequent to virion incorporation.
Collapse
|
10
|
Development and characterization of an equine infectious anemia virus Env-pseudotyped reporter virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1138-40. [PMID: 18448619 DOI: 10.1128/cvi.00088-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We developed a replication-defective reporter virus pseudotyped with the envelope glycoprotein of equine infectious anemia virus (EIAV). The in vitro host range and neutralization phenotype of EIAV Env-pseudotyped virus were similar to those of replication-competent virus. An EIAV Env pseudovirus will improve antigenic characterization of viral variants and evaluation of lentivirus vaccines.
Collapse
|
11
|
Envelope determinants of equine infectious anemia virus vaccine protection and the effects of sequence variation on immune recognition. J Virol 2008; 82:4052-63. [PMID: 18234792 DOI: 10.1128/jvi.02028-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly effective attenuated equine infectious anemia virus (EIAV) vaccine (EIAV(D9)) capable of protecting 100% of horses from disease induced by a homologous Env challenge strain (EIAV(PV)) was recently tested in ponies to determine the level of protection against divergent Env challenge strains (J. K. Craigo, B. S. Zhang, S. Barnes, T. L. Tagmyer, S. J. Cook, C. J. Issel, and R. C. Montelaro, Proc. Natl. Acad. Sci. USA 104:15105-15110, 2007). An inverse correlation between challenge strain Env variation and vaccine protection from disease was observed. Given the striking differences in protective immunity, we hypothesized that analysis of the humoral and cellular immune responses to the Env protein could reveal potential determinants of vaccine protection. Neutralization activity against the homologous Env or challenge strain-specific Env in immune sera from the vaccinated ponies did not correlate with protection from disease. Cellular analysis with Env peptide pools did not reveal an association with vaccine protection from disease. However, when individual vaccine-specific Env peptides were utilized, eight cytotoxic-T-lymphocyte (CTL) peptides were found to associate closely with vaccine protection. One of these peptides also yielded the only lymphoproliferative response associated with protective immunity. The identified peptides spanned both variable and conserved regions of gp90. Amino acid divergence within the principal neutralization domain and the identified peptides profoundly affected immune recognition, as illustrated by the inability to detect cross-reactive neutralizing antibodies and the observation that certain peptide-specific CTL responses were altered. In addition to identifying potential Env determinants of EIAV vaccine efficacy and demonstrating the profound effects of defined Env variation on immune recognition, these data also illustrate the sensitivity offered by individual peptides compared to peptide pools in measuring cellular immune responses in lentiviral vaccine trials.
Collapse
|
12
|
Mealey RH, Littke MH, Leib SR, Davis WC, McGuire TC. Failure of low-dose recombinant human IL-2 to support the survival of virus-specific CTL clones infused into severe combined immunodeficient foals: lack of correlation between in vitro activity and in vivo efficacy. Vet Immunol Immunopathol 2008; 121:8-22. [PMID: 17727961 PMCID: PMC2967287 DOI: 10.1016/j.vetimm.2007.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/24/2007] [Accepted: 07/11/2007] [Indexed: 01/08/2023]
Abstract
Although CTL are important for control of lentiviruses, including equine infectious anemia virus (EIAV), it is not known if CTL can limit lentiviral replication in the absence of CD4 help and neutralizing antibody. Adoptive transfer of EIAV-specific CTL clones into severe combined immunodeficient (SCID) foals could resolve this issue, but it is not known whether exogenous IL-2 administration is sufficient to support the engraftment and proliferation of CTL clones infused into immunodeficient horses. To address this question we adoptively transferred EIAV Rev-specific CTL clones into four EIAV-challenged SCID foals, concurrent with low-dose aldesleukin (180,000U/m2), a modified recombinant human IL-2 (rhuIL-2) product. The dose was calculated based on the specific activity on equine PBMC in vitro, and resulted in plasma concentrations considered sufficient to saturate high affinity IL-2 receptors in humans. Despite specific activity on equine PBMC that was equivalent to recombinant equine IL-2 and another form of rhuIL-2, aldesleukin did not support the engraftment and expansion of infused CTL clones, and control of viral load and clinical disease did not occur. It was concluded that survival of Rev-specific CTL clones infused into EIAV-challenged SCID foals was not enhanced by aldesleukin at the doses used in this study, and that in vitro specific activity did not correlate with in vivo efficacy. Successful adoptive immunotherapy with CTL clones in immunodeficient horses will likely require higher doses of rhuIL-2, co-infusion of CD4+ T lymphocytes, or administration of equine IL-2.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, United States.
| | | | | | | | | |
Collapse
|
13
|
Soutullo A, Santi MN, Perin JC, Beltramini LM, Borel IM, Frank R, Tonarelli GG. Systematic epitope analysis of the p26 EIAV core protein. J Mol Recognit 2007; 20:227-37. [PMID: 17705340 DOI: 10.1002/jmr.825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The major core protein of equine infectious anemia virus (EIAV), p26, is one of the primary immunogenic structural proteins during a persistent infection of horses and is highly conserved among antigenically variants of viral isolates. In order to investigate its immune profile in more detail for a better diagnostic, an epitope mapping was carried out by means of two libraries of overlapping peptide fragments prepared by simultaneous and parallel SPPS on derivatized cellulose membranes (SPOT synthesis). Polyclonal equine sera from infected horses were used for the biological assay. Particularly two promising continuous epitopes (NAMRHL and MYACRD) were localized on the C-terminal extreme of p26, region 194-222. A cyclic synthetic fragment of 29 amino acid residues containing the identified epitopes was designed and studied. A significant conformational change towards a helical structure was observed when the peptide was cyclized by a bridge between Cys198 and Cys218. This observation correlated with an improvement of its ability to be recognized by specific antibodies in an EIA (Enzyme-linked Immunosorbent assay). These results suggest that the conformationally restricted synthetic antigen adequately mimics the native structure of this region of p26 core protein.
Collapse
Affiliation(s)
- Adriana Soutullo
- Laboratorio de Inmunoquímica, Dirección de Sanidad Animal, Ministerio de la Producción, Bv. Pellegrini 3100, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Nagarajan MM, Simard C. Gag genetic heterogeneity of equine infectious anemia virus (EIAV) in naturally infected horses in Canada. Virus Res 2007; 129:228-35. [PMID: 17767972 DOI: 10.1016/j.virusres.2007.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/07/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Gag genetic heterogeneity of equine infectious anemia virus (EIAV) variants in naturally infected horses in Canada was studied since very limited information is available on the variability of EIAV Gag sequences in public database. A phylogenetic analysis based on 414nts of Gag gene sequences amplified by a nested polymerase chain reaction (PCR) revealed the distinct divergence of these variants compared to other published strains in a corresponding region. Significant predicted amino acid sequence variations were also identified in an immunorelevant region within this fragment which corresponded to a previously characterized cytotoxic T lymphocytes (CTL) epitope cluster (EC2, aa 77-119). Furthermore, alignment of the predicted full-length Gag protein gene sequences of some of these variants associated with clinical cases of EIA in Canada with the published sequences of EIAV originating from other countries revealed conserved and variant sequences in regions corresponding to other characterized CTL epitope clusters, EC1, EC3 and EC4. Conserved sequences identified among different variant strains might have an important implication for their screening and selection of putative peptide epitopes to mediate relevant immune response and cross protection against divergent field strains of EIAV.
Collapse
Affiliation(s)
- Malliga M Nagarajan
- St-Hyacinthe Laboratory, Canadian Food Inspection Agency, St-Hyacinthe, QC, J2S 8E3, Canada.
| | | |
Collapse
|
15
|
Mealey R, Stone D, Hines M, Alperin D, Littke M, Leib S, Leach S, Hines S. Experimental Rhodococcus equi and equine infectious anemia virus DNA vaccination in adult and neonatal horses: effect of IL-12, dose, and route. Vaccine 2007; 25:7582-97. [PMID: 17889970 PMCID: PMC3342688 DOI: 10.1016/j.vaccine.2007.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 07/24/2007] [Accepted: 07/28/2007] [Indexed: 11/15/2022]
Abstract
Improving the ability of DNA-based vaccines to induce potent Type1/Th1 responses against intracellular pathogens in large outbred species is essential. Rhodoccocus equi and equine infectious anemia virus (EIAV) are two naturally occurring equine pathogens that also serve as important large animal models of neonatal immunity and lentiviral immune control. Neonates present a unique challenge for immunization due to their diminished immunologic capabilities and apparent Th2 bias. In an effort to augment R. equi- and EIAV-specific Th1 responses induced by DNA vaccination, we hypothesized that a dual promoter plasmid encoding recombinant equine IL-12 (rEqIL-12) would function as a molecular adjuvant. In adult horses, DNA vaccines induced R. equi- and EIAV-specific antibody and lymphoproliferative responses, and EIAV-specific CTL and tetramer-positive CD8+ T lymphocytes. These responses were not enhanced by the rEqIL-12 plasmid. In neonatal foals, DNA immunization induced EIAV-specific antibody and lymphoproliferative responses, but not CTL. The R. equi vapA vaccine was poorly immunogenic in foals even when co-administered with the IL-12 plasmid. It was concluded that DNA immunization was capable of inducing Th1 responses in horses; dose and route were significant variables, but rEqIL-12 was not an effective molecular adjuvant. Additional work is needed to optimize DNA vaccine-induced Th1 responses in horses, especially in neonates.
