1
|
Abdul-Zahra HH, Khudhair YI, Al-Hraishawi HR. Molecular Analysis and Bioinformatics Assessment of Full-Length L1 Gene of Bovine Papillomavirus Type-1 as a Potential DNA Vaccine Study. Vet Med Int 2025; 2025:6785087. [PMID: 40255612 PMCID: PMC12006685 DOI: 10.1155/vmi/6785087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/11/2025] [Indexed: 04/22/2025] Open
Abstract
Background: Papillomaviruses (PVs) infect animals and humans and are linked to 27%-30% of cancers. The L1 protein is a cornerstone in bovine PVs (BPVs), being the main components of the viral capsid and playing pivotal roles in infectivity and antigenicity. Objective: The current study aims to characterize the genetic variation in the L1 gene of the BPV, explore in silico the protein structure, predict epitopes, and evaluate the impact of mutation on the epitope conservancy. Methods: Fifty tumor samples were collected from cattle with papilloma lesions from Babylon, Wasit, and Al-Qadisiyah provinces, Iraq. Samples were submitted to PCR to amplify the complete L1 gene. Phylogeny was performed to assess the L1 gene. Various bioinformatics tools were utilized to analyze physicochemical properties, secondary structure of the deduced protein, and predict immunodominant epitopes for B and T cells. Results: BPV DNA was detected in 42 (84%) samples. Sequence analysis of 10 samples revealed that BPV-1 was the predominant type circulating in study regions. Phylogeny demonstrated that analyzed strains were aligned with a distance value of 1%-15% to strains of delta PVs. Amino acid characterization indicated two amino acid mutations compared with reference strain (X02346.1) including SER31/ASN and Ala 55/ASP. The 3D model revealed L1 that formed from hexameric subunits, each subunit with six loops. ALA 55/ASP substitutions are located in the Loop1. The predicted B- and T-cell epitopes showed that L1 protein has highly potent epitopes and can be a promising target for nucleic acid vaccine design to elicit an anti-BPV humeral and cellular immune response. Conclusions: The current investigation has provided crucial insights into BPV-1 type and diversity in the middle provinces of Iraq. These predominant strains have been identified and registered at NCBI for the first time. The amino acid mutations in the L1 protein have been highlighted. The conserved T- and B-cell epitopes that can detect BPV-1 type have been stablished. Finally, this project is the initial phase of creating a DNA-based vaccination for preventative and treatment purposes against BPV-related illnesses.
Collapse
Affiliation(s)
| | - Yahia I. Khudhair
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniya, Al-Qadisiyah, Iraq
| | | |
Collapse
|
2
|
Jiang P, Majerciak V, Hu J, Balogh K, Meyer TJ, Cam M, Shearer D, Lanza M, Christensen ND, Zheng ZM. The full transcription map of cottontail rabbit papillomavirus in tumor tissues. PLoS Pathog 2024; 20:e1012649. [PMID: 39453974 PMCID: PMC11540226 DOI: 10.1371/journal.ppat.1012649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 10/08/2024] [Indexed: 10/27/2024] Open
Abstract
Cottontail rabbit papillomavirus (CRPV), the first papillomavirus associated with tumor development, has been used as a powerful model to study papillomavirus pathogenesis for more than 90 years. However, lack of a comprehensive analysis of the CRPV transcriptome has impeded the understanding of CRPV biology and molecular pathogenesis. Here, we report the construction of a complete CRPV transcription map from Hershey CRPV-induced skin tumor tissues. By using RNA-seq in combination with long-reads PacBio Iso-seq, 5' and 3' RACE, primer-walking RT-PCR, Northern blot, and RNA in situ hybridization, we demonstrated that the CRPV genome transcribes its early and late RNA transcripts unidirectionally from at least five distinct major promoters (P) and polyadenylates its transcripts at two major polyadenylation (pA) sites. The viral early transcripts are primarily transcribed from three "early" promoters, P90, P156, and P907 and polyadenylated at nt 4368 by using an early polyadenylation signal (PAS) at nt 4351. Like other low-risk human papillomaviruses and animal papillomaviruses, CRPV E6 and E7 transcripts are transcribed from three separate early promoters. Transcripts from two "late" promoters, P7525, and P1225, utilize either an early PAS for E1^E4 or a late PAS at 7399 for L2 and L1 RNA polyadenylation at nt 7415 to express capsid L2 and L1 proteins respectively. By using the mapped four 5' splice sites and three 3' splice sites, CRPV RNA transcripts undergo extensive alternative splicing to produce more than 33 viral RNA isoforms for production of at least 12 viral proteins, some of which without codon optimization are expressible in rabbit RK13 and human HEK293T cells. The constructed full CRPV transcription map in this study for the first time will enhance our understanding of the structures and expressions of CRPV genes and their contribution to molecular pathogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Pengfei Jiang
- Tumor Virus RNA Biology Section, The HIV Dynamics and Replication Program, NCI, NIH, Frederick, Maryland, United States of America
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, The HIV Dynamics and Replication Program, NCI, NIH, Frederick, Maryland, United States of America
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Karla Balogh
- The Jake Gittlen Laboratories for Cancer Research, Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, NCI, NIH, Bethesda, Maryland, United States of America
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, NCI, NIH, Bethesda, Maryland, United States of America
| | - Debra Shearer
- The Jake Gittlen Laboratories for Cancer Research, Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Matthew Lanza
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, The HIV Dynamics and Replication Program, NCI, NIH, Frederick, Maryland, United States of America
| |
Collapse
|
3
|
Sanders C, Matthews RL, Esfahani SHZ, Khan N, Patel NL, Kalen JD, Kirnbauer R, Roden RB, Difilippantonio S, Pinto LA, Shoemaker RH, Marshall JD. Cross-neutralizing protection of vaginal and oral mucosa from HPV challenge by vaccination in a mouse model. Vaccine 2023; 41:4480-4487. [PMID: 37270364 PMCID: PMC10527091 DOI: 10.1016/j.vaccine.2023.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
The species and tissue specificities of HPV (human papillomavirus) for human infection and disease complicates the process of prophylactic vaccine development in animal models. HPV pseudoviruses (PsV) that carry only a reporter plasmid have been utilized in vivo to demonstrate cell internalization in mouse mucosal epithelium. The current study sought to expand the application of this HPV PsV challenge model with both oral and vaginal inoculation and to demonstrate its utility for testing vaccine-mediated dual-site immune protection against several HPV PsV types. We observed that passive transfer of sera from mice vaccinated with the novel experimental HPV prophylactic vaccine RG1-VLPs (virus-like particles) conferred HPV16-neutralizing as well as cross-neutralizing Abs against HPV39 in naïve recipient mice. Moreover, active vaccination with RG1-VLPs also conferred protection to challenge with either HPV16 or HPV39 PsVs at both vaginal and oral sites of mucosal inoculation. These data support the use of the HPV PsV challenge model as suitable for testing against diverse HPV types at two sites of challenge (vaginal vault and oral cavity) associated with the origin of the most common HPV-associated cancers, cervical cancer and oropharyngeal cancer.
Collapse
Affiliation(s)
- Chelsea Sanders
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rebecca L Matthews
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Nazneen Khan
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nimit L Patel
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph D Kalen
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Department of Dermatology, Medical University of Vienna, Austria
| | - Richard B Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ligia A Pinto
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Bethesda, MD, USA
| | - Jason D Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
4
|
Hainisch EK, Jindra C, Kirnbauer R, Brandt S. Papillomavirus-like Particles in Equine Medicine. Viruses 2023; 15:v15020345. [PMID: 36851559 PMCID: PMC9966523 DOI: 10.3390/v15020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Papillomaviruses (PVs) are a family of small DNA tumor viruses that can induce benign lesions or cancer in vertebrates. The observation that animal PV capsid-proteins spontaneously self-assemble to empty, highly immunogenic virus-like particles (VLPs) has led to the establishment of vaccines that efficiently protect humans from specific PV infections and associated diseases. We provide an overview of PV-induced tumors in horses and other equids, discuss possible routes of PV transmission in equid species, and present recent developments aiming at introducing the PV VLP-based vaccine technology into equine medicine.
Collapse
Affiliation(s)
- Edmund K. Hainisch
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
- Division of Molecular Oncology and Haematology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Department of Dermatology, Medical University, 1090 Vienna, Austria
| | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
- Correspondence:
| |
Collapse
|
5
|
Lim J, Frecot DI, Stubenrauch F, Iftner T, Simon C. Cottontail rabbit papillomavirus E6 proteins: Interaction with MAML1 and modulation of the Notch signaling pathway. Virology 2022; 576:52-60. [PMID: 36155393 DOI: 10.1016/j.virol.2022.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022]
Abstract
Animal models are necessary to study how cutaneous human papillomaviruses (HPVs) are associated with carcinogenesis. The cottontail rabbit papillomavirus (CRPV) induces papilloma in the -cutaneous skin of rabbits and serves as an established animal model for HPVlinked carcinogenesis where viral E6 proteins play crucial roles. Several studies have reported the dysregulation of the Notch signaling pathway by cutaneous beta HPV, bovine PV and mouse PV E6 via their association with Mastermind-like 1 protein (MAML1), thus interfering with cell proliferation and differentiation. However, the CRPV E6 gene encodes an elongated E6 protein (long E6, LE6) and an N-terminally truncated product (short E6, SE6) making it unique from other E6 proteins. Here, we describe the interaction between both CRPV E6 proteins and MAML1 and their ability to downregulate the Notch signaling pathway which could be a way CRPV infection induces carcinogenesis similar to beta HPV.
