1
|
Han C, Gui C, Dong S, Lan K. The Interplay between KSHV Infection and DNA-Sensing Pathways. Viruses 2024; 16:749. [PMID: 38793630 PMCID: PMC11125855 DOI: 10.3390/v16050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Chenwu Gui
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Shuhong Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Combs LR, Combs J, McKenna R, Toth Z. Protein Degradation by Gammaherpesvirus RTAs: More Than Just Viral Transactivators. Viruses 2023; 15:730. [PMID: 36992439 PMCID: PMC10055789 DOI: 10.3390/v15030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the Gammaherpesvirus subfamily that encodes several viral proteins with intrinsic E3 ubiquitin ligase activity or the ability to hijack host E3 ubiquitin ligases to modulate the host's immune response and to support the viral life cycle. This review focuses specifically on how the immediate-early KSHV protein RTA (replication and transcription activator) hijacks the host's ubiquitin-proteasome pathway (UPP) to target cellular and viral factors for protein degradation to allow for robust lytic reactivation. Notably, RTA's targets are either potent transcription repressors or they are activators of the innate and adaptive immune response, which block the lytic cycle of the virus. This review mainly focuses on what is currently known about the role of the E3 ubiquitin ligase activity of KSHV RTA in the regulation of the KSHV life cycle, but we will also discuss the potential role of other gammaherpesviral RTA homologs in UPP-mediated protein degradation.
Collapse
Affiliation(s)
- Lauren R. Combs
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
The FAT10 post-translational modification is involved in the lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2021; 95:JVI.02194-20. [PMID: 33627385 PMCID: PMC8139669 DOI: 10.1128/jvi.02194-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication, host cell functions including protein expression and post-translational modification pathways are dysregulated by KSHV to promote virus production. Here, we attempted to identify key proteins for KSHV lytic replication by profiling protein expression in the latent and lytic phases using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteomic analysis, immunoblotting, and quantitative PCR demonstrated that antigen-F (HLA-F) adjacent transcript 10 (FAT10) and UBE1L2 (also known as ubiquitin-like modifier-activating enzyme 6, UBA6) were upregulated during lytic replication. FAT10 is a ubiquitin-like protein (UBL). UBE1L2 is the FAT10-activating enzyme (E1), which is essential for FAT10 modification (FAT10ylation). FAT10ylated proteins were immediately expressed after lytic induction and increased over time during lytic replication. Knockout of UBE1L2 suppressed KSHV production but not KSHV DNA synthesis. In order to isolate FAT10ylated proteins during KSHV lytic replication, we conducted immunoprecipitations using anti-FAT10 antibody and Ni-NTA chromatography of exogenously expressed His-tagged FAT10 from cells undergoing latent or lytic replication. LC-MS/MS was performed to identify FAT10ylated proteins. We identified KSHV ORF59 and ORF61 as FAT10ylation substrates. Our study revealed that the UBE1L2-FAT10 system is upregulated during KSHV lytic replication, and it contributes to viral propagation.ImportanceUbiquitin and UBL post-translational modifications, including FAT10, are utilized and dysregulated by viruses for achievement of effective infection and virion production. The UBE1L2-FAT10 system catalyzes FAT10ylation, where one or more FAT10 molecules are covalently linked to a substrate. FAT10ylation is catalyzed by the sequential actions of E1 (activation enzyme), E2 (conjugation enzyme), and E3 (ligase) enzymes. The E1 enzyme for FAT10ylation is UBE1L2, which activates FAT10 and transfers it to E2/USE1. FAT10ylation regulates the cell cycle, IFN signaling, and protein degradation; however, its primary biological function remains unknown. Here, we revealed that KSHV lytic replication induces UBE1L2 expression and production of FAT10ylated proteins including KSHV lytic proteins. Moreover, UBE1L2 knockout suppressed virus production during the lytic cycle. This is the first report demonstrating the contribution of the UBE1L2-FAT10 system to KSHV lytic replication. Our findings provide insight into the physiological function(s) of novel post-translational modifications in KSHV lytic replication.
Collapse
|
4
|
Stolz ML, McCormick C. The bZIP Proteins of Oncogenic Viruses. Viruses 2020; 12:v12070757. [PMID: 32674309 PMCID: PMC7412551 DOI: 10.3390/v12070757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors (TFs) govern diverse cellular processes and cell fate decisions. The hallmark of the leucine zipper domain is the heptad repeat, with leucine residues at every seventh position in the domain. These leucine residues enable homo- and heterodimerization between ZIP domain α-helices, generating coiled-coil structures that stabilize interactions between adjacent DNA-binding domains and target DNA substrates. Several cancer-causing viruses encode viral bZIP TFs, including human T-cell leukemia virus (HTLV), hepatitis C virus (HCV) and the herpesviruses Marek’s disease virus (MDV), Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV). Here, we provide a comprehensive review of these viral bZIP TFs and their impact on viral replication, host cell responses and cell fate.
Collapse
|
5
|
Johnston BP, McCormick C. Herpesviruses and the Unfolded Protein Response. Viruses 2019; 12:E17. [PMID: 31877732 PMCID: PMC7019427 DOI: 10.3390/v12010017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses usurp cellular stress responses to promote viral replication and avoid immune surveillance. The unfolded protein response (UPR) is a conserved stress response that is activated when the protein load in the ER exceeds folding capacity and misfolded proteins accumulate. The UPR aims to restore protein homeostasis through translational and transcriptional reprogramming; if homeostasis cannot be restored, the UPR switches from "helper" to "executioner", triggering apoptosis. It is thought that the burst of herpesvirus glycoprotein synthesis during lytic replication causes ER stress, and that these viruses may have evolved mechanisms to manage UPR signaling to create an optimal niche for replication. The past decade has seen considerable progress in understanding how herpesviruses reprogram the UPR. Here we provide an overview of the molecular events of UPR activation, signaling and transcriptional outputs, and highlight key evidence that herpesviruses hijack the UPR to aid infection.
Collapse
Affiliation(s)
- Benjamin P. Johnston
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
6
|
He M, Cheng F, da Silva SR, Tan B, Sorel O, Gruffaz M, Li T, Gao SJ. Molecular Biology of KSHV in Relation to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:23-62. [PMID: 30523620 DOI: 10.1007/978-3-030-03502-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovered in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) has been associated with four human malignancies including Kaposi's sarcoma, primary effusion lymphoma, a subset of multicentric Castleman's disease, and KSHV inflammatory cytokine syndrome. These malignancies mostly occur in immunocompromised patients including patients with acquired immunodeficiency syndrome and often cause significant mortality because of the lack of effective therapies. Significant progresses have been made to understand the molecular basis of KSHV infection and KSHV-induced oncogenesis in the last two decades. This chapter provides an update on the recent advancements focusing on the molecular events of KSHV primary infection, the mechanisms regulating KSHV life cycle, innate and adaptive immunity, mechanism of KSHV-induced tumorigenesis and inflammation, and metabolic reprogramming in KSHV infection and KSHV-transformed cells.
Collapse
Affiliation(s)
- Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Océane Sorel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tingting Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
7
|
The landscape of transcription initiation across latent and lytic KSHV genomes. PLoS Pathog 2019; 15:e1007852. [PMID: 31188901 PMCID: PMC6590836 DOI: 10.1371/journal.ppat.1007852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/24/2019] [Accepted: 05/20/2019] [Indexed: 11/19/2022] Open
Abstract
Precise promoter annotation is required for understanding the mechanistic basis of transcription initiation. In the context of complex genomes, such as herpesviruses where there is extensive genic overlap, identification of transcription start sites (TSSs) is particularly problematic and cannot be comprehensively accessed by standard RNA sequencing approaches. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus and the etiological agent of Kaposi's sarcoma and the B cell lymphoma primary effusion lymphoma (PEL). Here, we leverage RNA annotation and mapping of promoters for analysis of gene expression (RAMPAGE) and define KSHV TSSs transcriptome-wide and at nucleotide resolution in two widely used models of KSHV infection, namely iSLK.219 cells and the PEL cell line TREx-BCBL1-RTA. By mapping TSSs over a 96 h time course of reactivation we confirm 48 of 50 previously identified TSSs. Moreover, we identify over 100 novel transcription start site clusters (TSCs) in each cell line. Our analyses identified cell-type specific differences in TSC positions as well as promoter strength, and defined motifs within viral core promoters. Collectively, by defining TSSs at high resolution we have greatly expanded the transcriptional landscape of the KSHV genome and identified transcriptional control mechanisms at play during KSHV lytic reactivation.