Collapse
Affiliation(s)
- R.H. Mealey
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - D.M. Stone
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - M.T. Hines
- Department of Veterinary Clinical Sciences, Washington State University, College of Veterinary Medicine, P.O. Box 646010, Pullman, WA 99164-6010, United States
| | - D.C. Alperin
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - M.H. Littke
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.R. Leib
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.E. Leach
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.A. Hines
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
- Corresponding author. Tel.: +1 509 335 6030; fax: +1 509 335 8529. (S.A. Hines)
| |
Collapse
|
16
|
Mealey RH, Littke MH, Leib SR, Davis WC, McGuire TC. Cloning and large-scale expansion of epitope-specific equine cytotoxic T lymphocytes using an anti-equine CD3 monoclonal antibody and human recombinant IL-2. Vet Immunol Immunopathol 2007; 118:121-8. [PMID: 17498813 PMCID: PMC2002571 DOI: 10.1016/j.vetimm.2007.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 03/20/2007] [Accepted: 04/05/2007] [Indexed: 11/20/2022]
Abstract
Cytotoxic T lymphocytes are involved in controlling intracellular pathogens in many species, including horses. Particularly, CTL are critical for the control of equine infectious anemia virus (EIAV), a lentivirus that infects horses world-wide. In humans and animal models, CTL clones are valuable for evaluating the fine specificity of epitope recognition, and for adoptive immunotherapy against infectious and neoplastic diseases. Cloned CTL would be equally useful for similar studies in the horse. Here we present the first analysis of a method to generate equine CTL clones. Peripheral blood mononuclear cells were obtained from an EIAV-infected horse and stimulated with the EIAV Rev-QW11 peptide. Sorted CD8+ T cells were cloned by limiting dilution, and expanded without further antigen addition using irradiated PBMC, anti-equine CD3, and human recombinant IL-2. Clones could be frozen and thawed without detrimental effects, and could be subsequently expanded to numbers exceeding 2 x 10(9)cells. Flow cytometry of expanded clones confirmed the CD3+/CD8+ phenotype, and chromium release assays confirmed CTL activity. Finally, sequencing TCR beta chain genes confirmed clonality. Our results provide a reliable means to generate large numbers of epitope-specific equine CTL clones that are suitable for use in downstream applications, including functional assays and adoptive transfer studies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- CD3 Complex/immunology
- Clone Cells/cytology
- Clone Cells/drug effects
- Epitopes, T-Lymphocyte/immunology
- Horses/immunology
- Humans
- Interleukin-2/immunology
- Interleukin-2/pharmacology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombinant Proteins
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Time Factors
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
17
|
Tagmyer TL, Craigo JK, Cook SJ, Issel CJ, Montelaro RC. Envelope-specific T-helper and cytotoxic T-lymphocyte responses associated with protective immunity to equine infectious anemia virus. J Gen Virol 2007; 88:1324-1336. [PMID: 17374779 DOI: 10.1099/vir.0.82391-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine infectious anemia virus (EIAV) infection of horses provides a valuable model for examining the natural immunological control of lentivirus infection and disease and the mechanisms of protective and enhancing vaccine immunity. We have previously hypothesized that the EIAV envelope (Env) proteins gp90 and gp45 are major determinants of vaccine efficacy, and that the development of protective immunity by attenuated viral vaccines may be associated with the progressive redirection of immune responses from immunodominant, variable Env segments to immunorecessive, conserved Env sequences. Whilst the antibody-neutralization determinants of Env have been defined, there are to date no comprehensive analyses of the lymphoproliferative (T-helper, Th) and cytotoxic T-cell (CTL) epitopes of the EIAV Env proteins. Thus, in the current study, synthetic-peptide methodologies were used to define regions of EIAV Env associated with protective vaccine immunity in a panel of 12 horses inoculated with the attenuated EIAVD9 vaccine and two asymptomatic carrier horses infected experimentally with the virulent EIAVPV strain expressing the same Env protein as the vaccine strain. The results of these studies identified 17 broadly reactive Th peptides and six broadly reactive CTL peptides in the Env proteins of EIAV that were associated with protective immunity. Thus, these data provide for the first time a comprehensive mapping of EIAV Env-specific cellular regions that can be used to examine the development of protective immunity and to evaluate potential cellular immune determinants of protective immunity.
Collapse
Affiliation(s)
- Tara L Tagmyer
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jodi K Craigo
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sheila J Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516, USA
| | - Charles J Issel
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516, USA
| | - Ronald C Montelaro
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
18
|
McGuire TC, Fraser DG, Mealey RH. Cytotoxic T lymphocytes in protection against equine infectious anemia virus. Anim Health Res Rev 2007; 5:271-6. [PMID: 15984338 DOI: 10.1079/ahr200482] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractCytotoxic T lymphocytes (CTL) are associated with virus control in horses infected with equine infectious anemia virus (EIAV). Early in infection, control of the initial viremia coincides with the appearance of CTL and occurs before the appearance of neutralizing antibody. In carrier horses, treatment with immunosuppressive drugs results in viremia before a change in serum neutralizing antibody occurs. Clearance of initial viremia caused by other lentiviruses, including human immunodeficiency virus-1 and simian immunodeficiency virus, is also associated with CTL and not neutralizing antibody. In addition, depletion of CD8+cells prior to infection of rhesus monkeys with simian immunodeficiency prevents clearance of virus and the same treatment of persistently infected monkeys results in viremia. Cats given adoptive transfers of lymphocytes from vaccinated cats were protected and the protection was MHC-restricted, occurred in the absence of antiviral humoral immunity, and correlated with the transfer of cells with feline immunodeficiency virus-specific CTL and T-helper lymphocyte activities. Therefore, a lentiviral vaccine, including one for EIAV, needs to induce CTL. Based on initial failures to induce CTL to EIAV proteins by any means other than infection, we attempted to define an experimental system for the evaluation of methods for CTL induction. CTL epitopes restricted by the ELA-A1 haplotype were identified and the MHC class I molecule presenting these peptides was identified. This was done by expressing individual MHC class I molecules from cDNA clones in target cells. The target cells were then pulsed with peptides and used with effector CTL stimulated with the same peptides. In a preliminary experiment, immunization of three ELA-A1 haplotype horses with an Env peptide restricted by this haplotype resulted in CTL in peripheral blood mononuclear cells (PBMC) which recognized the Env peptide and virus-infected cells, but the CTL response was transient. Nevertheless there was significant protection against clinical disease following EIAV challenge of these immunized horses when compared with three control horses given the same virus challenge. These data indicated that responses to peptides in immunized horses needed to be enhanced. Optimal CTL responses require help from CD4+T lymphocytes, and experiments were done to identify EIAV peptides which stimulated CD4+T lymphocytes in PBMC from infected horses with different MHC class II types. Two broadly cross-reactive Gag peptides were identified which stimulated only an interferon γ response by CD4+T lymphocytes, which indicated a T helper 1 response is needed for CTL stimulation. Such peptides should facilitate CTL responses; however, other problems in inducing protection against lentiviruses remain, the most significant of them being EIAV variants that can escape both CTL and neutralizing antibody. A possible solution to CTL escape variants is the induction of high-avidity CTL to multiple EIAV epitopes.