Collapse
Affiliation(s)
- JiaWen Lim
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Desiree Isabella Frecot
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Frank Stubenrauch
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| | - Claudia Simon
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
6
|
Modeling HPV-Associated Disease and Cancer Using the Cottontail Rabbit Papillomavirus. Viruses 2022; 14:v14091964. [PMID: 36146770 PMCID: PMC9503101 DOI: 10.3390/v14091964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023] Open
Abstract
Approximately 5% of all human cancers are attributable to human papillomavirus (HPV) infections. HPV-associated diseases and cancers remain a substantial public health and economic burden worldwide despite the availability of prophylactic HPV vaccines. Current diagnosis and treatments for HPV-associated diseases and cancers are predominantly based on cell/tissue morphological examination and/or testing for the presence of high-risk HPV types. There is a lack of robust targets/markers to improve the accuracy of diagnosis and treatments. Several naturally occurring animal papillomavirus models have been established as surrogates to study HPV pathogenesis. Among them, the Cottontail rabbit papillomavirus (CRPV) model has become known as the gold standard. This model has played a pivotal role in the successful development of vaccines now available to prevent HPV infections. Over the past eighty years, the CRPV model has been widely applied to study HPV carcinogenesis. Taking advantage of a large panel of functional mutant CRPV genomes with distinct, reproducible, and predictable phenotypes, we have gained a deeper understanding of viral–host interaction during tumor progression. In recent years, the application of genome-wide RNA-seq analysis to the CRPV model has allowed us to learn and validate changes that parallel those reported in HPV-associated cancers. In addition, we have established a selection of gene-modified rabbit lines to facilitate mechanistic studies and the development of novel therapeutic strategies. In the current review, we summarize some significant findings that have advanced our understanding of HPV pathogenesis and highlight the implication of the development of novel gene-modified rabbits to future mechanistic studies.
Collapse
|
7
|
Hyman P, Trubl G, Abedon ST. Virus-Like Particle: Evolving Meanings in Different Disciplines. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:11-15. [PMID: 36148434 PMCID: PMC9041479 DOI: 10.1089/phage.2020.0026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Virus-like particle (VLP) is a term that has been in use for about 80 years. Usually, VLP has meant a particle that is like a virus, generally by appearance, but without either proven or actual virus functionality. Initially VLP referred to particles seen in electron microscope images of tissues. More recently, VLP has come to mean other things to other researchers. A key divergence has been use of VLP in association with vaccine and biotechnology applications versus use of VLP in enumeration of viruses in environmental samples. To these viral ecologists, a VLP is a particle that is virus sized, has nucleic acid, and could be a functional virus. But to vaccine developers and biotechnology researchers a VLP instead is a viral structure that intentionally lacks a viral genome. In this study, we look at the history of use of VLP, following changes in meaning as the technology to study VLPs changed.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology and Toxicology, Ashland University, Ashland, Ohio, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
8
|
Stanley M, Joura E, Yen GP, Kothari S, Luxembourg A, Saah A, Walia A, Perez G, Khoury H, Badgley D, Brown DR. Systematic literature review of neutralizing antibody immune responses to non-vaccine targeted high-risk HPV types induced by the bivalent and the quadrivalent vaccines. Vaccine 2021; 39:2214-2223. [PMID: 33658126 DOI: 10.1016/j.vaccine.2021.01.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Studies on the cross-protective effect of HPV bivalent and quadrivalent vaccines demonstrated inconsistent findings against additional HPV types covered by the nonavalent vaccine. The objective of this study was to conduct a systematic literature review to assess the consistency and durability of the cross-protective neutralizing antibody immune responses of the currently licensed bivalent and quadrivalent vaccines to non-vaccine HPV types targeted by the nonavalent vaccine (HPV 6, 11, 31, 33, 45, 52, and 58). METHODS PubMed and EMBASE databases were searched from 2008 to 2019 to identify studies reporting antibody/immune response after vaccination with either the bivalent, quadrivalent, or nonavalent vaccine. Key outcomes were seroconversion, seropositivity or geometric mean titers against HPV types 6, 11, 31, 33, 45, 52, and 58. RESULTS Eighteen publications met inclusion criteria, reporting on 14 interventional and five observational studies. Across all studies, immune responses to non-vaccine high-risk HPV types after bivalent vaccination were higher than baseline or quadrivalent vaccine. Nonavalent vaccine elicited near total seroconversion to HPV types 31, 33, 45, 52, and 58, with seropositivity remaining near 100% up to 24 months post-dose 1. In contrast, bivalent and quadrivalent vaccination resulted in lower seroconversion levels for non-vaccine types, which waned over time. CONCLUSIONS The cross-protection antibody/immune response among participants having received all three doses of bivalent or quadrivalent vaccine is not comparable to the specific response elicited by HPV vaccine types. Even in cases where a statistically significant cross-reactive immunological response is reported, long-term data on the duration of the response beyond two years are very limited. Further, the lack of a standard for assays limits comparability of results between studies.
Collapse
Affiliation(s)
| | - Elmar Joura
- Gynecologic Oncology, Medical University Vienna, Vienna, Austria
| | - Glorian P Yen
- Center for Observational and Real-World Evidence, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Smita Kothari
- Center for Observational and Real-World Evidence, Merck & Co., Inc., Kenilworth, NJ, USA.
| | - Alain Luxembourg
- Late Stage Development Vaccines, Merck & Co., Inc., Kenilworth, NJ USA
| | - Alfred Saah
- Global Center for Scientific Affairs, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Anuj Walia
- Global Vaccines Medical Affairs, Merck & Co., Inc., Kenilworth, NJ USA
| | | | - Hanane Khoury
- Certara Evidence and Access, Montreal, Quebec, Canada
| | | | - Darron R Brown
- Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
9
|
Xu J, Zhang J, Yang D, Song J, Pallas B, Zhang C, Hu J, Peng X, Christensen ND, Han R, Chen YE. Gene Editing in Rabbits: Unique Opportunities for Translational Biomedical Research. Front Genet 2021; 12:642444. [PMID: 33584832 PMCID: PMC7876448 DOI: 10.3389/fgene.2021.642444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The rabbit is a classic animal model for biomedical research, but the production of gene targeted transgenic rabbits had been extremely challenging until the recent advent of gene editing tools. More than fifty gene knockout or knock-in rabbit models have been reported in the past decade. Gene edited (GE) rabbit models, compared to their counterpart mouse models, may offer unique opportunities in translational biomedical research attributed primarily to their relatively large size and long lifespan. More importantly, GE rabbit models have been found to mimic several disease pathologies better than their mouse counterparts particularly in fields focused on genetically inherited diseases, cardiovascular diseases, ocular diseases, and others. In this review we present selected examples of research areas where GE rabbit models are expected to make immediate contributions to the understanding of the pathophysiology of human disease, and support the development of novel therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chen Zhang
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jiafen Hu
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States
| | - Xuwen Peng
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA, United States
| | - Neil D Christensen
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, United States
| | - Renzhi Han
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Franconi R, Massa S, Paolini F, Vici P, Venuti A. Plant-Derived Natural Compounds in Genetic Vaccination and Therapy for HPV-Associated Cancers. Cancers (Basel) 2020; 12:cancers12113101. [PMID: 33114220 PMCID: PMC7690868 DOI: 10.3390/cancers12113101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary DNA vaccination represents a useful approach for human papillomavirus (HPV) cancer therapy. The therapeutic potential of plant-based natural compounds for control of HPV- associated cancers has been also widely explored. Genetic vaccines for HPV-associated tumors that include plant protein-encoding gene sequences, used alone or in combinations with plant metabolites, are being investigated but are still in their infancy. Main focus of this paper is to provide an overview of the current state of novel therapeutic strategies employing genetic vaccines along with plant-derived compounds and genes. We highlight the importance of multimodality treatment regimen such as combining immunotherapy with plant-derived agents. Abstract Antigen-specific immunotherapy and, in particular, DNA vaccination provides an established approach for tackling human papillomavirus (HPV) cancers at different stages. DNA vaccines are stable and have a cost-effective production. Their intrinsic low immunogenicity has been improved by several strategies with some success, including fusion of HPV antigens with plant gene sequences. Another approach for the control of HPV cancers is the use of natural immunomodulatory agents like those derived from plants, that are able to interfere in carcinogenesis by modulating many different cellular pathways and, in some instances, to reduce chemo- and radiotherapy resistance of tumors. Indeed, plant-derived compounds represent, in many cases, an abundantly available, cost-effective source of molecules that can be either harvested directly in nature or obtained from plant cell cultures. In this review, an overview of the most relevant data reported in literature on the use of plant natural compounds and genetic vaccines that include plant-derived sequences against HPV tumors is provided. The purpose is also to highlight the still under-explored potential of multimodal treatments implying DNA vaccination along with plant-derived agents.