Collapse
|
8
|
Kaul R, Purushothaman P, Uppal T, Verma SC. KSHV lytic proteins K-RTA and K8 bind to cellular and viral chromatin to modulate gene expression. PLoS One 2019; 14:e0215394. [PMID: 30998737 PMCID: PMC6472759 DOI: 10.1371/journal.pone.0215394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
The oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) has two distinct life cycles with lifelong latent/non-productive and a sporadic lytic-reactivating/productive phases in the infected immune compromised human hosts. The virus reactivates from latency in response to various chemical or environmental stimuli, which triggers the lytic cascade and leads to the expression of immediate early gene, i.e. Replication and Transcription Activator (K-RTA). K-RTA, the latent-to-lytic switch protein, activates the expression of early (E) and late (L) lytic genes by transactivating multiple viral promoters. Expression of K-RTA is shown to be sufficient and essential to switch the latent virus to enter into the lytic phase of infection. Similarly, the virus-encoded bZIP family of protein, K8 also plays an important role in viral lytic DNA replication. Although, both K-RTA and K8 are found to be the ori-Lyt binding proteins and are required for lytic DNA replication, the detailed DNA-binding profile of these proteins in the KSHV and host genomes remains uncharacterized. In this study, using chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq) assay, we performed a comprehensive analysis of K-RTA and K8 binding sites in the KSHV and human genomes in order to identify specific DNA binding sequences/motifs. We identified two novel K-RTA binding motifs, (i.e. AGAGAGAGGA/motif RB and AGAAAAATTC/motif RV) and one K8 binding motif (i.e. AAAATGAAAA/motif KB), respectively. The binding of K-RTA/K8 proteins with these motifs and resulting transcriptional modulation of downstream genes was further confirmed by DNA electrophoretic gel mobility shift assay (EMSA), reporter promoter assay, Chromatin Immunoprecipitation (ChIP) assay and mRNA quantitation assay. Our data conclusively shows that K-RTA/K8 proteins specifically bind to these motifs on the host/viral genomes to modulate transcription of host/viral genes during KSHV lytic reactivation.
Collapse
Affiliation(s)
- Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Pravinkumar Purushothaman
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| |
Collapse
|
9
|
Coevolution pays off: Herpesviruses have the license to escape the DNA sensing pathway. Med Microbiol Immunol 2019; 208:495-512. [PMID: 30805724 DOI: 10.1007/s00430-019-00582-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 01/20/2023]
Abstract
Early detection of viral invasion by pattern recognition receptors (PRR) is crucial for the induction of a rapid and efficient immune response. Cytosolic DNA sensors are the most recently described class of PRR, and induce transcription of type I interferons (IFN) and proinflammatory cytokines via the key adaptor protein stimulator of interferon genes (STING). Herpesviruses are a family of large DNA viruses widely known for their immense arsenal of proteins dedicated to manipulating and evading host immune responses. Tantamount to the significant role played by DNA sensors and STING in innate immune responses, herpesviruses have in turn evolved a range of mechanisms targeting virtually every step of this key signaling pathway. Strikingly, some herpesviruses also take advantage of this pathway to promote their own replication. In this review, we will summarize the current understanding of DNA sensing and subsequent induction of signaling and transcription, and showcase the close adaptation of herpesviruses to their host reflected by the myriad of viral proteins dedicated to modulating this critical innate immune pathway.
Collapse
|
10
|
Kaposi's Sarcoma-Associated Herpesvirus K8 Is an RNA Binding Protein That Regulates Viral DNA Replication in Coordination with a Noncoding RNA. J Virol 2018; 92:JVI.02177-17. [PMID: 29321307 DOI: 10.1128/jvi.02177-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication and constant primary infection of fresh cells are crucial for viral tumorigenicity. The virus-encoded bZIP family protein K8 plays an important role in viral DNA replication in both viral reactivation and de novo infection. The mechanism underlying the functional role of K8 in the viral life cycle is elusive. Here, we report that K8 is an RNA binding protein that also associates with many other proteins, including other RNA binding proteins. Many protein-protein interactions involving K8 are mediated by RNA. Using a UV cross-linking and immunoprecipitation (CLIP) procedure combined with high-throughput sequencing, RNAs that are associated with K8 in BCBL-1 cells were identified, including both viral (PAN, T1.4, T0.7, etc.) and cellular (MALAT-1, MRP, 7SK, etc.) RNAs. An RNA binding motif in K8 was defined, and mutation of the motif abolished the ability of K8 to bind to many noncoding RNAs, as well as viral DNA replication during de novo infection, suggesting that the K8 functions in viral replication are carried out through RNA association. The functions of K8 and associated T1.4 RNA were investigated in detail, and the results showed that T1.4 mediates the binding of K8 to ori-Lyt DNA. The T1.4-K8 complex physically bound to KSHV ori-Lyt DNA and recruited other proteins and cofactors to assemble a replication complex. Depletion of T1.4 abolished DNA replication in primary infection. These findings provide mechanistic insights into the role of K8 in coordination with T1.4 RNA in regulating KSHV DNA replication during de novo infection.IMPORTANCE Genomewide analyses of the mammalian transcriptome revealed that a large proportion of sequence previously annotated as noncoding regions is actually transcribed and gives rise to stable RNAs. The emergence of a large number of noncoding RNAs suggests that functional RNA-protein complexes, e.g., ribosomes or spliceosomes, are not ancient relics of the last ribo-organism but would be well adapted to a regulatory role in biology. K8 has been puzzling because of its unique characteristics, such as multiple regulatory roles in gene expression and DNA replication without DNA binding capability. This study reveals the mechanism underlying its regulatory role by demonstrating that K8 is an RNA binding protein that binds to DNA and initiates DNA replication in coordination with a noncoding RNA. It is suggested that many K8 functions, if not all, are carried out through its associated RNAs.
Collapse
|
11
|
Yang WS, Campbell M, Kung HJ, Chang PC. In Vitro SUMOylation Assay to Study SUMO E3 Ligase Activity. J Vis Exp 2018. [PMID: 29443041 DOI: 10.3791/56629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) modification is an important post-translational modification (PTM) that mediates signal transduction primarily through modulating protein-protein interactions. Similar to ubiquitin modification, SUMOylation is directed by a sequential enzyme cascade including E1-activating enzyme (SAE1/SAE2), E2-conjugation enzyme (Ubc9), and E3-ligase (i.e., PIAS family, RanBP2, and Pc2). However, different from ubiquitination, an E3 ligase is non-essential for the reaction but does provide precision and efficacy for SUMO conjugation. Proteins modified by SUMOylation can be identified by in vivo assay via immunoprecipitation with substrate-specific antibodies and immunoblotting with SUMO-specific antibodies. However, the demonstration of protein SUMO E3 ligase activity requires in vitro reconstitution of SUMOylation assays using purified enzymes, substrate, and SUMO proteins. Since in the in vitro reactions, usually SAE1/SAE2 and Ubc9, alone are sufficient for SUMO conjugation, enhancement of SUMOylation by a putative E3 ligase is not always easy to detect. Here, we describe a modified in vitro SUMOylation protocol that consistently identifies SUMO modification using an in vitro reconstituted system. A step-by-step protocol to purify catalytically active K-bZIP, a viral SUMO-2/3 E3 ligase, is also presented. The SUMOylation activities of the purified K-bZIP are shown on p53, a well-known target of SUMO. This protocol can not only be employed for elucidating novel SUMO E3 ligases, but also for revealing their SUMO paralog specificity.
Collapse
Affiliation(s)
- Wan-Shan Yang
- Institute of Microbiology and Immunology, National Yang-Ming University
| | - Mel Campbell
- UC Davis Cancer Center, University of California, Davis
| | - Hsing-Jien Kung
- UC Davis Cancer Center, University of California, Davis; Department of Biochemistry and Molecular Medicine, University of California, Davis; Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University; Division of Molecular and Genomic Medicine, National Health Research Institutes;
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University;
| |
Collapse
|
12
|
Lowrey AJ, Cramblet W, Bentz GL. Viral manipulation of the cellular sumoylation machinery. Cell Commun Signal 2017; 15:27. [PMID: 28705221 PMCID: PMC5513362 DOI: 10.1186/s12964-017-0183-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Viruses exploit various cellular processes for their own benefit, including counteracting anti-viral responses and regulating viral replication and propagation. In the past 20 years, protein sumoylation has emerged as an important post-translational modification that is manipulated by viruses to modulate anti-viral responses, viral replication, and viral pathogenesis. The process of sumoylation is a multi-step cascade where a small ubiquitin-like modifier (SUMO) is covalently attached to a conserved ΨKxD/E motif within a target protein, altering the function of the modified protein. Here we review how viruses manipulate the cellular machinery at each step of the sumoylation process to favor viral survival and pathogenesis.
Collapse
Affiliation(s)
- Angela J Lowrey
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Wyatt Cramblet
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Gretchen L Bentz
- Division of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia.
| |
Collapse
|
13
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
14
|
Granato M, Santarelli R, Filardi M, Gonnella R, Farina A, Torrisi MR, Faggioni A, Cirone M. The activation of KSHV lytic cycle blocks autophagy in PEL cells. Autophagy 2015; 11:1978-1986. [PMID: 26391343 PMCID: PMC4824593 DOI: 10.1080/15548627.2015.1091911] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study confirms that autophagy is activated concomitantly with KSHV lytic cycle induction, and that autophagy inhibition by BECN1 knockdown reduces viral lytic gene expression. In addition, we extend previous observations and show that autophagy is blocked at late steps, during viral replication. This is indicated by the lack of colocalization of autophagosomes and lysosomes and by the LC3-II level that does not increase in the presence of bafilomycin A1 in primary effusion lymphoma (PEL) cells induced to enter the lytic cycle, either by TPA/sodium butyrate (BC3 and BCBL1) or by doxycycline (TRExBCBL1-Rta). The autophagic block correlates with the downregulation of RAB7, whose silencing with specific siRNA results in an autophagic block in the same cells. Finally, by electron microscopy analysis, we observed viral particles inside autophagic vesicles in the cytoplasm of PEL cells undergoing viral replication, suggesting that they may be involved in viral transport.