Collapse
Affiliation(s)
- Travis C McGuire
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
19
|
Mealey RH, Lee JH, Leib SR, Littke MH, McGuire TC. A single amino acid difference within the alpha-2 domain of two naturally occurring equine MHC class I molecules alters the recognition of Gag and Rev epitopes by equine infectious anemia virus-specific CTL. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:7377-90. [PMID: 17082657 PMCID: PMC3342702 DOI: 10.4049/jimmunol.177.10.7377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CTL are critical for control of lentiviruses, including equine infectious anemia virus, relatively little is known regarding the MHC class I molecules that present important epitopes to equine infectious anemia virus-specific CTL. The equine class I molecule 7-6 is associated with the equine leukocyte Ag (ELA)-A1 haplotype and presents the Env-RW12 and Gag-GW12 CTL epitopes. Some ELA-A1 target cells present both epitopes, whereas others are not recognized by Gag-GW12-specific CTL, suggesting that the ELA-A1 haplotype comprises functionally distinct alleles. The Rev-QW11 CTL epitope is also ELA-A1-restricted, but the molecule that presents Rev-QW11 is unknown. To determine whether functionally distinct class I molecules present ELA-A1-restricted CTL epitopes, we sequenced and expressed MHC class I genes from three ELA-A1 horses. Two horses had the 7-6 allele, which when expressed, presented Env-RW12, Gag-GW12, and Rev-QW11 to CTL. The other horse had a distinct allele, designated 141, encoding a molecule that differed from 7-6 by a single amino acid within the alpha-2 domain. This substitution did not affect recognition of Env-RW12, but resulted in more efficient recognition of Rev-QW11. Significantly, CTL recognition of Gag-GW12 was abrogated, despite Gag-GW12 binding to 141. Molecular modeling suggested that conformational changes in the 141/Gag-GW12 complex led to a loss of TCR recognition. These results confirmed that the ELA-A1 haplotype is comprised of functionally distinct alleles, and demonstrated for the first time that naturally occurring MHC class I molecules that vary by only a single amino acid can result in significantly different patterns of epitope recognition by lentivirus-specific CTL.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Amino Acid Substitution/immunology
- Animals
- Antigen Presentation/immunology
- Computer Simulation
- Crystallography, X-Ray
- Cytotoxicity Tests, Immunologic
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Gene Products, gag/chemistry
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Gene Products, rev/chemistry
- Gene Products, rev/immunology
- Gene Products, rev/metabolism
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Horses
- Infectious Anemia Virus, Equine/chemistry
- Infectious Anemia Virus, Equine/immunology
- Male
- Molecular Sequence Data
- Protein Binding/immunology
- Protein Structure, Tertiary
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
20
|
Fraser DG, Leib SR, Zhang BS, Mealey RH, Brown WC, McGuire TC. Lymphocyte proliferation responses induced to broadly reactive Th peptides did not protect against equine infectious anemia virus challenge. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:983-93. [PMID: 16085917 PMCID: PMC1182189 DOI: 10.1128/cdli.12.8.983-993.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of immunization with five lipopeptides, three containing T-helper (Th) epitopes and two with both Th and cytotoxic T-lymphocyte (CTL) epitopes, on equine infectious anemia virus (EIAV) challenge was evaluated. Peripheral blood mononuclear cells from EIAV lipopeptide-immunized horses had significant proliferative responses to Th peptides compared with those preimmunization, and the responses were attributed to significant responses to peptides Gag from positions 221 to 245 (Gag 221-245), Gag 250-269, and Pol 326-347; however, there were no consistent CTL responses. The significant proliferative responses in the EIAV lipopeptide-immunized horses allowed testing of the hypothesis that Th responses to immunization would enhance Th and CTL responses following EIAV challenge and lessen the viral load and the severity of clinical disease. The EIAV lipopeptide-immunized group did have a significant increase in proliferative responses to Th peptides 1 week after virus challenge, whereas the control group did not. Two weeks after challenge, a significant CTL response to virus-infected cell targets occurred in the EIAV lipopeptide-immunized group compared to that in the control group. These Th and CTL responses did not significantly alter either the number of viral RNA copies/ml or disease severity. Thus, lipopeptide-induced proliferative responses and enhanced Th and CTL responses early after virus challenge were unable to control challenge virus load and clinical disease.
Collapse
Affiliation(s)
- Darrilyn G Fraser
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mealey RH, Sharif A, Ellis SA, Littke MH, Leib SR, McGuire TC. Early detection of dominant Env-specific and subdominant Gag-specific CD8+ lymphocytes in equine infectious anemia virus-infected horses using major histocompatibility complex class I/peptide tetrameric complexes. Virology 2005; 339:110-26. [PMID: 15979679 PMCID: PMC3342685 DOI: 10.1016/j.virol.2005.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/27/2005] [Accepted: 05/23/2005] [Indexed: 11/16/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical for control of lentiviruses, including equine infectious anemia virus (EIAV). Measurement of equine CTL responses has relied on chromium-release assays, which do not allow accurate quantitation. Recently, the equine MHC class I molecule 7-6, associated with the ELA-A1 haplotype, was shown to present both the Gag-GW12 and Env-RW12 EIAV CTL epitopes. In this study, 7-6/Gag-GW12 and 7-6/Env-RW12 MHC class I/peptide tetrameric complexes were constructed and used to analyze Gag-GW12- and Env-RW12-specific CTL responses in two EIAV-infected horses (A2164 and A2171). Gag-GW12 and Env-RW12 tetramer-positive CD8+ cells were identified in nonstimulated peripheral blood mononuclear cells as early as 14 days post-EIAV inoculation, and frequencies of tetramer-positive cells ranged from 0.4% to 6.7% of nonstimulated peripheral blood CD8+ cells during the 127-day study period. Although both horses terminated the initial viremic peak, only horse A2171 effectively controlled viral load. Neutralizing antibody was present during the initial control of viral load in both horses, but the ability to maintain control correlated with Gag-GW12-specific CD8+ cells in A2171. Despite Env-RW12 dominance, Env-RW12 escape viral variants were identified in both horses and there was no correlation between Env-RW12-specific CD8+ cells and control of viral load. Although Gag-GW12 CTL escape did not occur, a Gag-GW12 epitope variant arose in A2164 that was recognized less efficiently than the original epitope. These data indicate that tetramers are useful for identification and quantitation of CTL responses in horses, and suggest that the observed control of EIAV replication and clinical disease was associated with sustained CTL recognition of Gag-specific epitopes.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Chung C, Mealey RH, McGuire TC. Evaluation of high functional avidity CTL to Gag epitope clusters in EIAV carrier horses. Virology 2005; 342:228-39. [PMID: 16139857 PMCID: PMC3348724 DOI: 10.1016/j.virol.2005.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/25/2005] [Accepted: 07/29/2005] [Indexed: 11/24/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical for lentivirus control including EIAV. Since CTL from most EIAV carrier horses recognize Gag epitope clusters (EC), the hypothesis that carrier horses would have high functional avidity CTL to optimal epitopes in Gag EC was tested. Twenty-two optimal EC epitopes were identified; two in EC1, six in EC2, and seven each in EC3 and 4. However, only five of nine horses had high functional avidity CTL (<or=11 nM) recognizing six epitopes in EC; four in relatively conserved EC3; and one each in EC1 and 2. Horses with high functional avidity CTL had significantly more days since the last clinical episode than horses with low avidity CTL, and this was not explained by analyzing duration of infection. Furthermore, there was a significant inverse correlation between the CTL functional avidity of the nine horses and the days since the last clinical episode. Gag CTL epitope escape variants were found in three horses, but only one of these was recognized by high functional avidity CTL. Thus, not all carrier horses had high functional avidity CTL to Gag EC, but those that did had longer periods without disease episodes.
Collapse
|
23
|
Rivera JA, McGuire TC. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability. Virology 2005; 335:145-54. [PMID: 15840514 DOI: 10.1016/j.virol.2005.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 12/21/2004] [Accepted: 02/16/2005] [Indexed: 12/01/2022]
Abstract
To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV(WSU5) infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with (51)Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection.
Collapse
Affiliation(s)
- Julie A Rivera
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | | |
Collapse
|
24
|
Cook RF, Cook SJ, Bolin PS, Howe LJ, Zhou W, Montelaro RC, Issel CJ. Genetic immunization with codon-optimized equine infectious anemia virus (EIAV) surface unit (SU) envelope protein gene sequences stimulates immune responses in ponies. Vet Microbiol 2005; 108:23-37. [PMID: 15885929 DOI: 10.1016/j.vetmic.2005.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
In the context of DNA vaccines the native equine infectious anemia virus (EIAV)-envelope gene has proven to be an extremely weak immunogen in horses probably because the RNA transcripts are poorly expressed owing to an unusual codon-usage bias, the possession of multiple RNA splice sites and potential adenosine-rich RNA instability elements. To overcome these problems a synthetic version of sequences encoding the EIAV surface unit (SU) envelope glycoprotein was produced (SYNSU) in which the codon-usage bias was modified to conform to that of highly expressed horse and human genes. In transfected COS-1 cell cultures, the steady state expression levels of SYNSU were at least 30-fold greater than equivalent native SU sequences. More importantly, EIAV-specific humoral and lymphocyte proliferation responses were induced in ponies immunized with a mammalian expression vector encoding SYNSU. However, these immunological responses were unable to confer protection against infection with a virulent EIAV strain.
