1
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
2
|
Alhashimi M, Elkashif A, Sayedahmed EE, Mittal SK. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021; 13:1493. [PMID: 34452358 PMCID: PMC8402644 DOI: 10.3390/v13081493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Immunology and Infectious Disease, and Purdue University Center for Cancer Research, Department of Comparative Pathobiology, Purdue Institute for Inflammation, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.A.); (A.E.); (E.E.S.)
| |
Collapse
|
3
|
Khosa S, Bravo Araya M, Griebel P, Arsic N, Tikoo SK. Bovine Adenovirus-3 Tropism for Bovine Leukocyte Sub-Populations. Viruses 2020; 12:E1431. [PMID: 33322850 PMCID: PMC7763465 DOI: 10.3390/v12121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022] Open
Abstract
A number of characteristics including lack of virulence and the ability to grow to high titers, have made bovine adenovirus-3 (BAdV-3) a vector of choice for further development as a vaccine-delivery vehicle for cattle. Despite the importance of blood leukocytes, including dendritic cells (DC), in the induction of protective immune responses, little is known about the interaction between BAdV-3 and bovine blood leukocytes. Here, we demonstrate that compared to other leukocytes, bovine blood monocytes and neutrophils are significantly transduced by BAdV404a (BAdV-3, expressing enhanced yellow green fluorescent protein [EYFP]) at a MOI of 1-5 without a significant difference in the mean fluorescence of EYFP expression. Moreover, though expression of some BAdV-3-specific proteins was observed, no progeny virions were detected in the transduced monocytes or neutrophils. Interestingly, addition of the "RGD" motif at the C-terminus of BAdV-3 minor capsid protein pIX (BAV888) enhanced the ability of the virus to enter the monocytes without altering the tropism of BAdV-3. The increased uptake of BAV888 by monocytes was associated with a significant increase in viral genome copies and the abundance of EYFP and BAdV-3 19K transcripts compared to BAdV404a-transduced monocytes. Our results suggest that BAdV-3 efficiently transduces monocytes and neutrophils in the absence of viral replication. Moreover, RGD-modified capsid significantly increases vector uptake without affecting the initial interaction with monocytes.
Collapse
Affiliation(s)
- Sugandhika Khosa
- VIDO-InterVac., 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.K.); (M.B.A.); (P.G.); (N.A.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Maria Bravo Araya
- VIDO-InterVac., 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.K.); (M.B.A.); (P.G.); (N.A.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Philip Griebel
- VIDO-InterVac., 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.K.); (M.B.A.); (P.G.); (N.A.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Natasa Arsic
- VIDO-InterVac., 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.K.); (M.B.A.); (P.G.); (N.A.)
| | - Suresh K. Tikoo
- VIDO-InterVac., 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.K.); (M.B.A.); (P.G.); (N.A.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
4
|
Weaver EA. Dose Effects of Recombinant Adenovirus Immunization in Rodents. Vaccines (Basel) 2019; 7:vaccines7040144. [PMID: 31658786 PMCID: PMC6963634 DOI: 10.3390/vaccines7040144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Recombinant adenovirus type 5 (rAd) has been used as a vaccine platform against many infectious diseases and has been shown to be an effective vaccine vector. The dose of the vaccine varies significantly from study to study, making it very difficult to compare immune responses and vaccine efficacy. This study determined the immune correlates induced by serial dilutions of rAd vaccines delivered intramuscularly (IM) and intranasally (IN) to mice and rats. When immunized IM, mice had substantially higher antibody responses at the higher vaccine doses, whereas, the IN immunized mice showed a lower response to the higher rAd vaccine doses. Rats did not show dose-dependent antibody responses to increasing vaccine doses. The IM immunized mice and rats also showed significant dose-dependent T cell responses to the rAd vaccine. However, the T cell immunity plateaued in both mice and rats at 109 and 1010 vp/animal, respectively. Additionally, the highest dose of vaccine in mice and rats did not improve the T cell responses. A final vaccine analysis using a lethal influenza virus challenge showed that despite the differences in the immune responses observed in the mice, the mice had very similar patterns of protection. This indicates that rAd vaccines induced dose-dependent immune responses, especially in IM immunized animals, and that immune correlates are not as predictive of protection as initially thought.
Collapse
Affiliation(s)
- Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
5
|
Figueras-Gourgues S, Fraile L, Segalés J, Hernández-Caravaca I, López-Úbeda R, García-Vázquez FA, Gomez-Duran O, Grosse-Liesner B. Effect of Porcine circovirus 2 (PCV-2) maternally derived antibodies on performance and PCV-2 viremia in vaccinated piglets under field conditions. Porcine Health Manag 2019; 5:21. [PMID: 31516725 PMCID: PMC6727566 DOI: 10.1186/s40813-019-0128-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Nowadays, the most common presentation of PCV-2 is the subclinical infection in piglets after weaning. The success of PCV-2 vaccination is associated with the control of the clinical disease as well as the improvement of production parameters. In consequence, the objective of the present study was to analyse the effect of PCV-2 maternally derived antibody (MDA) levels on vaccine efficacy in piglets vaccinated at three weeks of age with a commercial PCV-2 subunit vaccine. The study was performed analysing a database with 6112 wean-to-slaughter piglets from 4 different European regions. Results Results showed that the use of the vaccine was able to decrease the PCV-2 viremia calculated as area under the curve (AUC = 60.29 ± 3.73), increase average daily weight gain (ADWG = 0.65 ± 0.01 kg/day) and reduce mortality (7%) in vaccinated piglets compared to non-vaccinated ones (AUC of 198.27 ± 6.14, 0.62 ± 0.01 kg/day and 11% respectively). The overall difference of ADWG between both groups was close to 30 g per day (p < 0.05), also when they were split for low and high levels of MDA titres. Moreover, the animals with the highest ADWG were observed in the group of piglets vaccinated with high or extremely high antibody titres (0.66 and 0.65 kg/day respectively). Considering only animals with extremely high antibody titres, both study groups performed similar, however there was a numerical difference of 10 g/day in favour of vaccinated piglets. Likewise, lack of correlation between ADWG and MDA was observed suggesting that no maternal antibody interference was present with the tested vaccine because the vaccinated animals grew faster compared to unvaccinated control animals, regardless of the level of maternal antibodies present at the time of vaccination. Conclusions The results of the present study demonstrated that the MDA against PCV-2 transferred through the colostrum intake has a protective effect against this viral infection. The vaccine used in the present study (Ingelvac CircoFLEX®) was effective when applied at three weeks of age and was not affected by the level of MDA at the time of vaccination.