Collapse
Affiliation(s)
- Marisa Granato
- a Department of Experimental Medicine ; "Sapienza" University of Rome ; Rome , Italy
| | - Roberta Santarelli
- a Department of Experimental Medicine ; "Sapienza" University of Rome ; Rome , Italy
| | - Mariarosaria Filardi
- a Department of Experimental Medicine ; "Sapienza" University of Rome ; Rome , Italy
| | - Roberta Gonnella
- a Department of Experimental Medicine ; "Sapienza" University of Rome ; Rome , Italy
| | - Antonella Farina
- a Department of Experimental Medicine ; "Sapienza" University of Rome ; Rome , Italy
| | - Maria Rosaria Torrisi
- b Istituto Pasteur-Fondazione Cenci Bolognetti ; Dipartimento di Medicina Clinica e Molecolare ; Sapienza Università di Roma ; Rome , Italy.,c Azienda Ospedaliera S. Andrea ; Rome , Italy
| | - Alberto Faggioni
- a Department of Experimental Medicine ; "Sapienza" University of Rome ; Rome , Italy
| | - Mara Cirone
- a Department of Experimental Medicine ; "Sapienza" University of Rome ; Rome , Italy
| |
Collapse
|
15
|
Whole-Genome Sequencing of Kaposi's Sarcoma-Associated Herpesvirus from Zambian Kaposi's Sarcoma Biopsy Specimens Reveals Unique Viral Diversity. J Virol 2015; 89:12299-308. [PMID: 26423952 DOI: 10.1128/jvi.01712-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent for Kaposi's sarcoma (KS). Both KSHV and KS are endemic in sub-Saharan Africa where approximately 84% of global KS cases occur. Nevertheless, whole-genome sequencing of KSHV has only been completed using isolates from Western countries-where KS is not endemic. The lack of whole-genome KSHV sequence data from the most clinically important geographical region, sub-Saharan Africa, represents an important gap since it remains unclear whether genomic diversity has a role on KSHV pathogenesis. We hypothesized that distinct KSHV genotypes might be present in sub-Saharan Africa compared to Western countries. Using a KSHV-targeted enrichment protocol followed by Illumina deep-sequencing, we generated and analyzed 16 unique Zambian, KS-derived, KSHV genomes. We enriched KSHV DNA over cellular DNA 1,851 to 18,235-fold. Enrichment provided coverage levels up to 24,740-fold; therefore, supporting highly confident polymorphism analysis. Multiple alignment of the 16 newly sequenced KSHV genomes showed low level variability across the entire central conserved region. This variability resulted in distinct phylogenetic clustering between Zambian KSHV genomic sequences and those derived from Western countries. Importantly, the phylogenetic segregation of Zambian from Western sequences occurred irrespective of inclusion of the highly variable genes K1 and K15. We also show that four genes within the more conserved region of the KSHV genome contained polymorphisms that partially, but not fully, contributed to the unique Zambian KSHV whole-genome phylogenetic structure. Taken together, our data suggest that the whole KSHV genome should be taken into consideration for accurate viral characterization. IMPORTANCE Our results represent the largest number of KSHV whole-genomic sequences published to date and the first time that multiple genomes have been sequenced from sub-Saharan Africa, a geographic area where KS is highly endemic. Based on our new sequence data, it is apparent that whole-genome KSHV diversity is greater than previously appreciated and differential phylogenetic clustering exists between viral genomes of Zambia and Western countries. Furthermore, individual genes may be insufficient for KSHV genetic characterization. Continued investigation of the KSHV genetic landscape is necessary in order to effectively understand the role of viral evolution and sequence diversity on KSHV gene functions and pathogenesis.
Collapse
|
16
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) primarily persists as a latent episome in infected cells. During latent infection, only a limited number of viral genes are expressed that help to maintain the viral episome and prevent lytic reactivation. The latent KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin marks at the promoter-regulatory region of the major immediate-early gene promoter. Various stimuli can induce chromatin modifications to an active euchromatic epigenetic mark, leading to the expression of genes required for the transition from the latent to the lytic phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene expression triggers a cascade of events, resulting in the modulation of various cellular pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA replication of KSHV. In this review we will discuss some of the pivotal genetic and epigenetic factors that control KSHV reactivation from the transcriptionally restricted latent program.
Collapse
|
17
|
Next-generation sequence analysis of the genome of RFHVMn, the macaque homolog of Kaposi's sarcoma (KS)-associated herpesvirus, from a KS-like tumor of a pig-tailed macaque. J Virol 2013; 87:13676-93. [PMID: 24109218 DOI: 10.1128/jvi.02331-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans.
Collapse
|
18
|
Comprehensive mapping and analysis of Kaposi's sarcoma-associated herpesvirus 3' UTRs identify differential posttranscriptional control of gene expression in lytic versus latent infection. J Virol 2013; 87:12838-49. [PMID: 24067953 DOI: 10.1128/jvi.02374-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
3' untranslated regions (UTRs) are known to play an important role in posttranscriptional regulation of gene expression. Here we map the 3' UTRs of Kaposi's sarcoma-associated herpesvirus (KSHV) using next-generation RNA sequencing, 3' rapid amplification of cDNA ends (RACE), and tiled microarray analyses. Chimeric reporters containing the KSHV 3' UTRs show a general trend toward reduced gene expression under conditions of latent infection. Those 3' UTRs with a higher GC content are more likely to be associated with reduced gene expression. KSHV transcripts display an extensive use of shared polyadenylation sites allowing for partially overlapping 3' UTRs and regulatory activities. In addition, a subset of KSHV 3' UTRs is sufficient to convey increased gene expression under conditions of lytic infection. These results suggest a role for viral 3' UTRs in contributing to differential gene expression during latent versus lytic infection.
Collapse
|
19
|
Abstract
PML nuclear bodies and their associated functions are part of an intrinsic cellular mechanism aimed at maintaining transcriptional control over viral gene expression and preventing replication of invading viruses. To overcome these barriers, many viruses express early nonstructural, multifunctional proteins to support the viral replication cycle or modulate host immune responses. Virion proteins constituting the invading particle are traditionally investigated for their role in transport during entry or egress and in the assembly of new virions. The additional functions of virion proteins have largely been ignored, in contrast to those of their nonstructural counterparts. A number of recent reports suggest that several virion proteins may also play vital roles in gene activation processes, in particular by counteracting intrinsic immune mechanisms mediated by the PML nuclear body-associated cellular factors Daxx, ATRX, and Sp100. These virion proteins share several features with their more potent nonstructural counterparts, and they may serve to bridge the gap in the early phase of an infection until immediate early viral gene expression is established. In this review, we discuss how virion proteins are an integral part of gene regulation among several viral families and to what extent structural proteins of incoming virions may contribute to species barrier, latency, and oncogenesis.
Collapse
|
20
|
Martínez FP, Tang Q. Leucine zipper domain is required for Kaposi sarcoma-associated herpesvirus (KSHV) K-bZIP protein to interact with histone deacetylase and is important for KSHV replication. J Biol Chem 2012; 287:15622-34. [PMID: 22416134 DOI: 10.1074/jbc.m111.315861] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Kaposi sarcoma-associated herpesvirus (KSHV; or human herpesvirus-8)-encoded protein called K-bZIP (also named K8) was found to be multifunctional. In this study, we discovered that K-bZIP interacts with histone deacetylase (HDAC) 1/2 in 12-O-tetradecanoylphorbol-13-acetate-stimulated BCBL-1 lymphocyte cells. K-bZIP appears to repress HDAC activity through this interaction, which we determined to be independent of K-bZIP SUMOylation. We dissected the domains of K-bZIP and found that the leucine zipper (LZ) domain is essential for the interaction of K-bZIP and HDAC. In addition, we constructed a KSHV bacterial artificial chromosome (BAC) with LZ domain-deleted K-bZIP (KSHVdLZ) and transfected this mutated KSHV BAC DNA into HEK 293T cells. As a result, it was consistently found that K-bZIP without its LZ domain failed to interact with HDAC2. We also showed that the interaction between K-bZIP and HDAC is necessary for the inhibition of the lytic gene promoters (ORF50 and OriLyt) of KSHV by K-bZIP. Furthermore, we found that the LZ domain is also important for the interaction of K-bZIP with the promoters of ORF50 and OriLyt. Most interestingly, although it was found to have suppressive effects on the promoters of ORF50 and OriLyt, KSHVdLZ replicates at a significantly lower level than its BAC-derived revertant (KSHVdLZRev) or KSHVWT (BAC36) in HEK 293T cells. The defectiveness of KSHVdLZ replication can be partially rescued by siRNA against HDAC2. Our results suggest that the function of K-bZIP interaction with HDAC is two-layered. 1) K-bZIP inhibits HDAC activity generally so that KSHVdLZ replicates at a lower level than does KSHVWT. 2) K-bZIP can recruit HDAC to the promoters of OriLyt and ORF50 through interaction with HDAC for K-bZIP to have a temporary repressive effect on the two promoters.