Collapse
Affiliation(s)
- R Frank Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Patton KM, McGuire TC, Fraser DG, Hines SA. Rhodococcus equi-infected macrophages are recognized and killed by CD8+ T lymphocytes in a major histocompatibility complex class I-unrestricted fashion. Infect Immun 2004; 72:7073-83. [PMID: 15557631 PMCID: PMC529141 DOI: 10.1128/iai.72.12.7073-7083.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this research was to examine the role of cytotoxic T lymphocytes (CTL) in the control of Rhodococcus equi and specifically to determine if R. equi-specific CD8+ CTL occurred in the blood of immune horses. Equine peripheral blood mononuclear cells stimulated with antigen-presenting cells either infected with R. equi or exposed to soluble R. equi antigen lysed R. equi-infected target cells. Lysis was decreased to background by depletion of either CD2+ or CD3+ cells, indicating that the effector cell had a T-lymphocyte, but not NK cell, phenotype. Stimulation induced an increased percentage of CD8+ T cells in the effector population, and depletion of CD8+ T cells resulted in significantly decreased lysis of infected targets. Killing of R. equi-infected macrophages by effector cells was equally effective against autologous and equine leukocyte antigen A (classical major histocompatibility complex [MHC] class I) mismatched targets. To evaluate potential target antigens, target cells were infected with either virulent (80.6-kb plasmid-containing) or avirulent (plasmid-cured) R. equi. The degree of lysis was not altered by the presence of the plasmid, providing evidence that the virulence plasmid, which is required for survival within macrophages, was not necessary for recognition and killing of R. equi-infected cells. These data indicate that immunocompetent adult horses develop R. equi-specific CD8+ CTL, which may play a role in immunity to R. equi. The apparent lack of restriction via classical MHC class I molecules suggests a novel or nonclassical method of antigen processing and presentation, such as presentation by CD1 or other nonclassical MHC molecules.
Collapse
Affiliation(s)
- Kristin M Patton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | |
Collapse
|
26
|
Chung C, Mealey RH, McGuire TC. CTL from EIAV carrier horses with diverse MHC class I alleles recognize epitope clusters in Gag matrix and capsid proteins. Virology 2004; 327:144-54. [PMID: 15327905 PMCID: PMC3342308 DOI: 10.1016/j.virol.2004.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/11/2004] [Accepted: 06/23/2004] [Indexed: 11/29/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are important for controlling equine infectious anemia virus (EIAV). Because Gag matrix (MA) and capsid (CA) are the most frequently recognized proteins, the hypothesis that CTL from EIAV-infected horses with diverse MHC class I alleles recognize epitope clusters (EC) in these proteins was tested. Four EC were identified by CTL from 15 horses and 8 of these horses had diverse MHC class I alleles. Two of the eight had CTL to EC1, six to EC2, five to EC3, and four to EC4. Because EC2-4 were recognized by CTL from >50% of horses with diverse alleles, the hypothesis was accepted. EC1 and EC3 were the most conserved EC and these more conserved broadly recognized EC may be most useful for CTL induction, helping overcome MHC class I polymorphism and antigenic variation.
Collapse
Affiliation(s)
| | | | - Travis C. McGuire
- Corresponding author. Department of Veterinary Microbiology and Pathology, Washington State University, PO Box 647040, Pullman, WA 99165-7040. Fax: +1 509 335 8529. (T.C. McGuire)
| |
Collapse
|
27
|
Ambagala APN, Gopinath RS, Srikumaran S. Peptide transport activity of the transporter associated with antigen processing (TAP) is inhibited by an early protein of equine herpesvirus-1. J Gen Virol 2004; 85:349-353. [PMID: 14769892 DOI: 10.1099/vir.0.19563-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) downregulates surface expression of major histocompatibility complex (MHC) class I molecules on infected cells. The objective of this study was to investigate whether EHV-1 interferes with peptide translocation by the transporter associated with antigen processing (TAP) and to identify the proteins responsible. Using an in vitro transport assay, we showed that EHV-1 inhibited transport of peptides by TAP as early as 2 h post-infection (p.i). Complete shutdown of peptide transport was observed by 8 h p.i. Furthermore, pulse–chase experiments revealed that maturation of class I molecules in the endoplasmic reticulum (ER) was delayed in EHV-1-infected cells, which may be due to reduced availability of peptides in the ER as a result of TAP inhibition. Metabolic inhibition studies indicated that an early protein(s) of EHV-1 is responsible for this effect.
Collapse
Affiliation(s)
- Aruna P N Ambagala
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, NE 68583-0905, USA
| | - Raju S Gopinath
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, NE 68583-0905, USA
| | - S Srikumaran
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, NE 68583-0905, USA
| |
Collapse
|
28
|
Baccam P, Thompson RJ, Li Y, Sparks WO, Belshan M, Dorman KS, Wannemuehler Y, Oaks JL, Cornette JL, Carpenter S. Subpopulations of equine infectious anemia virus Rev coexist in vivo and differ in phenotype. J Virol 2003; 77:12122-31. [PMID: 14581549 PMCID: PMC254257 DOI: 10.1128/jvi.77.22.12122-12131.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviruses exist in vivo as a population of related, nonidentical genotypes, commonly referred to as quasispecies. The quasispecies structure is characteristic of complex adaptive systems and contributes to the high rate of evolution in lentiviruses that confounds efforts to develop effective vaccines and antiviral therapies. Here, we describe analyses of genetic data from longitudinal studies of genetic variation in a lentivirus regulatory protein, Rev, over the course of disease in ponies experimentally infected with equine infectious anemia virus. As observed with other lentivirus data, the Rev variants exhibited a quasispecies character. Phylogenetic and partition analyses suggested that the Rev quasispecies comprised two distinct subpopulations that coexisted during infection. One subpopulation appeared to accumulate changes in a linear, time-dependent manner, while the other evolved radially from a common variant. Over time, the two subpopulations cycled in predominance coincident with changes in the disease state, suggesting that the two groups differed in selective advantage. Transient expression assays indicated the two populations differed significantly in Rev nuclear export activity. Chimeric proviral clones containing Rev genotypes representative of each population differed in rate and overall level of virus replication in vitro. The coexistence of genetically distinct viral subpopulations that differ in phenotype provides great adaptability to environmental changes within the infected host. A quasispecies model with multiple subpopulations may provide additional insight into the nature of lentivirus reservoirs and the evolution of antigenic and drug-resistant variants.
Collapse
Affiliation(s)
- Prasith Baccam
- Department of Mathematics, Iowa State University, Ames, Iowa, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fraser DG, Mealey RH, McGuire TC. Selecting peptides to optimize Th1 responses to an equine lentivirus using HLA-DR binding motifs and defined HIV-1 Th peptides. Immunogenetics 2003; 55:508-14. [PMID: 12942208 DOI: 10.1007/s00251-003-0600-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 07/28/2003] [Indexed: 11/30/2022]
Abstract
Three moderately to broadly recognized equine infectious anemia virus (EIAV) peptides that contained helper T-lymphocyte (Th) 1 epitopes were previously identified. Although lipopeptide immunization was only weakly immunostimulatory in a preliminary study, as measured by T-lymphocyte proliferation responses, it was of interest to define additional broadly recognized Th1 epitopes to include in future immunization trials. Using broadly cross-reactive and conserved Th epitopes known in the related human immunodeficiency virus-1 (HIV-1) and binding motifs defined in human leukocyte antigen DR molecules as guides, this work identified three new peptides containing Th1 epitopes recognized by 60-75% of EIAV infected horses. The observed similarity across species of major histocompatibility complex (MHC) class II binding motifs and the conservation of Th peptides between related viruses should allow easier targeting of Th epitope regions in less well characterized pathogens and/or in species whose MHC class II molecules are poorly defined.