Collapse
Affiliation(s)
- S Figueras-Gourgues
- 1Department of Physiology, Faculty of Veterinary, Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - L Fraile
- 3Departamento de Ciencia Animal, Universidad de Lleida, Lleida, Spain
| | - J Segalés
- 4Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma Barcelona, 08193 Bellaterra, Spain.,5UAB, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - I Hernández-Caravaca
- 1Department of Physiology, Faculty of Veterinary, Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - R López-Úbeda
- 6Department of Cell Biology and Histology, Faculty of Medicine, Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain.,2IMIB-Arrixaca, Murcia, Spain
| | - F A García-Vázquez
- 1Department of Physiology, Faculty of Veterinary, Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain.,2IMIB-Arrixaca, Murcia, Spain
| | - O Gomez-Duran
- 7Boehringer Ingelheim Vetmedica GmbH AH Swine, Ingelheim, Germany
| | - B Grosse-Liesner
- 7Boehringer Ingelheim Vetmedica GmbH AH Swine, Ingelheim, Germany
| |
Collapse
|
6
|
Ren J, Zhang L, Cheng P, Zhang F, Liu Z, Tikoo SK, Chen R, Du E. Generation of infectious clone of bovine adenovirus type I expressing a visible marker gene. J Virol Methods 2018; 261:139-146. [PMID: 30176304 DOI: 10.1016/j.jviromet.2018.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 08/02/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Bovine adenovirus type 3 (BAdV3) has been widely used as a vector for vaccine research and development, whereas BAdV1 biology and BAdV1-based vectored vaccine have been less frequently reported. We aimed to construct an infectious BAdV1 clone and explore the functions of BAdV1 genes. METHODS First, the infectious clone of pUCBAdV1 containing the full-length BAdV1 DNA and the recombinant plasmid pUCBAV1-EYFP expressing the marker gene EYFP were constructed. Then, the recombinant viruses BAdV101 and rBAdV1-EYFP were rescued. The stability of the exogenous EYFP gene was analyzed by continuous passage, PCR, and western blotting. Finally, the virus neutralization titer of the rescued viruses was evaluated. RESULTS The infectious clones of pUCBAdV1 and pUCBAV1-EYFP were constructed and the recombinant viruses BAdV101 and rBAdV1-EYFP were rescued successfully. Moreover, the results showed that the EYFP gene could be expressed continuously. In addition, the replication of rBAdV1-EYFP was less efficient than that of the wild-type virus wtBAdV1 in vitro, while the efficacy of BAdV101 replication was almost the same as that of wtBAdV1. Furthermore, the neutralization test showed that the neutralization titer of rBAdV1-EYFP was consistent with that of wtBAdV1. CONCLUSION To our knowledge, the infectious genome of pUCBAV1-EYFP expressing a visible marker gene EYFP was constructed for the first time, and the finding forms a basis for the development of BAdV1-based efficient vectored vaccine.
Collapse
Affiliation(s)
- Jingjing Ren
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Lu Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Peng Cheng
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Fan Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Zehui Liu
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Suresh K Tikoo
- VIDO-InteVac, University of Saskatchewan Saskatoon, Saskatchewan, Canada; Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rui Chen
- Shaanxi Novelever Bio-Technique Co. Ltd., China.
| | - Enqi Du
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China; Wuhan BioCom Pioneers Co. Ltd., China.
| |
Collapse
|
7
|
Said A, Wang W, Woldermariam T, Tikoo SK. Domains of bovine adenovirus-3 protein 22K involved in interacting with viral protein 52K and cellular importins α-5/α-7. Virology 2018; 522:209-219. [PMID: 30053654 DOI: 10.1016/j.virol.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022]
Abstract
The L6 region of bovine adenovirus-3 (BAdV-3) encodes unspliced and spliced proteins named 22K and 33K, respectively. Earlier, anti-22K sera detected two proteins of 42- and 37-kDa in infected cells and 42-kDa protein in transfected cells. Here, we demonstrate that 22K protein localizes to the nucleus of BAdV-3 infected or transfected cells. Analysis of mutant 22K proteins suggested that amino acids 231-250 of non-conserved C-terminus of 22K are required for nuclear localization. The nuclear import of 22K appears to utilize multiple importin (α-5 and α-7) of importin α/β nuclear import pathway. Mutational analysis of 22K identified four basic residues 238RRRK241, which apparently are essential for the nuclear localization of 22K. Our results suggest that the nuclear localization of 22K appear essential for virus replication and production of progeny BAdV-3. Furthermore, we demonstrate that N-terminus amino acid 35-65 conserved in 22K and 33K interact with 52K protein in BAdV-3 infected cells.
Collapse
Affiliation(s)
- Abdelrahman Said
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Wenxiu Wang
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3; Shandong Binzhou Animal Science & Veterinary Medicine Academy, 256600 Binzhou, Shandong, China
| | - Tekeleselassie Woldermariam
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3; Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Suresh K Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3; Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3; Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3.
| |
Collapse
|
8
|
Gaba A, Ayalew LE, Patel A, Kumar P, Tikoo SK. Bovine adenovirus‐3 protein VIII associates with eukaryotic initiation factor‐6 during infection. Cell Microbiol 2018. [DOI: 10.1111/cmi.12842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amit Gaba
- VIDO‐InterVacUniversity of Saskatchewan Saskatoon Saskatchewan Canada
- Veterinary MicrobiologyUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| | - Lisanework E. Ayalew
- VIDO‐InterVacUniversity of Saskatchewan Saskatoon Saskatchewan Canada
- Veterinary MicrobiologyUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| | - Amrutlal Patel
- VIDO‐InterVacUniversity of Saskatchewan Saskatoon Saskatchewan Canada
- Veterinary MicrobiologyUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| | - Pankaj Kumar
- VIDO‐InterVacUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| | - Suresh K. Tikoo
- VIDO‐InterVacUniversity of Saskatchewan Saskatoon Saskatchewan Canada
- Veterinary MicrobiologyUniversity of Saskatchewan Saskatoon Saskatchewan Canada
- Vaccinology & Immunotherapeutics Program, School of Public HealthUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
9
|
|
10
|
Hassan AO, Vemula SV, Sharma A, Bangari DS, Mishra KK, Mittal SK. 155R is a novel structural protein of bovine adenovirus type 3, but it is not essential for virus replication. J Gen Virol 2017; 98:749-753. [PMID: 28086071 DOI: 10.1099/jgv.0.000707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine adenovirus (AdV) type 3 (BAdV-3) E1 region shares functional homology with E1 of human AdV type C5. Sequence analysis of the BAdV-3 E1 region revealed the presence of a novel 155R ORF that is not observed in other AdVs, on the lower strand antiparallel to a portion of the E1B region. The 155R gene products in BAdV-3-infected cells were identified by Northern blot, reverse transcriptase PCR followed by sequencing and Western blot analysis using the155R-specific antibody. 155R seems to be a late protein and is present in purified BAdV-3 particles. Replication kinetics of BAdV mutants with either one (BAdV/155R/mt1) or two (BAdV/155R/mt2) stop codons in the 155R ORF were comparable to those of BAdV-3, indicating that 155R is not essential for virus replication in cell culture. These results suggest that 155R-deleted BAdV-3 vectors could be generated in a cell line that fully complements BAdV-3 E1 functions.