Collapse
Affiliation(s)
- Rosella Franconi
- Division of Health Protection Technology, Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Silvia Massa
- Division of Biotechnology and Agroindustry, Department for Sustainability, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Francesca Paolini
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Patrizia Vici
- Division of Medical Oncology B, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Aldo Venuti
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
11
|
Orf Virus-Based Therapeutic Vaccine for Treatment of Papillomavirus-Induced Tumors. J Virol 2020; 94:JVI.00398-20. [PMID: 32404527 DOI: 10.1128/jvi.00398-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Orf virus (ORFV) represents a suitable vector for the generation of efficient, prophylactic antiviral vaccines against different pathogens. The present study investigated for the first time the therapeutic application of ORFV vector-based vaccines against tumors induced by cottontail rabbit papillomavirus (CRPV). ORFV-CRPV recombinants were constructed expressing the early CRPV gene E1, E2, E7, or LE6. In two independent experiments we used in total 23 rabbits which were immunized with a mixture of the four ORFV-CRPV recombinants or empty ORFV vector as a control 5 weeks after the appearance of skin tumors. For the determination of the therapeutic efficacy, the subsequent growth of the tumors was recorded. In the first experiment, we could demonstrate that three immunizations of rabbits with high tumor burden with the combined four ORFV-CRPV recombinants resulted in significant growth retardation of the tumors compared to the control. A second experiment was performed to test the therapeutic effect of 5 doses of the combined vaccine in rabbits with a lower tumor burden than in nonimmunized rabbits. Tumor growth was significantly reduced after immunization, and one vaccinated rabbit even displayed complete tumor regression until the end of the observation period at 26 weeks. Results of delayed-type hypersensitivity (DTH) skin tests suggest the induction of a cellular immune response mediated by the ORFV-CRPV vaccine. The data presented show for the first time a therapeutic potential of the ORFV vector platform and encourage further studies for the development of a therapeutic vaccine against virus-induced tumors.IMPORTANCE Viral vectors are widely used for the development of therapeutic vaccines for the treatment of tumors. In our study we have used Orf virus (ORFV) strain D1701-V for the generation of recombinant vaccines expressing cottontail rabbit papillomavirus (CRPV) early proteins E1, E2, LE6, and E7. The therapeutic efficacy of the ORFV-CRPV vaccines was evaluated in two independent experiments using the outbred CRPV rabbit model. In both experiments the immunization achieved significant suppression of tumor growth. In total, 84.6% of all outbred animals benefited from the ORFV-CRPV vaccination, showing reduction in tumor size and significant tumor growth inhibition, including one animal with complete tumor regression without recurrence.
Collapse
|
12
|
Cladel NM, Peng X, Christensen N, Hu J. The rabbit papillomavirus model: a valuable tool to study viral-host interactions. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180294. [PMID: 30955485 DOI: 10.1098/rstb.2018.0294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cottontail rabbit papillomavirus (CRPV) was the first DNA virus shown to be tumorigenic. The virus has since been renamed and is officially known as Sylvilagus floridanus papillomavirus 1 (SfPV1). Since its inception as a surrogate preclinical model for high-risk human papillomavirus (HPV) infections, the SfPV1/rabbit model has been widely used to study viral-host interactions and has played a pivotal role in the successful development of three prophylactic virus-like particle vaccines. In this review, we will focus on the use of the model to gain a better understanding of viral pathogenesis, gene function and host immune responses to viral infections. We will discuss the application of the model in HPV-associated vaccine testing, in therapeutic vaccine development (using our novel HLA-A2.1 transgenic rabbits) and in the development and validation of novel anti-viral and anti-tumour compounds. Our goal is to demonstrate the role the SfPV1/rabbit model has played, and continues to play, in helping to unravel the intricacies of papillomavirus infections and to develop tools to thwart the disease. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Nancy M Cladel
- 1 The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,2 Department of Pathology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| | - Xuwen Peng
- 3 Department of Comparative Medicine, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| | - Neil Christensen
- 1 The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,2 Department of Pathology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,4 Department of Microbiology and Immunology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| | - Jiafen Hu
- 1 The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA.,2 Department of Pathology, Pennsylvania State University College of Medicine , Hershey, PA 17033 , USA
| |
Collapse
|
13
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Changotra H, Vij A. Rotavirus virus-like particles (RV-VLPs) vaccines: An update. Rev Med Virol 2017; 27. [DOI: 10.1002/rmv.1954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Harish Changotra
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Solan Himachal Pradesh India
| | - Avni Vij
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Solan Himachal Pradesh India
| |
Collapse
|
15
|
El-Aliani A, Alaoui MAE, Chaoui I, Ennaji MM, Attaleb M, Mzibri ME. Naturally occurring capsid protein variants L1 of human papillomavirus genotype 16 in Morocco. Bioinformation 2017; 13:241-248. [PMID: 28959092 PMCID: PMC5609288 DOI: 10.6026/97320630013241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/23/2022] Open
Abstract
HPV L1 protein is a corner stone in HPV structure, it's involved in the formation of the viral capsid; widely used as a systematic material and considered as the main component in vaccines development and production. The present study aims to characterize genetic variation of L1 gene of HPV 16 specimens and to evaluate in silico the impact of major variants on the epitope change affecting its conformational structure. A fragment of L1 gene from 35 HPV 16 confirmed specimens were amplified by PCR and sequenced. Overall, five amino acids residues changes were reported: T390P in 16 specimens, M425I and M431I in 2 cases, insertion of Serine at 460 and aspartic acid deletion at position 477 in all analyzed cases. The 3D generated model showed that T389P amino acid substitution is located in the H-I loop; the two substitutions M424I and M430I are both located in the H2 helice. The Serine insertion and aspartic acid deletion are located in the H4 helice and B-C loop, respectively. Superimposition of sequences' structures showed that they share a very similar conformation highlighting that the reported amino acids variations don't affect the structure of the L1 protein. However T389P, located in the H-I loop identified as an immunogenetic region of L1 capsid, was reported in 51.4% of cases could interact with vaccines induced monoclonal antibodies suggesting a potential impact on the efficacy of available anti-HPV vaccines.
Collapse
Affiliation(s)
- Aissam El-Aliani
- Unit of Biology and Medical Research, National Centre Natuional de l´Energie, des Sciences et des techniques Nucléaires. Morocco
- Laboratory of Virology Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity (LVMQB/ETB), Faculté des Sciences et Techniques Mohammedia, Morocco
| | | | - Imane Chaoui
- Unit of Biology and Medical Research, National Centre Natuional de l´Energie, des Sciences et des techniques Nucléaires. Morocco
| | - My Mustapha Ennaji
- Laboratory of Virology Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity (LVMQB/ETB), Faculté des Sciences et Techniques Mohammedia, Morocco
| | - Mohammed Attaleb
- Unit of Biology and Medical Research, National Centre Natuional de l´Energie, des Sciences et des techniques Nucléaires. Morocco
| | - Mohammed El Mzibri
- Unit of Biology and Medical Research, National Centre Natuional de l´Energie, des Sciences et des techniques Nucléaires. Morocco
| |
Collapse
|
16
|
Harnacker J, Hainisch EK, Shafti-Keramat S, Kirnbauer R, Brandt S. Type-specific L1 virus-like particle-mediated protection of horses from experimental bovine papillomavirus 1-induced pseudo-sarcoid formation is long-lasting. J Gen Virol 2017; 98:1329-1333. [DOI: 10.1099/jgv.0.000791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Julia Harnacker
- Research Group Oncology, Large Animal Surgery and Orthopaedics, Equine Clinic, University of Veterinary Medicine, Vienna, Austria
| | - Edmund K. Hainisch
- Research Group Oncology, Large Animal Surgery and Orthopaedics, Equine Clinic, University of Veterinary Medicine, Vienna, Austria
- Large Animal Surgery and Orthopaedics, Equine Clinic, University of Veterinary Medicine, Vienna, Austria
| | - Saeed Shafti-Keramat
- Department of Dermatology, Division of Immunology, Laboratory of Viral Oncology, Allergy and Infectious Disease, Medical University Vienna, Austria
| | - Reinhard Kirnbauer
- Department of Dermatology, Division of Immunology, Laboratory of Viral Oncology, Allergy and Infectious Disease, Medical University Vienna, Austria
| | - Sabine Brandt
- Research Group Oncology, Large Animal Surgery and Orthopaedics, Equine Clinic, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
17
|
Efficacy of L1 Protein Vaccines Against Cervical and Vaginal Cancer: A Systematic Review and Meta-Analysis. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016. [DOI: 10.5812/ircmj.42732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Christensen ND, Budgeon LR, Cladel NM, Hu J. Recent advances in preclinical model systems for papillomaviruses. Virus Res 2016; 231:108-118. [PMID: 27956145 DOI: 10.1016/j.virusres.2016.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Abstract
Preclinical model systems to study multiple features of the papillomavirus life cycle have greatly aided our understanding of Human Papillomavirus (HPV) biology, disease progression and treatments. The challenge to studying HPV in hosts is that HPV along with most PVs are both species and tissue restricted. Thus, fundamental properties of HPV viral proteins can be assessed in specialized cell culture systems but host responses that involve innate immunity and host restriction factors requires preclinical surrogate models. Fortunately, there are several well-characterized and new animal models of papillomavirus infections that are available to the PV research community. Old models that continue to have value include canine, bovine and rabbit PV models and new rodent models are in place to better assess host-virus interactions. Questions arise as to the strengths and weaknesses of animal PV models for HPV disease and how accurately these preclinical models predict malignant progression, vaccine efficacy and therapeutic control of HPV-associated disease. In this review, we examine current preclinical models and highlight the strengths and weaknesses of the various models as well as provide an update on new opportunities to study the numerous unknowns that persist in the HPV research field.
