1
|
Kobayashi D, Hiono T, Arakawa H, Kaji H, Ohkawara A, Ichikawa T, Ban H, Isoda N, Sakoda Y. Deglycosylation and truncation in the neuraminidase stalk are functionally equivalent in enhancing the pathogenicity of a high pathogenicity avian influenza virus in chickens. J Virol 2025; 99:e0147824. [PMID: 39950775 PMCID: PMC11915841 DOI: 10.1128/jvi.01478-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/21/2024] [Indexed: 03/19/2025] Open
Abstract
Influenza A viruses with fewer amino acids in the neuraminidase (NA) stalk domain are primarily isolated from chickens rather than wild ducks, indicating that a shortened NA stalk is considered an adaptation marker of avian influenza viruses (AIVs) to chickens. Experimental passages of an H7N7 nonpathogenic AIV (rgVac2-P0) in chickens resulted in a highly pathogenic variant (Vac2-P3L4) with a 34-amino-acid deletion in the NA stalk, encompassing five potential N-glycosylation sites. To investigate how amino acid truncation and deglycosylation in the NA stalk contribute to increased pathogenicity, a virus with glycosylation-deficient mutations at these sites (rgVac2-P3L4/P0NAΔGlyco) was constructed. Contrary to expectations, chickens inoculated with rgVac2-P3L4/P0NAΔGlyco exhibited variable clinical outcomes, attributed to the genetic instability of the virus. A single mutation stabilized the virus, and the mutant (rgVac2-P3L4/P0NAΔGlyco-Y65H) resulted in higher pathogenicity compared with a virus with restored glycosylation (rgVac2-P3L4/P0NA-Y65H). Glycan occupancy analysis revealed 3-4 glycans at the five potential sites. In functional analysis, glycosylation-deficient mutants, similar to the short-stalk NA virus, showed significantly reduced erythrocyte elution activity. Additionally, mutational analysis indicated variable contributions of N-glycans to elution activity across the sites. Moreover, the functionally most contributing sites of the five potential N-glycosylation motifs were consistently included in the amino acid deletions of the stalk-truncated NA in N7-subtyped field isolates, despite the varying truncation position or length. These findings suggest that the loss of glycosylation is functionally equivalent to a reduction in amino acids, and it plays a crucial role in enhancing pathogenicity in chickens and affecting NA function.IMPORTANCEAvian influenza poses significant economic challenges to the poultry industry and presents potential risks to human health. Understanding the molecular mechanisms that facilitate the emergence of chicken-adapted avian influenza viruses (AIVs) from non-pathogenic duck-origin influenza viruses is crucial for improving AIV monitoring systems in poultry and controlling this disease. Amino acid deletions in the neuraminidase (NA) stalk domain serve as one of the molecular markers for AIV adaptation to Galliformes. This study highlights the critical role of N-glycosylation in the NA stalk domain in the pathogenesis of high pathogenicity avian influenza viruses in chickens. The findings propose a novel theory that the loss of glycosylation at the NA stalk domain, rather than a reduction in stalk length, is responsible for both NA function and increased virus pathogenicity in chickens.
Collapse
Affiliation(s)
- Daiki Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiromu Arakawa
- Systems Biology Division, Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Hiroyuki Kaji
- Systems Biology Division, Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Ayako Ohkawara
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takaya Ichikawa
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hinako Ban
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Xu N, Chen Y, Wu Y, Guo Y, Wang C, Qin T, Chen S, Peng D, Liu X. The evolution of hemagglutinin-158 and neuraminidase-88 glycosylation sites modulates antigenicity and pathogenicity of clade 2.3.2.1 H5N1 avian influenza viruses. Vet Microbiol 2025; 300:110333. [PMID: 39647217 DOI: 10.1016/j.vetmic.2024.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Clade 2.3.2.1 of the H5N1 avian influenza virus (AIV) evolved into several subclades. However, the effect of glycosylation on the biological characteristics of hemagglutinin (HA) and/or neuraminidase (NA) from H5N1 AIVs remains unclear. Here, we determined that the global prevalence of clade 2.3.2.1 H5N1 AIVs with deglycosylated residue 158 on HA (HA158-) and glycosylated residue 88 on NA (NA88+) were predominant via multiple sequence analysis. The deglycosylation of residue on NA 88 (NA88-) was observed in clade 2.3.2.1a (new) and clade 2.3.2.1e H5N1 AIVs. Interestingly, NA88- was coupled with the acquisition of 158 glycosylation sites on HA (HA158+) in clade 2.3.2.1e H5N1 AIVs from China, and clade 2.3.2.1a (new) H5N1 AIVs exhibiting the HA158-NA88- pattern were predominant in Bangladesh. Meanwhile, the temporal distribution of strain HA158+ NA88- was highly consistent with the implementation of Re-6 vaccine in China. The recombinant H5N1 AIVs constructed using a reverse genetic system showed that the acquisition of the HA158 glycosylation site facilitated viral evasion from Re-6 antisera, and the virus lacking glycosylation sites at HA158 and NA88 resulted in reduced NA activity, replication in mammalian cells, and pathogenicity in both chickens and mice compared to that of the viruses with alternative glycosylation patterns. Therefore, the acquisition of HA158+ in clade 2.3.2.1e H5N1 AIVs enables evasion of Re-6 vaccination pressure, and the virulence of clade 2.3.2.1 H5N1 AIVs is modulated by the absence of glycosylation sites at HA158 and NA88. Our finding highlighted the importance of epidemiological surveillance and timely updating vaccines of H5 AIVs.
Collapse
Affiliation(s)
- Nuo Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yuwei Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yijie Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Chenrong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
3
|
Moatasim Y, Aboulhoda BE, Gomaa M, El Taweel A, Kutkat O, Kamel MN, El Sayes M, GabAllah M, Elkhrsawy A, AbdAllah H, Kandeil A, Ali MA, Kayali G, El-Shesheny R. Genetic and pathogenic potential of highly pathogenic avian influenza H5N8 viruses from live bird markets in Egypt in avian and mammalian models. PLoS One 2024; 19:e0312134. [PMID: 39471134 PMCID: PMC11521303 DOI: 10.1371/journal.pone.0312134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024] Open
Abstract
Since its first isolation from migratory birds in Egypt in 2016, highly pathogenic avian influenza (HPAI) H5N8 has caused several outbreaks among domestic poultry in various areas of the country affecting poultry health and production systems. However, the genetic and biological properties of the H5N8 HPAI viruses have not been fully elucidated yet. In this study, we aimed to monitor the evolution of circulating H5N8 viruses and identify the pathogenicity and mammalian adaptation in vitro and in vivo. Three H5N8 HPAI viruses were used in this study and were isolated in 2021-2022 from poultry and wild birds during our routine surveillance. RNA extracts were subjected to full genome sequencing. Genetic, phylogenetic, and antigenic analyses were performed to assess viral characteristics and similarities to previously isolated viruses. Phylogenetic analysis showed that the hemagglutinin genes of the three isolates belonged to clade 2.3.4.4b and grouped with the 2019 viruses from G3 with high similarity to Russian and European lineages. Multiple basic amino acids were observed at cleavage sites in the hemagglutinin proteins of the H5N8 isolates, indicating high pathogenicity. In addition, several mutations associated with increased virulence and polymerase activity in mammals were observed. Growth kinetics assays showed that the H5N8 isolate is capable of replicating efficiently in mammalian cells lines. In vivo studies were conducted in SPF chickens (White Leghorn), mice, and hamsters to compare the virological characteristics of the 2022 H5N8 isolates with previous H5N8 viruses isolated in 2016 from the first introduction. The H5N8 viruses caused lethal infection in all tested chickens and transmitted by direct contact. However, we showed that the 2016 H5N8 virus causes a higher mortality in chickens compared to 2022 H5N8 virus. Moreover, the 2022 virus can replicate efficiently in hamsters and mice without preadaptation causing systemic infection. These findings underscore the need for continued surveillance of H5 viruses to identify circulating strains, determine the commercial vaccine's effectiveness, and identify zoonotic potential.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mokhtar Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Amany Elkhrsawy
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Hend AbdAllah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Mohamed Ahmed Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | | | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
4
|
Hoxie I, Vasilev K, Clark JJ, Bushfield K, Francis B, Loganathan M, Campbell JD, Yu D, Guan L, Gu C, Fan S, Tompkins SM, Neumann G, Kawaoka Y, Krammer F. A recombinant N2 neuraminidase-based CpG 1018® adjuvanted vaccine provides protection against challenge with heterologous influenza viruses in mice and hamsters. Vaccine 2024; 42:126269. [PMID: 39241354 DOI: 10.1016/j.vaccine.2024.126269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Recombinant influenza virus neuraminidase (NA) is a promising broadly protective influenza vaccine candidate. However, the recombinant protein alone is not sufficient to induce durable and protective immune responses and requires the coadministration of immunostimulatory molecules. Here, we evaluated the immunogenicity and cross-protective potential of a recombinant influenza virus N2 neuraminidase vaccine construct, adjuvanted with a toll-like receptor 9 (TLR9) agonist (CpG 1018® adjuvant), and alum. The combination of CpG 1018 adjuvant and alum induced a balanced and robust humoral and T-cellular immune response against the NA, which provided protection and reduced morbidity against homologous and heterologous viral challenges in mouse and hamster models. This study supports Syrian hamsters as a useful complementary animal model to mice for pre-clinical evaluation of influenza virus vaccines.