Collapse
Affiliation(s)
- Darrilyn G Fraser
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA
| | | | | |
Collapse
|
30
|
Castillo-Olivares J, Tearle JP, Montesso F, Westcott D, Kydd JH, Davis-Poynter NJ, Hannant D. Detection of equine arteritis virus (EAV)-specific cytotoxic CD8+ T lymphocyte precursors from EAV-infected ponies. J Gen Virol 2003; 84:2745-2753. [PMID: 13679609 DOI: 10.1099/vir.0.19144-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine arteritis virus (EAV) causes a systemic infection in equids with variable outcome, ranging from subclinical infections to severe disease, and also has the capacity to induce abortion in pregnant mares and persistent infections in stallions. The serum virus-neutralizing antibody response that invariably develops in the infected animal lasts for many months or years and is believed to play an important role in virus clearance. However, very little is known about cellular immunity against EAV because of a lack of methods for evaluating these immune responses. In the present study, we describe methods for detecting cytotoxic T lymphocyte (CTL) precursors in the peripheral blood of EAV-convalescent ponies using a 51Cr release cytolysis assay. Primary equine dermal cells, used as CTL targets, were shown to express MHC I but not MHC II and to retain 51Cr efficiently and support EAV replication. Peripheral blood mononuclear cells (PBMC) collected from EAV-convalescent ponies that had been incubated with or without live EAV were used as effectors. EAV-induced PBMC cultures showed evidence of expansion and activation of lymphoblasts, with an increase in the CD8+/CD4+ ratio in comparison with mock-induced PBMC. The cytotoxicity induced by EAV-stimulated PBMC was virus specific, showed genetic restriction, was mediated by CD8+ T lymphocytes and could be detected for periods of 4 months to more than 1 year post-infection. These findings and methods will hopefully contribute to an understanding of virus–host interactions in horses, in particular the mechanisms of virus clearance occurring during EAV infection.
Collapse
Affiliation(s)
| | - J P Tearle
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
| | - F Montesso
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
| | - D Westcott
- Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - J H Kydd
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
| | | | - D Hannant
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
| |
Collapse
|
31
|
Mealey RH, Zhang B, Leib SR, Littke MH, McGuire TC. Epitope specificity is critical for high and moderate avidity cytotoxic T lymphocytes associated with control of viral load and clinical disease in horses with equine infectious anemia virus. Virology 2003; 313:537-52. [PMID: 12954220 PMCID: PMC3342690 DOI: 10.1016/s0042-6822(03)00344-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Equine infectious anemia virus (EIAV) is a lentivirus that causes persistent infections in horses. We hypothesized that high-avidity CTL specific for nonvariable epitopes might be associated with low viral load and minimal disease in EIAV-infected horses. To test this hypothesis, memory CTL (CTLm) responses were analyzed in two infected horses with high plasma viral loads and recurrent disease (progressors), and in two infected horses with low-to-undetectable viral loads and mild disease (nonprogressors). High-avidity CTLm in one progressor recognized an envelope gp90 epitope, and the data documented for the first time in EIAV that viral variation led to CTL escape. Each of the nonprogressors had high-to-moderate avidity CTLm directed against epitopes within Rev, including the nuclear export and nuclear localization domains. These results suggested that the epitope specificity of high- and moderate-avidity CTLm was an important determinant for disease outcome in the EIAV-infected horses examined.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
32
|
Cook RF, Cook SJ, Berger SL, Leroux C, Ghabrial NN, Gantz M, Bolin PS, Mousel MR, Montelaro RC, Issel CJ. Enhancement of equine infectious anemia virus virulence by identification and removal of suboptimal nucleotides. Virology 2003; 313:588-603. [PMID: 12954224 DOI: 10.1016/s0042-6822(03)00351-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pathogenicity was reportedly restored to an avirulent molecular clone of equine infectious anemia virus (EIAV) by substitution of 3' sequences from the pathogenic variant strain (EIAV(PV)). However, the incidence of disease in horses/ponies was found to be significantly lower (P = 0.016) with the chimeric clone (EIAV(UK)) than with EIAV(PV). This was attributable to 3' rather than 5' regions of the proviral genome, where EIAV(UK) differs from the consensus EIAV(PV) sequence by having a 68-bp duplication in the 3' LTR and arginine (R(103)) rather than tryptophan (W(103)) at position 103 in the second exon of rev. In EIAV(UK) recipients the duplication was rapidly eliminated and R(103) replaced by W(103) in the viral population. Furthermore, removal of the 3' variant sequences from EIAV(UK) (EIAV(UK3)) resulted in an equivalent (P = 0.013) disease potential in Equus caballus to EIAV(PV). The 68-bp duplication and/or R(103) may limit peak viral RNA accumulation during acute infection.
Collapse
Affiliation(s)
- R Frank Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McGuire TC, Leib SR, Mealey RH, Fraser DG, Prieur DJ. Presentation and binding affinity of equine infectious anemia virus CTL envelope and matrix protein epitopes by an expressed equine classical MHC class I molecule. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1984-93. [PMID: 12902502 DOI: 10.4049/jimmunol.171.4.1984] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Control of a naturally occurring lentivirus, equine infectious anemia virus (EIAV), occurs in most infected horses and involves MHC class I-restricted, virus-specific CTL. Two minimal 12-aa epitopes, Env-RW12 and Gag-GW12, were evaluated for presentation by target cells from horses with an equine lymphocyte Ag-A1 (ELA-A1) haplotype. Fifteen of 15 presented Env-RW12 to CTL, whereas 11 of 15 presented Gag-GW12. To determine whether these epitopes were presented by different molecules, MHC class I genes were identified in cDNA clones from Arabian horse A2152, which presented both epitopes. This horse was selected because it is heterozygous for the SCID trait and is used to breed heterozygous females. Offspring with SCID are used as recipients for CTL adoptive transfer, and normal offspring are used for CTL induction. Four classical and three putative nonclassical full-length MHC class I genes were found. Human 721.221 cells transduced with retroviral vectors expressing each gene had equine MHC class I on their surface. Following peptide pulsing, only cells expressing classical MHC class I molecule 7-6 presented Env-RW12 and Gag-GW12 to CTL. Unlabeled peptide inhibition of (125)I-labeled Env-RW12 binding to 7-6-transduced cells demonstrated that Env-RW12 affinity was 15-fold higher than Gag-GW12 affinity. Inhibition with truncated Env-RW12 demonstrated that amino acid positions 1 and 12 were necessary for binding, and single substitutions identified positions 2 and 3 as possible primary anchor residues. Since MHC class I 7-6 presented both epitopes, outbred horses with this allele can be immunized with these epitopes to optimize CTL responses and evaluate their effectiveness against lentiviral challenge.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Amino Acid Substitution/immunology
- Animals
- Antigen Presentation/genetics
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line, Transformed
- Cloning, Molecular
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Expression Regulation/immunology
- Gene Library
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genes, MHC Class I
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Horses
- Humans
- Infectious Anemia Virus, Equine/immunology
- Male
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- RNA, Messenger/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/metabolism
Collapse
Affiliation(s)
- Travis C McGuire
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
34
|
McGuire TC, Fraser DG, Mealey RH. Cytotoxic T lymphocytes and neutralizing antibody in the control of equine infectious anemia virus. Viral Immunol 2003; 15:521-31. [PMID: 12513924 DOI: 10.1089/088282402320914476] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Travis C McGuire
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7040, USA.
| | | | | |
Collapse
|
35
|
Ridgely SL, Zhang B, McGuire TC. Response of ELA-A1 horses immunized with lipopeptide containing an equine infectious anemia virus ELA-A1-restricted CTL epitope to virus challenge. Vaccine 2003; 21:491-506. [PMID: 12531649 DOI: 10.1016/s0264-410x(02)00474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipopeptide containing an ELA-A1-restricted cytotoxic T lymphocyte (CTL) epitope from the envelope surface unit (SU) protein of the EIAV(WSU5) strain was used to immunize three horses having the ELA-A1 haplotype. Peptide-specific ELA-A1-restricted CTL were induced in all three horses, although these were present transiently in PBMC. These horses were further immunized with lipopeptide containing the corresponding CTL epitope from the EIAV(PV) strain. Then, the three immunized horses and three non-immunized horses were challenged by intravenous inoculation with 300 TCID(50) EIAV(PV). All horses developed cell free viremia, fever and thrombocytopenia. However, there was a statistically lower fever and thrombocytopenia severity score in the immunized group. Shorter duration of plasma viral load in two of the three immunized horses likely explains the less severe clinical disease in this group. Results indicate that lipopeptide immunization had a protective effect against development of clinical disease following virus challenge.