Collapse
Affiliation(s)
- Neil D Christensen
- Department of Pathology and Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, USA.
| | - Lynn R Budgeon
- Department of Pathology and Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, USA
| | - Nancy M Cladel
- Department of Pathology and Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, USA
| | - Jiafen Hu
- Department of Pathology and Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, USA
| |
Collapse
|
19
|
Devaraj K, Gillison ML, Wu TC. Development of HPV Vaccines for HPV-associated Head and Neck Squamous Cell Carcinoma. ACTA ACUST UNITED AC 2016; 14:345-62. [PMID: 14530303 DOI: 10.1177/154411130301400505] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-risk genotypes of the human papillomavirus (HPV), particularly HPV type 16, are found in a distinct subset of head and neck squamous cell carcinomas (HNSCC). Thus, these HPV-associated HNSCC may be prevented or treated by vaccines designed to induce appropriate HPV virus-specific immune responses. Infection by HPV may be prevented by neutralizing antibodies specific for the viral capsid proteins. In clinical trials, vaccines comprised of HPV virus-like particles (VLPs) have shown great promise as prophylactic HPV vaccines. However, given that capsid proteins are not expressed at detectable levels by infected basal keratinocytes, vaccines with therapeutic potential must target other non-structural viral antigens. Two HPV oncogenic proteins, E6 and E7, are important in the induction and maintenance of cellular transformation and are co-expressed in the majority of HPV-containing carcinomas. Therefore, therapeutic vaccines targeting these proteins may have potential to control HPV-associated malignancies. Various candidate therapeutic HPV vaccines are currently being tested whereby E6 and/or E7 is administered in live vectors, in peptides or protein, in nucleic acid form, as components of chimeric VLPs, or in cell-based vaccines. Encouraging results from experimental vaccination systems in animal models have led to several prophylactic and therapeutic vaccine clinical trials. Should they fulfill their promise, these vaccines may prevent HPV infection or control its potentially life-threatening consequences in humans.
Collapse
Affiliation(s)
- Kalpana Devaraj
- Department of Pathology, The Johns Hopkins Medical Institutions, 720 Rutland Avenue, Ross Building 512, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
20
|
Allison DB, Maleki Z. HPV-related head and neck squamous cell carcinoma: An update and review. J Am Soc Cytopathol 2016; 5:203-215. [PMID: 31042510 DOI: 10.1016/j.jasc.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 06/09/2023]
Abstract
This is a review of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC). The epidemiology, pathology, clinical features, and risk factors of HPV-related HNSCC are discussed. HPV vaccines are also discussed.
Collapse
Affiliation(s)
- Derek B Allison
- Division of Cytopathology, Department of Pathology, The Johns Hopkins Hospital, 600 N. Wolfe Street/Pathology 412C, Baltimore, Maryland
| | - Zahra Maleki
- Division of Cytopathology, Department of Pathology, The Johns Hopkins Hospital, 600 N. Wolfe Street/Pathology 412C, Baltimore, Maryland.
| |
Collapse
|
21
|
Xia L, Xian Y, Wang D, Chen Y, Huang X, Bi X, Yu H, Fu Z, Liu X, Li S, An Z, Luo W, Zhao Q, Xia N. A human monoclonal antibody against HPV16 recognizes an immunodominant and neutralizing epitope partially overlapping with that of H16.V5. Sci Rep 2016; 6:19042. [PMID: 26750243 PMCID: PMC4707464 DOI: 10.1038/srep19042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
The presence of neutralizing epitopes in human papillomavirus (HPV) L1 virus-like particles (VLPs) is the structural basis of prophylactic vaccines. An anti-HPV16 neutralizing monoclonal antibody (N-mAb) 26D1 was isolated from a memory B cell of a human vaccinee. The pre-binding of heparan sulfate to VLPs inhibited the binding of both N-mAbs to the antigen, indicating that the epitopes are critical for viral cell attachment/entry. Hybrid VLP binding with surface loop swapping between types indicated the essential roles of the DE and FG loops for both 26D1 (DEa in particular) and H16.V5 binding. Specifically, Tyr(135) and Val(141) on the DEa loop were shown to be critical residues for 26D1 binding via site-directed mutagenesis. Partially overlap between the epitopes between 26D1 and H16.V5 was shown using pairwise epitope mapping, and their binding difference is demonstrated to be predominantly in DE loop region. In addition, 26D1 epitope is immunodominant epitope recognized by both antibodies elicited by the authentic virus from infected individuals and polyclonal antibodies from vaccinees. Overall, a partially overlapping but distinct neutralizing epitope from that of H16.V5 was identified using a human N-mAb, shedding lights to the antibody arrays as part of human immune response to vaccination and infection.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Yangfei Xian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Yuanzhi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xingjian Bi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Zheng Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xinlin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Zhiqiang An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
- Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine, University of Texas Health Science Center at Houston, Houston TX77030, USA
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| |
Collapse
|
22
|
Cladel NM, Budgeon LR, Balogh KK, Cooper TK, Hu J, Christensen ND. Mouse papillomavirus MmuPV1 infects oral mucosa and preferentially targets the base of the tongue. Virology 2015; 488:73-80. [PMID: 26609937 DOI: 10.1016/j.virol.2015.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/15/2015] [Accepted: 10/29/2015] [Indexed: 01/31/2023]
Abstract
In 2010, a new mouse papillomavirus, MmuPV1, was discovered in a colony of NMRI- Foxn1(nu)/Foxn1(nu) athymic mice in India. This finding was significant because it was the first papillomavirus to be found in a laboratory mouse. In this paper we report successful infections of both dorsal and ventral surfaces of the rostral tongues of outbred athymic nude mice. We also report the observation that the base of the tongue, the area of the tongue often targeted by cancer-associated high-risk papillomavirus infections in humans, is especially susceptible to infection. A suitable animal model for the study of oral papillomavirus infections, co-infections, and cancers has long been sought. The work presented here suggests that such a model is now at hand.
Collapse
Affiliation(s)
- Nancy M Cladel
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, United States; Department of Pathology, Pennsylvania State University College of Medicine, United States.
| | - Lynn R Budgeon
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, United States; Department of Pathology, Pennsylvania State University College of Medicine, United States
| | - Karla K Balogh
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, United States; Department of Pathology, Pennsylvania State University College of Medicine, United States
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, United States
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, United States; Department of Pathology, Pennsylvania State University College of Medicine, United States
| | - Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, United States; Department of Pathology, Pennsylvania State University College of Medicine, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, United States
| |
Collapse
|
23
|
A novel pre-clinical murine model to study the life cycle and progression of cervical and anal papillomavirus infections. PLoS One 2015; 10:e0120128. [PMID: 25803616 PMCID: PMC4372414 DOI: 10.1371/journal.pone.0120128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/19/2015] [Indexed: 02/02/2023] Open
Abstract
Background Papillomavirus disease and associated cancers remain a significant health burden in much of the world. The current protective vaccines, Gardasil and Cervarix, are expensive and not readily available to the underprivileged. In addition, the vaccines have not gained wide acceptance in the United States nor do they provide therapeutic value. Papillomaviruses are strictly species specific and thus human viruses cannot be studied in an animal host. An appropriate model for mucosal disease has long been sought. We chose to investigate whether the newly discovered mouse papillomavirus, MmuPV1, could infect mucosal tissues in Foxn1nu/Foxn1nu mice. Methods The vaginal and anal canals of Foxn1nu/Foxn1nu mice were gently abraded using Nonoxynol-9 and “Doctor’s BrushPicks” and MmuPV1 was delivered into the vaginal tract or the anal canal. Results Productive vaginal, cervical and anal infections developed in all mice. Vaginal/cervical infections could be monitored by vaginal lavage. Dysplasias were evident in all animals. Conclusions Anogenital tissues of a common laboratory mouse can be infected with a papillomavirus unique to that animal. This observation will pave the way for fundamental virological and immunological studies that have been challenging to carry out heretofore due to lack of a suitable model system.