Collapse
Affiliation(s)
- Francisco Puerta Martínez
- Department of Microbiology/Research Centers in Minority Institutions (RCMI) Program, Ponce School of Medicine, Ponce, Puerto Rico
| | | |
Collapse
|
21
|
Campbell M, Izumiya Y. Post-Translational Modifications of Kaposi's Sarcoma-Associated Herpesvirus Regulatory Proteins - SUMO and KSHV. Front Microbiol 2012; 3:31. [PMID: 22347876 PMCID: PMC3278983 DOI: 10.3389/fmicb.2012.00031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/18/2012] [Indexed: 01/20/2023] Open
Abstract
KSHV latency can be envisioned as an outcome that is balanced between factors that promote viral gene expression and lytic replication against those that facilitate gene silencing and establish or maintain latency. A large body of work has focused on the activities of the key viral regulatory proteins involved in KSHV latent or lytic states. Moreover, recent studies have also begun to document the importance of epigenetic landscape evolution of the KSHV viral genome during latency and reactivation. However, one area of KSHV molecular virology that remains largely unanswered is the precise role of post-translational modifications on the activities of viral factors that function during latency and reactivation. In this review, we will summarize the post-translational modifications associated with three viral factors whose activities contribute to the viral state. The viral proteins discussed are the two major KSHV encoded transcription factors, K-Rta (KSHV replication and transcriptional activator) and K-bZIP (KSHV basic leucine zipper) and the viral latency-associated nuclear antigen (LANA). A special emphasis will be placed on the role of the sumoylation pathway in the modulation of the KSHV lifecycle. Newly uncovered small ubiquitin-like modifier (SUMO)-associated properties of LANA and K-Rta will also be presented, namely LANA histone targeting SUMO E3 ligase activity and K-Rta SUMO-targeted ubiquitin ligase function.
Collapse
Affiliation(s)
- Mel Campbell
- Department of Dermatology, University of California Davis Sacramento, CA, USA
| | | |
Collapse
|
22
|
Evasion and subversion of interferon-mediated antiviral immunity by Kaposi's sarcoma-associated herpesvirus: an overview. J Virol 2011; 85:10934-44. [PMID: 21775463 DOI: 10.1128/jvi.00687-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Viral invasion of a host cell triggers immune responses with both innate and adaptive components. The innate immune response involving the induction of type I interferons (alpha and beta interferons [IFN-α and -β]) constitutes the first line of antiviral defenses. The type I IFNs signal the transcription of a group of antiviral effector proteins, the IFN-stimulated genes (ISGs), which target distinct viral components and distinct stages of the viral life cycle, aiming to eliminate invading viruses. In the case of Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma (KS), a sudden upsurge of type I IFN-mediated innate antiviral signals is seen immediately following both primary de novo infection and viral lytic reactivation from latency. Potent subversion of these responses thus becomes mandatory for the successful establishment of a primary infection following viral entry as well as for efficient viral assembly and egress. This review gives a concise overview of the induction of the type I IFN signaling pathways in response to viral infection and provides a comprehensive understanding of the antagonizing effects exerted by KSHV on type I IFN pathways wielded at various stages of the viral life cycle. Information garnered from this review should result in a better understanding of KSHV biology essential for the development of immunotherapeutic strategies targeted toward KSHV-associated malignancies.
Collapse
|
23
|
Rossetto CC, Susilarini NK, Pari GS. Interaction of Kaposi's sarcoma-associated herpesvirus ORF59 with oriLyt is dependent on binding with K-Rta. J Virol 2011; 85:3833-41. [PMID: 21289111 PMCID: PMC3126130 DOI: 10.1128/jvi.02361-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/27/2011] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) displays two distinct life stages, latency and lytic reactivation. Progression through the lytic cycle and replication of the viral genome constitute an essential step toward the production of infectious virus and human disease. KSHV K-RTA has been shown to be the major transactivator required for the initiation of lytic reactivation. In the transient-cotransfection replication assay, K-Rta is the only noncore protein required for DNA synthesis. K-Rta was shown to interact with both C/EBPα binding motifs and the R response elements (RRE) within oriLyt. It is postulated that K-Rta acts in part to facilitate the recruitment of replication factors to oriLyt. In order to define the role of K-Rta in the initiation of lytic DNA synthesis, we show an interaction with ORF59, the DNA polymerase processivity factor (PF), one of the eight virally encoded proteins necessary for origin-dependent DNA replication. Using the chromatin immunoprecipitation (ChIP) assay, both K-Rta and ORF59 interact with the RRE and C/EBPα binding motifs within oriLyt in cells harboring the KSHV bacterial artificial chromosome (BAC). A transient-transfection ChIP assay demonstrated that the interaction of ORF59 with oriLyt is dependent on binding with K-Rta and that ORF59 fails to bind to oriLyt in the absence of K-Rta. Also, using the cotransfection replication assay, overexpression of the interaction domain of K-Rta with ORF59 has a dominant negative effect on oriLyt amplification, suggesting that the interaction of K-Rta with ORF59 is essential for DNA synthesis and supporting the hypothesis that K-Rta facilitates the formation of a replication complex at oriLyt.
Collapse
Affiliation(s)
- Cyprian C. Rossetto
- University of Nevada—Reno, School of Medicine, Department of Microbiology and Immunology, Reno Nevada 89557
| | - Ni Ketut Susilarini
- University of Nevada—Reno, School of Medicine, Department of Microbiology and Immunology, Reno Nevada 89557
| | - Gregory S. Pari
- University of Nevada—Reno, School of Medicine, Department of Microbiology and Immunology, Reno Nevada 89557
| |
Collapse
|
24
|
Wang Y, Sathish N, Hollow C, Yuan Y. Functional characterization of Kaposi's sarcoma-associated herpesvirus open reading frame K8 by bacterial artificial chromosome-based mutagenesis. J Virol 2011; 85:1943-57. [PMID: 21159864 PMCID: PMC3067771 DOI: 10.1128/jvi.02060-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/06/2010] [Indexed: 01/09/2023] Open
Abstract
The open reading frame K8 of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a basic leucine zipper (bZip) protein that binds to the origin of viral DNA replication and is an integral component of viral lytic DNA replication complex. Moreover, K8 physically interacts with replication and transcription activator (RTA) and represses its transactivation activity on several viral promoters. To investigate the role of this protein in viral life cycle, we constructed two K8-null recombinant mutant viruses (BAC-ΔK8 and BAC-stopK8) by using a bacterial artificial chromosome (BAC) system. Latent viral infection can be reconstituted in 293T and BJAB cells with wild-type and the K8-null recombinant viruses by introducing the cloned viral genomes into the cells. When the cells carrying these viruses were induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate, no significant difference was seen in overall viral gene expression between wild-type and K8-null viruses, with lytic DNA replication still active in the latter. However, 293T cells harboring K8-null mutant viruses, either BAC-ΔK8 or BAC-stopK8, displayed lower copy numbers of latent KSHV genome in comparison with wild-type viruses. Furthermore, although K8 deficiency appeared to not affect infectivity when K8-null viruses were used to infect 293T, primary human microvascular dermal endothelial and human foreskin fibroblast cells, they exhibited much lower viral genome copy numbers in all types of cell compared to wild-type viruses. Taken together, these data suggest a possible role of K8 in abortive lytic DNA replication occurring in early stages of de novo infection or in the maintenance of latent viral genomes.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, Guanghua School of Stomatology and Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| | - Narayanan Sathish
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, Guanghua School of Stomatology and Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| | - Charles Hollow
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, Guanghua School of Stomatology and Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| | - Yan Yuan
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, Guanghua School of Stomatology and Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Lefort S, Gravel A, Flamand L. Repression of interferon-α stimulated genes expression by Kaposi's sarcoma-associated herpesvirus K-bZIP protein. Virology 2010; 408:14-30. [DOI: 10.1016/j.virol.2010.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 05/11/2010] [Accepted: 07/16/2010] [Indexed: 12/24/2022]
|
26
|
Reinke AW, Grigoryan G, Keating AE. Identification of bZIP interaction partners of viral proteins HBZ, MEQ, BZLF1, and K-bZIP using coiled-coil arrays. Biochemistry 2010; 49:1985-97. [PMID: 20102225 DOI: 10.1021/bi902065k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Basic-region leucine-zipper transcription factors (bZIPs) contain a segment rich in basic amino acids that can bind DNA, followed by a leucine zipper that can interact with other leucine zippers to form coiled-coil homo- or heterodimers. Several viruses encode proteins containing bZIP domains, including four that encode bZIPs lacking significant homology to any human protein. We investigated the interaction specificity of these four viral bZIPs by using coiled-coil arrays to assess self-associations as well as heterointeractions with 33 representative human bZIPs. The arrays recapitulated reported viral-human interactions and also uncovered new associations. MEQ and HBZ interacted with multiple human partners and had unique interaction profiles compared to any human bZIPs, whereas K-bZIP and BZLF1 displayed homospecificity. New interactions detected included HBZ with MAFB, MAFG, ATF2, CEBPG, and CREBZF and MEQ with NFIL3. These were confirmed in solution using circular dichroism. HBZ can heteroassociate with MAFB and MAFG in the presence of MARE-site DNA, and this interaction is dependent on the basic region of HBZ. NFIL3 and MEQ have different yet overlapping DNA-binding specificities and can form a heterocomplex with DNA. Computational design considering both affinity for MEQ and specificity with respect to other undesired bZIP-type interactions was used to generate a MEQ dimerization inhibitor. This peptide, anti-MEQ, bound MEQ both stably and specifically, as assayed using coiled-coil arrays and circular dichroism in solution. Anti-MEQ also inhibited MEQ binding to DNA. These studies can guide further investigation of the function of viral and human bZIP complexes.