Collapse
Affiliation(s)
- Sherritta L Ridgely
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | | | | |
Collapse
|
36
|
Howe L, Leroux C, Issel CJ, Montelaro RC. Equine infectious anemia virus envelope evolution in vivo during persistent infection progressively increases resistance to in vitro serum antibody neutralization as a dominant phenotype. J Virol 2002; 76:10588-97. [PMID: 12368301 PMCID: PMC136617 DOI: 10.1128/jvi.76.21.10588-10597.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine infectious anemia virus (EIAV) infection of horses is characterized by well-defined waves of viremia associated with the sequential evolution of distinct viral populations displaying extensive envelope gp90 variation; however, a correlation of in vivo envelope evolution with in vitro serum neutralization phenotype remains undefined. Therefore, the goal of the present study was to utilize a previously defined panel of natural variant EIAV envelope isolates from sequential febrile episodes to characterize the effects of envelope variation during persistent infection on viral neutralization phenotypes and to define the determinants of EIAV envelope neutralization specificity. To assess the neutralization phenotypes of the sequential EIAV envelope variants, we determined the sensitivity of five variant envelopes to neutralization by a longitudinal panel of immune serum from the source infected pony. The results indicated that the evolution of the EIAV envelope sequences observed during sequential febrile episodes produced an increasingly neutralization-resistant phenotype. To further define the envelope determinants of EIAV neutralization specificity, we examined the neutralization properties of a panel of chimeric envelope constructs derived from reciprocal envelope domain exchanges between selected neutralization-sensitive and neutralization-resistant envelope variants. These results indicated that the EIAV gp90 V3 and V4 domains individually conferred serum neutralization resistance while other envelope segments in addition to V3 and V4 were evidently required for conferring total serum neutralization sensitivity. These data clearly demonstrate for the first time the influence of sequential gp90 variation during persistent infection in increasing envelope neutralization resistance, identify the gp90 V3 and V4 domains as the principal determinants of antibody neutralization resistance, and indicate distinct complex cooperative envelope domain interactions in defining sensitivity to serum antibody neutralization.
Collapse
Affiliation(s)
- Laryssa Howe
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
37
|
Zhou W, Cook RF, Cook SJ, Hammond SA, Rushlow K, Ghabrial NN, Berger SL, Montelaro RC, Issel CJ. Multiple RNA splicing and the presence of cryptic RNA splice donor and acceptor sites may contribute to low expression levels and poor immunogenicity of potential DNA vaccines containing the env gene of equine infectious anemia virus (EIAV). Vet Microbiol 2002; 88:127-51. [PMID: 12135633 DOI: 10.1016/s0378-1135(02)00099-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The env gene is an excellent candidate for inclusion in any DNA-based vaccine approach against equine infectious anemia virus (EIAV). Unfortunately, this gene is subjected to mutational pressure in E. coli resulting in the introduction of stop codons at the 5' terminus unless it is molecularly cloned using very-low-copy-number plasmid vectors. To overcome this problem, a mammalian expression vector was constructed based on the low-copy-number pLG338-30 plasmid. This permitted the production of full-length EIAV env gene clones (plcnCMVenv) from which low-level expression of the viral surface unit glycoprotein (gp90) was detected following transfection into COS-1 cells. Although this suggested the nuclear export of complete env mRNA moieties at least two additional polypeptides of 29 and 20kDa (probably Rev) were produced by alternative splicing events as demonstrated by the fact that their synthesis was prevented by mutational inactivation of EIAV env splice donor 3 (SD3) site. The plcnCMVenv did not stimulate immune responses in mice or in horses, whereas an env construct containing an inactivated SD3 site (plcnCMVDeltaSD3) did induce weak humoral responses against gp90 in mice. This poor immunogenicty in vivo was probably not related to the inherent antigenicity of the proteins encoded by these constructs but to some fundamental properties of EIAV env gene expression. Attempts to modify one of these properties by mutational inactivation of known viral RNA splice sites resulted in activation of previously unidentified cryptic SD and slice acceptor sites.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Base Sequence
- Cloning, Molecular/methods
- Codon, Terminator
- Equine Infectious Anemia/immunology
- Equine Infectious Anemia/prevention & control
- Gene Expression Regulation, Viral
- Gene Products, env/genetics
- Genes, env
- Horses
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/immunology
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- RNA Splicing/genetics
- RNA, Viral/chemistry
- Transfection/veterinary
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- W Zhou
- Department of Veterinary Science, University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ridgely SL, McGuire TC. Lipopeptide stimulation of MHC class I-restricted memory cytotoxic T lymphocytes from equine infectious anemia virus-infected horses. Vaccine 2002; 20:1809-19. [PMID: 11906769 DOI: 10.1016/s0264-410x(01)00517-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The immunogenicity of equine infectious anemia virus (EIAV) Gag and Env equine leukocyte alloantigen (ELA)-A5.1, -A9, and -A1 restricted cytotoxic T lymphocyte (CTL) epitopes synthesized on multiple antigenic peptide (MAP) system coupled to tripalmitoyl-S-glycerylcysteine (P3C) was evaluated in vitro. P3C-MAP-peptide-stimulated peripheral blood mononuclear cells (PBMCs) from horses, chronically infected with EIAV, had memory CTL (CTLm) similar to that of PBMCs stimulated with either the minimal CTL epitopes, longer peptides containing the CTL epitopes, or EIAV. The stimulated CTL lysed EIAV-infected target cells and the percent specific lysis was dependent on the dose of P3C-MAP-peptide used to stimulate PBMCs in vitro and was peptide specific and ELA-A restricted. The results suggest that these P3C-MAP-peptides can be used as immunogens to stimulate primary immune responses in vivo.
Collapse
Affiliation(s)
- Sherritta L Ridgely
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
39
|
Fraser DG, Oaks JL, Brown WC, McGuire TC. Identification of broadly recognized, T helper 1 lymphocyte epitopes in an equine lentivirus. Immunology 2002; 105:295-305. [PMID: 11918691 PMCID: PMC1782660 DOI: 10.1046/j.0019-2805.2001.01370.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine infectious anaemia virus (EIAV) is a horse lentivirus causing lifelong, persistent infection. During acute infection, CD8(+) cytotoxic T lymphocytes (CTL) are probably involved in terminating plasma viraemia. However, only a few EIAV CTL epitopes, restricted to fewer horse major histocompatibility complex (MHC) class I alleles, are known. As interferon-gamma (IFN-gamma)-secreting CD4(+), T helper 1 (Th1) lymphocytes promote CTL activity and help maintain memory CTL, identifying broadly recognized EIAV Th1 epitopes would contribute significantly to vaccine strategies seeking to promote strong CTL responses among horses with varying class I haplotypes. To this end, peripheral blood mononuclear cells (PBMC) from 10 MHC disparate, EIAV-infected horses were tested in T-lymphocyte proliferation assays for recognition of peptides from the Gag p26 capsid region and a portion of Pol. Both regions are highly conserved among EIAV isolates, and this Pol region is 51-63% homologous to other lentiviral Pol proteins. Seven of 10 horses recognized peptide Gag 221-245, and peptides Gag 242-261 and Pol 323-344 were recognized by five and four horses, respectively. Furthermore, the Gag peptides were recognized by two additional horses after resolving their initial plasma viraemia, indicating that these two peptides can be immunodominant early in infection. Gag peptide-responsive PBMC produced only IFN-gamma, indicating a Th1 response, while Pol 323-344-responsive PBMC produced IFN-gamma both with and without interleukin-4. PBMC from uninfected horses failed to either proliferate or secrete cytokines in response to peptide stimulation. Finally, CD4(+) T lymphocytes were required for proliferation responses, as shown by assays using CD4- versus CD8-depleted PBMC.
Collapse
Affiliation(s)
- Darrilyn G Fraser
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA.
| | | | | | | |
Collapse
|
40
|
Mealey RH, Fraser DG, Oaks JL, Cantor GH, McGuire TC. Immune reconstitution prevents continuous equine infectious anemia virus replication in an Arabian foal with severe combined immunodeficiency: lessons for control of lentiviruses. Clin Immunol 2001; 101:237-47. [PMID: 11683583 PMCID: PMC3342689 DOI: 10.1006/clim.2001.5109] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute infection with equine infectious anemia virus (EIAV), a lentivirus of horses, results in a persistent high-level viremia in Arabian foals affected with severe combined immunodeficiency (SCID). This observation argues against the idea that the transient nature of acute lentiviral viremia is solely a function of viral population dynamics. To extend these studies, EIAV-specific immune reconstitution was attempted prior to EIAV challenge in two SCID foals, using adoptively transferred virus-stimulated lymphocytes derived from persistently EIAV-infected half sibling donors. Following transfer, lymphocyte engraftment occurred in one foal, and EIAV-specific cytotoxic T lymphocytes as well as neutralizing antibody activity developed. Following a brief period of plasma viremia in this foal, EIAV replication was controlled and plasma virus could not be detected by RT-PCR or culture. These results provide further direct evidence that a specific immune response is required for termination of plasma viremia in acute lentiviral infections.