Collapse
|
24
|
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer, the third most common cancer in women. The development of prophylactic HPV vaccines Gardasil® and Cervarix® targeting the major oncogenic HPV types is now the frontline of cervical cancer prevention. Both vaccines have been proven to be highly effective and safe although there are still open questions about their target population, cross-protection, and long-term efficacy. The main limitation for a worldwide implementation of Gardasil® and Cervarix® is their high cost. To develop more affordable vaccines research groups are concentrated in new formulations with different antigens including capsomeres, the minor capsid protein L2 and DNA. In this article we describe the vaccines' impact on HPV-associated disease, the main open questions about the marketed vaccines, and current efforts for the development of second-generation vaccines.
Collapse
|
25
|
Wang JW, Jagu S, Wang C, Kitchener HC, Daayana S, Stern PL, Pang S, Day PM, Huh WK, Roden RBS. Measurement of neutralizing serum antibodies of patients vaccinated with human papillomavirus L1 or L2-based immunogens using furin-cleaved HPV Pseudovirions. PLoS One 2014; 9:e101576. [PMID: 24999962 PMCID: PMC4084990 DOI: 10.1371/journal.pone.0101576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/09/2014] [Indexed: 11/26/2022] Open
Abstract
Antibodies specific for neutralizing epitopes in either Human papillomavirus (HPV) capsid protein L1 or L2 can mediate protection from viral challenge and thus their accurate and sensitive measurement at high throughput is likely informative for monitoring response to prophylactic vaccination. Here we compare measurement of L1 and L2-specific neutralizing antibodies in human sera using the standard Pseudovirion-Based Neutralization Assay (L1-PBNA) with the newer Furin-Cleaved Pseudovirion-Based Neutralization Assay (FC-PBNA), a modification of the L1-PBNA intended to improve sensitivity towards L2-specific neutralizing antibodies without compromising assay of L1-specific responses. For detection of L1-specific neutralizing antibodies in human sera, the FC- PBNA and L1-PBNA assays showed similar sensitivity and a high level of correlation using WHO standard sera (n = 2), and sera from patients vaccinated with Gardasil (n = 30) or an experimental human papillomavirus type 16 (HPV16) L1 VLP vaccine (n = 70). The detection of L1-specific cross-neutralizing antibodies in these sera using pseudovirions of types phylogenetically-related to those targeted by the L1 virus-like particle (VLP) vaccines was also consistent between the two assays. However, for sera from patients (n = 17) vaccinated with an L2-based immunogen (TA-CIN), the FC-PBNA was more sensitive than the L1-PBNA in detecting L2-specific neutralizing antibodies. Further, the neutralizing antibody titers measured with the FC-PBNA correlated with those determined with the L2-PBNA, another modification of the L1-PBNA that spacio-temporally separates primary and secondary receptor engagement, as well as the protective titers measured using passive transfer studies in the murine genital-challenge model. In sum, the FC-PBNA provided sensitive measurement for both L1 VLP and L2-specific neutralizing antibody in human sera. Vaccination with TA-CIN elicits weak cross-protective antibody in a subset of patients, suggesting the need for an adjuvant.
Collapse
MESH Headings
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody Specificity
- Capsid Proteins/immunology
- Capsid Proteins/metabolism
- Furin/metabolism
- Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18
- Humans
- Neutralization Tests/methods
- Neutralization Tests/standards
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/metabolism
- Papillomaviridae/immunology
- Papillomavirus Vaccines/immunology
- Papillomavirus Vaccines/metabolism
- Proteolysis
- Reference Standards
- Vaccination
- Virion/immunology
Collapse
Affiliation(s)
- Joshua W. Wang
- Departments of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Subhashini Jagu
- Departments of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chenguang Wang
- Department of Biostatistics, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Henry C. Kitchener
- Woman's Cancer Centre, St Mary's Hospital, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Sai Daayana
- Woman's Cancer Centre, St Mary's Hospital, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Peter L. Stern
- Paterson Building, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Susana Pang
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Patricia M. Day
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Warner K. Huh
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard B. S. Roden
- Departments of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Maclean J, Rybicki EP, Williamson AL. Vaccination strategies for the prevention of cervical cancer. Expert Rev Anticancer Ther 2014; 5:97-107. [PMID: 15757442 DOI: 10.1586/14737140.5.1.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infection with high-risk human papillomaviruses (HPVs) is an essential step in the multistep process leading to cervical cancer. There are approximately 120 different types of HPV identified: of these, 18 are high-risk types associated with cervical cancer, with HPV-16 being the dominant type in most parts of the world. The major capsid protein of papillomavirus, produced in a number of expression systems, self assembles to form virus-like particles. Virus-like particles are the basis of the first generation of HPV vaccines presently being tested in clinical trials. Virus-like particles are highly immunogenic and afford protection from infection both in animal models and in Phase IIb clinical trials. A number of Phase III trials are in progress to determine if the vaccine will protect against cervical disease and, in some cases, genital warts. However, it is predicted that these vaccines will be too expensive for the developing world, where they are desperately needed. Another problem is that they will be type specific. Novel approaches to the production of virus-like particles in plants, second-generation vaccine approaches including viral and bacterial vaccine vectors and DNA vaccines, as well as different routes of immunization, are also reviewed.
Collapse
Affiliation(s)
- James Maclean
- University of Cape Town, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, Observatory Cape Town 7925, South Africa.
| | | | | |
Collapse
|
27
|
Secondary infections, expanded tissue tropism, and evidence for malignant potential in immunocompromised mice infected with Mus musculus papillomavirus 1 DNA and virus. J Virol 2013; 87:9391-5. [PMID: 23785210 DOI: 10.1128/jvi.00777-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomavirus disease poses a special challenge to people with compromised immune systems. Appropriate models to study infections in these individuals are lacking. We report here the development of a model that will help to address these deficiencies. The MmuPV1 genome was synthesized and used successfully to produce virus from DNA infections in immunocompromised mice. In these early studies, we have demonstrated both primary and secondary infections, expanded tissue tropism, and extensive dysplasia.
Collapse
|
28
|
Moscicki AB, Wheeler CM, Romanowski B, Hedrick J, Gall S, Ferris D, Poncelet S, Zahaf T, Moris P, Geeraerts B, Descamps D, Schuind A. Immune responses elicited by a fourth dose of the HPV-16/18 AS04-adjuvanted vaccine in previously vaccinated adult women. Vaccine 2012; 31:234-41. [PMID: 23063422 DOI: 10.1016/j.vaccine.2012.09.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/12/2012] [Accepted: 09/16/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vaccines are now available for the prevention of HPV-16/18-related cervical infections and pre-cancers, primarily targeting adolescent girls. Since the risk of HPV exposure potentially persists throughout a woman's sexual life, vaccine-derived immunity should be long-term. The current study, HPV-024 (NCT00546078, http://clinicaltrials.gov), assessed the immune memory in North American women who received three doses of HPV-16/18 AS04-adjuvanted vaccine 7 years earlier in HPV-001 (NCT00689741). METHODS Women vaccinated in HPV-001 received a 4th-dose of the HPV-16/18 vaccine (024-4DV group, N=65). Post 4th-dose immune responses were compared with post 1st-dose immune responses in cross-vaccination controls (024-3DV group, N=50). Reactogenicity was compared between the 4th-dose and the 1st-dose administration. RESULTS Pre 4th-dose, 100% of subjects in the 024-4DV group remained seropositive for anti-HPV-16/18 antibodies (ELISA). Compared to pre 4th-dose, GMTs for anti-HPV-16 and anti-HPV-18 antibodies were respectively 9.3-fold and 8.7-fold higher at day 7, and 22.7-fold and 17.2-fold higher at month 1. Compared to post 1st-dose, GMTs for anti-HPV-16 and anti-HPV-18 were respectively 80.5-fold and 205.4-fold higher at day 7, and 11.8-fold and 20.5-fold higher at month 1. Furthermore, 68.2% and 77.3% of women had HPV-16/18 specific memory B-cells, respectively, pre 4th-dose, rising to 100% one month post 4th-dose vaccination. The 4th-dose was generally well tolerated. CONCLUSION A 4th-dose of HPV-16/18 AS04-adjuvanted vaccine triggered a rapid and strong anamnestic response in previously vaccinated women, demonstrating vaccine-induced immune memory.