Collapse
Affiliation(s)
- Aaron W Reinke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
27
|
Wang SS, Chen LW, Chen LY, Tsai HH, Shih YC, Yang CT, Chang PJ. Transcriptional regulation of the ORF61 and ORF60 genes of Kaposi's sarcoma-associated herpesvirus. Virology 2010; 397:311-21. [DOI: 10.1016/j.virol.2009.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/16/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
28
|
Chang PC, Izumiya Y, Wu CY, Fitzgerald LD, Campbell M, Ellison TJ, Lam KS, Luciw PA, Kung HJ. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO E3 ligase that is SIM-dependent and SUMO-2/3-specific. J Biol Chem 2009; 285:5266-73. [PMID: 20034935 DOI: 10.1074/jbc.m109.088088] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sumoylation has emerged as a major post-translational modification of cellular proteins, affecting a variety of cellular processes. Viruses have exploited the sumoylation pathway to advance their own replication by evolving several ways to perturb the host sumoylation apparatus. However, there has been no report of virally encoded enzymes directly involved in catalyzing the sumoylation reaction. Here, we report that the K-bZIP protein encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) is a SUMO E3 ligase with specificity toward SUMO2/3. K-bZIP is a nuclear factor that functions to modulate viral gene expression and to prolong the G1 phase, allowing viral transcription and translation to proceed at the early stage of infection. In addition to functioning as a transcriptional factor, we show that K-bZIP carries a SIM (SUMO-interacting motif), which specifically binds to SUMO-2/3 but not SUMO-1. K-bZIP catalyzes its own SUMO modification as well as that of its interacting partners such as the cellular tumor suppressor proteins p53 and Rb, both in vitro and in vivo. This reaction depends on an intact SIM. Sumoylation of p53 leads to its activation and K-bZIP is recruited to several p53 target chromatin sites in a SIM-dependent manner. In addition to the identification of a viral SUMO-2/3 E3 ligase, our results provide additional insights into the mechanisms whereby K-bZIP induces cell cycle arrest.
Collapse
Affiliation(s)
- Pei-Ching Chang
- Department of Biological Chemistry and Molecular Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Peng L, Wu TT, Tchieu JH, Feng J, Brown HJ, Feng J, Li X, Qi J, Deng H, Vivanco I, Mellinghoff IK, Jamieson C, Sun R. Inhibition of the phosphatidylinositol 3-kinase-Akt pathway enhances gamma-2 herpesvirus lytic replication and facilitates reactivation from latency. J Gen Virol 2009; 91:463-9. [PMID: 19864499 DOI: 10.1099/vir.0.015073-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular signalling pathways are critical in regulating the balance between latency and lytic replication of herpesviruses. Here, we investigated the effect of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway on replication of two gamma-2 herpesviruses, murine gammaherpesvirus-68 (MHV-68) and human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus (HHV-8/KSHV). We found that de novo infection of MHV-68 induced PI3K-dependent Akt activation and the lytic replication of MHV-68 was enhanced by inhibiting the PI3K-Akt pathway with both chemical inhibitors and RNA interference technology. Inhibiting the activity of Akt using Akt inhibitor VIII also facilitated the reactivation of KSHV from latency. Both lytic replication and latency depend on the activity of viral transactivator RTA and we further show that the activity of RTA is increased by reducing Akt1 expression. The data suggest that the PI3K-Akt pathway suppresses the activity of RTA and thereby contributes to the maintenance of viral latency and promotes tumorigenesis.
Collapse
Affiliation(s)
- Li Peng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wen KW, Damania B. Kaposi sarcoma-associated herpesvirus (KSHV): molecular biology and oncogenesis. Cancer Lett 2009; 289:140-50. [PMID: 19651473 DOI: 10.1016/j.canlet.2009.07.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 11/17/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA herpesvirus belonging to the gamma-herpesvirinae subfamily. KSHV has been associated with the development of three neoplastic diseases: Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). In this review, we discuss the three KSHV-associated malignancies, KSHV genome, latent and lytic aspects of the viral lifecycle, putative viral oncogenes, as well as therapeutic regimens used for the treatment of KS, PEL, and MCD.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
31
|
Kaposi's sarcoma-associated herpesvirus K-bZIP protein is necessary for lytic viral gene expression, DNA replication, and virion production in primary effusion lymphoma cell lines. J Virol 2009; 83:5869-80. [PMID: 19321621 DOI: 10.1128/jvi.01821-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human proliferative disorders, namely, Kaposi's sarcoma, primary effusion lymphomas (PEL), and multicentric Castleman's disease. Lytic DNA replication of KSHV, which is essential for viral propagation, requires the binding of at least two KSHV proteins, replication and transactivation activator (RTA) and K-bZIP, on the lytic origin of replication. Moreover, K-bZIP physically interacts with RTA and represses its transactivation activity on several viral promoters in transient transfection assays. To evaluate the physiological roles of K-bZIP in the context of PEL, we generated BCBL-1 cells with a tetracycline (Tet)-inducible small hairpin RNA (shRNA) directed against the K8 mRNA to knock down K-bZIP expression at different points during KSHV's life cycle. Using this model, we demonstrate that in the absence of K-bZIP expression, dramatic decreases in orf50, orf57, and orf26 transcript expression are observed. Similar effects were seen at the protein level for RTA (immediate-early protein) and K8.1 (late protein) expression. Interestingly, a direct correlation between K-bZIP levels and viral lytic mRNAs was noticed. As a consequence of K-bZIP knockdown, viral DNA replication and virion production were severely impaired. The same effects were observed following knockdown of K-bZIP in another PEL cell line, BC3. Finally, using shRNA-K8-inducible 293 cells, we report that de novo synthesis of K-bZIP is not necessary for initiation of infection and latency establishment. These data support the concept that K-bZIP is essential for lytic viral gene expression, viral DNA replication, and virus propagation in PEL cells.
Collapse
|
32
|
Gong D, Qi J, Arumugaswami V, Sun R, Deng H. Identification and functional characterization of the left origin of lytic replication of murine gammaherpesvirus 68. Virology 2009; 387:285-95. [PMID: 19285330 DOI: 10.1016/j.virol.2009.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/15/2008] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Murine gammaherpesvirus 68 (MHV-68) replicates robustly in cell culture, providing a model for studying viral genome replication during de novo infection of tumor-associated herpesviruses. We have previously identified a 1.25-kb origin of lytic replication (oriLyt) for MHV-68. To further investigate the molecular mechanism of viral genome replication, we first fine-mapped essential cis-elements from this oriLyt fragment using a transposon-mediated high-density mutagenesis method. The result provided information for us to identify a second oriLyt located towards the left end of MHV-68 genome using a de novo infection-replication assay. We further characterized this left oriLyt by scanning deletion analysis and site-directed mutations, and showed that several CCAAT motifs are essential for oriLyt function, whereas an AT-rich region enhances replication. However, GC-rich repeats are not important cis-element. Moreover, we identified a cellular transcription factor, NF-Y, which binds to CCAAT boxes in EMSA and associates with oriLyt in ChIP assay. Using a dominant negative expression plasmid, we demonstrated that NF-Y plays an important role in mediating MHV-68 genome replication during de novo infection.
Collapse
Affiliation(s)
- Danyang Gong
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, P.R. China
| | | | | | | | | |
Collapse
|
33
|
Ellison TJ, Izumiya Y, Izumiya C, Luciw PA, Kung HJ. A comprehensive analysis of recruitment and transactivation potential of K-Rta and K-bZIP during reactivation of Kaposi's sarcoma-associated herpesvirus. Virology 2009; 387:76-88. [PMID: 19269659 DOI: 10.1016/j.virol.2009.02.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/06/2009] [Accepted: 02/10/2009] [Indexed: 11/28/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma. K-Rta and K-bZIP are two major viral transcription factors that control reactivation of this virus. Here we report a genome-wide analysis of transcriptional capacity by evaluation of a comprehensive library of 83 putative KSHV promoters. In reporter assays, 34 viral promoters were activated by K-Rta, whereas K-bZIP activated 21 promoters. When K-Rta and K-bZIP were combined, 3 K-Rta responsive promoters were repressed by K-bZIP. The occupancy of K-Rta and K-bZIP across KSHV promoters was analyzed by chromatin immunoprecipitation with a viral promoter-chip in BCBL-1 cells. In addition, acetylation of local histones was examined to determine accessibility of promoters during latency and reactivation. Finally, 10 promoters were selected to study the dynamics of transcription factor recruitment. This study provides a comprehensive overview of the responsiveness of KSHV promoters to K-Rta and K-bZIP, and describes key chromatin changes during viral reactivation.