Collapse
Affiliation(s)
- Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirill Vasilev
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordan J Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaitlyn Bushfield
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Francis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhumathi Loganathan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Dong Yu
- Dynavax Technologies Corporation, Emeryville, CA, USA
| | - Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Chunyang Gu
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - S Mark Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA; Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The University of Tokyo Pandemic Preparedness, Infection and Advanced research center (UTOPIA), Tokyo, Japan
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
6
|
Luczo JM, Spackman E. Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift. FEMS Microbiol Rev 2024; 48:fuae014. [PMID: 38734891 PMCID: PMC11149724 DOI: 10.1093/femsre/fuae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, Victoria 3219, Australia
| | - Erica Spackman
- Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605, United States
| |
Collapse
|
7
|
Fu Y, Wedde M, Smola S, Oh DY, Pfuhl T, Rissland J, Zemlin M, Flockerzi FA, Bohle RM, Thürmer A, Duwe S, Biere B, Reiche J, Schweiger B, Mache C, Wolff T, Herrler G, Dürrwald R. Different populations of A(H1N1)pdm09 viruses in a patient with hemolytic-uremic syndrome. Int J Med Microbiol 2024; 314:151598. [PMID: 38237287 DOI: 10.1016/j.ijmm.2024.151598] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 03/22/2024] Open
Abstract
Respiratory viral infections may have different impacts ranging from infection without symptoms to severe disease or even death though the reasons are not well characterized. A patient (age group 5-15 years) displaying symptoms of hemolytic uremic syndrome died one day after hospitalization. qPCR, next generation sequencing, virus isolation, antigenic characterization, resistance analysis was performed and virus replication kinetics in well-differentiated airway cells were determined. Autopsy revealed hemorrhagic pneumonia as major pathological manifestation. Lung samples harbored a large population of A(H1N1)pdm09 viruses with the polymorphism H456H/Y in PB1 polymerase. The H456H/Y viruses replicated much faster to high viral titers than upper respiratory tract viruses in vitro. H456H/Y-infected air-liquid interface cultures of differentiated airway epithelial cells did reflect a more pronounced loss of ciliated cells. A different pattern of virus quasispecies was found in the upper airway samples where substitution S263S/F (HA1) was observed. The data support the notion that viral quasispecies had evolved locally in the lung to support high replicative fitness. This change may have initiated further pathogenic processes leading to rapid dissemination of inflammatory mediators followed by development of hemorrhagic lung lesions and fatal outcome.
Collapse
Affiliation(s)
- Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Marianne Wedde
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Djin-Ye Oh
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Thorsten Pfuhl
- Institute of Virology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Jürgen Rissland
- Institute of Virology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Michael Zemlin
- Department for General Pediatrics and Neonatology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Fidelis A Flockerzi
- Institute of Pathology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Rainer M Bohle
- Institute of Pathology, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Andrea Thürmer
- Department Methods Development and Research Infrastructure, Robert Koch Institute, Berlin 13353, Germany
| | - Susanne Duwe
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Barbara Biere
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Janine Reiche
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Brunhilde Schweiger
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Christin Mache
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Thorsten Wolff
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Ralf Dürrwald
- Influenza and other Respiratory Viruses, Department of Infectious Diseases, Unit 17, Influenza and other Respratory Viruses, Robert Koch Institute, Berlin 13353, Germany.
| |
Collapse
|
8
|
Anderson TK, Medina RA, Nelson MI. The Evolution of SARS-CoV-2 and Influenza A Virus at the Human–Animal Interface. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:549-572. [DOI: 10.1016/b978-0-443-28818-0.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and Antiviral Treatment against Avian Influenza H5Nx Viruses: A Harbinger of Virus Control or Evolution. Vaccines (Basel) 2023; 11:1628. [PMID: 38005960 PMCID: PMC10675773 DOI: 10.3390/vaccines11111628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt;
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| | - Ahmed A. Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11435, Egypt;
| | | | - Ahmed Mostafa
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| |
Collapse
|
10
|
Pekarek MJ, Weaver EA. Existing Evidence for Influenza B Virus Adaptations to Drive Replication in Humans as the Primary Host. Viruses 2023; 15:2032. [PMID: 37896807 PMCID: PMC10612074 DOI: 10.3390/v15102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza B virus (IBV) is one of the two major types of influenza viruses that circulate each year. Unlike influenza A viruses, IBV does not harbor pandemic potential due to its lack of historical circulation in non-human hosts. Many studies and reviews have highlighted important factors for host determination of influenza A viruses. However, much less is known about the factors driving IBV replication in humans. We hypothesize that similar factors influence the host restriction of IBV. Here, we compile and review the current understanding of host factors crucial for the various stages of the IBV viral replication cycle. While we discovered the research in this area of IBV is limited, we review known host factors that may indicate possible host restriction of IBV to humans. These factors include the IBV hemagglutinin (HA) protein, host nuclear factors, and viral immune evasion proteins. Our review frames the current understanding of IBV adaptations to replication in humans. However, this review is limited by the amount of research previously completed on IBV host determinants and would benefit from additional future research in this area.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
11
|
Guan L, Babujee L, Browning VL, Presler R, Pattinson D, Nguyen HLK, Hoang VMP, Le MQ, van Bakel H, Neumann G, Kawaoka Y. Continued Circulation of Highly Pathogenic H5 Influenza Viruses in Vietnamese Live Bird Markets in 2018-2021. Viruses 2023; 15:1596. [PMID: 37515281 PMCID: PMC10384249 DOI: 10.3390/v15071596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
We isolated 77 highly pathogenic avian influenza viruses during routine surveillance in live poultry markets in northern provinces of Vietnam from 2018 to 2021. These viruses are of the H5N6 subtype and belong to HA clades 2.3.4.4g and 2.3.4.4h. Interestingly, we did not detect viruses of clade 2.3.4.4b, which in recent years have dominated in different parts of the world. The viruses isolated in this current study do not encode major determinants of mammalian adaptation (e.g., PB2-E627K or PB1-D701N) but possess amino acid substitutions that may affect viral receptor-binding, replication, or the responses to human antiviral factors. Several of the highly pathogenic H5N6 virus samples contained other influenza viruses, providing an opportunity for reassortment. Collectively, our study demonstrates that the highly pathogenic H5 viruses circulating in Vietnam in 2018-2021 were different from those in other parts of the world, and that the Vietnamese H5 viruses continue to evolve through mutations and reassortment.
Collapse
Affiliation(s)
- Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Victoria L. Browning
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Robert Presler
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Hang Le Khanh Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Vu Mai Phuong Hoang
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Harm van Bakel
- Department of Genetics and Genomic Services, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
- Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research (UTOPIA) Center, Tokyo 108-8639, Japan
| |
Collapse
|
12
|
Rafique S, Rashid F, Mushtaq S, Ali A, Li M, Luo S, Xie L, Xie Z. Global review of the H5N8 avian influenza virus subtype. Front Microbiol 2023; 14:1200681. [PMID: 37333639 PMCID: PMC10272346 DOI: 10.3389/fmicb.2023.1200681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Orthomyxoviruses are negative-sense, RNA viruses with segmented genomes that are highly unstable due to reassortment. The highly pathogenic avian influenza (HPAI) subtype H5N8 emerged in wild birds in China. Since its emergence, it has posed a significant threat to poultry and human health. Poultry meat is considered an inexpensive source of protein, but due to outbreaks of HPAI H5N8 from migratory birds in commercial flocks, the poultry meat industry has been facing severe financial crises. This review focuses on occasional epidemics that have damaged food security and poultry production across Europe, Eurasia, the Middle East, Africa, and America. HPAI H5N8 viral sequences have been retrieved from GISAID and analyzed. Virulent HPAI H5N8 belongs to clade 2.3.4.4b, Gs/GD lineage, and has been a threat to the poultry industry and the public in several countries since its first introduction. Continent-wide outbreaks have revealed that this virus is spreading globally. Thus, continuous sero- and viro-surveillance both in commercial and wild birds, and strict biosecurity reduces the risk of the HPAI virus appearing. Furthermore, homologous vaccination practices in commercial poultry need to be introduced to overcome the introduction of emergent strains. This review clearly indicates that HPAI H5N8 is a continuous threat to poultry and people and that further regional epidemiological studies are needed.
Collapse
Affiliation(s)
- Saba Rafique
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd, Rawalpindi, Pakistan
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Sajda Mushtaq
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd, Rawalpindi, Pakistan
| | - Akbar Ali
- Poultry Research Institute, Rawalpindi, Pakistan
| | - Meng Li
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
13
|
Guan L, Zhong G, Fan S, Plisch EM, Presler R, Gu C, Babujee L, Pattinson D, Le Khanh Nguyen H, Hoang VMP, Le MQ, van Bakel H, Neumann G, Kawaoka Y. Highly Pathogenic H5 Influenza Viruses Isolated between 2016 and 2017 in Vietnamese Live Bird Markets. Viruses 2023; 15:1093. [PMID: 37243179 PMCID: PMC10223276 DOI: 10.3390/v15051093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Routine surveillance in live poultry markets in the northern regions of Vietnam from 2016 to 2017 resulted in the isolation of 27 highly pathogenic avian H5N1 and H5N6 viruses of 3 different clades (2.3.2.1c, 2.3.4.4f, and 2.3.4.4g). Sequence and phylogenetic analysis of these viruses revealed reassortment with various subtypes of low pathogenic avian influenza viruses. Deep-sequencing identified minor viral subpopulations encoding variants that may affect pathogenicity and sensitivity to antiviral drugs. Interestingly, mice infected with two different clade 2.3.2.1c viruses lost body weight rapidly and succumbed to virus infection, whereas mice infected with clade 2.3.4.4f or 2.3.4.4g viruses experienced non-lethal infections.
Collapse
Affiliation(s)
- Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Erin M. Plisch
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Robert Presler
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Chunyang Gu
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | | | | | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
- Division of Virology, Department of Microbiology and Immunology, and International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Infection and Advanced Research (UTOPIA) Center, The University of Tokyo, Pandemic Preparedness, Tokyo 108-8639, Japan
| |
Collapse
|
14
|
Wasberg A, Faria IR, Bergholm J, Petric PP, Mostafa A, Pleschka S, Schwemmle M, Lundkvist Å, Ellström P, Naguib MM. Assessing compatibility and viral fitness between poultry-adapted H9N2 and wild bird-derived neuraminidases. Sci Rep 2023; 13:4476. [PMID: 36934147 PMCID: PMC10024770 DOI: 10.1038/s41598-023-31653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Exchange of viral segments between one or more influenza virus subtypes can contribute to a shift in virulence and adaptation to new hosts. Among several influenza subtypes, H9N2 is widely circulating in poultry populations worldwide and has the ability to infect humans. Here, we studied the reassortant compatibility between chicken H9N2 with N1-N9 gene segments of wild bird origin, either with an intact or truncated stalk. Naturally occurring amino acid deletions in the NA stalk of the influenza virus can lead to increased virulence in both mallard ducks and chickens. Our findings show extended genetic compatibility between chicken H9Nx gene segments and the wild-bird NA with and without 20 amino acid stalk deletion. Replication kinetics in avian, mammalian and human cell lines revealed that parental chH9N2 and rH9N6 viruses with intact NA-stalk replicated significantly better in avian DF1 cells compared to human A549 cells. After introducing a stalk deletion, an enhanced preference for replication in mammalian and human cell lines could be observed for rH9N2Δ(H6), rH9N6Δ and rH9N9Δ compared to the parental chH9N2 virus. This highlights the potential emergence of novel viruses with variable phenotypic traits, warranting the continuous monitoring of H9N2 and co-circulating subtypes in avian hosts.