Collapse
Affiliation(s)
- A-B Moscicki
- University of California, Division of Adolescent Medicine, San Franscico, CA 94118, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Roteli-Martins CM, Naud P, De Borba P, Teixeira JC, De Carvalho NS, Zahaf T, Sanchez N, Geeraerts B, Descamps D. Sustained immunogenicity and efficacy of the HPV-16/18 AS04-adjuvanted vaccine: up to 8.4 years of follow-up. Hum Vaccin Immunother 2012; 8:390-7. [PMID: 22327492 DOI: 10.4161/hv.18865] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Prophylactic human papillomavirus (HPV) vaccines are now available and vaccination programs are being widely implemented, targeting adolescent girls prior to sexual debut. Since the risk of HPV exposure persists throughout a woman's sexual life, the duration of protection provided by vaccination is critical to the overall vaccine effectiveness. We report the long-term efficacy and immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine (Cervarix (®) ) up to 8.4 y after the first vaccine dose. In an initial placebo-controlled study performed in US, Canada and Brazil, women aged 15-25 y with normal cervical cytology, HPV-16/18 seronegative by ELISA, DNA-negative for 14 oncogenic HPV types by PCR, received either the HPV-16/18 vaccine or placebo (n = 1,113). Subjects were followed up to 6.4 y after the first dose (n = 776). We report an additional 2-y follow-up for women enrolled from the Brazilian centers from the initial study (n = 436). During the current follow-up study (HPV-023, NCT00518336), no new infection or lesions associated with HPV-16/18 occurred in the vaccine group. Vaccine efficacy over the entire follow-up (up to 8.4 y) was 95.1% (84.6, 99.0) for incident infection, 100% (79.8, 100) for 6-mo persistent infection, 100% (56.1, 100) for 12-mo persistent infection and 100% (< 0, 100) for CIN2+ associated with HPV-16/18. All women in the vaccine group remained seropositive to both HPV-16/18, with antibody titers for total and neutralizing antibodies remaining several-folds above natural infection levels. The safety profile was clinically acceptable for both vaccine and control groups. This is, to date, the longest follow-up study for a licensed cervical cancer vaccine.
Collapse
|
30
|
Romanowski B, Schwarz TF, Ferguson LM, Peters K, Dionne M, Schulze K, Ramjattan B, Hillemanns P, Catteau G, Dobbelaere K, Schuind A, Descamps D. Immunogenicity and safety of the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose schedule compared with the licensed 3-dose schedule: results from a randomized study. HUMAN VACCINES 2011; 7:1374-86. [PMID: 22048171 DOI: 10.4161/hv.7.12.18322] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immunogenicity of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine (Cervarix®, GlaxoSmithKline Biologicals) administered according to its licensed vaccination schedule (3-dose, 3D) and formulation (20 μg of each HPV antigen; 20/20F) has previously been demonstrated. This partially-blind, controlled, randomized trial (NCT00541970) evaluated 2-dose (2D) schedules using the licensed 20/20F or an alternative formulation containing 40 μg of each antigen (40/40F), compared with the licensed 3D schedule. Healthy females stratified by age (9-14, 15-19, 20-25 y) were randomized to receive 2 doses of 20/20F at Months (M) 0,6 (n=240), 40/40F at M0,6 (n=241) or 40/40F at M0,2 (n=240), or 3 doses of 20/20F at M0,1,6 (licensed schedule/formulation, n=239). One month after the last dose, the 3D schedule was not immunologically superior to 2D schedules except in the 40/40F M0,2 group for HPV-16 (lower limit of 95% CI geometric mean antibody titer (GMT) ratio [2D/3D] < 0.5). For both HPV-16 and HPV-18, the 2D schedules in girls 9-14 y were immunologically non-inferior to the 3D schedule in women 15-25 y (the age group in which efficacy has been demonstrated) (upper limit of 95% CI for GMT ratio [3D/2D] < 2) one month after the last dose. At Month 24, non-inferiority was maintained for the 2D M0,6 schedules in girls 9-14 y versus the 3D schedule in women 15-25 y. All formulations had acceptable reactogenicity and safety profiles. These results indicate that the HPV-16/18 vaccine on a 2D M0,6 schedule is immunogenic and generally well tolerated in girls 9-14 y and that the 2D schedule is likely adequate for younger females.
Collapse
|
31
|
Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM. Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev Vaccines 2011; 10:1569-1583. [PMID: 22043956 DOI: 10.1586/erv.11.135] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Virus-like particles hold great promise for the development of effective and affordable vaccines. Indeed, virus-like particles are suitable for presentation and efficient delivery of linear as well as conformational antigens to antigen-presenting cells. This will ultimately result in optimal B-cell activation and cross-presentation with both MHC class I and II molecules to prime CD4(+) T-helper as well as CD8(+) cytotoxic T cells. This article provides an update on the development and use of virus-like particles as vaccine approaches for infectious diseases and cancer.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | | | |
Collapse
|
32
|
Jagu S, Malandro N, Kwak K, Yuan H, Schlegel R, Palmer KE, Huh WK, Campo MS, Roden RBS. A multimeric L2 vaccine for prevention of animal papillomavirus infections. Virology 2011; 420:43-50. [PMID: 21920572 DOI: 10.1016/j.virol.2011.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/18/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
It is unclear what level of neutralizing antibody is sufficient to protect cattle from experimental bovine papillomavirus type 4 (BPV4) challenge. Markedly lower, and often undetected, serum neutralizing antibody titers were associated with protection in cattle vaccinated with BPV4 L2 as compared to L1 VLP. We hypothesized that vaccination with concatemers of the N-terminal protective epitopes of L2 derived from multiple animal papillomavirus types would enhance the breadth and strength of immunity. Therefore we generated a multimeric L2 antigen derived from three bovine and three canine papillomavirus types with divergent phenotypes and purified it from bacteria. Mice vaccinated three times with this six type L2 vaccine formulated in alum or RIBI adjuvant generated robust serum neutralizing antibody titers against BPV1, BPV4 and canine oral papillomavirus (COPV). Furthermore, vaccination with this six type L2 vaccine formulated in adjuvant, like BPV1 L1 VLP, protected the mice from experimental challenge with BPV1 pseudovirus.
Collapse
Affiliation(s)
- Subhashini Jagu
- Department of Pathology, Johns Hopkins Univeristy, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schwarz TF, Spaczynski M, Schneider A, Wysocki J, Galaj A, Schulze K, Poncelet SM, Catteau G, Thomas F, Descamps D. Persistence of immune response to HPV-16/18 AS04-adjuvanted cervical cancer vaccine in women aged 15-55 years. HUMAN VACCINES 2011; 7:958-65. [PMID: 21892005 DOI: 10.4161/hv.7.9.15999] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The HPV-16/18 AS04-adjuvanted vaccine (Cervarix®, GlaxoSmithKline Biologicals) has been shown to induce a robust immune response in women aged 15-55 years (103514/NCT00196937). This follow-up study is the first report of persistence of immune response and safety profile through 48 months after vaccination in women aged 15-55 years. In this open-label, age-stratified Phase III study in Germany and Poland (105882/NCT00196937), healthy women aged 15-55 years received 3 doses of HPV-16/18 AS04-adjuvanted vaccine at 0, 1, and 6 months. Anti-HPV-16/18 seropositivity rates and geometric mean antibody titers (GMTs) were assessed by enzyme-linked immunosorbent assay (ELISA) in women aged 15-25 (n=168), 26-45 (n=186) and 46-55 years (n=177) from the time of first vaccination through 48 months. At Month 48, all subjects were seropositive for anti-HPV-16 antibodies and 99.4% were seropositive for anti-HPV-18. Antibody kinetics were as previously reported, with peak response at Month 7 followed by a gradual decline tending towards a plateau in all age groups. Anti-HPV-16/18 GMTs were sustained at Month 48 in all age groups, including women aged 46-55 years in whom GMTs were respectively 11-fold and 5-fold higher than natural infection levels. The vaccine exhibited a clinically acceptable safety profile in all age groups. In summary, the HPV-16/18 AS04-adjuvanted vaccine induces high and sustained immune responses in women aged 15-55 years, with antibody levels remaining several-fold higher than natural infection levels for at least 4 years after the first vaccine dose.
Collapse
Affiliation(s)
- Tino F Schwarz
- Central Laboratory and Vaccination Centre, Stiftung Juliusspital Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Garçon N, Morel S, Didierlaurent A, Descamps D, Wettendorff M, Van Mechelen M. Development of an AS04-Adjuvanted HPV Vaccine with the Adjuvant System Approach. BioDrugs 2011; 25:217-26. [DOI: 10.2165/11591760-000000000-00000] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Garçon N, Wettendorff M, Van Mechelen M. Role of AS04 in human papillomavirus vaccine: mode of action and clinical profile. Expert Opin Biol Ther 2011; 11:667-77. [PMID: 21457083 DOI: 10.1517/14712598.2011.573624] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Understanding the mode of action of adjuvants is important for the interpretation of clinical studies. AREAS COVERED This paper discusses how the results of GSK's clinical studies with an AS04-adjuvanted human papillomavirus (HPV) vaccine are supported by the mode of action of AS04. AS04 and antigens must be injected at the same intramuscular site together or within 24 h of each other. AS04 induces local cytokine production leading to increased recruitment of dendritic cells and monocytes and raised numbers of antigen presenting cells in the draining lymph node. The localized and transient nature of the innate immune response supports the acceptable safety profile observed in clinical studies. The readers will gain a comprehensive understanding of the mode of action of AS04 and how it relates to results of clinical studies. EXPERT OPINION The AS04-adjuvanted HPV vaccine has an acceptable safety profile and induces an enhanced and sustained immune response and high protection against HPV types 16/18. Cross-protection against oncogenic HPV types 31/33/45 not contained in the vaccine is also observed. The mode of action of AS04 supports the clinical profile of the AS04-adjuvanted HPV vaccine.