Collapse
Affiliation(s)
- Thomas J Ellison
- Department of Biological Chemistry, University of California, Davis (UC Davis) School of Medicine, UC Davis Cancer Center, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
34
|
Salem TZ, Garcia-Maruniak A, Lietze VU, Maruniak JE, Boucias DG. Analysis of transcripts from predicted open reading frames of Musca domestica salivary gland hypertrophy virus. J Gen Virol 2009; 90:1270-1280. [PMID: 19264592 DOI: 10.1099/vir.0.009613-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Musca domestica salivary gland hypertrophy virus (MdSGHV) is a large dsDNA virus that infects and sterilizes adult houseflies. The transcriptome of this newly described virus was analysed by rapid amplification of cDNA 3'-ends (3'-RACE) and RT-PCR. Direct sequencing of 3'-RACE products revealed 78 poly(A) transcripts containing 95 of the 108 putative ORFs. An additional six ORFs not amplified by 3'-RACE were detected by RT-PCR. Only seven of the 108 putative ORFs were not amplified by either 3'-RACE or RT-PCR. A series of 5'-RACE reactions were conducted on selected ORFs that were identified by 3'-RACE to be transcribed in tandem (tandem transcripts). In the majority of cases, the downstream ORFs were detected as single transcripts as well as components of the tandem transcripts, whereas the upstream ORFs were found only in tandem transcripts. The only exception was the upstream ORF MdSGHV084, which was differentially transcribed as a single transcript at 1 and 2 days post-infection (days p.i.) and as a tandem transcript (MdSGHV084/085) at 2 days p.i. Transcriptome analysis of MdSGHV detected splicing in the 3' untranslated region (3'-UTR) and extensive heterogeneity in the polyadenylation signals and cleavage sites. In addition, 23 overlapping antisense transcripts were found. In conclusion, sequencing the 3'-RACE products without cloning served as an alternative approach to detect both 3'-UTRs and transcript variants of this large DNA virus.
Collapse
Affiliation(s)
- Tamer Z Salem
- Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, 9 Gamaa Street, Giza 12619, Egypt.,Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - Alejandra Garcia-Maruniak
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - Verena-U Lietze
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - James E Maruniak
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - Drion G Boucias
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| |
Collapse
|
35
|
NF-kappaB serves as a cellular sensor of Kaposi's sarcoma-associated herpesvirus latency and negatively regulates K-Rta by antagonizing the RBP-Jkappa coactivator. J Virol 2009; 83:4435-46. [PMID: 19244329 DOI: 10.1128/jvi.01999-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful viral replication is dependent on a conducive cellular environment; thus, viruses must be sensitive to the state of their host cells. We examined the idea that an interplay between viral and cellular regulatory factors determines the switch from Kaposi's sarcoma-associated herpesvirus (KSHV) latency to lytic replication. The immediate-early gene product K-Rta is the first viral protein expressed and an essential factor in reactivation; accordingly, this viral protein is in a key position to serve as a viral sensor of cellular physiology. Our approach aimed to define a host transcription factor, i.e., host sensor, which modulates K-Rta activity on viral promoters. To this end, we developed a panel of reporter plasmids containing all 83 putative viral promoters for a comprehensive survey of the response to both K-Rta and cellular transcription factors. Interestingly, members of the NF-kappaB family were shown to be strong negative regulators of K-Rta transactivation for all but two viral promoters (Ori-RNA and K12). Recruitment of K-Rta to the ORF57 and K-bZIP promoters, but not the K12 promoter, was significantly impaired when NF-kappaB expression was induced. Many K-Rta-responsive promoters modulated by NF-kappaB contain the sequence of the RBP-Jkappa binding site, a major coactivator which anchors K-Rta to target promoters via consensus motifs which overlap with that of NF-kappaB. Gel shift assays demonstrated that NF-kappaB inhibits the binding of RBP-Jkappa and forms a complex with RBP-Jkappa. Our results support a model in which a balance between K-Rta/RBP-Jkappa and NF-kappaB activities determines KSHV reactivation. An important feature of this model is that the interplay between RBP-Jkappa and NF-kappaB on viral promoters controls viral gene expression mediated by K-Rta.
Collapse
|
36
|
Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus replication. Semin Cancer Biol 2009; 19:153-7. [PMID: 19429478 DOI: 10.1016/j.semcancer.2009.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/12/2009] [Indexed: 12/21/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma and B-lymphocyte disorders, primary effusion lymphoma (PEL) and Multicentric Castleman's Disease (MCD). KSHV usually exists in a latent form in which the viral genome is circularized into an extrachormosomal episome. However, induction of lytic replication by environmental stimuli or chemical agents is important for the spread of KSHV. The switch between latency and lytic replication is regulated by epigenetic factors. Hypomethylation of the promoter of replication and transcription activator (RTA), which is essential for the lytic switch, leads to KSHV reactivation. Histone acetylation induces KSHV replication by influencing protein-protein-associations and transcription factor binding. Histone modifications also determine chromatin structure and nucleosome positioning, which are important for KSHV DNA replication during latency. The association of KSHV proteins with chromatin remodeling complexes promotes the open chromatin structure needed for transcription factor binding and DNA replication. Additionally, post-translational modification of KSHV proteins is important for the regulation of RTA activity and KSHV replication. KSHV may also cause epigenetic modification of the host genome, contributing to promoter hypermethylation of tumor suppressor genes in KSHV-associated neoplasias.
Collapse
|
37
|
Lefort S, Soucy-Faulkner A, Grandvaux N, Flamand L. Binding of Kaposi's sarcoma-associated herpesvirus K-bZIP to interferon-responsive factor 3 elements modulates antiviral gene expression. J Virol 2007; 81:10950-60. [PMID: 17652396 PMCID: PMC2045525 DOI: 10.1128/jvi.00183-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus encodes numerous regulatory proteins capable of modulating viral and cellular gene expression and affecting host cell functions. K-bZIP, a leucine zipper-containing transcription factor encoded by ORFK8, is one such protein. During infection, transcription of the ORFK8 early gene is turned on by the immediate-early replication and transcription factor activator (RTA). One described function of the K-bZIP nuclear protein is to interact with and repress RTA-mediated transactivation of viral promoters, including that of the K8 gene. In the present work, we provide evidence that the expression of K-bZIP results in the activation of the ifn-beta gene. Of interest, ifn-beta gene activation by K-bZIP is independent of interferon (IFN)-responsive factor 3 (IRF-3) and nuclear factor kappaB (NF-kappaB) activation. Using a DNA binding affinity assay and electromobility shift assay, we report that K-bZIP binds efficiently to the PRDIII-I region of the beta IFN (IFN-beta) promoter, and, in doing so, it prevents the attachment of activated IRF-3 but not that of NF-kappaB or ATF2/c-Jun to the IFN-beta promoter sequence. As a consequence, ifn-beta gene activation in response to IFN inducers such as Sendai virus infection or expression of retinoic acid-inducible gene I, mitochondrial antiviral signaling protein, or TANK-binding kinase 1 (TBK-1) is severely impaired (>90%) by the presence of K-bZIP. K-bZIP also prevents the activation of RANTES and CXCL11, whose promoters are also regulated by IRF-3. Lysine 158 (target for SUMO conjugation), threonine 111, and serine 167 (targets for phosphorylation) mutants of K-bZIP were equally effective as wild-type K-bZIP in mediating the repression of TBK-1-activated ifn-beta gene expression. Lastly, the overexpression of CREB binding protein could not reverse the K-bZIP repression of TBK-1-activated ifn-beta gene expression. In all, our results indicate that K-bZIP binds directly to the PRDIII-I region of the IFN-beta promoter and, as a consequence, causes a low level of ifn-beta gene transcription. In doing so, K-bZIP prevents IRF-3 from binding to the IFN-beta promoter and precludes the formation of the enhanceosome, which is required for maximal ifn-beta gene transcription. A new role for K-bZIP as a protein involved in immune evasion is therefore uncovered.
Collapse
Affiliation(s)
- Sylvain Lefort
- Rheumatology and Immunology Research Center, Room T1-49, 2705 Laurier Blvd., Quebec, Quebec G1V 4G2, Canada
| | | | | | | |
Collapse
|
38
|
Ye J, Gradoville L, Daigle D, Miller G. De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi's sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists. J Virol 2007; 81:9279-91. [PMID: 17596302 PMCID: PMC1951462 DOI: 10.1128/jvi.00982-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are latent in cultured lymphoma cells. We asked whether reactivation from latency of either virus requires de novo protein synthesis. Using Northern blotting and quantitative reverse transcriptase PCR, we measured the kinetics of expression of the lytic cycle activator genes and determined whether abundance of mRNAs encoding these genes from either virus was reduced by treatment with cycloheximide (CHX), an inhibitor of protein synthesis. CHX blocked expression of mRNAs of EBV BZLF1 and BRLF1, the two EBV lytic cycle activator genes, when HH514-16 Burkitt lymphoma cells were treated with histone deacetylase (HDAC) inhibitors, sodium butyrate or trichostatin A, or a DNA methyltransferase inhibitor, 5-Aza-2'-deoxycytidine. CHX also inhibited EBV lytic cycle activation in B95-8 marmoset lymphoblastoid cells by phorbol ester phorbol-12-myristate-13-acetate (TPA). EBV lytic cycle induction became resistant to CHX between 4 and 6 h after application of the inducing stimulus. KSHV lytic cycle activation, as assessed by ORF50 mRNA expression, was rapidly induced by the HDAC inhibitors, sodium butyrate and trichostatin A, in HH-B2 primary effusion lymphoma cells. In HH-B2 cells, CHX did not inhibit, but enhanced, expression of the KSHV lytic cycle activator gene, ORF50. In BC-1, a primary effusion lymphoma cell line that is dually infected with EBV and KSHV, CHX blocked EBV BRLF1 lytic gene expression induced by TPA and sodium butyrate; KSHV ORF50 mRNA induced simultaneously in the same cells by the same inducing stimuli was resistant to CHX. The experiments show, for the cell lines and inducing agents studied, that the EBV BZLF1 and BRLF1 genes do not behave with "immediate-early" kinetics upon reactivation from latency. KSHV ORF50 is a true "immediate-early" gene. Our results indicate that the mechanism by which HDAC inhibitors and TPA induce lytic cycle gene expression of the two viruses differs and suggest that EBV but not KSHV requires one or more proteins to be newly synthesized between 4 and 6 h after application of an inducing stimulus.