Collapse
Affiliation(s)
- Ahmed O Hassan
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Immunology, Inflammation and Infectious Diseases, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Sai V Vemula
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Present address: Merck Sharp and Dohme, West Point, PA, USA
| | - Anurag Sharma
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Present address: Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Dinesh S Bangari
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Present address: Department of Pathology, Sanofi Genzyme, 5 Mountain Road, Framingham, MA, USA
| | - Krishna K Mishra
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Present address: Department of Biology, Ivy Tech Community College, Lafayette, IN, USA
| | - Suresh K Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Immunology, Inflammation and Infectious Diseases, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
11
|
Ayalew LE, Patel AK, Gaba A, Islam A, Tikoo SK. Bovine Adenovirus-3 pVIII Suppresses Cap-Dependent mRNA Translation Possibly by Interfering with the Recruitment of DDX3 and Translation Initiation Factors to the mRNA Cap. Front Microbiol 2016; 7:2119. [PMID: 28082972 PMCID: PMC5186766 DOI: 10.3389/fmicb.2016.02119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Earlier, targeting of DDX3 by few viral proteins has defined its role in mRNA transport and induction of interferon production. This study was conducted to investigate the function of bovine adenovirus (BAdV)-3 pVIII during virus infection. Here, we provided evidence regarding involvement of DDX3 in cap dependent cellular mRNA translation and demonstrated that targeting of DDX3 by adenovirus protein VIII interfered with cap-dependent mRNA translation function of DDX3 in virus infected cells. Adenovirus late protein pVIII interacted with DDX3 in transfected and BAdV-3 infected cells. pVIII inhibited capped mRNA translation in vitro and in vivo by limiting the amount of DDX3 and eIF3. Diminished amount of DDX3 and eIFs including eIF3, eIF4E, eIF4G, and PABP were present in cap binding complex in BAdV-3 infected or pVIII transfected cells with no trace of pVIII in cap binding complex. The total amount of eIFs appeared similar in uninfected or infected cells as BAdV-3 did not appear to degrade eIFs. The co-immunoprecipitation experiments indicated the absence of direct interaction between pVIII and eIF3, eIF4E, or PABP. These data indicate that interaction of pVIII with DDX3 interferes with the binding of eIF3, eIF4E and PABP to the 5′ Cap. We conclude that DDX3 promotes cap-dependent cellular mRNA translation and BAdV-3 pVIII inhibits translation of capped cellular mRNA possibly by interfering with the recruitment of eIFs to the capped cellular mRNA.
Collapse
Affiliation(s)
- Lisanework E Ayalew
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, SKCanada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SKCanada
| | - Amrutlal K Patel
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, SKCanada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SKCanada
| | - Amit Gaba
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, SKCanada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SKCanada
| | - Azharul Islam
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, SK Canada
| | - Suresh K Tikoo
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, SKCanada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SKCanada; Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SKCanada
| |
Collapse
|
12
|
Abstract
Many nonhuman adenoviruses (AdVs) of simian, bovine, porcine, canine, ovine, murine, and fowl origin are being developed as gene delivery systems for recombinant vaccines and gene therapy applications. In addition to circumventing preexisting human AdV (HAdV) immunity, nonhuman AdV vectors utilize coxsackievirus-adenovirus receptor or other receptors for vector internalization, thereby expanding the range of cell types that can be targeted. Nonhuman AdV vectors also provide excellent platforms for veterinary vaccines. A specific nonhuman AdV vector when used in its species of origin could provide an excellent animal model for evaluating the vector efficacy and pathogenesis. These vectors are useful in prime–boost approaches with other AdV vectors or with other gene delivery systems including DNA immunization and viral or bacterial vectors. When multiple vector inoculations are required, nonhuman AdV vectors could supplement HAdV or other viral vectors.
Collapse
|
13
|
Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5-based Constructs. Mol Ther 2015; 24:6-16. [PMID: 26478249 PMCID: PMC4754553 DOI: 10.1038/mt.2015.194] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 12/23/2022] Open
Abstract
Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes.
Collapse
|
14
|
Recombinant bovine adenovirus-3 co-expressing bovine respiratory syncytial virus glycoprotein G and truncated glycoprotein gD of bovine herpesvirus-1 induce immune responses in cotton rats. Mol Biotechnol 2015; 57:58-64. [PMID: 25173687 DOI: 10.1007/s12033-014-9801-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
One of the impediments in the development of safe and cost effective vaccines for veterinary use has been the availability of appropriate delivery vehicle. We have chosen to develop and use bovine adenovirus (BAdV)-3 as vaccine delivery vector in cattle. Here, we describe the construction of recombinant E3 deleted BAdV-3 vectors expressing single vaccine antigen (BAV360; bovine respiratory syncytial virus G) or two vaccine antigens (BAV851; bovine herpesvirus-1gDt and bovine respiratory syncytial virus G). Recombinant proteins expressed by BAV360 or BAV851 were recognized by protein-specific monoclonal antibodies. Moreover, intranasal immunization of cotton rats with BAV360 (expressing a single vaccine antigen) or BAV851 (expressing two vaccine antigens) induced strong antigen-specific immune responses. These results suggest that single replication-competent BAdV-3 expressing vaccine antigens of two economically important respiratory pathogens of calves has potential to act as a feasible approach in the development of economically effective veterinary vaccines for cattle.
Collapse
|
15
|
Käser T, Cnudde T, Hamonic G, Rieder M, Pasternak JA, Lai K, Tikoo SK, Wilson HL, Meurens F. Porcine retinal cell line VIDO R1 and Chlamydia suis to modelize ocular chlamydiosis. Vet Immunol Immunopathol 2015; 166:95-107. [PMID: 26103808 DOI: 10.1016/j.vetimm.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/23/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023]
Abstract
Human ocular Chlamydia trachomatis infections can lead to trachoma, the major cause of infectious blindness worldwide. Trachoma control strategies are very helpful but logistically challenging, and a trachoma vaccine is needed but not available. Pigs are a valuable large animal model for various immunological questions and could facilitate the study of human ocular chlamydial infections. In addition, a recent study identified the zoonotic potential of Chlamydia suis, the natural pathogen of pigs. In terms of the One Health Initiative, understanding the host-pathogen-interactions and finding a vaccine for porcine chlamydia infections would also benefit human health. Thus, we infected the porcine retinal cell line VIDO R1 with C. suis and analyzed the chlamydial life cycle and the innate immune response of the infected cells. Our results indicate that C. suis completes its life cycle in VIDO R1 cells within 48 h, comparable to C. trachomatis in humans. C. suis infection of VIDO R1 cells led to increased levels of various innate immune mediators like pathogen recognition receptors, cytokines and chemokines including IL6, TNFα, and MMP9, also most relevant in human C. trachomatis infections. These results illustrate the first steps in the host-pathogen-interactions of ocular C. suis infections in pigs and show their similarity to C. trachomatis infections in humans, justifying further testing of pigs as an animal model for human trachoma.
Collapse
Affiliation(s)
- Tobias Käser
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Thomas Cnudde
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Glenn Hamonic
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Meghanne Rieder
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - J Alex Pasternak
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Ken Lai
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Suresh K Tikoo
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - François Meurens
- LUNAM Université, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307 Nantes, France; INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France.
| |
Collapse
|
16
|
Zhang P, Du E, Ma J, Wang W, Zhang L, Tikoo SK, Yang Z. A novel and simple method for rapid generation of recombinant porcine adenoviral vectors for transgene expression. PLoS One 2015; 10:e0127958. [PMID: 26011074 PMCID: PMC4444375 DOI: 10.1371/journal.pone.0127958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/22/2015] [Indexed: 01/02/2023] Open
Abstract
Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620 ± 49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes.