Collapse
Affiliation(s)
- Nathalie Garçon
- GlaxoSmithKline Biologicals, Av. Fleming 20, Parc de la Noire Epine, 1300 Wavre, Belgium.
| | | | | |
Collapse
|
36
|
Petäjä T, Pedersen C, Poder A, Strauss G, Catteau G, Thomas F, Lehtinen M, Descamps D. Long-term persistence of systemic and mucosal immune response to HPV-16/18 AS04-adjuvanted vaccine in preteen/adolescent girls and young women. Int J Cancer 2011; 129:2147-57. [DOI: 10.1002/ijc.25887] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/04/2010] [Indexed: 11/11/2022]
|
37
|
Evaluation of the intramuscular administration of Cervarix™ vaccine on fertility, pre- and post-natal development in rats. Reprod Toxicol 2011; 31:111-20. [DOI: 10.1016/j.reprotox.2010.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 08/21/2010] [Accepted: 09/03/2010] [Indexed: 11/22/2022]
|
38
|
Bounds CE, Hu J, Cladel NM, Balogh K, Christensen ND. Vaccine generated immunity targets an HPV16 E7 HLA-A2.1-restricted CD8(+) T cell epitope relocated to an early gene or a late gene of the cottontail rabbit papillomavirus (CRPV) genome in HLA-A2.1 transgenic rabbits. Vaccine 2010; 29:1194-200. [PMID: 21167863 DOI: 10.1016/j.vaccine.2010.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 11/03/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
The newly established HLA-A2.1 transgenic rabbit model has proven useful for testing the immunogenicity of well known and computer-predicted A2-restricted epitopes. In the current study we compared the protective immunity induced to a preferred HPV16 E7 A2-restricted epitope that has been relocated to positions within the CRPV E7 gene and the CRPV L2 gene. Epitope expression from both the E7 protein and the L2 protein resulted in increased protection against viral DNA challenge of the HLA-A2.1 transgenic rabbits as compared to control-vaccinated rabbit groups. These data indicate that proteins expressed at both early and late time points during a natural papillomavirus infection can be targeted by epitope-specific immunity and indicate this immunity is increased to early rather than late expressed proteins of papillomaviruses. This study also highlights the broad utility of the HLAA2.1 transgenic rabbit model for testing numerous immunological factors involved in vaccine generated protective immunity.
Collapse
Affiliation(s)
- Callie E Bounds
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
39
|
In vivo mechanisms of vaccine-induced protection against HPV infection. Cell Host Microbe 2010; 8:260-70. [PMID: 20833377 DOI: 10.1016/j.chom.2010.08.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/16/2010] [Accepted: 07/06/2010] [Indexed: 12/11/2022]
Abstract
Using a human papillomavirus (HPV) cervicovaginal murine challenge model, we microscopically examined the in vivo mechanisms of L1 virus-like particle (VLP) and L2 vaccine-induced inhibition of infection. In vivo HPV infection requires an initial association with the acellular basement membrane (BM) to induce conformational changes in the virion that permit its association with the keratinocyte cell surface. By passive transfer of immune serum, we determined that anti-L1 antibodies can interfere with infection at two stages. Similarly to active VLP immunization, transfer of high L1 antibody concentrations prevented BM binding. However, in the presence of low concentrations of anti-L1, virions associated with the BM, but to the epithelial cell surface was not detected. Regardless of the concentration, L2 vaccine-induced antibodies allow BM association but prevent association with the cell surface. Thus, we have revealed distinct mechanisms of vaccine-induced inhibition of virus infection in vivo.
Collapse
|
40
|
Jagu S, Kwak K, Garcea RL, Roden RBS. Vaccination with multimeric L2 fusion protein and L1 VLP or capsomeres to broaden protection against HPV infection. Vaccine 2010; 28:4478-86. [PMID: 20434552 DOI: 10.1016/j.vaccine.2010.04.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
Immunization with L1 as pentavalent capsomeres or virus-like particles (VLPs) generates high and long-lived titers of neutralizing antibodies and protection primarily against the human papillomavirus (HPV) type from which the vaccine was derived. Conversely, vaccination with L2 minor capsid protein derived from multiple HPV types induces lower titer, but more broadly neutralizing and protective antibody responses. We combined the advantages of each protective antigen by immunization with titrated doses of multi-type L2 with either L1 capsomeres or VLP. We observed no significant interference between the L1 and L2 antibody response upon co-administration of L1 vaccines with multi-type L2 vaccines.
Collapse
Affiliation(s)
- Subhashini Jagu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Vaccines against the human papillomaviruses (HPVs) most frequently associated with cancer of the cervix are now available. These prophylactic vaccines, based on virus-like particles (VLPs), are extremely effective, providing protection from infection in almost 100% of cases. However, the vaccines present some limitations: they are effective primarily against the HPV type present in the vaccine, are expensive to produce, and need a cold chain. Vaccines based on the minor capsid protein L2 have been very successful in animal models and have been shown to provide a good level of protection against different papillomavirus types. The potential of L2-based vaccines to protect against many types of HPVs is discussed.
Collapse
|
42
|
Peralta A, Molinari P, Taboga O. Chimeric recombinant rotavirus-like particles as a vehicle for the display of heterologous epitopes. Virol J 2009; 6:192. [PMID: 19891790 PMCID: PMC2777876 DOI: 10.1186/1743-422x-6-192] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 11/06/2009] [Indexed: 11/10/2022] Open
Abstract
In order to improve the presentation and immunogenicity of single epitopes, virus-like particles (VLPs) are being used as platforms for the display of foreing epitopes on their surface. The rotavirus major capsid protein VP6 has the ability to self-assemble into empty non-infectious VLPs. In the present study, we analyzed the use of double layered VLPs (made up of VP2 and VP6 rotavirus proteins) as carriers to display a 14 amino acid epitope fused to three different aminoacidic regions of VP6 exposed on the surface of VLPs. Although all chimeric protein were correctly expressed in insect cells, only one of them resulted in spontaneous assembly of VLPs displaying the heterologous epitope on their surface, confirmed by sandwich ELISA and electron microscopy. Furthermore, the injection of chimeric VLPs into mice elicited higher antibody titers than the monomeric chimeric protein. Our results identify an specific amino acid region of VP6 which allows the insertion of at least a 14 amino acid heterolgous epitope and demonstrate its potential as immunogenic carrier.
Collapse
Affiliation(s)
- Andrea Peralta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av, Rivadavia 1917 (c,p,1033) Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | |
Collapse
|
43
|
A nontoxic derivative of lipopolysaccharide increases immune responses to Gardasil HPV vaccine in mice. Int Immunopharmacol 2009; 10:169-76. [PMID: 19874917 DOI: 10.1016/j.intimp.2009.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 10/01/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Human papillomavirus (HPV) is the causative agent of cervical cancer, the second most common cause of cancer death in women worldwide. The licensed HPV vaccine Gardasil((R)) from Merck & Co. is a quadrivalent vaccine containing virus-like particles (VLPs) of the L1 proteins from HPV types 6, 11, 16, and 18 adsorbed on aluminum salts (alum). CIA07 is an immunostimulatory agent comprised of bacterial DNA fragments (CIA02) and a nontoxic derivative of lipopolysaccharide (CIA05) that has been shown to have antitumor activity and adjuvant activity for viral and bacterial vaccine antigens. We investigated whether these CIAs are capable of promoting the immune response to Gardasil. Balb/c mice were immunized intramuscularly twice three weeks apart with 1/20 human dose of Gardasil alone or in combination with CIA02, CIA05 or both, and immune responses were assessed. The serum anti-HPV16 L1 VLP IgG antibody titer was significantly higher in mice administered CIA05 or CIA05 plus CIA02, but not in those given CIA02, compared with mice given Gardasil alone. A secreted alkaline phosphatase (SEAP)-based pseudovirus neutralization assay showed increased neutralizing antibody titers in both CIA05 and CIA05 plus CIA02 groups. Coadministration of CIA05 with Gardasil led to a marked increase in serum IgG2a antibody titer and the percentage of interferon (IFN)-gamma(+) cells in the spleen, indicating that CIA05 effectively promotes Th1-type immune responses. These data indicate that CIA05, in synergy with alum, enhances the immune response to HPV L1 VLPs and suggest its potential as an adjuvant for the development of a potent prophylactic HPV vaccine.
Collapse
|
44
|
Fleury MJJ, Touzé A, Maurel MC, Moreau T, Coursaget P. Identification of neutralizing conformational epitopes on the human papillomavirus type 31 major capsid protein and functional implications. Protein Sci 2009; 18:1425-38. [PMID: 19533761 DOI: 10.1002/pro.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of this study was to characterize the conformational neutralizing epitopes of the major capsid protein of human papillomavirus type 31. Analysis of the epitopes was performed by competitive epitope mapping using 15 anti-HPV31 and by reactivity analysis using a HPV31 mutant with an insertion of a seven-amino acid motif within the FG loop of the capsid protein. Fine mapping of neutralizing conformational epitopes on HPV L1 was analyzed by a new approach using a system displaying a combinatorial library of constrained peptides exposed on E. coli flagella. The findings demonstrate that the HPV31 FG loop is dense in neutralizing epitopes and suggest that HPV31 MAbs bind to overlapping but distinct epitopes on the central part of the FG loop, in agreement with the exposure of the FG loop on the surface of HPV VLPs, and thus confirming that neutralizing antibodies are mainly located on the tip of capsomeres. In addition, we identified a crossreacting and partially crossneutralizing conformational epitope on the relatively well conserved N-terminal part of the FG loop. Moreover, our findings support the hypothesis that there is no correlation between neutralization and the ability of MAbs to inhibit VLP binding to heparan sulfate, and confirm that the blocking of virus attachment to the extracellular matrix is an important mechanism of neutralization.