Collapse
Affiliation(s)
- Jianjiang Ye
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
39
|
Yang Z, Wood C. The transcriptional repressor K-RBP modulates RTA-mediated transactivation and lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2007; 81:6294-306. [PMID: 17409159 PMCID: PMC1900108 DOI: 10.1128/jvi.02648-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The replication and transcription activator (RTA) protein of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 functions as the key regulator to induce KSHV lytic replication from latency through activation of the lytic cascade of KSHV. Elucidation of the host factors involved in RTA-mediated transcriptional activation is pivotal for understanding the transition between viral latency and lytic replication. KSHV-RTA binding protein (K-RBP) was previously isolated as a cellular RTA binding protein of unknown function. Sequence analysis showed that K-RBP contains a Kruppel-associated box (KRAB) at the N terminus and 12 adjacent zinc finger motifs. In similarity to other KRAB-containing zinc finger proteins, K-RBP is a transcriptional repressor. Mutational analysis revealed that the KRAB domain is responsible for the transcriptional suppression activity of this protein and that the repression is histone deacetylase independent. K-RBP was found to repress RTA-mediated transactivation and interact with TIF1beta (transcription intermediary factor 1beta), a common corepressor of KRAB-containing protein, to synergize with K-RBP in repression. Overexpression and knockdown experiment results suggest that K-RBP is a suppressor of RTA-mediated KSHV reactivation. Our findings suggest that the KRAB-containing zinc finger protein K-RBP can suppress RTA-mediated transactivation and KSHV lytic replication and that KSHV utilizes this protein as a regulator to maintain a balance between latency and lytic replication.
Collapse
Affiliation(s)
- Zhilong Yang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, E249 Beadle Center, P.O. Box 880666, Lincoln, NE 68588-0666, USA
| | | |
Collapse
|
40
|
Miller G, El-Guindy A, Countryman J, Ye J, Gradoville L. Lytic Cycle Switches of Oncogenic Human Gammaherpesviruses1. Adv Cancer Res 2007; 97:81-109. [PMID: 17419942 DOI: 10.1016/s0065-230x(06)97004-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The seminal experiments of George and Eva Klein helped to define the two life cycles of Epstein-Barr Virus (EBV), namely latency and lytic or productive infection. Their laboratories described latent nuclear antigens expressed during latency and discovered several chemicals that activated the viral lytic cycle. The mechanism of the switch between latency and the lytic cycle of EBV and Kaposi's sarcoma-associated herpesvirus (KSHV) can be studied in cultured B cell lines. Lytic cycle activation of EBV is controlled by two viral transcription factors, ZEBRA and Rta. The homologue of Rta encoded in ORF50 is the lytic cycle activator of KSHV. Control of the lytic cycle can be divided into two distinct phases. Upstream events control expression of the virally encoded lytic cycle activator genes. Downstream events represent tasks carried out by the viral proteins in driving expression of lytic cycle genes and lytic viral DNA replication. In this chapter, we report three recent groups of experiments relating to upstream and downstream events. Azacytidine (AzaC) is a DNA methyltransferase inhibitor whose lytic cycle activation capacity was discovered by G. Klein and coworkers. We find that AzaC rapidly activates the EBV lytic cycle but does not detectably alter DNA methylation or histone acetylation on the promoters of the EBV lytic cycle activator genes. AzaC probably acts via a novel, yet to be elucidated, mechanism. The lytic cycle of both EBV and KSHV can be activated by sodium butyrate (NaB), a histone deacetylase inhibitor whose activity in disrupting latency was also discovered by G. Klein and coworkers. Activation of EBV by NaB requires protein synthesis; activation of KSHV is independent of protein synthesis. Thus, NaB works by a different pathway on the two closely related viruses. ZEBRA, the major downstream mediator of EBV lytic cycle activation is both a transcription activator and an essential replication protein. We show that phosphorylation of ZEBRA at its casein kinase 2 (CK2) site separates these two functions. Phosphorylation by CK2 is required for ZEBRA to activate lytic replication but not to induce expression of early lytic cycle genes. We discuss a number of unsolved mysteries about lytic cycle activation which should provide fertile territory for future research.
Collapse
MESH Headings
- Azacitidine/pharmacology
- Cycloheximide/pharmacology
- Cytopathogenic Effect, Viral/drug effects
- Cytopathogenic Effect, Viral/genetics
- Cytopathogenic Effect, Viral/physiology
- DNA Replication
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- Epstein-Barr Virus Infections/virology
- Gene Expression Regulation, Viral/drug effects
- Gene Expression Regulation, Viral/genetics
- Herpesviridae Infections/virology
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Humans
- Immediate-Early Proteins/physiology
- Mutation
- Oncogenic Viruses/physiology
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/physiology
- Tumor Virus Infections/virology
- Virus Latency/drug effects
- Virus Latency/genetics
Collapse
Affiliation(s)
- George Miller
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
41
|
Majerciak V, Pripuzova N, McCoy JP, Gao SJ, Zheng ZM. Targeted disruption of Kaposi's sarcoma-associated herpesvirus ORF57 in the viral genome is detrimental for the expression of ORF59, K8alpha, and K8.1 and the production of infectious virus. J Virol 2006; 81:1062-71. [PMID: 17108026 PMCID: PMC1797518 DOI: 10.1128/jvi.01558-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 regulates viral gene expression at the posttranscriptional level during viral lytic infection. To study its function in the context of the viral genome, we disrupted KSHV ORF57 in the KSHV genome by transposon-based mutagenesis. The insertion of the transposon into the ORF57 exon 2 region also interrupted the 3' untranslated region of KSHV ORF56, which overlaps with the ORF57 coding region. The disrupted viral genome, Bac36-Delta57, did not express ORF57, ORF59, K8alpha, K8.1, or a higher level of polyadenylated nuclear RNA after butyrate induction and could not be induced to produce infectious viruses in the presence of valproic acid, a histone deacetylase inhibitor and a novel KSHV lytic cycle inducer. The ectopic expression of ORF57 partially complemented the replication deficiency of the disrupted KSHV genome and the expression of the lytic gene ORF59. The induced production of infectious virus particles from the disrupted KSHV genome was also substantially restored by the simultaneous expression of both ORF57 and ORF56; complementation by ORF57 alone only partially restored the production of virus, and expression of ORF56 alone showed no effect. Altogether, our data indicate that in the context of the viral genome, KSHV ORF57 is essential for ORF59, K8alpha, and K8.1 expression and infectious virus production.
Collapse
Affiliation(s)
- Vladimir Majerciak
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI/NIH, 10 Center Dr., Rm. 10 S255, MSC-1868, Bethesda, MD 20892-1868, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The life cycle of KSHV, latency versus lytic replication, is mainly determined at the transcriptional regulation level. A viral immediate-early gene product, replication and transcription activator (RTA), has been identified as the molecular switch for initiation of the lytic gene expression program from latency. Here we review progress on two key questions: how RTA gene expression is controlled by viral proteins and cellular signals and how RTA regulates the expression of downstream viral genes. We summarize the interactions of RTA with cellular and other viral proteins. We also discuss critical issues that must be addressed in the near future.
Collapse
Affiliation(s)
- H Deng
- Center for Infection and Immunity, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, PR China
| | | | | |
Collapse
|
43
|
Wang Y, Yuan Y. Essential role of RBP-Jkappa in activation of the K8 delayed-early promoter of Kaposi's sarcoma-associated herpesvirus by ORF50/RTA. Virology 2006; 359:19-27. [PMID: 17055026 PMCID: PMC1905837 DOI: 10.1016/j.virol.2006.09.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/02/2006] [Accepted: 09/20/2006] [Indexed: 01/05/2023]
Abstract
KSHV K8 gene is activated by virally encoded transactivator RTA in delayed-early stage of viral reactivation. Three RTA-responsive elements (RREs) were identified in the promoter. Among them, RRE-II was found to be the most critical cis-acting element for RTA transactivation. In this report, the mechanism underlying RTA-mediated activation of the K8 delayed-early promoter was investigated. A DNA affinity purification study demonstrated that RRE-II was bound by cellular protein RBP-Jkappa, a sequence-specific DNA binding protein and a primary target of the Notch signaling pathway. Inspection of the RRE-II sequence revealed a potential recognition sequence for RBP-Jkappa (GTGAGAA) between the nucleotides -102 and -108 relative to the transcription initial site. Removal or mutation of the motif abolished RBP-Jkappa binding to the K8 promoter and as a consequence, RTA failed to bind to and activate the promoter. An essential role of RBP-Jkappa in the transcription of the K8 promoter was demonstrated by diminishment of the promoter activity in RBP-Jkappa-null murine embryonic fibroblasts. Taken together, RTA activates the K8 promoter through an indirect binding mechanism, i.e. being recruited to the K8 promoter through interaction with RBP-Jkappa bound to an RBP-Jkappa motif in the promoter.