Collapse
Affiliation(s)
- Anishia Wasberg
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Inês R Faria
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Julia Bergholm
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Philipp P Petric
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF),partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Van Poelvoorde LAE, Dufrasne FE, Van Gucht S, Saelens X, Roosens NHC. Development of Digital Droplet PCR Targeting the Influenza H3N2 Oseltamivir-Resistant E119V Mutation and Its Performance through the Use of Reverse Genetics Mutants. Curr Issues Mol Biol 2023; 45:2521-2532. [PMID: 36975535 PMCID: PMC10047791 DOI: 10.3390/cimb45030165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
The monitoring of antiviral-resistant influenza virus strains is important for public health given the availability and use of neuraminidase inhibitors and other antivirals to treat infected patients. Naturally occurring oseltamivir-resistant seasonal H3N2 influenza virus strains often carry a glutamate-to-valine substitution at position 119 in the neuraminidase (E119V-NA). Early detection of resistant influenza viruses is important for patient management and for the rapid containment of antiviral resistance. The neuraminidase inhibition assay allows the phenotypical identification of resistant strains; however, this test often has limited sensitivity with high variability depending on the virus strain, drugs and assays. Once a mutation such as E119V-NA is known, highly sensitive PCR-based genotypic assays can be used to identify the prevalence of such mutant influenza viruses in clinical samples. In this study, based on an existing reverse transcriptase real-time PCR (RT-qPCR) assay, we developed a reverse transcriptase droplet digital PCR assay (RT-ddPCR) to detect and quantify the frequency of the E119V-NA mutation. Furthermore, reverse genetics viruses carrying this mutation were created to test the performance of the RT-ddPCR assay and compare it to the standard phenotypic NA assay. We also discuss the advantage of using an RT-ddPCR instead of qPCR method in the context of viral diagnostics and surveillance.
Collapse
Affiliation(s)
- Laura A E Van Poelvoorde
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
- National Influenza Centre, Department of Infectious Diseases in Humans, Laboratory of Viral Diseases, Sciensano, Engelandstraat 642, 1180 Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - François E Dufrasne
- National Influenza Centre, Department of Infectious Diseases in Humans, Laboratory of Viral Diseases, Sciensano, Engelandstraat 642, 1180 Brussels, Belgium
| | - Steven Van Gucht
- National Influenza Centre, Department of Infectious Diseases in Humans, Laboratory of Viral Diseases, Sciensano, Engelandstraat 642, 1180 Brussels, Belgium
| | - Xavier Saelens
- Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
16
|
Scheibner D, Salaheldin AH, Bagato O, Zaeck LM, Mostafa A, Blohm U, Müller C, Eweas AF, Franzke K, Karger A, Schäfer A, Gischke M, Hoffmann D, Lerolle S, Li X, Abd El-Hamid HS, Veits J, Breithaupt A, Boons GJ, Matrosovich M, Finke S, Pleschka S, Mettenleiter TC, de Vries RP, Abdelwhab EM. Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS Pathog 2023; 19:e1011135. [PMID: 36745654 PMCID: PMC9934401 DOI: 10.1371/journal.ppat.1011135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Global spread and regional endemicity of H5Nx Goose/Guangdong avian influenza viruses (AIV) pose a continuous threat for poultry production and zoonotic, potentially pre-pandemic, transmission to humans. Little is known about the role of mutations in the viral neuraminidase (NA) that accompanied bird-to-human transmission to support AIV infection of mammals. Here, after detailed analysis of the NA sequence of human H5N1 viruses, we studied the role of A46D, L204M, S319F and S430G mutations in virus fitness in vitro and in vivo. Although H5N1 AIV carrying avian- or human-like NAs had similar replication efficiency in avian cells, human-like NA enhanced virus replication in human airway epithelia. The L204M substitution consistently reduced NA activity of H5N1 and nine other influenza viruses carrying NA of groups 1 and 2, indicating a universal effect. Compared to the avian ancestor, human-like H5N1 virus has less NA incorporated in the virion, reduced levels of viral NA RNA replication and NA expression. We also demonstrate increased accumulation of NA at the plasma membrane, reduced virus release and enhanced cell-to-cell spread. Furthermore, NA mutations increased virus binding to human-type receptors. While not affecting high virulence of H5N1 in chickens, the studied NA mutations modulated virulence and replication of H5N1 AIV in mice and to a lesser extent in ferrets. Together, mutations in the NA of human H5N1 viruses play different roles in infection of mammals without affecting virulence or transmission in chickens. These results are important to understand the genetic determinants for replication of AIV in mammals and should assist in the prediction of AIV with zoonotic potential.
Collapse
Affiliation(s)
- David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed H. Salaheldin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Alexandria University, El-Beheira, Egypt
| | - Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Ahmed F. Eweas
- Department of Medicinal Chemistry, National Research Center, Dokki, Giza, Egypt; Department of Science, University of Technology and Applied Sciences-Rustaq, Rustaq, Sultanate of Oman
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Solène Lerolle
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Hatem S. Abd El-Hamid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Damanhur University, Al-Buheira, Egypt
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | | | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF) partner site Giessen-Marburg-Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
17
|
Zhang C, Cui H, Chen L, Yuan W, Dong S, Kong Y, Guo Z, Liu J. Pathogenicity and Transmissibility of Goose-Origin H5N6 Avian Influenza Virus Clade 2.3.4.4h in Mammals. Viruses 2022; 14:v14112454. [PMID: 36366552 PMCID: PMC9699601 DOI: 10.3390/v14112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Throughout the last decade, H5N6 avian influenza viruses (AIVs) circulating in poultry and infecting humans have caused increasing global concerns that they might become a pandemic threat to global health. Since AIVs could occasionally cause asymptomatic infections in geese, virus monitoring in such a host should be critical to the control of cross-species infection. In addition, previous studies showed that clade 2.3.4.4h H5N6 AIVs could infect mammals without adaptation. However, the pathogenicity and transmissibility of goose-origin clade 2.3.4.4h H5N6 AIVs in mammals remain unknown. In this study, two H5N6 AIVs were isolated from a domestic chicken (A/chicken/Hebei CK05/2019 (H5N6)) and a goose (A/goose/Hebei/GD07/2019(H5N6)). This study is the first to evaluate the pathogenicity and transmissibility of goose-origin clade 2.3.4.4h H5N6 AIVs in mammals by comparison with chicken-origin 2.3.4.4h H5N6 AIVs. The CK05 virus had an affinity for α-2,3-receptors, while the GD07 virus had an affinity for both α-2,3-and α-2,6-receptors. The GD07 virus had a higher replication capacity in vitro and more severe pathogenicity in mice than the CK05 virus. The CK05 virus could not be transmitted effectively among guinea pigs, whereas the GD07 virus could be transmitted through direct contact among guinea pigs. The results of this study indicated the potential health threat of clade 2.3.4.4h H5N6 AIVs to mammals and emphasized the importance of continuous monitoring of H5N6 AIVs, especially in waterfowl.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yunyi Kong
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (Z.G.); (J.L.); Tel.: +86-0431-86985975 (Z.G.); +86-0312-7520278 (J.L.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (Z.G.); (J.L.); Tel.: +86-0431-86985975 (Z.G.); +86-0312-7520278 (J.L.)
| |
Collapse
|
18
|
Evidence for Different Virulence Determinants and Host Response after Infection of Turkeys and Chickens with Highly Pathogenic H7N1 Avian Influenza Virus. J Virol 2022; 96:e0099422. [PMID: 35993736 PMCID: PMC9472639 DOI: 10.1128/jvi.00994-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.
Collapse
|
19
|
Motahhar M, Keyvanfar H, Shoushtari A, Fallah Mehrabadi MH, Nikbakht Brujeni G. The arrival of highly pathogenic avian influenza viruses H5N8 in Iran through two windows, 2016. Virus Genes 2022; 58:527-539. [PMID: 36098944 DOI: 10.1007/s11262-022-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus has received considerable attention during the past 2 decades due to its zoonotic and mutative features. This Virus is of special importance due to to the possibility of causing infection in human populations. According to it's geographical location, Iran hosts a large number of aquatic migratory birds every year, and since these birds can be considered as the host of the H5 HPAI, the country is significantly at risk of this virus. the In this study, the molecular characteristics of hemagglutinin (HA) and neuraminidase (NA) genes of the H5N8 strain were identified in Malard county of Tehran province and Meighan wetland of Arak city, Markazi province were investigated. Based on the analysis of the amino acid sequence of the HA genes, the cleavage site of the gene includes the PLREKRRKR/GLF polybasic amino acid motif, which is a characteristic of highly pathogenic influenza viruses. The HA gene of two viruses had T156A, S123P, S133A mutations associated with the increased mammalian sialic acid-binding, and the NA gene of two viruses had H253Y mutations associated with the resistance to antiviral drugs. Phylogenetic analysis of the HA genes indicated the classification of these viruses in the 2.3.4.4 b subclade. Although the A/Goose/Iran/180/2016 virus was also an H5N8 2.3.4.4 b virus, its cluster was separated from the A/Chicken/Iran/162/2016 virus. This means that the entry of these viruses in to the country happened through more than one window. Furthermore, it seems that the introduction of these H5N8 HPAI strains in Iran probably occurred through the West Asia-East African flyway by wild migratory aquatic birds.