Collapse
Affiliation(s)
- Peng Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Enqi Du
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Jing Ma
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Wenbin Wang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Lu Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Suresh K. Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (ZY); (SKT)
| | - Zengqi Yang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
- * E-mail: (ZY); (SKT)
| |
Collapse
|
17
|
Bovine adenovirus-3 as a vaccine delivery vehicle. Vaccine 2014; 33:493-9. [PMID: 25498212 PMCID: PMC7115382 DOI: 10.1016/j.vaccine.2014.11.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 12/15/2022]
Abstract
The use of vaccines is an effective and relatively inexpensive means of controlling infectious diseases, which cause heavy economic losses to the livestock industry through animal loss, decreased productivity, treatment expenses and decreased carcass quality. However, some vaccines produced by conventional means are imperfect in many respects including virulence, safety and efficacy. Moreover, there are no vaccines for some animal diseases. Although genetic engineering has provided new ways of producing effective vaccines, the cost of production for veterinary use is a critical criterion for selecting the method of production and delivery of vaccines. The cost effective production and intrinsic ability to enter cells has made adenovirus vectors a highly efficient tool for delivery of vaccine antigens. Moreover, adenoviruses induce both humoral and cellular immune responses to expressed vaccine antigens. Since nonhuman adenoviruses are species specific, the development of animal specific adenoviruses as vaccine delivery vectors is being evaluated. This review summarizes the work related to the development of bovine adenovirus-3 as a vaccine delivery vehicle in animals, particularly cattle.
Collapse
|
18
|
Abstract
UNLABELLED Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens.
Collapse
|
19
|
Kulshreshtha V, Ayalew LE, Islam A, Tikoo SK. Conserved arginines of bovine adenovirus-3 33K protein are important for transportin-3 mediated transport and virus replication. PLoS One 2014; 9:e101216. [PMID: 25019945 PMCID: PMC4096500 DOI: 10.1371/journal.pone.0101216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/04/2014] [Indexed: 01/14/2023] Open
Abstract
The L6 region of bovine adenovirus (BAdV)-3 encodes a spliced protein designated 33K. The 33K specific sera detected five major proteins and three minor proteins in transfected or virus infected cells, which could arise by internal initiation of translation and alternative splicing. The 33K protein is predominantly localized to the nucleus of BAdV-3 infected cells. The 33K nuclear transport utilizes both classical importin-α/-β and importin-β dependent nuclear import pathways and preferentially binds to importin-α5 and transportin-3 receptors, respectively. Analysis of mutant 33K proteins demonstrated that amino acids 201–240 of the conserved C-terminus of 33K containing RS repeat are required for nuclear localization and, binding to both importin-α5 and transportin-3 receptors. Interestingly, the arginine residues of conserved RS repeat are required for binding to transportin-3 receptor but not to importin-α5 receptor. Moreover, mutation of arginines residues of RS repeat proved lethal for production of progeny virus. Our results suggest that arginines of RS repeat are required for efficient nuclear transport of 33K mediated by transportin-3, which appears to be essential for replication and production of infectious virion.
Collapse
Affiliation(s)
- Vikas Kulshreshtha
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lisanework E. Ayalew
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Azharul Islam
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suresh K. Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
20
|
Duncan M, Cranfield MR, Torano H, Kuete HM, Lee GP, Glenn A, Bruder JT, Rangel D, Brough DE, Gall JG. Adenoviruses isolated from wild gorillas are closely related to human species C viruses. Virology 2013; 444:119-23. [PMID: 23806387 DOI: 10.1016/j.virol.2013.05.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/26/2022]
Abstract
We have isolated and cultured three distinct adenoviruses from wild gorillas. Phylogenetic analysis grouped the viruses with human adenovirus species C based on DNA polymerase, hexon, and E4ORF6 genes. The three wild gorilla adenoviruses clustered with the other species C captive gorilla adenoviruses, forming a branch separate from human and chimpanzee/bonobo adenoviruses. Animal sera to the three newly isolated viruses did not cross-neutralize, demonstrating serological distinctiveness. The human adenovirus 5 fiber knob blocked infection, suggesting use of the Coxsackie and Adenovirus Receptor. These viruses may provide viral vectors with properties distinct from chimpanzee adenovirus and human adenovirus vectors.
Collapse
Affiliation(s)
- McVey Duncan
- GenVec, Inc., 65W. Watkins Mill Rd, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The development of gene-based vectors for immunization. Vaccines (Basel) 2013. [PMCID: PMC7151937 DOI: 10.1016/b978-1-4557-0090-5.00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Du E, Tikoo SK. Efficient replication and generation of recombinant bovine adenovirus-3 in nonbovine cotton rat lung cells expressing I-SceI endonuclease. J Gene Med 2011; 12:840-7. [PMID: 20963806 DOI: 10.1002/jgm.1505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The rigorous evaluation of recombinant bovine adenovirus (BAdV)-3 as a gene delivery vector requires quick and efficient method of isolating recombinants. This requires both a suitable cell line and an efficient method of rescuing recombinant BAdV-3. To facilitate rapid isolation of recombinant BAdV-3, we have developed an efficient system for generating recombinants using newly identified nonbovine cell line permissive for replication of BAdV-3. METHODS Nonbovine cotton rat lung (CRL) cells in comparison to Madin-Darby bovine kidney cells and VIDO R2 cells were analyzed for the production of progeny virus and DNA transfection efficiency. In addition, lentiviral expression system was used to generate stable nonbovine CRL cell line expressing endonuclease I-SceI as examined by western blotting. Transfection of this cell line with circular or linear plasmid containing full-length BAdV-3 genome was used to generate recombinant BAdV-3. RESULTS We demonstrate that nonbovine CRL cells are permissive for replication of BAdV-3 and can be efficiently transfected with plasmid DNA. Second, we constructed CRL cell line (VIDO DT1) expressing an intron-encoding endonuclease I-SceI. Finally, we demonstrate that transfection of VIDO DT1 cells with a circular plasmid containing recombinant BAdV-3 genome flanked by I-SceI recognition sites can efficiently rescue recombinant virus. CONCLUSIONS The use of circular molecular clones together with I-SceI endonuclease expressing, BAdV-3 permissive CRL cell line not only increased the viral genome transfection efficiency, but also reduced the viral rescue time and amount of DNA required for rescuing recombinant BAdV-3s.
Collapse
Affiliation(s)
- Enqi Du
- Vaccine and Infectious Disease Organization, University of Saskatchewan Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
23
|
Bru T, Salinas S, Kremer EJ. An update on canine adenovirus type 2 and its vectors. Viruses 2010; 2:2134-2153. [PMID: 21994722 PMCID: PMC3185752 DOI: 10.3390/v2092134] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 12/27/2022] Open
Abstract
Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors.
Collapse
Affiliation(s)
- Thierry Bru
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende Montpellier, 34293 France; E-Mails: (T.B.); (S.S.)
- Université de Montpellier I, 5 Bd Henri IV, 34000 Montpellier, France
- Université de Montpellier II, place Eugène Bataillon, 34090 Montpellier, France
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende Montpellier, 34293 France; E-Mails: (T.B.); (S.S.)
- Université de Montpellier I, 5 Bd Henri IV, 34000 Montpellier, France
- Université de Montpellier II, place Eugène Bataillon, 34090 Montpellier, France
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende Montpellier, 34293 France; E-Mails: (T.B.); (S.S.)