Collapse
|
45
|
Developing vaccines against minor capsid antigen L2 to prevent papillomavirus infection. Immunol Cell Biol 2009; 87:287-99. [PMID: 19421199 DOI: 10.1038/icb.2009.13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A subset of human papillomavirus (HPV) genotypes is responsible for approximately 5% of all cancer deaths globally, and uterine cervical carcinoma accounts for the majority of these cases. The impact of HPV is greatest for women who do not have access to effective secondary preventive measures, and consequently over 80% of cervical cancer deaths worldwide occur in developing nations. The understanding that persistent infection by this 'oncogenic' subset of HPV genotypes is necessary for the development of cervical carcinoma has driven the development of preventive vaccines. Two preventive vaccines comprising recombinant HPV L1 virus-like particles (VLPs) have been licensed. However, the current cost of these vaccines precludes sustained global delivery, and they target only two of the approximately 15 known oncogenic HPV types, although approximately 70% of cervical cancer cases are attributed to these two types and there is evidence for some degree of cross-protection against other closely related types. A possible approach to broader immunity at lower cost is to consider vaccination against L2. L2 vaccines can be produced inexpensively and they also have the promise of conferring much broader cross-type protective immunity than that observed with L1 VLP immunization. However, L2 vaccine development lags behind L1 VLP vaccines and several technical hurdles remain.
Collapse
|
46
|
Einstein MH, Schiller JT, Viscidi RP, Strickler HD, Coursaget P, Tan T, Halsey N, Jenkins D. Clinician's guide to human papillomavirus immunology: knowns and unknowns. THE LANCET. INFECTIOUS DISEASES 2009; 9:347-56. [DOI: 10.1016/s1473-3099(09)70108-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
47
|
Hu J, Cladel NM, Budgeon L, Balogh KK, Christensen ND. Papillomavirus DNA complementation in vivo. Virus Res 2009; 144:117-22. [PMID: 19379784 DOI: 10.1016/j.virusres.2009.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/08/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Recent phylogenic studies indicate that DNA recombination could have occurred in ancient papillomavirus types. However, no experimental data are available to demonstrate this event because of the lack of human papillomavirus infection models. We have used the cottontail rabbit papillomavirus (CRPV)/rabbit model to study pathogenesis and immunogenicity of different mutant genomes in vivo. Although the domestic rabbit is not a natural host for CRPV infection, it is possible to initiate infection with naked CRPV DNA cloned into a plasmid and monitor papilloma outgrowth on these animals. Taking advantage of a large panel of mutants based on a CRPV strain (Hershey CRPV), we tested the hypothesis that two non-viable mutant genomes could induce papillomas by either recombination or complementation. We found that co-infection with a dysfunctional mutant with an E2 transactivation domain mutation and another mutant with an E7 ATG knock out generated papillomas in rabbits. DNA extracted from these papillomas contained genotypes from both parental genomes. Three additional pairs of dysfunctional mutants also showed similar results. Individual wild type genes were also shown to rescue the function of corresponding dysfunctional mutants. Therefore, we suggest that complementation occurred between these two non-viable mutant PV genomes in vivo.
Collapse
Affiliation(s)
- Jiafen Hu
- Jake Gittlen Cancer Research Foundation, Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
48
|
Bousarghin L, Touze A, Gaud G, Iochmann S, Alvarez E, Reverdiau P, Gaitan J, Jourdan ML, Sizaret PY, Coursaget PL. Inhibition of cervical cancer cell growth by human papillomavirus virus-like particles packaged with human papillomavirus oncoprotein short hairpin RNAs. Mol Cancer Ther 2009; 8:357-65. [PMID: 19174559 DOI: 10.1158/1535-7163.mct-08-0626] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of human papillomavirus (HPV E6 and HPV E7) oncogenes in human cervical cells results in the development of cancer, and E6 and E7 proteins are therefore targets for preventing cervical cancer progression. Here, we describe the silencing of E6 and E7 expression in cervical carcinoma cells by RNA interference. In order to increase the efficacy of the RNA interference, HPV pseudovirions coding for a short hairpin RNA (shRNA) sequence were produced. The results indicated the degradation of E6 and E7 mRNAs when shRNA against E6 or E7 were delivered by pseudovirions in HPV-positive cells (CaSki and TC1 cells). E6 silencing resulted in the accumulation of cellular p53 and reduced cell viability. More significant cell death was observed when E7 expression was suppressed. Silencing E6 and E7 and the consequences for cancer cell growth were also investigated in vivo in mice using the capacity of murine TC1 cells expressing HPV-16 E6 and E7 oncogenes to induce fast-growing tumors. Treatment with lentiviruses and HPV virus-like particle vectors coding for an E7 shRNA sequence both resulted in dramatic inhibition of tumor growth. These results show the ability of pseudovirion-delivered shRNA to produce specific gene suppression and provide an effective means of reducing HPV-positive tumor growth.
Collapse
|
49
|
Schwarz TF. AS04-adjuvanted human papillomavirus-16/18 vaccination: recent advances in cervical cancer prevention. Expert Rev Vaccines 2009; 7:1465-73. [PMID: 19053203 DOI: 10.1586/14760584.7.10.1465] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Persistent infection with oncogenic human papillomavirus (HPV)-16 and -18 accounts for over 70% of all cases of cervical cancer. Vaccination against these HPV types has become a reality. This article discusses the latest data available for Cervarix (GlaxoSmithKline Biologicals), an AS04-adjuvanted HPV-16/18 vaccine, and considers immunological factors important in vaccine effectiveness. High and sustained HPV-16 and -18 antibody levels have now been observed together with 100% vaccine efficacy in preventing HPV-16/18-related persistent infections and cervical intraepithelial neoplasia grade 2 and above, up to 6.4 years after first vaccination. Significant crossprotection against incident and persistent infection has been observed, notably against HPV-45, the third most prevalent HPV type in cervical cancer. An integrated safety summary of Phase II/III trials has shown that GlaxoSmithKline's HPV-16/18 AS04-adjuvanted vaccine is generally safe. Further studies will reveal the full duration and extent of the immune response and protection induced by Cervarix in broad populations and age ranges of women.
Collapse
Affiliation(s)
- Tino F Schwarz
- Central Laboratory and Vaccination Center, Stiftung Juliusspital, Academic Teaching Hospital of the University of Wuerzburg, Juliuspromenade 19, D-97070 Wuerzburg, Germany.
| |
Collapse
|
50
|
Karanam B, Gambhira R, Peng S, Jagu S, Kim DJ, Ketner GW, Stern PL, Adams RJ, Roden RBS. Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity. Vaccine 2008; 27:1040-9. [PMID: 19095032 DOI: 10.1016/j.vaccine.2008.11.099] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/20/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
Abstract
A vaccine comprising human papillomavirus type 16 (HPV16) L2, E6 and E7 in a single tandem fusion protein (termed TA-CIN) has the potential advantages of both broad cross-protection against HPV transmission through induction of L2 antibodies able to cross neutralize different HPV types and of therapy by stimulating T cell responses targeting HPV16 early proteins. However, patients vaccinated with TA-CIN alone develop weak HPV neutralizing antibody and E6/E7-specific T cell responses. Here we test TA-CIN formulated along with the adjuvant GPI-0100, a semi-synthetic quillaja saponin analog that was developed to promote both humoral and cellular immune responses. Subcutaneous administration to mice of TA-CIN (20 microg) with 50microg GPI-0100, three times at biweekly intervals, elicited high titer HPV16 neutralizing serum antibody, robust neutralizing titers for other HPV16-related types, including HPV31 and HPV58, and neutralized to a lesser extent other genital mucosatropic papillomaviruses like HPV18, HPV45, HPV6 and HPV11. Notably, vaccination with TA-CIN in GPI-0100 protected mice from cutaneous HPV16 challenge as effectively as HPV16 L1 VLP without adjuvant. Formulation of TA-CIN with GPI-0100 enhanced the production of E7-specific, interferon gamma producing CD8(+) T cell precursors by 20-fold. Vaccination with TA-CIN in GPI-0100 also completely prevented tumor growth after challenge with 5x10(4) HPV16-transformed TC-1 tumor cells, whereas vaccination with TA-CIN alone delayed tumor growth. Furthermore, three monthly vaccinations with 125 microg of TA-CIN and 1000 microg GPI-0100 were well tolerated by pigtail macaques and induced both HPV16 E6/E7-specific T cell responses and serum antibodies that neutralized all HPV types tested.
Collapse
|