Collapse
Affiliation(s)
- Minoo Motahhar
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Keyvanfar
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abdolhamid Shoushtari
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohammad Hossein Fallah Mehrabadi
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
de Bruin ACM, Funk M, Spronken MI, Gultyaev AP, Fouchier RAM, Richard M. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses 2022; 14:1566. [PMID: 35891546 PMCID: PMC9321182 DOI: 10.3390/v14071566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Highly Pathogenic Avian Influenza Viruses (HPAIVs) arise from low pathogenic precursors following spillover from wild waterfowl into poultry populations. The main virulence determinant of HPAIVs is the presence of a multi-basic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein. The MBCS allows for HA cleavage and, consequently, activation by ubiquitous proteases, which results in systemic dissemination in terrestrial poultry. Since 1959, 51 independent MBCS acquisition events have been documented, virtually all in HA from the H5 and H7 subtypes. In the present article, data from natural LPAIV to HPAIV conversions and experimental in vitro and in vivo studies were reviewed in order to compile recent advances in understanding HA cleavage efficiency, protease usage, and MBCS acquisition mechanisms. Finally, recent hypotheses that might explain the unique predisposition of the H5 and H7 HA sequences to obtain an MBCS in nature are discussed.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| |
Collapse
|
21
|
Genetic Determinants for Virulence and Transmission of the Panzootic Avian Influenza Virus H5N8 Clade 2.3.4.4 in Pekin Ducks. J Virol 2022; 96:e0014922. [PMID: 35670594 DOI: 10.1128/jvi.00149-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Waterfowl is the natural reservoir for avian influenza viruses (AIV), where the infection is mostly asymptomatic. In 2016, the panzootic high pathogenicity (HP) AIV H5N8 of clade 2.3.4.4B (designated H5N8-B) caused significant mortality in wild and domestic ducks, in stark contrast to the predecessor 2.3.4.4A virus from 2014 (designated H5N8-A). Here, we studied the genetic determinants for virulence and transmission of H5N8 clade 2.3.4.4 in Pekin ducks. While ducks inoculated with recombinant H5N8-A did not develop any clinical signs, H5N8-B-inoculated and cohoused ducks died after showing neurological signs. Swapping of the HA gene segments did not increase virulence of H5N8-A but abolished virulence and reduced systemic replication of H5N8-B. Only H5N8-A carrying H5N8-B HA, NP, and NS with or without NA exhibited high virulence in inoculated and contact ducks, similar to H5N8-B. Compared to H5N8-A, HA, NA, NS, and NP proteins of H5N8-B possess peculiar differences, which conferred increased receptor binding affinity, neuraminidase activity, efficiency to inhibit interferon-alpha induction, and replication in vitro, respectively. Taken together, this comprehensive study showed that HA is not the only virulence determinant of the panzootic H5N8-B in Pekin ducks, but NP, NS, and to a lesser extent NA were also necessary for the exhibition of high virulence in vivo. These proteins acted synergistically to increase receptor binding affinity, sialidase activity, interferon antagonism, and replication. This is the first ad-hoc study to investigate the mechanism underlying the high virulence of HPAIV in Pekin ducks. IMPORTANCE Since 2014, several waves of avian influenza virus (AIV) H5N8 of clade 2.3.4.4 occurred globally on unprecedented levels. Unlike viruses in the first wave in 2014-2015 (H5N8-A), viruses in 2015-2016 (H5N8-B) exhibited unusually high pathogenicity (HP) in wild and domestic ducks. Here, we found that the high virulence of H5N8-B in Pekin ducks could be attributed to multiple factors in combination, namely, hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), and nonstructural protein 1 (NS1). Compared to H5N8-A, H5N8-B possesses distinct genetic and biological properties including increased HA receptor-binding affinity and neuraminidase activity. Likewise, H5N8-B NS1 and NP were more efficient to inhibit interferon induction and enhance replication in primary duck cells, respectively. These results indicate the polygenic trait of virulence of HPAIV in domestic ducks and the altered biological properties of the HPAIV H5N8 clade 2.3.4.4B. These findings may explain the unusual high mortality in Pekin ducks during the panzootic H5N8 outbreaks.
Collapse
|
22
|
Zhang H, Yao Y, Li Y, Chen J, Chen Z. Evidence for Water-Borne Transmission of Highly Pathogenic Avian Influenza H5N1 Viruses. Front Microbiol 2022; 13:896469. [PMID: 35694294 PMCID: PMC9183062 DOI: 10.3389/fmicb.2022.896469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we isolated 10 H5N1 strains from water samples in Dongting Lake and 4 H5N1 strains from lakeside backyard poultry. These isolates belonged to three distinct clades (clade 2.3.2, 2.3.4, and 7). Phylogenetic analysis showed a diversified genome constellation. The genetic characteristics of some viruses isolated from water samples were extremely similar to those from lakeside poultry. Pathogenic experiments showed that selected represented isolates in this study were highly pathogenic for SPF chickens but had a diversified virulence in mice. The results of our study suggested the potential transmission of avian influenza (H5N1) between the poultry and wild waterfowls and water body around the habitat may play an important role.
Collapse
Affiliation(s)
- Hongbo Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Yanfeng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jianjun Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Jianjun Chen,
| | - Ze Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Ze Chen,
| |
Collapse
|
23
|
Aji D, Chang N, Zhang C, Du F, Li J, Yun F, Shi W, Bi Y, Ma Z. Rapid Emergence of the Reassortant 2.3.4.4b H5N2 Highly Pathogenic Avian Influenza Viruses in a Live Poultry Market in Xinjiang, Northwest China. Avian Dis 2021; 65:578-583. [PMID: 35068101 DOI: 10.1637/aviandiseases-d-21-00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Dilihuma Aji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Nana Chang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Cheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fei Du
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Juan Li
- Key Laboratory of Etiology and Emerging infections Disease in Shandong First Medical University, Tai an 271016, China
| | - Fengze Yun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Emerging infections Disease in Shandong First Medical University, Tai an 271016, China
| | - Yuhai Bi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
24
|
Creytens S, Pascha MN, Ballegeer M, Saelens X, de Haan CAM. Influenza Neuraminidase Characteristics and Potential as a Vaccine Target. Front Immunol 2021; 12:786617. [PMID: 34868073 PMCID: PMC8635103 DOI: 10.3389/fimmu.2021.786617] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigenic Drift and Shift
- Antigens, Viral/immunology
- Antigens, Viral/ultrastructure
- Catalytic Domain/genetics
- Catalytic Domain/immunology
- Cross Protection
- Evolution, Molecular
- Humans
- Immunogenicity, Vaccine
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Alphainfluenzavirus/enzymology
- Alphainfluenzavirus/genetics
- Alphainfluenzavirus/immunology
- Betainfluenzavirus/enzymology
- Betainfluenzavirus/genetics
- Betainfluenzavirus/immunology
- Mutation
- Nanoparticles
- Neuraminidase/administration & dosage
- Neuraminidase/genetics
- Neuraminidase/immunology
- Neuraminidase/ultrastructure
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/ultrastructure
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/ultrastructure
Collapse
Affiliation(s)
- Sarah Creytens
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Mirte N. Pascha
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Marlies Ballegeer
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Cornelis A. M. de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
25
|
Nguyen ATV, Hoang VT, Sung HW, Yeo SJ, Park H. Genetic Characterization and Pathogenesis of Three Novel Reassortant H5N2 Viruses in South Korea, 2018. Viruses 2021; 13:v13112192. [PMID: 34834997 PMCID: PMC8619638 DOI: 10.3390/v13112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia–Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China’s H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.
Collapse
Affiliation(s)
- Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
26
|
Zecchin B, Goujgoulova G, Monne I, Salviato A, Schivo A, Slavcheva I, Pastori A, Brown IH, Lewis NS, Terregino C, Fusaro A. Evolutionary Dynamics of H5 Highly Pathogenic Avian Influenza Viruses (Clade 2.3.4.4B) Circulating in Bulgaria in 2019-2021. Viruses 2021; 13:2086. [PMID: 34696516 PMCID: PMC8541051 DOI: 10.3390/v13102086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
The first detection of a Highly Pathogenic Avian Influenza (HPAI) H5N8 virus in Bulgaria dates back to December 2016. Since then, many outbreaks caused by HPAI H5 viruses from clade 2.3.4.4B have been reported in both domestic and wild birds in different regions of the country. In this study, we characterized the complete genome of sixteen H5 viruses collected in Bulgaria between 2019 and 2021. Phylogenetic analyses revealed a persistent circulation of the H5N8 strain for four consecutive years (December 2016-June 2020) and the emergence in 2020 of a novel reassortant H5N2 subtype, likely in a duck farm. Estimation of the time to the most recent common ancestor indicates that this reassortment event may have occurred between May 2019 and January 2020. At the beginning of 2021, Bulgaria experienced a new virus introduction in the poultry sector, namely a HPAI H5N8 that had been circulating in Europe since October 2020. The periodical identification in domestic birds of H5 viruses related to the 2016 epidemic as well as a reassortant strain might indicate undetected circulation of the virus in resident wild birds or in the poultry sector. To avoid the concealed circulation and evolution of viruses, and the risk of emergence of strains with pandemic potential, the implementation of control measures is of utmost importance, particularly in duck farms where birds display no clinical signs.
Collapse
Affiliation(s)
- Bianca Zecchin
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (I.M.); (A.S.); (A.S.); (A.P.); (C.T.)
| | - Gabriela Goujgoulova
- National Reference Laboratory of Avian Influenza and Newcastle Disease, National Diagnostic and Research Veterinary Medical Institute, 1231 Sofia, Bulgaria; (G.G.); (I.S.)
| | - Isabella Monne
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (I.M.); (A.S.); (A.S.); (A.P.); (C.T.)
| | - Annalisa Salviato
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (I.M.); (A.S.); (A.S.); (A.P.); (C.T.)
| | - Alessia Schivo
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (I.M.); (A.S.); (A.S.); (A.P.); (C.T.)
| | - Iskra Slavcheva
- National Reference Laboratory of Avian Influenza and Newcastle Disease, National Diagnostic and Research Veterinary Medical Institute, 1231 Sofia, Bulgaria; (G.G.); (I.S.)
| | - Ambra Pastori
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (I.M.); (A.S.); (A.S.); (A.P.); (C.T.)
| | - Ian H. Brown
- OIE/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease Virus, Animal and Plant Health Agency-Weybridge, Addlestone, Surrey KT15 3NB, UK; (I.H.B.); (N.S.L.)
| | - Nicola S. Lewis
- OIE/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease Virus, Animal and Plant Health Agency-Weybridge, Addlestone, Surrey KT15 3NB, UK; (I.H.B.); (N.S.L.)