Collapse
Affiliation(s)
- R H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
41
|
Hötzel I, Cheevers WP. Host range of small-ruminant lentivirus cytopathic variants determined with a selectable caprine arthritis- encephalitis virus pseudotype system. J Virol 2001; 75:7384-91. [PMID: 11462010 PMCID: PMC114973 DOI: 10.1128/jvi.75.16.7384-7391.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small-ruminant lentiviruses ovine maedi-visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV) cause encephalitis, progressive pneumonia, arthritis, and mastitis in sheep and goats. Icelandic MVV strains, which are lytic in tissue culture, have a wide species distribution of functional receptors, which includes human cells. In contrast, functional receptors for the nonlytic CAEV CO are absent from human cells. To determine if the wide species distribution of functional receptors is a common property of MVV strains or related to cytopathic phenotype, we tested the infectivity of viruses pseudotyped with the envelope glycoproteins of MVV K1514, CAEV CO, and lytic and nonlytic North American MVV strains to cells of different species. Replication-defective CAEV proviral constructs lacking the env, tat, and vif genes and carrying the neomycin phosphotransferase gene in the vif-tat region were developed for the infectivity assays. Cotransfection of human 293T cells with these proviral constructs and plasmids expressing CAEV, MVV, or vesicular stomatitis virus envelope glycoproteins produced infectious pseudotyped virus which induced resistance of infected cells to G418. Using these pseudotypes, we confirmed the wide species distribution of Icelandic MVV receptors and the narrow host range of CAEV. However, functional receptors for the two North American MVV strains tested, unlike the Icelandic MVV and similar to CAEV, were limited to cells of ruminant species, regardless of cytopathic phenotype. The results indicate a differential receptor recognition by MVV strains which is unrelated to cytopathic phenotype.
Collapse
Affiliation(s)
- I Hötzel
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA.
| | | |
Collapse
|
42
|
McGuire TC, Leib SR, Lonning SM, Zhang W, Byrne KM, Mealey RH. Equine infectious anaemia virus proteins with epitopes most frequently recognized by cytotoxic T lymphocytes from infected horses. J Gen Virol 2000; 81:2735-2739. [PMID: 11038386 DOI: 10.1099/0022-1317-81-11-2735] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficacious lentiviral vaccines designed to induce cytotoxic T lymphocytes (CTL) in outbred populations with a diverse repertoire of MHC class I molecules should contain or express multiple viral proteins. To determine the equine infectious anaemia virus (EIAV) proteins with epitopes most frequently recognized by CTL from seven horses infected for 0.5 to 7 years, retroviral vector-transduced target cells expressing viral proteins were used in CTL assays. Gag p15 was recognized by CTL from 100% of these infected horses. p26 was recognized by CTL from 86%, SU and the middle third of Pol protein were each recognized by 43%, TM by 29%, and S2 by 14%. Based on these results, it is likely that a construct expressing the 359 amino acids constituting p15 and p26 would contain epitopes capable of stimulating CTL in most horses.
Collapse
Affiliation(s)
- Travis C McGuire
- Department of Veterinary Microbiology and Pathology1 and Department of Animal Sciences2, Washington State University, Pullman, WA 99164-7040, USA
| | - Steven R Leib
- Department of Veterinary Microbiology and Pathology1 and Department of Animal Sciences2, Washington State University, Pullman, WA 99164-7040, USA
| | - Scott M Lonning
- Department of Veterinary Microbiology and Pathology1 and Department of Animal Sciences2, Washington State University, Pullman, WA 99164-7040, USA
| | - Wei Zhang
- Department of Veterinary Microbiology and Pathology1 and Department of Animal Sciences2, Washington State University, Pullman, WA 99164-7040, USA
| | - Katherine M Byrne
- Department of Veterinary Microbiology and Pathology1 and Department of Animal Sciences2, Washington State University, Pullman, WA 99164-7040, USA
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology1 and Department of Animal Sciences2, Washington State University, Pullman, WA 99164-7040, USA
| |
Collapse
|
43
|
Abstract
Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.
Collapse
Affiliation(s)
- W Maury
- Department of Microbiology, University of South Dakota School of Medicine, Vermillion 57069, USA.
| |
Collapse
|
44
|
Hammond SA, Li F, McKeon BM, Cook SJ, Issel CJ, Montelaro RC. Immune responses and viral replication in long-term inapparent carrier ponies inoculated with equine infectious anemia virus. J Virol 2000; 74:5968-81. [PMID: 10846078 PMCID: PMC112093 DOI: 10.1128/jvi.74.13.5968-5981.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Persistent infection of equids by equine infectious anemia virus (EIAV) is typically characterized by a progression during the first year postinfection from chronic disease with recurring disease cycles to a long-term asymptomatic infection that is maintained indefinitely. The goal of the current study was to perform a comprehensive longitudinal analysis of the course of virus infection and development of host immunity in experimentally infected horses as they progressed from chronic disease to long-term inapparent carriage. We previously described the evolution of EIAV genomic quasispecies (C. Leroux, C. J. Issel, and R. C. Montelaro, J. Virol. 71:9627-9639, 1997) and host immune responses (S. A. Hammond, S. J. Cook, D. L. Lichtenstein, C. J. Issel, and R. C. Montelaro, J. Virol. 71:3840-3852, 1997) in four experimentally infected ponies during sequential disease episodes associated with chronic disease during the first 10 months postinfection. In the current study, we extended the studies of these experimentally infected ponies to 3 years postinfection to characterize the levels of virus replication and development of host immune responses associated with the progression from chronic disease to long-term inapparent infection. The results of these studies revealed over a 10(3)-fold difference in the steady-state levels of plasma viral RNA detected during long-term inapparent infection that correlated with the severity of chronic disease, indicating different levels of control of virus replication during long-term inapparent infections. Detailed analyses of antibody and cellular immune responses in all four ponies over the 3-year course of infection revealed a similar evolution during the first year postinfection of robust humoral and cellular immunity that then remained relatively constant during long-term inapparent infection. These observations indicate that immune parameters that have previously been correlated with EIAV vaccine protection fail to provide reliable immune correlates of control of virus replication or clinical outcome in experimental infections. Thus, these data emphasize the differences between immunity to virus exposure and immune control of an established viral infection and further emphasize the need to develop and evaluate novel immunoassays to define reliable immune correlates to vaccine and infection immunity, respectively.
Collapse
Affiliation(s)
- S A Hammond
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hammond SA, Raabe ML, Issel CJ, Montelaro RC. Evaluation of antibody parameters as potential correlates of protection or enhancement by experimental vaccines to equine infectious anemia virus. Virology 1999; 262:416-30. [PMID: 10502520 DOI: 10.1006/viro.1999.9939] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated in trials of a variety of experimental vaccines to equine infectious anemia virus (EIAV) a remarkable spectrum of efficacy ranging from sterilizing protection to severe enhancement of virus replication and disease, depending on the immunization strategy used. This range of vaccine efficacy observed in vivo offers a unique opportunity for evaluating potential in vitro immune correlates of protection and enhancement. We describe here a comprehensive analysis and comparison of EIAV envelope-specific antibody responses elicited by attenuated, inactivated whole virus and envelope subunit vaccines to EIAV, and we evaluate the potential of in vitro antibody assays as correlates of protection or enhancement. Thus vaccine-induced serum antibody responses in experimentally immunized ponies at the day of challenge were assayed using a panel of quantitative, qualitative, and functional in vitro assays, including end-point titer of total and isotypic IgG, serum antibody avidity, conformational dependence, and serum neutralization. The results of these studies revealed substantial differences in the EIAV envelope-specific antibody responses elicited by the different vaccines, indicating the importance of envelope glycoprotein antigen presentation in determining the specificity of vaccine immunity. Although no single in vitro parameter provided a statistically significant correlate of protection or enhancement, the use of multiple parameters (titer, avidity index, and conformation ratio) could be used as a reliable correlate of vaccine protection and that the level of vaccine protection was closely associated with the development of mature antibody responses. These studies demonstrate the importance of using multiple antibody assays to evaluate lentiviral vaccine responses and emphasize the need for the development of new in vitro antibody assays that may provide more insight into vaccine protection and enhancement.
Collapse
Affiliation(s)
- S A Hammond
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | | | | | | |
Collapse
|
46
|
Zhang W, Auyong DB, Oaks JL, McGuire TC. Natural variation of equine infectious anemia virus Gag protein cytotoxic T lymphocyte epitopes. Virology 1999; 261:242-52. [PMID: 10497109 DOI: 10.1006/viro.1999.9862] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two defined cytotoxic T lymphocyte (CTL) epitopes from equine infectious anemia virus (EIAV)-infected horses, equine leukocyte alloantigen (ELA)-A5.1-restricted epitope 18a, and ELA-A9-restricted epitope 28b-1 were evaluated for conservation among three wild-type EIAV strains. Epitope 18a variation occurred in all three wild-type EIAV strains, while epitope 28b-1 varied in one strain. Further, 12% amino acid changes occurred in the Gag proteins of a recently isolated wild-type strain, documenting a much greater Gag protein variation than previously reported. Evaluation of epitope 18a among two virus isolates from sequential disease episodes in a single horse, H513 (ELA-A5.1/A8), demonstrated that no variation that affected CTL recognition occurred. H513 PBMC had CTLm to epitope 18a before the occurrence of disease episodes caused by viruses expressing epitope 18a; however, the frequencies were low (5-15/10(6) PBMC). Later in infection there was an absence of disease episodes associated with an increase in CTLm frequency to EIAV(WSU5)-infected targets, but not epitope 18a-pulsed targets. Therefore, if CTLm to EIAV epitopes were involved in maintaining the carrier state in H513, they recognized epitopes other than 18a.