- Université de Montpellier I, 5 Bd Henri IV, 34000 Montpellier, France
- Université de Montpellier II, place Eugène Bataillon, 34090 Montpellier, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-467-613-372; Fax: +33-467-040-231
| |
Collapse
|
24
|
Abstract
Adenovirus (Ad) vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue). Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA) contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.
Collapse
|
25
|
Immunization of cattle with recombinant Newcastle disease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal and serum antibody responses and provides partial protection against BHV-1. Vaccine 2010; 28:3159-70. [PMID: 20189484 PMCID: PMC3428038 DOI: 10.1016/j.vaccine.2010.02.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/05/2010] [Accepted: 02/12/2010] [Indexed: 11/28/2022]
Abstract
Bovine herpesvirus-1 (BHV-1) is a major cause of respiratory tract diseases in cattle. Vaccination of cattle against BHV-1 is a high priority. A major concern of currently modified live BHV-1 vaccines is their ability to cause latent infection and subsequent reactivation resulting in many outbreaks. Thus, there is a need for alternative strategies. We generated two recombinant Newcastle disease viruses (NDVs) expressing the glycoprotein D (gD) of BHV-1 from an added gene. One recombinant, rLaSota/gDFL, expressed gD without any modification. The other recombinant, rLaSota/gDF, expressed a chimeric gD in which the ectodomain of gD was fused with the transmembrane domain and cytoplasmic tail of the NDV fusion F glycoprotein. Remarkably, the native gD expressed by rLaSota/gDFL virus was incorporated into the NDV virion 2.5-fold more efficiently than the native NDV proteins, whereas the chimeric gD was not detectably incorporated even though it was abundantly expressed on the infected cell surface. The expression of gD did not increase the virulence of the rNDV vectors in chickens. A single intranasal and intratracheal inoculation of calves with either recombinant NDV elicited mucosal and systemic antibodies specific to BHV-1, with the responses to rLaSota/gDFL being higher than those to rLaSota/gDF. Following challenge with BHV-1, calves immunized with the recombinant NDVs had lower titers and earlier clearance of challenge virus compared to the empty vector control, and reduced disease was observed with rLaSota/gDFL. Following challenge, the titers of serum antibodies specific to BHV-1 were higher in the animals immunized with the rNDV vaccines compared to the rNDV parent virus, indicating that the vaccines primed for secondary responses. Our data suggest that NDV can be used as a vaccine vector in bovines and that BHV-1 gD may be useful in mucosal vaccine against BHV-1 infection, but might require augmentation by a second dose or the inclusion of additional BHV-1 antigens.
Collapse
|
26
|
Zaiss AK, Machado HB, Herschman HR. The influence of innate and pre-existing immunity on adenovirus therapy. J Cell Biochem 2010; 108:778-90. [PMID: 19711370 DOI: 10.1002/jcb.22328] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recombinant adenovirus serotype 5 (Ad5) vectors have been studied extensively in preclinical gene therapy models and in a range of clinical trials. However, innate immune responses to adenovirus vectors limit effectiveness of Ad5 based therapies. Moreover, extensive pre-existing Ad5 immunity in human populations will likely limit the clinical utility of adenovirus vectors, unless methods to circumvent neutralizing antibodies that bind virus and block target cell transduction can be developed. Furthermore, memory T cell and humoral responses to Ad5 are associated with increased toxicity, raising safety concerns for therapeutic adenovirus vectors in immunized hosts. Most preclinical studies have been performed in naïve animals; although pre-existing immunity is among the greatest hurdles for adenovirus therapies, it is also one of the most neglected experimentally. Here we summarize findings using adenovirus vectors in naïve animals, in Ad-immunized animals and in clinical trials, and review strategies proposed to overcome innate immune responses and pre-existing immunity.
Collapse
Affiliation(s)
- Anne K Zaiss
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
27
|
Corredor JC, Nagy E. The non-essential left end region of the fowl adenovirus 9 genome is suitable for foreign gene insertion/replacement. Virus Res 2010; 149:167-74. [PMID: 20132849 DOI: 10.1016/j.virusres.2010.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 11/26/2022]
Abstract
The goals of this study were to demonstrate that a non-essential region at the left end of the fowl adenovirus 9 (FAdV-9) genome could be used to generate recombinant viruses, examine their in vitro growth characteristics and determine their ability to transduce non-avian cells. Three FAdV-9 vectors (rFAdV-9s) were generated carrying the enhanced-green fluorescent protein (EGFP) gene: FAdV-9inEGFP, FAdV-9 Delta 1-EGFP and FAdV-9 Delta 4-EGFP. FAdV-9inEGFP carried the EGFP cassette inserted into the non-essential region without deletion resulting in an increase of the genome size to 103.7% of the wild-type. FAdV-9 Delta 1-EGFP and FAdV-9 Delta 4-EGFP (rFAdV-9 Delta s) carried the EGFP cassette replacing the non-essential sequences at nucleotides 1194-2342 and 491-2782, respectively. All rFAdV-9s had wild-type growth kinetics and plaque morphology. The rFAdV-9 Delta s replicated in CH-SAH cells with the same titers as the wild-type virus. The FAdV-9inEGFP titers were approximately 1 log lower than those of rFAdV-9 Delta s and wt FAdV-9 at 36 and 48 h post-infection (h.p.i.). EGFP was expressed in avian and mammalian cells infected with rFAdV-9s. EGFP expression, based on spectrofluorometry, was significantly higher in chicken hepatoma cells infected with FAdV-9inEGFP than in those with rFAdV-9 Delta s at 18 and 24h.p.i, suggesting a functional role of some or all non-essential ORFs on foreign gene expression. This study demonstrated the suitability of the non-essential region as an insertion/replacement site for foreign genes to generate FAdV-9-based vectors that can be applied as recombinant vaccines for poultry or gene delivery vehicles for mammalian systems.
Collapse
Affiliation(s)
- Juan Carlos Corredor
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1 Canada
| | | |
Collapse
|
28
|
Abstract
The antiquated system used to manufacture the currently licensed inactivated influenza virus vaccines would not be adequate during an influenza virus pandemic. There is currently a search for vaccines that can be developed faster and provide superior, long-lasting immunity to influenza virus as well as other highly pathogenic viruses and bacteria. Recombinant vectors provide a safe and effective method to elicit a strong immune response to a foreign protein or epitope. This review explores the advantages and limitations of several different vectors that are currently being tested, and highlights some of the newer viruses being used as recombinant vectors.