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK
| | - Calogero Terregino
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (I.M.); (A.S.); (A.S.); (A.P.); (C.T.)
| | - Alice Fusaro
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (I.M.); (A.S.); (A.S.); (A.P.); (C.T.)
| |
Collapse
|
27
|
Zhao J, He W, Lu M, He H, Lai A. Emergence and Characterization of a Novel Reassortant Canine Influenza Virus Isolated from Cats. Pathogens 2021; 10:pathogens10101320. [PMID: 34684269 PMCID: PMC8539923 DOI: 10.3390/pathogens10101320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/11/2023] Open
Abstract
Cats are susceptible to a wide range of influenza A viruses (IAV). Furthermore, cats can serve as an intermediate host, and transfer avian influenza virus (AIV) H7N2 to a veterinarian. In this report, a novel reassortant influenza virus, designated A/feline/Jiangsu/HWT/2017 (H3N2), and abbreviated as FIV-HWT-2017, was isolated from nasal swab of a symptomatic cat in Jiangsu province, China. Sequence analysis indicated that, whilst the other seven genes were most similar to the avian-origin canine influenza viruses (CIV H3N2) isolated in China, the NS gene was more closely related to the circulating human influenza virus (H3N2) in the region. Therefore, FIV-HWT-2017 is a reassortant virus. In addition, some mutations were identified, and they were similar to a distinctive CIV H3N2 clade. Whether these cats were infected with the reassortant virus was unknown, however, this random isolation of a reassortant virus indicated that domestic or stray cats were "mixing vessel" for IAV cannot be ruled out. An enhanced surveillance for novel influenza virus should include pet and stray cats.
Collapse
Affiliation(s)
- Jin Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.H.); (M.L.)
- Correspondence: (J.Z.); (H.H.); (A.L.)
| | - Wanting He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.H.); (M.L.)
| | - Meng Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.H.); (M.L.)
| | - Haijian He
- Agricultural College, Jinhua Polytechnic, Jinhua 321007, China
- Correspondence: (J.Z.); (H.H.); (A.L.)
| | - Alexander Lai
- School of STEM, Kentucky State University, Frankfort, KY 40601, USA
- Correspondence: (J.Z.); (H.H.); (A.L.)
| |
Collapse
|
28
|
Evseev D, Magor KE. Molecular Evolution of the Influenza A Virus Non-structural Protein 1 in Interspecies Transmission and Adaptation. Front Microbiol 2021; 12:693204. [PMID: 34671321 PMCID: PMC8521145 DOI: 10.3389/fmicb.2021.693204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
The non-structural protein 1 (NS1) of influenza A viruses plays important roles in viral fitness and in the process of interspecies adaptation. It is one of the most polymorphic and mutation-tolerant proteins of the influenza A genome, but its evolutionary patterns in different host species and the selective pressures that underlie them are hard to define. In this review, we highlight some of the species-specific molecular signatures apparent in different NS1 proteins and discuss two functions of NS1 in the process of viral adaptation to new host species. First, we consider the ability of NS1 proteins to broadly suppress host protein expression through interaction with CPSF4. This NS1 function can be spontaneously lost and regained through mutation and must be balanced against the need for host co-factors to aid efficient viral replication. Evidence suggests that this function of NS1 may be selectively lost in the initial stages of viral adaptation to some new host species. Second, we explore the ability of NS1 proteins to inhibit antiviral interferon signaling, an essential function for viral replication without which the virus is severely attenuated in any host. Innate immune suppression by NS1 not only enables viral replication in tissues, but also dampens the adaptive immune response and immunological memory. NS1 proteins suppress interferon signaling and effector functions through a variety of protein-protein interactions that may differ from host to host but must achieve similar goals. The multifunctional influenza A virus NS1 protein is highly plastic, highly versatile, and demonstrates a diversity of context-dependent solutions to the problem of interspecies adaptation.
Collapse
Affiliation(s)
| | - Katharine E. Magor
- Department of Biological Sciences, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Du W, de Vries E, van Kuppeveld FJM, Matrosovich M, de Haan CAM. Second sialic acid-binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS J 2021; 288:5598-5612. [PMID: 33314755 PMCID: PMC8518505 DOI: 10.1111/febs.15668] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Influenza A viruses (IAVs) are a major cause of human respiratory tract infections and cause significant disease and mortality. Human IAVs originate from animal viruses that breached the host species barrier. IAV particles contain sialoglycan receptor-binding hemagglutinin (HA) and receptor-destroying neuraminidase (NA) in their envelope. When IAV crosses the species barrier, the functional balance between HA and NA needs to be adjusted to the sialoglycan repertoire of the novel host species. Relatively little is known about the role of NA in host adaptation in contrast to the extensively studied HA. NA prevents virion aggregation and facilitates release of (newly assembled) virions from cell surfaces and from decoy receptors abundantly present in mucus and cell glycocalyx. In addition to a highly conserved catalytic site, NA carries a second sialic acid-binding site (2SBS). The 2SBS preferentially binds α2,3-linked sialic acids and enhances activity of the neighboring catalytic site by bringing/keeping multivalent substrates in close contact with this site. In this way, the 2SBS contributes to the HA-NA balance of virus particles and affects virus replication. The 2SBS is highly conserved in all NA subtypes of avian IAVs, with some notable exceptions associated with changes in the receptor-binding specificity of HA and host tropism. Conservation of the 2SBS is invariably lost in human (pandemic) viruses and in several other viruses adapted to mammalian host species. Preservation or loss of the 2SBS is likely to be an important factor of the viral host range.
Collapse
Affiliation(s)
- Wenjuan Du
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Erik de Vries
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Frank J. M. van Kuppeveld
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | | | - Cornelis A. M. de Haan
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| |
Collapse
|
30
|
The Pathobiology of H7N3 Low and High Pathogenicity Avian Influenza Viruses from the United States Outbreak in 2020 Differs between Turkeys and Chickens. Viruses 2021; 13:v13091851. [PMID: 34578433 PMCID: PMC8472980 DOI: 10.3390/v13091851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
An outbreak caused by H7N3 low pathogenicity avian influenza virus (LPAIV) occurred in commercial turkey farms in the states of North Carolina (NC) and South Carolina (SC), United States in March of 2020. Subsequently, H7N3 high pathogenicity avian influenza virus (HPAIV) was detected on a turkey farm in SC. The infectivity, transmissibility, and pathogenicity of the H7N3 HPAIV and two LPAIV isolates, including one with a deletion in the neuraminidase (NA) protein stalk, were studied in turkeys and chickens. High infectivity [<2 log10 50% bird infectious dose (BID50)] and transmission to birds exposed by direct contact were observed with the HPAIV in turkeys. In contrast, the HPAIV dose to infect chickens was higher than for turkeys (3.7 log10 BID50), and no transmission was observed. Similarly, higher infectivity (<2–2.5 log10 BID50) and transmissibility were observed with the H7N3 LPAIVs in turkeys compared to chickens, which required higher virus doses to become infected (5.4–5.7 log10 BID50). The LPAIV with the NA stalk deletion was more infectious in turkeys but did not have enhanced infectivity in chickens. These results show clear differences in the pathobiology of AIVs in turkeys and chickens and corroborate the high susceptibility of turkeys to both LPAIV and HPAIV infections.
Collapse
|
31
|
Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines (Basel) 2021; 9:vaccines9090979. [PMID: 34579216 PMCID: PMC8471734 DOI: 10.3390/vaccines9090979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Influenza viruses have affected the world for over a century, causing multiple pandemics. Throughout the years, many prophylactic vaccines have been developed for influenza; however, these viruses are still a global issue and take many lives. In this paper, we review influenza viruses, associated immunological mechanisms, current influenza vaccine platforms, and influenza infection, in the context of immunocompromised populations. This review focuses on the qualitative nature of immune responses against influenza viruses, with an emphasis on trained immunity and an assessment of the characteristics of the host–pathogen that compromise the effectiveness of immunization. We also highlight innovative immunological concepts that are important considerations for the development of the next generation of vaccines against influenza viruses.
Collapse
|
32
|
Yeo SJ, Hoang VT, Duong TB, Nguyen NM, Tuong HT, Azam M, Sung HW, Park H. Emergence of a Novel Reassortant H5N3 Avian Influenza Virus in Korean Mallard Ducks in 2018. Intervirology 2021; 65:1-16. [PMID: 34438407 DOI: 10.1159/000517057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.
Collapse
Affiliation(s)
- Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea,
| | - Vui Thi Hoang
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Tuan Bao Duong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Ngoc Minh Nguyen
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hien Thi Tuong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Mudsser Azam
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun Park
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
33
|
Heo GB, Kye SJ, Sagong M, Lee EK, Lee KN, Lee YN, Choi KS, Lee MH, Lee YJ. Genetic characterization of H9N2 avian influenza virus previously unrecognized in Korea. J Vet Sci 2021; 22:e21. [PMID: 33774937 PMCID: PMC8007441 DOI: 10.4142/jvs.2021.22.e21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, we describe the isolation and characterization of previously unreported Y280-lineage H9N2 viruses from two live bird markets in Korea in June 2020. Genetic analysis revealed that they were distinct from previous H9N2 viruses circulating in Korea and had highest homology to A/chicken/Shandong/1844/2019(H9N2) viruses. Their genetic constellation showed they belonged to genotype S, which is the predominant genotype in China since 2010, where genotype S viruses have infected humans and acted as internal gene donors to H5 and H7 zoonotic influenza viruses. Active surveillance and control measures need to be enhanced to protect the poultry industry and public health.
Collapse
Affiliation(s)
- Gyeong Beom Heo
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.,College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soo Jeong Kye
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Eun Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Kwang Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yu Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Kang Seuk Choi
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Myoung Heon Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Youn Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
34
|
Li J, Liu S, Gao Y, Tian S, Yang Y, Ma N. Comparison of N-linked glycosylation on hemagglutinins derived from chicken embryos and MDCK cells: a case of the production of a trivalent seasonal influenza vaccine. Appl Microbiol Biotechnol 2021; 105:3559-3572. [PMID: 33937925 PMCID: PMC8088833 DOI: 10.1007/s00253-021-11247-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Abstract N-linked glycosylation plays critical roles in folding, receptor binding, and immunomodulating of hemagglutinin (HA), the main antigen in influenza vaccines. Chicken embryos are the predominant production host for influenza vaccines, but Madin-Darby canine kidney (MDCK) cells have emerged as an important alternative host. In this study, we compared glycosylation patterns, including the occupancy of potential glycosylation sites and the distribution of different glycans, on the HAs of three strains of influenza viruses for the production a trivalent seasonal flu vaccine for the 2015-2016 Northern Hemisphere season (i.e., A/California/7/2009 (H1N1) X179A, A/Switzerland/9715293/2013 (H3N2) NIB-88, and B/Brisbane/60/2008 NYMC BX-35###). Of the 8, 12, and 11 potential glycosylation sites on the HAs of H1N1, H3N2, and B strains, respectively, most were highly occupied. For the H3N2 and B strains, MDCK-derived HAs contained more sites being partially occupied (<95%) than embryo-derived HAs. A highly sensitive glycan assay was developed where 50 different glycans were identified, which was more than what has been reported previously, and their relative abundance was quantified. In general, MDCK-derived HAs contain more glycans of higher molecular weight. High-mannose species account for the most abundant group of glycans, but at a lower level as compared to those reported in previous studies, presumably due to that lower abundance, complex structure glycans were accounted for in this study. The different glycosylation patterns between MDCK- and chicken embryo-derived HAs may help elucidate the role of glycosylation on the function of influenza vaccines. Key points • For the H3N2 and B strains, MDCK-derived HAs contained more partially (<95%) occupied glycosylation sites. • MDCK-derived HAs contained more glycans of higher molecular weight. • A systematic comparison of glycosylation on HAs used for trivalent seasonal flu vaccines was conducted. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11247-5.