Collapse
Affiliation(s)
- W Zhang
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA
| | | | | | | |
Collapse
|
47
|
Lonning SM, Zhang W, McGuire TC. Gag protein epitopes recognized by CD4(+) T-helper lymphocytes from equine infectious anemia virus-infected carrier horses. J Virol 1999; 73:4257-65. [PMID: 10196322 PMCID: PMC104205 DOI: 10.1128/jvi.73.5.4257-4265.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen-specific T-helper (Th) lymphocytes are critical for the development of antiviral humoral responses and the expansion of cytotoxic T lymphocytes (CTL). Identification of relevant Th lymphocyte epitopes remains an important step in the development of an efficacious subunit peptide vaccine against equine infectious anemia virus (EIAV), a naturally occurring lentivirus of horses. This study describes Th lymphocyte reactivity in EIAV carrier horses to two proteins, p26 and p15, encoded by the relatively conserved EIAV gag gene. Using partially overlapping peptides, multideterminant and possibly promiscuous epitopes were identified within p26. One peptide was identified which reacted with peripheral blood mononuclear cells (PBMC) from all five EIAV-infected horses, and three other peptides were identified which reacted with PBMC from four of five EIAV-infected horses. Four additional peptides containing both CTL and Th lymphocyte epitopes were also identified. Multiple epitopes were recognized in a region corresponding to the major homology region of the human immunodeficiency virus, a region with significant sequence similarity to other lentiviruses including simian immunodeficiency virus, puma lentivirus, feline immunodeficiency virus, Jembrana disease virus, visna virus, and caprine arthritis encephalitis virus. PBMC reactivity to p15 peptides from EIAV carrier horses also occurred. Multiple p15 peptides were shown to be reactive, but not all infected horses had Th lymphocytes recognizing p15 epitopes. The identification of peptides reactive with PBMC from outbred horses, some of which encoded both CTL and Th lymphocyte epitopes, should contribute to the design of synthetic peptide or recombinant vector vaccines for EIAV.
Collapse
Affiliation(s)
- S M Lonning
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
48
|
Lonning SM, Zhang W, Leib SR, McGuire TC. Detection and induction of equine infectious anemia virus-specific cytotoxic T-lymphocyte responses by use of recombinant retroviral vectors. J Virol 1999; 73:2762-9. [PMID: 10074123 PMCID: PMC104033 DOI: 10.1128/jvi.73.4.2762-2769.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) appear to be critical in resolving or reducing the severity of lentivirus infections. Retroviral vectors expressing the Gag/Pr or SU protein of the lentivirus equine infectious anemia virus (EIAV) were constructed and used to evaluate EIAV-specific CTL responses in horses. Three promoters, cytomegalovirus, simian virus SV40, and Moloney murine sarcoma virus (MoMSV) long terminal repeat (LTR), were used, and there was considerable variation in their ability to direct expression of Gag/Pr and SU. Vectors expressing EIAV proteins under the direction of MoMSV LTR and using the gibbon ape leukemia virus (GALV) Env for internalization were efficient at transducing equine kidney (EK) target cells and were effective targets for EIAV-specific CTL lysis. CTL from EIAV-infected horses caused lysis of retroviral vector-transduced EK cells expressing either Gag/Pr or SU in an ELA-A-restricted manner. In contrast, lysis of recombinant vaccinia virus-infected EK cells expressing Gag/Pr and SU/TM was often non-LA-A restricted. Five horses were immunized by direct intramuscular injection with a mixture of retroviral vectors expressing Gag/Pr or SU, and one responded with EIAV-specific CTL. This result indicates that retroviral vector stimulation of CTL in horses needs to be optimized, perhaps by inclusion of appropriate cytokine genes in the constructs. However, the studies demonstrated that retroviral vector-transduced target cells were very effective for in vitro dissection of EIAV-specific CTL responses.
Collapse
Affiliation(s)
- S M Lonning
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
49
|
Murakami K, Sentsui H, Shibahara T, Yokoyama T. Reduction of CD4+ and CD8+ T lymphocytes during febrile periods in horses experimentally infected with equine infectious anemia virus. Vet Immunol Immunopathol 1999; 67:131-40. [PMID: 10077419 DOI: 10.1016/s0165-2427(98)00225-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three horses were experimentally infected with equine infectious anemia virus (EIAV). All horses were febrile after inoculation with EIAV and then developed chronic symptoms with intermittent fever. The febrile period was characterized by a rise in body temperature with reduced PBL and erythrocyte counts. Flow cytometric analysis showed that the reduced number of lymphocytes was due to significant decreases in CD4+ and CD8+ T cells in the absence of any change in B cell number. At the end of the febrile period the body temperature began to recover and numbers of CD4+ and CD8+ T cells showed a tendency to increase. For CD8+ T cells, this increase continued for several days after the febrile period. B cell number also significantly increased after the febrile period in two out of three horses. The decrease of CD8+ T cells was greater than that of CD4+ T cells. Although the PBL numbers and the CD4/CD8 ratio returned to the level of the preinoculation period, erythrocyte numbers decreased as the body temperature normalized after each intermittent fever. These results suggest that the recurring cycle of fever accompanied with viremia is caused by a reciprocal relationship between EIAV replication and the host immune response. Furthermore, we demonstrate that the lymphocytic response mitigates fever and viremia in EIAV infection despite the absence of virus neutralizing antibody.
Collapse
Affiliation(s)
- K Murakami
- Laboratory of Viral Ecology, National Institute of Animal Health, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
50
|
Zhang W, Lonning SM, McGuire TC. Gag protein epitopes recognized by ELA-A-restricted cytotoxic T lymphocytes from horses with long-term equine infectious anemia virus infection. J Virol 1998; 72:9612-20. [PMID: 9811694 PMCID: PMC110470 DOI: 10.1128/jvi.72.12.9612-9620.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most equine infectious anemia virus (EIAV)-infected horses have acute clinical disease, but they eventually control the disease and become lifelong carriers. Cytotoxic T lymphocytes (CTL) are considered an important immune component in the control of infections with lentiviruses including EIAV, but definitive evidence for CTL in the control of disease in carrier horses is lacking. By using retroviral vector-transduced target cells expressing different Gag proteins and overlapping synthetic peptides of 16 to 25 amino acids, peptides containing at least 12 Gag CTL epitopes recognized by virus-stimulated PBMC from six long-term EIAV-infected horses were identified. All identified peptides were located within Gag matrix (p15) and capsid (p26) proteins, as no killing of target cells expressing p11 and p9 occurred. Each of the six horses had CTL recognizing at least one Gag epitope, while CTL from one horse recognized at least eight different Gag epitopes. None of the identified peptides were recognized by CTL from all six horses. Two nonamer peptide epitopes were defined from Gag p26; one (18a) was likely restricted by class I equine leukocyte alloantigen A5.1 (ELA-A5.1) molecules, and the other (28b-1) was likely restricted by ELA-A9 molecules. Sensitization of equine kidney target cells for CTLm killing required 10 nM peptide 18a and 1 nM 28b-1. The results demonstrated that diverse CTL responses against Gag epitopes were generated in long-term EIAV-infected horses and indicated that ELA-A class I molecules were responsible for the diversity of CTL epitopes recognized. This information indicates that multiple epitopes or whole proteins will be needed to induce CTL in horses with different ELA-A alleles in order to evaluate their role in controlling EIAV.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Base Sequence
- Cell Line
- DNA Primers/genetics
- Epitope Mapping
- Epitopes, T-Lymphocyte/genetics
- Equine Infectious Anemia/immunology
- Equine Infectious Anemia/virology
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genes, Viral
- Genetic Vectors
- Histocompatibility Antigens Class I
- Horses
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/immunology
- Infectious Anemia Virus, Equine/pathogenicity
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Retroviridae/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Transduction, Genetic
Collapse
Affiliation(s)
- W Zhang
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA
| | | | | |
Collapse
|