Collapse
|
29
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
30
|
Patel JR, Heldens JGM. Immunoprophylaxis against important virus disease of horses, farm animals and birds. Vaccine 2009; 27:1797-1810. [PMID: 19402200 PMCID: PMC7130586 DOI: 10.1016/j.vaccine.2008.12.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/24/2008] [Accepted: 12/18/2008] [Indexed: 01/31/2023]
Abstract
Since the refinement of tissue culture techniques for virus isolation and propagation from the mid 1960s onwards, veterinary virology has received much academic and industrial interest, and has now become a major global industry largely centred on vaccine development against economically important virus diseases of food animals. Bio-tech approaches have been widely used for improved vaccines development. While many viral diseases are controlled through vaccination, many still lack safe and efficacious vaccines. Additional challenges faced by academia, industry and governments are likely to come from viruses jumping species and also from the emergence of virulent variants of established viruses due to natural mutations. Also viral ecology is changing as the respective vectors adapt to new habitats as has been shown in the recent incursion by bluetongue virus into Europe. In this paper the current vaccines for livestock, horses and birds are described in a species by species order. The new promising bio-tech approaches using reverse genetics, non-replicating viral vectors, alpha virus vectors and genetic vaccines in conjunction with better adjuvants and better ways of vaccine delivery are discussed as well
Collapse
Affiliation(s)
- J R Patel
- JAS Biologicals Limited, The Centre for Veterinary Science, Madingley Road, Cambridge, CB3 0ES, UK.
| | | |
Collapse
|
31
|
Sharma A, Li X, Bangari DS, Mittal SK. Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143:184-94. [PMID: 19647886 PMCID: PMC2903974 DOI: 10.1016/j.virusres.2009.02.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/15/2009] [Indexed: 12/14/2022]
Abstract
Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
32
|
Comparative analysis of vector biodistribution, persistence and gene expression following intravenous delivery of bovine, porcine and human adenoviral vectors in a mouse model. Virology 2009; 386:44-54. [PMID: 19211122 DOI: 10.1016/j.virol.2009.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/03/2008] [Accepted: 01/09/2009] [Indexed: 11/23/2022]
Abstract
Nonhuman adenoviruses including bovine adenovirus serotype 3 (BAd3) and porcine adenovirus serotype 3 (PAd3) can circumvent pre-existing immunity against human adenovirus serotype 5 (HAd5) and are being developed as alternative vectors for gene delivery. To assess the usefulness of these vectors for in vivo gene delivery, we compared biodistribution, persistence, state of vector genome, and transgene and vector gene expression by replication-defective BAd3 and PAd3 vectors with those of HAd5 vector in a FVB/n mouse model following intravenous inoculation. BAd3 vector efficiently transduced the heart, kidney and lung in addition to the liver and spleen and persisted for a longer duration compared to PAd3 or HAd5 vectors. Biodistribution of PAd3 vector was comparable to that of HAd5 vector but showed more rapid vector clearance. Only linear episomal forms of BAd3, PAd3, and HAd5 vector genomes were detected. All three vectors efficiently expressed the green fluorescent protein (GFP) transgene proportionate to the vector genome copy number in various tissues. Furthermore, leaky expression of vector genes, both the early (E4) and the late (hexon) was observed in all three vectors and gradually declined with time. These results suggest that BAd3 and PAd3 vectors could serve as an alternative or supplement to HAd5 for gene delivery applications.
Collapse
|
33
|
First step in characterization of cis-acting sequences involved in fowl adenovirus 1 (CELO) packaging and its effect on the development of a helper-dependent vector strategy. Virus Genes 2008; 38:46-55. [PMID: 18825496 DOI: 10.1007/s11262-008-0281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Adenovirus-based vectors are widely developed for potential utilization as vectors in vaccine and gene therapy strategies. We focused on developing a helper-dependent adenoviral (HD-Ad) vector for the potential use of CELO, a member of the Aviadenovirus genus, in avian species vaccination. Our aim was to localize sequences which could play an essential role in CELO genome encapsidation and, when deleted, was unable to produce viruses to develop a helper CELO virus. A panel of 6 mutants with deletions between nt 80 and 350 of the CELO genome was constructed and characterized for its ability to produce viable virus. To develop a helper-dependent adenoviral vector derived from CELO, a helper virus was developed by inserting loxP sequences around the region containing the identified putative packaging sequences. A LMH (Leghorn Male Hepatocarcinoma) cell line expressing Cre recombinase was developed to allow the excision of this region. We demonstrated that the region from nt 200 to 250 was important and the region from nt 250 to 300 at the left end of the CELO genome was essential for virus encapsidation. We also showed that the loxP-flanked region was efficiently removed in a Cre expressing cell line to produce a candidate helper virus.
Collapse
|
34
|
Kixmöller M, Ritzmann M, Eddicks M, Saalmüller A, Elbers K, Fachinger V. Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine 2008; 26:3443-51. [DOI: 10.1016/j.vaccine.2008.04.032] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/01/2008] [Accepted: 04/15/2008] [Indexed: 11/17/2022]
|
35
|
Schoenly KA, Weiner DB. Human immunodeficiency virus type 1 vaccine development: recent advances in the cytotoxic T-lymphocyte platform "spotty business". J Virol 2008; 82:3166-80. [PMID: 17989174 PMCID: PMC2268479 DOI: 10.1128/jvi.01634-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kimberly A Schoenly
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
36
|
Nabel GJ. The development of gene-based vectors for immunization. Vaccines (Basel) 2008. [PMCID: PMC7310921 DOI: 10.1016/b978-1-4160-3611-1.50066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
37
|
The effect of vaccination against porcine circovirus type 2 in pigs suffering from porcine respiratory disease complex. Vaccine 2007; 26:1488-99. [PMID: 18304705 DOI: 10.1016/j.vaccine.2007.11.053] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 11/16/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
A field study was conducted to investigate the effect of vaccination against porcine circovirus type 2 (PCV2) in pigs suffering from porcine respiratory disease complex (PRDC). A total of 1542 pigs were allocated randomly into two treatment groups at approximately 20 days of age. Groups received either a Baculovirus-expressed recombinant PCV2 Open Reading Frame (ORF) 2 vaccine or placebo by single intramuscular injection. Median onset of PCV2 viraemia and respiratory signs occurred when animals were 18 weeks old. Vaccination reduced the mean PCV2 viral load by 55-83% (p < 0.0001) and the mean duration of viraemia by 50% (p < 0.0001). During the period of study (from 3 to 25 weeks of age) vaccinated animals exhibited a reduced mortality rate (6.63% vs. 8.67%, difference -2.04%; p = 0.1507), an improved average daily weight gain (649 g/day vs. 667 g/day; difference +18 g/day; p < 0.0001) and a reduced time to market (164.8 days vs. 170.4 days; difference -5.6 days; p < 0.0001). The effects on performance were greatest in the 8-week period between the onset of PCV2 viraemia and the end of finishing. These data demonstrate that vaccination against PCV2 alone can significantly improve the overall growth performance of pigs in a multi-factorial, late occurring disease complex such as PRDC.
Collapse
|
38
|
Yang TC, Millar JB, Grinshtein N, Bassett J, Finn J, Bramson JL. T-cell immunity generated by recombinant adenovirus vaccines. Expert Rev Vaccines 2007; 6:347-56. [PMID: 17542750 DOI: 10.1586/14760584.6.3.347] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recombinant adenovirus vaccines show great promise for generating protective immunity against infectious agents and tumors. Our studies have identified several interesting biological features of the adenovirus vector that influence the T-cell response. Notably, we have demonstrated that following immunization with adenovirus vaccines, the transgene antigen remains available to the system for a longer period than would be expected, resulting in a T-cell population with a sustained effector phenotype. The implications of these observations with regards to the utility of adenovirus vaccines are discussed.