Collapse
Affiliation(s)
- Jingqi Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China
| | - Sixu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China
| | - Yanlin Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China.,School of Computing, Urban Sciences Building, Newcastle University, 1 Science Square, Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK
| | - Shuaishuai Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China
| | - Yu Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China.
| | - Ningning Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
35
|
Bertran K, Kassa A, Criado MF, Nuñez IA, Lee DH, Killmaster L, Sá E Silva M, Ross TM, Mebatsion T, Pritchard N, Swayne DE. Efficacy of recombinant Marek's disease virus vectored vaccines with computationally optimized broadly reactive antigen (COBRA) hemagglutinin insert against genetically diverse H5 high pathogenicity avian influenza viruses. Vaccine 2021; 39:1933-1942. [PMID: 33715903 DOI: 10.1016/j.vaccine.2021.02.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/27/2022]
Abstract
The genetic and antigenic drift associated with the high pathogenicity avian influenza (HPAI) viruses of Goose/Guangdong (Gs/GD) lineage and the emergence of vaccine-resistant field viruses underscores the need for a broadly protective H5 influenza A vaccine. Here, we tested experimental vector herpesvirus of turkey (vHVT)-H5 vaccines containing either wild-type clade 2.3.4.4A-derived H5 inserts or computationally optimized broadly reactive antigen (COBRA) inserts with challenge by homologous and genetically divergent H5 HPAI Gs/GD lineage viruses in chickens. Direct assessment of protection was confirmed for all the tested constructs, which provided clinical protection against the homologous and heterologous H5 HPAI Gs/GD challenge viruses and significantly decreased oropharyngeal shedding titers compared to the sham vaccine. The cross reactivity was assessed by hemagglutinin inhibition (HI) and focus reduction assay against a panel of phylogenetically and antigenically diverse H5 strains. The COBRA-derived H5 inserts elicited antibody responses against antigenically diverse strains, while the wild-type-derived H5 vaccines elicited protection mostly against close antigenically related clades 2.3.4.4A and 2.3.4.4D viruses. In conclusion, the HVT vector, a widely used replicating vaccine platform in poultry, with H5 insert provides clinical protection and significant reduction of viral shedding against homologous and heterologous challenge. In addition, the COBRA-derived inserts have the potential to be used against antigenically distinct co-circulating viruses and future drift variants.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Aemro Kassa
- Boehringer Ingelheim Animal Health USA Inc, 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Miria F Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Ivette A Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA.
| | - Dong-Hun Lee
- Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Lindsay Killmaster
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Mariana Sá E Silva
- Boehringer Ingelheim Animal Health USA Inc, 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Teshome Mebatsion
- Boehringer Ingelheim Animal Health USA Inc, 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Nikki Pritchard
- Boehringer Ingelheim Animal Health USA Inc, 1112 Airport Parkway, Gainesville, GA 30503, USA.
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| |
Collapse
|
36
|
Vieira C, Nery L, Martins L, Jabour L, Dias R, Simões E Silva AC. Downregulation of Membrane-bound Angiotensin Converting Enzyme 2 (ACE2) Receptor has a Pivotal Role in COVID-19 Immunopathology. Curr Drug Targets 2021; 22:254-281. [PMID: 33081670 DOI: 10.2174/1389450121666201020154033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Coronavirus Disease 2019 (COVID-19) is becoming the major health issue in recent human history with thousands of deaths and millions of cases worldwide. Newer research and old experience with other coronaviruses highlighted a probable underlying mechanism of disturbance of the renin-angiotensin system (RAS) that is associated with the intrinsic effects of SARS-CoV-2 infection. OBJECTIVE In this review, we aimed to describe the intimate connections between the RAS components, the immune system and COVID-19 pathophysiology. METHODS This non-systematic review article summarizes recent evidence on the relationship between COVID-19 and the RAS. RESULTS Several studies have indicated that the downregulation of membrane-bound ACE2 may exert a key role for the impairment of immune functions and for COVID-19 patients' outcomes. The downregulation may occur by distinct mechanisms, particularly: (1) the shedding process induced by the SARS-CoV-2 fusion pathway, which reduces the amount of membrane-bound ACE2, stimulating more shedding by the high levels of Angiotensin II; (2) the endocytosis of ACE2 receptor with the virus itself and (3) by the interferon inhibition caused by SARS-CoV-2 effects on the immune system, which leads to a reduction of ACE2 receptor expression. CONCLUSION Recent research provides evidence of a reduction of the components of the alternative RAS axis, including ACE2 and Angiotensin-(1-7). In contrast, increased levels of Angiotensin II can activate the AT1 receptor in several organs. Consequently, increased inflammation, thrombosis and angiogenesis occur in patients infected with SARS-COV-2. Attention should be paid to the interactions of the RAS and COVID-19, mainly in the context of novel vaccines and proposed medications.
Collapse
Affiliation(s)
- Cristina Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Nery
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ludimila Martins
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Jabour
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raphael Dias
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
37
|
A novel entropy-based mapping method for determining the protein-protein interactions in viral genomes by using coevolution analysis. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Gao R, Gu M, Shi L, Liu K, Li X, Wang X, Hu J, Liu X, Hu S, Chen S, Peng D, Jiao X, Liu X. N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. Vet Res 2021; 52:8. [PMID: 33436086 PMCID: PMC7805195 DOI: 10.1186/s13567-020-00879-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2014, clade 2.3.4.4 has become the dominant epidemic branch of the Asian lineage H5 subtype highly pathogenic avian influenza virus (HPAIV) in southern and eastern China, while the H5N6 subtype is the most prevalent. We have shown earlier that lack of glycosylation at position 158 of the hemagglutinin (HA) glycoprotein due to the T160A mutation is a key determinant of the dual receptor binding property of clade 2.3.4.4 H5NX subtypes. Our present study aims to explore other effects of this site among H5N6 viruses. Here we report that N-linked glycosylation at site 158 facilitated the assembly of virus-like particles and enhanced virus replication in A549, MDCK, and chicken embryonic fibroblast (CEF) cells. Consistently, the HA-glycosylated H5N6 virus induced higher levels of inflammatory factors and resulted in stronger pathogenicity in mice than the virus without glycosylation at site 158. However, H5N6 viruses without glycosylation at site 158 were more resistant to heat and bound host cells better than the HA-glycosylated viruses. H5N6 virus without glycosylation at this site triggered the host immune response mechanism to antagonize the viral infection, making viral pathogenicity milder and favoring virus spread. These findings highlight the importance of glycosylation at site 158 of HA for the pathogenicity of the H5N6 viruses.
Collapse
Affiliation(s)
- Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Liwei Shi
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiuli Li
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
39
|
Trinh TTT, Duong BT, Nguyen ATV, Tuong HT, Hoang VT, Than DD, Nam S, Sung HW, Yun KJ, Yeo SJ, Park H. Emergence of Novel Reassortant H1N1 Avian Influenza Viruses in Korean Wild Ducks in 2018 and 2019. Viruses 2020; 13:v13010030. [PMID: 33375376 PMCID: PMC7823676 DOI: 10.3390/v13010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023] Open
Abstract
Influenza A virus subtype H1N1 has caused global pandemics like the “Spanish flu” in 1918 and the 2009 H1N1 pandemic several times. H1N1 remains in circulation and survives in multiple animal sources, including wild birds. Surveillance during the winter of 2018–2019 in Korea revealed two H1N1 isolates in samples collected from wild bird feces: KNU18-64 (A/Greater white-fronted goose/South Korea/KNU18-64/2018(H1N1)) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)). Phylogenetic analysis indicated that M gene of KNU18-64(H1N1) isolate resembles that of the Alaskan avian influenza virus, whereas WKU19-4(H1N1) appears to be closer to the Mongolian virus. Molecular characterization revealed that they harbor the amino acid sequence PSIQRS↓GLF and are low-pathogenicity influenza viruses. In particular, the two isolates harbored three different mutation sites, indicating that they have different virulence characteristics. The mutations in the PB1-F2 and PA protein of WKU19-4(H1N1) indicate increasing polymerase activity. These results corroborate the kinetic growth data for WKU19-4 in MDCK cells: a dramatic increase in the viral titer after 12 h post-inoculation compared with that in the control group H1N1 (CA/04/09(pdm09)). The KNU18-64(H1N1) isolate carries mutations indicating an increase in mammal adaptation; this characterization was confirmed by the animal study in mice. The KNU18-64(H1N1) group showed the presence of viruses in the lungs at days 3 and 6 post-infection, with titers of 2.71 ± 0.16 and 3.71 ± 0.25 log10(TCID50/mL), respectively, whereas the virus was only detected in the WKU19-4(H1N1) group at day 6 post-infection, with a lower titer of 2.75 ± 0.51 log10(TCID50/mL). The present study supports the theory that there is a relationship between Korea and America with regard to reassortment to produce novel viral strains. Therefore, there is a need for increased surveillance of influenza virus circulation in free-flying and wild land-based birds in Korea, particularly with regard to Alaskan and Asian strains.