Collapse
Affiliation(s)
- Teng Chih Yang
- Center for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Xing L, Tikoo SK. Bovine adenovirus-3 E1A coding region contain cis-acting DNA packaging motifs. Virus Res 2007; 130:315-20. [PMID: 17683823 DOI: 10.1016/j.virusres.2007.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/19/2007] [Accepted: 06/20/2007] [Indexed: 11/25/2022]
Abstract
To elucidate further the regulation of E1 gene transcription and viral DNA packaging, we constructed and analyzed mutant BAdV-3s in which the deletion of sequences between left ITR and E1A ATG codon was combined with the functional blocking of E1A gene expression by introducing deletion mutations into E1A open reading frame (ORF). The results suggest that E1A coding region contains cis-acting packaging motifs for efficient encapsidation of BAdV-3 DNA into preformed empty capsids. In addition, E1A is not required for the transcription of E1B.
Collapse
Affiliation(s)
- Li Xing
- Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | |
Collapse
|
40
|
Abbink P, Lemckert AAC, Ewald BA, Lynch DM, Denholtz M, Smits S, Holterman L, Damen I, Vogels R, Thorner AR, O'Brien KL, Carville A, Mansfield KG, Goudsmit J, Havenga MJE, Barouch DH. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J Virol 2007; 81:4654-63. [PMID: 17329340 PMCID: PMC1900173 DOI: 10.1128/jvi.02696-06] [Citation(s) in RCA: 385] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.
Collapse
Affiliation(s)
- Peter Abbink
- Research East Room 213, Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Muylkens B, Thiry J, Kirten P, Schynts F, Thiry E. Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis. Vet Res 2007; 38:181-209. [PMID: 17257569 DOI: 10.1051/vetres:2006059] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/15/2006] [Indexed: 12/12/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), classified as an alphaherpesvirus, is a major pathogen of cattle. Primary infection is accompanied by various clinical manifestations such as infectious bovine rhinotracheitis, abortion, infectious pustular vulvovaginitis, and systemic infection in neonates. When animals survive, a life-long latent infection is established in nervous sensory ganglia. Several reactivation stimuli can lead to viral re-excretion, which is responsible for the maintenance of BoHV-1 within a cattle herd. This paper focuses on an updated pathogenesis based on a molecular characterization of BoHV-1 and the description of the virus cycle. Special emphasis is accorded to the impact of the latency and reactivation cycle on the epidemiology and the control of BoHV-1. Several European countries have initiated BoHV-1 eradication schemes because of the significant losses incurred by disease and trading restrictions. The vaccines used against BoHV-1 are described in this context where the differentiation of infected from vaccinated animals is of critical importance to achieve BoHV-1 eradication.
Collapse
Affiliation(s)
- Benoît Muylkens
- Virology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, B43b, 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
42
|
Abstract
Conserved motifs of eukaryotic gene promoters, such as TATA box and CAAT box sequences, of E1A of human adenoviruses (e.g human adenovirus 5) lie between the left inverted terminal repeat (ITR) and the ATG of E1A. However, analysis of the left end of the bovine adenovirus 3 (BAdV-3) genome revealed that the conserved sequences of the E1A promoter are present only in the ITR. As such, the promoter activity of ITR was tested in the context of a BAdV-3 vector or a plasmid-based system. Different regions of the left end of the BAdV-3 genome initiated transcription of the red fluorescent protein gene in a plasmid-based system. Moreover, BAdV-3 mutants in which the open reading frame of E1A was placed immediately downstream of the ITR produced E1A transcript and could be propagated in non-E1A-complementing Madin-Darby bovine kidney cells. These results suggest that the left ITR contains the sole BAdV-3 E1A promoter.
Collapse
Affiliation(s)
- Li Xing
- Vectored Vaccine Program, Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Suresh Kumar Tikoo
- Vectored Vaccine Program, Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
43
|
Stevenson M, Boos E, Herbert C, Hale A, Green N, Lyons M, Chandler L, Ulbrich K, van Rooijen N, Mautner V, Fisher K, Seymour L. Chick embryo lethal orphan virus can be polymer-coated and retargeted to infect mammalian cells. Gene Ther 2006; 13:356-68. [PMID: 16355117 DOI: 10.1038/sj.gt.3302655] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Non-human adenovirus vectors have attractive immunological properties for gene therapy but are frequently restricted by inefficient transduction of human target cells. Using chicken embryo lethal orphan (CELO) virus, we employed a nongenetic mechanism of polymer coating and retargeting with basic fibroblast growth factor (bFGF-pc-CELOluc), a strategy that permits efficient tropism modification of human adenovirus. bFGF-pc-CELOluc showed efficient uptake and transgene expression in chick embryo fibroblasts (CEF), and increased levels of binding and internalization in a variety of human cell lines. Transgene expression was also greater than unmodified CELOluc in PC-3 human prostate cells, although the specific activity (RLU per internalized viral genome) was decreased. In CEF, the specific activity of bFGF-pc-CELOluc was considerably higher than in the human prostate cell line PC-3. Retargeted virus was fully resistant to inhibition by human serum with known adenovirus-neutralizing activity in vitro, while in mice CELOluc was cleared less rapidly from the blood than Adluc following i.v. administration in the presence of adenovirus neutralizing serum. Polymer coating and retargeting with bFGF further reduced rates of clearance for both viruses, suggesting protection against both neutralizing and opsonizing factors. The data indicate that CELO virus may be retargeted to infect human cells via alternative, potentially disease-specific, receptors and resist the effects of pre-existing humoral immunity.
Collapse
Affiliation(s)
- M Stevenson
- Department of Clinical Pharmacology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Patel AK, Tikoo SK. 293T cells expressing simian virus 40 T antigen are semi-permissive to bovine adenovirus type 3 infection. J Gen Virol 2006; 87:817-821. [PMID: 16528030 DOI: 10.1099/vir.0.81305-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cells do not normally support productive bovine adenovirus type 3 (BAdV-3) infection. Here, the outcome of BAdV-3 infection of both 293 cells and 293 cells modified to constitutively express the simian virus 40 (SV-40) T antigen (293T cells) was studied. Whereas BAdV-3 could efficiently infect 293 cells, there was a block in virus DNA replication, late-gene expression and virus production. In contrast, replication and efficient virus production could be detected in 293T cells infected with BAdV-3 or transfected with a replication-competent genomic BAdV-3 clone (pFBAV304). Early-phase gene expression was detected readily in both BAdV-3-infected 293 and 293T cells. However, the progression to efficient viral DNA synthesis and late-phase protein synthesis occurred only in 293T cells. Electron microscopy and virus growth kinetics demonstrated the formation of progeny virus in 293T cells. The SV-40 T antigens act to overcome a barrier in BAdV-3 DNA replication in 293 cells.