Collapse
Affiliation(s)
- Thuy-Tien Thi Trinh
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Hien Thi Tuong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Duong Duc Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - SunJeong Nam
- Division of EcoScience, Ewha University, Seoul 03760, Korea;
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea;
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
40
|
Jerry C, Stallknecht D, Leyson C, Berghaus R, Jordan B, Pantin-Jackwood M, Hitchener G, França M. Recombinant hemagglutinin glycoproteins provide insight into binding to host cells by H5 influenza viruses in wild and domestic birds. Virology 2020; 550:8-20. [PMID: 32861143 PMCID: PMC7554162 DOI: 10.1016/j.virol.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Clade 2.3.4.4, H5 subtype highly pathogenic avian influenza viruses (HPAIVs) have caused devastating effects across wild and domestic bird populations. We investigated differences in the intensity and distribution of the hemagglutinin (HA) glycoprotein binding of a clade 2.3.4.4 H5 HPAIV compared to a H5 low pathogenic avian influenza virus (LPAIV). Recombinant HA from gene sequences from a HPAIV, A/Northern pintail/Washington/40964/2014(H5N2) and a LPAIV, A/mallard/MN/410/2000(H5N2) were generated and, via protein histochemistry, HA binding in respiratory, intestinal and cloacal bursal tissue was quantified as median area of binding (MAB). Poultry species, shorebirds, ducks and terrestrial birds were used. Differences in MAB were observed between the HPAIV and LPAIV H5 HAs. We demonstrate that clade 2.3.4.4 HPAIV H5 HA has a broader host cell binding across a variety of bird species compared to the LPAIV H5 HA. These findings support published results from experimental trials, and outcomes of natural disease outbreaks with these viruses.
Collapse
Affiliation(s)
- Carmen Jerry
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA; The Department of Pathology, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, 589 D.W Brooks Drive, Athens, GA, 30602, USA
| | - Christina Leyson
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Dept. of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Roy Berghaus
- Food Animal Health and Management Program, Veterinary Medical Center, 2200 College Station Road, Athens, GA, 30602, USA
| | - Brian Jordan
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Dept. of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Gavin Hitchener
- Cornell University Duck Research Laboratory, 192 Old Country Road, Eastport, NY, 11941, USA
| | - Monique França
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
41
|
Chen S, Quan K, Wang D, Du Y, Qin T, Peng D, Liu X. Truncation or Deglycosylation of the Neuraminidase Stalk Enhances the Pathogenicity of the H5N1 Subtype Avian Influenza Virus in Mallard Ducks. Front Microbiol 2020; 11:583588. [PMID: 33193225 PMCID: PMC7641914 DOI: 10.3389/fmicb.2020.583588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 12/02/2022] Open
Abstract
H5N1 subtype avian influenza virus (AIV) with a deletion of 20 amino acids at residues 49–68 in the stalk region of neuraminidase (NA) became a major epidemic virus. To determine the effect of truncation or deglycosylation of the NA stalk on virulence, we used site-directed mutagenesis to insert 20 amino acids in the short-stalk virus A/mallard/Huadong/S/2005 (SY) to recover the long-stalk virus (rSNA+). A series of short-stalk or deglycosylated-stalk viruses were also constructed basing on the long-stalk virus, and then the characteristics and pathogenicity of the resulting viruses were evaluated. The results showed that most of the short-stalk or deglycosylated-stalk viruses had smaller plaques, and increased thermal and low-pH stability, and a decreased neuraminidase activity when compared with the virus rSNA+. In a mallard ducks challenge study, most of the short-stalk or deglycosylated-stalk viruses showed increased pathological lesions and virus titers in the organ tissues and increased virus shedding in the oropharynx and cloaca when compared with the rSNA+ virus, while most of the short-stalk viruses, especially rSNA-20, showed higher pathogenicity than the deglycosylated-stalk virus. In addition, the short-stalk viruses showed a significantly upregulated expression of the immune-related factors in the lungs of the infected mallard ducks, including IFN-α, Mx1, and IL-8. The results suggested that NA stalk truncation or deglycosylation increases the pathogenicity of H5N1 subtype AIV in mallard ducks, which will provide a pre-warning for prevention and control of H5N1 subtype avian influenza in the waterfowl.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yinping Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
42
|
Ciminski K, Chase GP, Beer M, Schwemmle M. Influenza A Viruses: Understanding Human Host Determinants. Trends Mol Med 2020; 27:104-112. [PMID: 33097424 DOI: 10.1016/j.molmed.2020.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/13/2023]
Abstract
Previous influenza A virus (IAV) pandemics have invariably been caused by the introduction of an emergent IAV strain from an animal host into a human population with no or only little pre-existing immunity to the novel strain. Although zoonotic spillover of IAVs into humans can be associated with severe disease and a high fatality rate, these strains are typically poorly adapted to humans and are unable to establish sustained transmission between humans. Given the presumably very high degree of exposure to animal populations with endemic IAV, the number of pandemics remains surprisingly low. In this review, we provide an updated perspective on the molecular mechanisms underlying the adaptation of zoonotic IAV to human hosts, and discuss the implications for future pandemics.
Collapse
Affiliation(s)
- Kevin Ciminski
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffrey P Chase
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany.
| | - Martin Schwemmle
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
43
|
Laleye AT, Abolnik C. Emergence of highly pathogenic H5N2 and H7N1 influenza A viruses from low pathogenic precursors by serial passage in ovo. PLoS One 2020; 15:e0240290. [PMID: 33031421 PMCID: PMC7544131 DOI: 10.1371/journal.pone.0240290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/24/2020] [Indexed: 02/01/2023] Open
Abstract
Highly pathogenic (HPAI) strains emerge from their low pathogenic (LPAI) precursors and cause severe disease in poultry with enormous economic losses, and zoonotic potential. Understanding the mechanisms involved in HPAI emergence is thus an important goal for risk assessments. In this study ostrich-origin H5N2 and H7N1 LPAI progenitor viruses were serially passaged seventeen times in 14-day old embryonated chicken eggs and Ion Torrent ultra-deep sequencing was used to monitor the incremental changes in the consensus genome sequences. Both virus strains increased in virulence with successive passages, but the H7N1 virus attained a virulent phenotype sooner. Mutations V63M, E228V and D272G in the HA protein, Q357K in the nucleoprotein (NP) and H155P in the neuraminidase protein correlated with the increased pathogenicity of the H5N2 virus; whereas R584H and L589I substitutions in the polymerase B2 protein, A146T and Q220E in HA plus D231N in the matrix 1 protein correlated with increased pathogenicity of the H7N1 virus in embryos. Enzymatic cleavage of HA protein is the critical virulence determinant, and HA cleavage site motifs containing multibasic amino acids were detected at the sub-consensus level. The motifs PQERRR/GLF and PQRERR/GLF were first detected in passages 11 and 15 respectively of the H5N2 virus, and in the H7N1 virus the motifs PELPKGKK/GLF and PELPKRR/GLF were detected as early as passage 7. Most significantly, a 13 nucleotide insert of unknown origin was identified at passage 6 of the H5N2 virus, and at passage 17 a 42 nucleotide insert derived from the influenza NP gene was identified. This is the first report of non-homologous recombination at the HA cleavage site in an H5 subtype virus. This study provides insights into how HPAI viruses emerge from low pathogenic precursors and demonstrated the pathogenic potential of H5N2 and H7N1 strains that have not yet been implicated in HPAI outbreaks.
Collapse
Affiliation(s)
- Agnes Tinuke Laleye
- National Veterinary Research Institute, Vom, Nigeria
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
44
|
H9N2 Influenza Virus Infections in Human Cells Require a Balance between Neuraminidase Sialidase Activity and Hemagglutinin Receptor Affinity. J Virol 2020; 94:JVI.01210-20. [PMID: 32641475 PMCID: PMC7459563 DOI: 10.1128/jvi.01210-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses. Some avian influenza (AI) viruses have a deletion of up to 20 to 30 amino acids in their neuraminidase (NA) stalk. This has been associated with changes in virus replication and host range. Currently prevalent H9N2 AI viruses have only a 2- or 3-amino-acid deletion, and such deletions were detected in G1 and Y280 lineage viruses, respectively. The effect of an NA deletion on the H9N2 phenotype has not been fully elucidated. In this study, we isolated G1 mutants that carried an 8-amino-acid deletion in their NA stalk. To systematically analyze the effect of NA stalk length and concomitant (de)glycosylation on G1 replication and host range, we generated G1 viruses that had various NA stalk lengths and that were either glycosylated or not glycosylated. The stalk length was correlated with NA sialidase activity, using low-molecular-weight substrates, and with virus elution efficacy from erythrocytes. G1 virus replication in avian cells and eggs was positively correlated with the NA stalk length but was negatively correlated in human cells and mice. NA stalk length modulated G1 virus entry into host cells, with shorter stalks enabling more efficient G1 entry into human cells. However, with a hemagglutinin (HA) with a higher α2,6-linked sialylglycan affinity, the effect of NA stalk length on G1 virus infection was reversed, with shorter NA stalks reducing virus entry into human cells. These results indicate that a balance between HA binding affinity and NA sialidase activity, modulated by NA stalk length, is required for optimal G1 virus entry into human airway cells. IMPORTANCE H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses.
Collapse
|
45
|
Du W, Wolfert MA, Peeters B, van Kuppeveld FJM, Boons GJ, de Vries E, de Haan CAM. Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. PLoS Pathog 2020; 16:e1008816. [PMID: 32853241 PMCID: PMC7480853 DOI: 10.1371/journal.ppat.1008816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics. Most pandemics occurred upon adaptation of avian IAVs to humans. This adaptation includes a hallmark receptor-binding specificity switch of hemagglutinin (HA) from avian-type α2,3- to human-type α2,6-linked sialic acids. Complementary changes of the receptor-destroying neuraminidase (NA) are considered to restore the precarious, but poorly described, HA-NA-receptor balance required for virus fitness. In comparison to the detailed functional description of adaptive mutations in HA, little is known about the functional consequences of mutations in NA in relation to their effect on the HA-NA balance and host tropism. An understudied feature of NA is the presence of a second sialic acid-binding site (2SBS) in avian IAVs and absence of a 2SBS in human IAVs, which affects NA catalytic activity. Here we demonstrate that mutation of the 2SBS of avian IAV H5N1 disturbs the HA-NA balance. Passaging of a 2SBS-negative H5N1 virus on MDCK cells selected for progeny with a restored HA-NA balance. These viruses obtained mutations in NA that restored a functional 2SBS and/or in HA that reduced binding of avian-type receptors. Importantly, a particular HA mutation also resulted in increased binding of human-type receptors. Phylogenetic analyses of avian IAVs show that also in the field, mutations in the 2SBS precede mutations in HA that reduce binding of avian-type receptors and increase binding of human-type receptors. Thus, 2SBS mutations in NA can drive acquisition of mutations in HA that not only restore the HA-NA balance, but may also confer increased zoonotic potential.
Collapse
Affiliation(s)
- Wenjuan Du
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margreet A. Wolfert
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Ben Peeters
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, the Netherlands
| | - Frank J. M. van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Erik de Vries
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
Seekings AH, Howard WA, Nuñéz A, Slomka MJ, Banyard AC, Hicks D, Ellis RJ, Nuñéz-García J, Hartgroves LC, Barclay WS, Banks J, Brown IH. The Emergence of H7N7 Highly Pathogenic Avian Influenza Virus from Low Pathogenicity Avian Influenza Virus Using an in ovo Embryo Culture Model. Viruses 2020; 12:v12090920. [PMID: 32839404 PMCID: PMC7552004 DOI: 10.3390/v12090920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023] Open
Abstract
Outbreaks of highly pathogenic avian influenza virus (HPAIV) often result in the infection of millions of poultry, causing up to 100% mortality. HPAIV has been shown to emerge from low pathogenicity avian influenza virus (LPAIV) in field outbreaks. Direct evidence for the emergence of H7N7 HPAIV from a LPAIV precursor with a rare di-basic cleavage site (DBCS) was identified in the UK in 2008. The DBCS contained an additional basic amino acid compared to commonly circulating LPAIVs that harbor a single-basic amino acid at the cleavage site (SBCS). Using reverse genetics, outbreak HPAIVs were rescued with a DBCS (H7N7DB), as seen in the LPAIV precursor or an SBCS representative of common H7 LPAIVs (H7N7SB). Passage of H7N7DB in chicken embryo tissues showed spontaneous evolution to a HPAIV. In contrast, deep sequencing of extracts from embryo tissues in which H7N7SB was serially passaged showed retention of the LPAIV genotype. Thus, in chicken embryos, an H7N7 virus containing a DBCS appears naturally unstable, enabling rapid evolution to HPAIV. Evaluation in embryo tissue presents a useful approach to study AIV evolution and allows a laboratory-based dissection of molecular mechanisms behind the emergence of HPAIV.
Collapse
Affiliation(s)
- Amanda H. Seekings
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
- Correspondence:
| | - Wendy A. Howard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Alejandro Nuñéz
- Pathology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (A.N.); (D.H.)
| | - Marek J. Slomka
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Ashley C. Banyard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK
| | - Daniel Hicks
- Pathology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (A.N.); (D.H.)
| | - Richard J. Ellis
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (R.J.E.); (J.N.-G.)
| | - Javier Nuñéz-García
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (R.J.E.); (J.N.-G.)
| | | | - Wendy S. Barclay
- Virology Department, Imperial College, London W2 1NY, UK; (L.C.H.); (W.S.B.)
| | - Jill Banks
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Ian H. Brown
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| |
Collapse
|
47
|
Kim HM, Kim DY, Kang YM, Cho HK, Lee CH, Choi SH, Lee H, Bae YC, Lee MH, Kang HM. Immunogenicity and protective efficacy of clade 2.3.2.1c and clade 2.3.4.4c H5Nx avian influenza antigen bank vaccines in mice, Korea. Vaccine 2020; 38:6080-6087. [PMID: 32732143 DOI: 10.1016/j.vaccine.2020.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Hyun-Mi Kim
- Avian Influenza Vaccine Research Laboratory, Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Do-Young Kim
- Avian Influenza Vaccine Research Laboratory, Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yong-Myung Kang
- Avian Influenza Vaccine Research Laboratory, Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Kyu Cho
- Avian Influenza Vaccine Research Laboratory, Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Chi-Ho Lee
- Avian Influenza Vaccine Research Laboratory, Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Sang-Hyun Choi
- Avian Influenza Vaccine Research Laboratory, Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyunkyoung Lee
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - You-Chan Bae
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Myoung-Heon Lee
- Avian Influenza Vaccine Research Laboratory, Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Mi Kang
- Avian Influenza Vaccine Research Laboratory, Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| |
Collapse
|
48
|
Barberis A, Boudaoud A, Gorrill A, Loupias J, Ghram A, Lachheb J, Alloui N, Ducatez MF. Full-length genome sequences of the first H9N2 avian influenza viruses isolated in the Northeast of Algeria. Virol J 2020; 17:108. [PMID: 32680533 PMCID: PMC7366561 DOI: 10.1186/s12985-020-01377-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
Background H9N2 avian influenza viruses (AIV) has a worldwide geographic distribution and affects poultry of different types of production. H9N2 AIV was first reported in the Northeast of Algeria in April 2017, following an outbreak associated with high mortality, in broiler flocks. In the present study, we report full-length genome sequences of AIV H9N2, and the detailed phylogeny and molecular genetic analyses. Methods Ten AIV H9N2 strains, collected in broiler flocks, were amplified in 9-day-old embryonated specific pathogen free (SPF) chicken eggs. Their full-length genomes were successfully sequenced and phylogenetic and molecular characterizations were conducted. Results Phylogenetic analysis showed that the isolates were monophyletic, grouped within the G-1 lineage and were very close to Moroccan and Algerian strains identified in 2016 and 2017, respectively. The low pathogenicity of the strains was confirmed by the sequence motif (335RSSR/GLF341) at the hemagglutinin (HA) cleavage site. An exclusive substitution (T197A) that had not been previously reported for H9N2 viruses; but, conserved in some pandemic H1N1 viruses, was observed. When compared to the G1-like H9N2 prototype, the studied strains showed one less glycosylation site in HA, but 2–3 additional ones in the stalk of the neuraminidase (NA). The HA protein harbored the substitution 234 L, suggesting binding preference to human-like receptors. The NA protein harbored S372A and R403W substitutions, previously detected in H9N2 from Asia and the Middle East, and especially in H2N2 and H3N2 strains that caused human pandemics. Different molecular markers associated with virulence and mammalian infections have been detected in the viral internal proteins. The matrix M2 protein possessed the S31N substitution associated with drug resistance. The non-structural 1 (NS1) protein showed the “GSEV” PDZ ligand (PL) C-terminal motif and no 80–84 deletion. Conclusion Characterized Algerian AIV isolates showed mutations that suggest increased zoonotic potential. Additional studies in animal models are required to investigate the pathogenicity of these H9N2 AIV strains. Monitoring their evolution in both migratory and domestic birds is crucial to prevent transmission to humans. Implementation of adequate biosecurity measures that limit the introduction and the propagation of AIV H9N2 in Algerian poultry farm is crucial.
Collapse
Affiliation(s)
- Abdelheq Barberis
- Centre de Recherche en Biotechnologie, Nouvelle Ville Ali Mendjeli, El Khroub, Algeria. .,LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria.
| | - Amine Boudaoud
- LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria
| | - Angelina Gorrill
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France
| | - Josianne Loupias
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France
| | - Abdeljelil Ghram
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachheb
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Nadir Alloui
- LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria
| | - Mariette F Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France.
| |
Collapse
|
49
|
Thurain K, Mon PP, Nasamran C, Charoenkul K, Boonyapisitsopa S, Tun TN, San YY, Aye AM, Amonsin A. Surveillance of influenza A virus subtype H5N1 in a live bird market in Yangon, Myanmar: 2017-2018. Transbound Emerg Dis 2020; 67:2667-2678. [PMID: 32386461 DOI: 10.1111/tbed.13618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/06/2023]
Abstract
A survey of influenza A viruses (IAVs) in the Mingalar Taung Nyunt live bird market (MTN-LBM), Yangon, Myanmar, was conducted from December 2017 to December 2018. During the survey, 455 swab samples were collected from broilers, layers, backyard chickens and ducks from the MTN-LBM. Ninety-one pooled samples were screened for IAVs by real-time RT-PCR specific to the M gene. Positive pooled samples were individually retested for IAVs. In total, 2.63% of individual samples (12/455) were positive for IAVs. Out of 12 samples, seven samples from layer chickens and the environment were identified as IAV subtype H5N1. In this study, four IAVs were successfully isolated and further characterized by whole genome sequencing. Whole genome sequence analysis revealed that the viruses were characterized as highly pathogenic avian influenza virus subtype H5N1 (HPAIV-H5N1) of clade 2.3.2.1c. Phylogenetic and genetic analyses showed that Myanmar HPAIV-H5N1 was closely related to HPAIV-H5N1 clade 2.3.2.1c isolated from China and Vietnam in 2014. Our results suggested that the live bird market in Myanmar represents a significant risk of HPAIV-H5N1 transmission in poultry and humans. Moreover, HPAIV-H5N1 clade 2.3.2.1c is widely distributed in South-East Asia including Myanmar.
Collapse
Affiliation(s)
- Khin Thurain
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Pont Pont Mon
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Chanakarn Nasamran
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Charoenkul
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Supanat Boonyapisitsopa
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Than Naing Tun
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Yin Yin San
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Aung Myo Aye
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Alongkorn Amonsin
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
50
|
Barjesteh N, O'Dowd K, Vahedi SM. Antiviral responses against chicken respiratory infections: Focus on avian influenza virus and infectious bronchitis virus. Cytokine 2020; 127:154961. [PMID: 31901597 PMCID: PMC7129915 DOI: 10.1016/j.cyto.2019.154961] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
Some of the respiratory viral infections in chickens pose a significant threat to the poultry industry and public health. In response to viral infections, host innate responses provide the first line of defense against viruses, which often act even before the establishment of the infection. Host cells sense the presence of viral components through germinal encoded pattern recognition receptors (PRRs). The engagement of PRRs with pathogen-associated molecular patterns leads to the induction of pro-inflammatory and interferon productions. Induced antiviral responses play a critical role in the outcome of the infections. In order to improve current strategies for control of viral infections or to advance new strategies aimed against viral infections, a deep understanding of host-virus interaction and induction of antiviral responses is required. In this review, we summarized recent progress in understanding innate antiviral responses in chickens with a focus on the avian influenza virus and infectious bronchitis virus.
Collapse
Affiliation(s)
- Neda Barjesteh
- Research Group on Infectious Diseases in Production Animals (GREMIP), and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | - Kelsey O'Dowd
- Research Group on Infectious Diseases in Production Animals (GREMIP), and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Seyed Milad Vahedi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|