Collapse
Affiliation(s)
- Amrutlal K Patel
- Vectored Vaccine Program, Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Suresh K Tikoo
- Vectored Vaccine Program, Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
45
|
Sakurai F, Kawabata K, Koizumi N, Inoue N, Okabe M, Yamaguchi T, Hayakawa T, Mizuguchi H. Adenovirus serotype 35 vector-mediated transduction into human CD46-transgenic mice. Gene Ther 2006; 13:1118-26. [PMID: 16541121 DOI: 10.1038/sj.gt.3302749] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously demonstrated that systemic administration of adenovirus serotype 35 (Ad35) vectors to mice does not mediate efficient transduction in organs, probably because expression of the mouse analog of the subgroup B Ad receptor, human CD46 (membrane cofactor protein), is limited to the testis. Here, we describe the in vitro and in vivo transduction characteristics of Ad35 vectors by using homozygous and hemizygous human CD46-transgenic (CD46TG) mice, which ubiquitously express human CD46. An Ad35 vector more efficiently transduced the primary dendritic cells and macrophages prepared from CD46TG mice than those from wild-type mice. In vivo transduction experiments demonstrated that CD46TG mice are more susceptible to Ad35 vector-mediated in vivo transduction than are wild-type mice. In particular, homozygous CD46TG mice, which express higher levels of CD46 in the organs than hemizygous CD46TG mice, tend to exhibit higher transduction efficiencies after intraperitoneal administration than hemizygous CD46TG mice. Intraperitoneal administration of Ad35 vectors resulted in efficient transduction into the mesothelial cells of the peritoneal organs in homozygous CD46TG mice. These results indicate that an Ad35 vector recognizes human CD46 as a cellular receptor in CD46TG mice. However, the in vivo transduction efficiencies of Ad35 vectors in CD46TG mice are much lower than those of conventional Ad5 vectors in wild-type mice.
Collapse
Affiliation(s)
- F Sakurai
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines.
Collapse
Affiliation(s)
- Dan H Barouch
- Research East Room 113, Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
47
|
Nakayama M, Both GW, Banizs B, Tsuruta Y, Yamamoto S, Kawakami Y, Douglas JT, Tani K, Curiel DT, Glasgow JN. An adenovirus serotype 5 vector with fibers derived from ovine atadenovirus demonstrates CAR-independent tropism and unique biodistribution in mice. Virology 2006; 350:103-15. [PMID: 16516257 DOI: 10.1016/j.virol.2006.01.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 12/23/2005] [Accepted: 01/26/2006] [Indexed: 01/09/2023]
Abstract
Many clinically important tissues are refractory to adenovirus (Ad) infection due to negligible levels of the primary Ad5 receptor the coxsackie and adenovirus receptor CAR. Thus, development of novel CAR-independent Ad vectors should lead to therapeutic gain. Ovine atadenovirus type 7, the prototype member of genus Atadenovirus, efficiently transduces CAR-deficient human cells in vitro, and systemic administration of OAdV is not associated with liver sequestration in mice. The penton base of OAdV7 does not contain an RGD motif, implicating the long-shafted fiber molecule as a major structural dictate of OAdV tropism. We hypothesized that replacement of the Ad5 fiber with the OAdV7 fiber would result in an Ad5 vector with CAR-independent tropism in vitro and liver "detargeting" in vivo. An Ad5 vector displaying the OAdV7 fiber was constructed (Ad5Luc1-OvF) and displayed CAR-independent, enhanced transduction of CAR-deficient human cells. When administered systemically to C57BL/6 mice, Ad5Luc1-OvF reporter gene expression was reduced by 80% in the liver compared to Ad5 and exhibited 50-fold higher gene expression in the kidney than the control vector. To our knowledge, this is the first report of a fiber-pseudotyped Ad vector that simultaneously displays decreased liver uptake and a distinct organ tropism in vivo. This vector may have future utility in murine models of renal disease.
Collapse
Affiliation(s)
- Masaharu Nakayama
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, 901 19th Street South BMR2-572, Birmingham, AL 35294-2180, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang TC, Millar J, Groves T, Grinshtein N, Parsons R, Takenaka S, Wan Y, Bramson JL. The CD8+T Cell Population Elicited by Recombinant Adenovirus Displays a Novel Partially Exhausted Phenotype Associated with Prolonged Antigen Presentation That Nonetheless Provides Long-Term Immunity. THE JOURNAL OF IMMUNOLOGY 2005; 176:200-10. [PMID: 16365411 DOI: 10.4049/jimmunol.176.1.200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously reported that the CD8+ T cell response elicited by recombinant adenovirus vaccination displayed a delayed contraction in the spleen. In our current study, we demonstrate that this unusual kinetic is a general phenomenon observed in multiple tissues. Phenotypic analysis of transgene-specific CD8+ T cells present 30 days postimmunization with recombinant adenovirus revealed a population with evidence of partial exhaustion, suggesting that the cells had been chronically exposed to Ag. Although Ag expression could no longer be detected 3 wk after immunization, examination of Ag presentation within the draining lymph nodes demonstrated that APCs were loaded with Ag peptide for at least 40 days postimmunization, suggesting that Ag remains available to the system for a prolonged period, although the exact source of this Ag remains to be determined. At 60 days postimmunization, the CD8+ T cell population continued to exhibit a phenotype consistent with partially exhausted effector memory cells. Nonetheless, these CD8+ T cells conferred sterilizing immunity against virus challenge 7-12 wk postimmunization, suggesting that robust protective immunity can be provided by CD8+ T cells with an exhausted phenotype. These data demonstrate that prolonged exposure to Ag may not necessarily impair protective immunity and prompt a re-evaluation of the impact of persistent exposure to Ag on T cell function.
Collapse
Affiliation(s)
- Teng-Chih Yang
- Center for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2005; 24:849-62. [PMID: 16297508 PMCID: PMC1462960 DOI: 10.1016/j.vaccine.2005.08.101] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/29/2005] [Accepted: 08/25/2005] [Indexed: 12/30/2022]
Abstract
Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine-delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination.
Collapse
Affiliation(s)
| | - Suresh K. Mittal
- Corresponding author. Tel.: +1 765 496 2894; fax: +1 765 494 9830.
| |
Collapse
|
50
|
Lemckert AAC, Sumida SM, Holterman L, Vogels R, Truitt DM, Lynch DM, Nanda A, Ewald BA, Gorgone DA, Lifton MA, Goudsmit J, Havenga MJE, Barouch DH. Immunogenicity of heterologous prime-boost regimens involving recombinant adenovirus serotype 11 (Ad11) and Ad35 vaccine vectors in the presence of anti-ad5 immunity. J Virol 2005; 79:9694-701. [PMID: 16014931 PMCID: PMC1181575 DOI: 10.1128/jvi.79.15.9694-9701.2005] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. A potential solution to this problem is to utilize rAd vaccine vectors derived from rare Ad serotypes such as Ad35 and Ad11. We have previously reported that rAd35 vectors were immunogenic in the presence of anti-Ad5 immunity, but the immunogenicity of heterologous rAd prime-boost regimens and the extent that cross-reactive anti-vector immunity may limit this approach have not been fully explored. Here we assess the immunogenicity of heterologous vaccine regimens involving rAd5, rAd35, and novel rAd11 vectors expressing simian immunodeficiency virus Gag in mice both with and without anti-Ad5 immunity. Heterologous rAd prime-boost regimens proved significantly more immunogenic than homologous regimens, as expected. Importantly, all regimens that included rAd5 were markedly suppressed by anti-Ad5 immunity. In contrast, rAd35-rAd11 and rAd11-rAd35 regimens elicited high-frequency immune responses both in the presence and in the absence of anti-Ad5 immunity, although we also detected clear cross-reactive Ad35/Ad11-specific humoral and cellular immune responses. Nevertheless, these data suggest the potential utility of heterologous rAd prime-boost vaccine regimens using vectors derived from rare human Ad serotypes.
Collapse
|