Collapse
Affiliation(s)
| | - Yan Yuan
- * Corresponding author. Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 South 40th street, Philadelphia, PA 19104. Phone: (215) 573-7556. Fax: (215) 898-8385.
| |
Collapse
|
44
|
Majerciak V, Yamanegi K, Zheng ZM. Gene structure and expression of Kaposi's sarcoma-associated herpesvirus ORF56, ORF57, ORF58, and ORF59. J Virol 2006; 80:11968-81. [PMID: 17020939 PMCID: PMC1676266 DOI: 10.1128/jvi.01394-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Though similar to those of herpesvirus saimiri and Epstein-Barr virus (EBV), the Kaposi's sarcoma-associated herpesvirus (KSHV) genome features more splice genes and encodes many genes with bicistronic or polycistronic transcripts. In the present study, the gene structure and expression of KSHV ORF56 (primase), ORF57 (MTA), ORF58 (EBV BMRF2 homologue), and ORF59 (DNA polymerase processivity factor) were analyzed in butyrate-activated KSHV(+) JSC-1 cells. ORF56 was expressed at low abundance as a bicistronic ORF56/57 transcript that utilized the same intron, with two alternative branch points, as ORF57 for its RNA splicing. ORF56 was transcribed from two transcription start sites, nucleotides (nt) 78994 (minor) and 79075 (major), but selected the same poly(A) signal as ORF57 for RNA polyadenylation. The majority of ORF56 and ORF57 transcripts were cleaved at nt 83628, although other nearby cleavage sites were selectable. On the opposite strand of the viral genome, colinear ORF58 and ORF59 were transcribed from different transcription start sites, nt 95821 (major) or 95824 (minor) for ORF58 and nt 96790 (minor) or 96794 (major) for ORF59, but shared overlapping poly(A) signals at nt 94492 and 94488. Two cleavage sites, at nt 94477 and nt 94469, could be equally selected for ORF59 polyadenylation, but only the cleavage site at nt 94469 could be selected for ORF58 polyadenylation without disrupting the ORF58 stop codon immediately upstream. ORF58 was expressed in low abundance as a monocistronic transcript, with a long 5' untranslated region (UTR) but a short 3' UTR, whereas ORF59 was expressed in high abundance as a bicistronic transcript, with a short 5' UTR and a long 3' UTR similar to those of polycistronic ORF60 and ORF62. Both ORF56 and ORF59 are targets of ORF57 and were up-regulated significantly in the presence of ORF57, a posttranscriptional regulator.
Collapse
Affiliation(s)
- Vladimir Majerciak
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI/NIH, 10 Center Dr., Rm. 10 S255, MSC-1868, Bethesda, MD 20892-1868, USA
| | | | | |
Collapse
|
45
|
Lindner I, Ehlers B, Noack S, Dural G, Yasmum N, Bauer C, Goltz M. The porcine lymphotropic herpesvirus 1 encodes functional regulators of gene expression. Virology 2006; 357:134-48. [PMID: 16979210 DOI: 10.1016/j.virol.2006.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/21/2006] [Accepted: 08/02/2006] [Indexed: 11/18/2022]
Abstract
The porcine lymphotropic herpesviruses (PLHV) are discussed as possible risk factors in xenotransplantation because of the high prevalence of PLHV-1, PLHV-2 and PLHV-3 in pig populations world-wide and the fact that PLHV-1 has been found to be associated with porcine post-transplant lymphoproliferative disease. To provide structural and functional knowledge on the PLHV immediate-early (IE) transactivator genes, the central regions of the PLHV genomes were characterized by genome walking, sequence and splicing analysis. Three spliced genes were identified (ORF50, ORFA6/BZLF1(h), ORF57) encoding putative IE transactivators, homologous to (i) ORF50 and BRLF1/Rta, (ii) K8/K-bZIP and BZLF1/Zta and (iii) ORF57 and BMLF1 of HHV-8 and EBV, respectively. Expressed as myc-tag or HA-tag fusion proteins, they were located to the cellular nucleus. In reporter gene assays, several PLHV-promoters were mainly activated by PLHV-1 ORF50, to a lower level by PLHV-1 ORFA6/BZLF1(h) and not by PLHV-1 ORF57. However, the ORF57-encoded protein acted synergistically on ORF50-mediated activation.
Collapse
Affiliation(s)
- I Lindner
- Robert Koch-Institut, P14 Molekulare Genetik und Epidemiologie von Herpesviren, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Haque M, Wang V, Davis DA, Zheng ZM, Yarchoan R. Genetic organization and hypoxic activation of the Kaposi's sarcoma-associated herpesvirus ORF34-37 gene cluster. J Virol 2006; 80:7037-51. [PMID: 16809309 PMCID: PMC1489055 DOI: 10.1128/jvi.00553-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). We previously reported that hypoxia activates KSHV lytic replication and that the promoter for open reading frame 34 (ORF34) contains a functional hypoxia-responsive element (HRE). ORF34 is part of a cluster of lytic genes (ORF34-37) that includes ORF36, a phosphotransferase, and ORF37, a shutoff exonuclease. Rapid amplification of cDNA ends analysis revealed that they share a common polyadenylation signal but have two start sites. Two transcripts were identified, one 3.4 kb encoding ORF35-37, and the other 4.2 kb encoding ORF34 and also having coding potential for ORF35-37. Exposure of PEL cell lines to hypoxia induced messages of lengths consistent with those of these transcripts. Reporter assays with Hep3B cells showed activation of both transcripts by hypoxia. The ORF34-37 promoter region has six consensus HREs. Sequential deletion, site-directed mutagenesis experiments, and Northern blot analysis of RNA produced by constructs indicated that the second HRE (HRE-2) plays a critical role in the hypoxic activation of both RNA transcripts. The ORF35-37 transcript was upregulated by cotransfected hypoxia-inducible factor (HIF). Electrophoretic mobility shift assays demonstrated that HRE-2 and ancillary sequences bind and compete for HIF with hypoxic Hep3B nuclear extract. The activation of this gene cluster by hypoxia may have implications for the pathogenesis of PEL and KS. Moreover, the activation of ORF36 by hypoxia might be exploited to develop targeted therapy for PEL, which arises in a hypoxic environment (pleural effusions).
Collapse
Affiliation(s)
- Muzammel Haque
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1868, USA
| | | | | | | | | |
Collapse
|
47
|
Yamanegi K, Tang S, Zheng ZM. Kaposi's sarcoma-associated herpesvirus K8beta is derived from a spliced intermediate of K8 pre-mRNA and antagonizes K8alpha (K-bZIP) to induce p21 and p53 and blocks K8alpha-CDK2 interaction. J Virol 2006; 79:14207-21. [PMID: 16254356 PMCID: PMC1280184 DOI: 10.1128/jvi.79.22.14207-14221.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a lymphotropic DNA tumor virus that induces Kaposi's sarcoma and AIDS-related primary effusion lymphoma. KSHV open reading frame 50 and K8 genes in early viral lytic infection express, respectively, a tricistronic and a bicistronic pre-mRNA, which undergo alternative splicing to create two major spliced mRNA isoforms, alpha and beta, by inclusion (beta) or exclusion (alpha) of an intron at nucleotides 75563 to 75645. This intron contains some suboptimal features, which cause the intron 5' splice site (ss) to interact weakly with U1 snRNA and the 3' ss to bind a U2 auxiliary factor, U2AF, with low affinity. Optimization of this intron in K8 (K8 intron 2) promoted the interaction of the 5' ss with U1 and the 3' ss with U2AF, resulting in a substantial increase in intron splicing. Splicing of K8 intron 2 has also been shown to be stimulated by the splicing of a downstream intron. This was confirmed by the insertion of a human beta-globin intron into the K8beta exon 3-exon 4 splice junction, which promoted splicing of K8beta intron 2 and conversion of the K8beta mRNA to the K8alpha mRNA that encodes a K-bZIP protein. Intron 2 contains a premature termination codon, yet the K8beta mRNA is insensitive to nonsense-mediated mRNA decay, suggesting that the truncated K8beta protein may have a biological function. Indeed, although the truncated K8beta protein is missing only a C-terminal leucine zipper domain from the K-bZIP, its expression antagonizes the ability of the K-bZIP to induce p53 and p21 and blocks K-bZIP-CDK2 interaction through interfering K8alpha mRNA production.
Collapse
Affiliation(s)
- Koji Yamanegi
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1868, USA
| | | | | |
Collapse
|
48
|
Izumiya Y, Ellison TJ, Yeh ETH, Jung JU, Luciw PA, Kung HJ. Kaposi's sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. J Virol 2005; 79:9912-25. [PMID: 16014952 PMCID: PMC1181544 DOI: 10.1128/jvi.79.15.9912-9925.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus implicated in AIDS-related neoplasms. Previously, we demonstrated that the early lytic gene product K-bZIP is a transcriptional repressor that affects a subset of viral gene transcriptions mediated by the viral transactivator K-Rta (Y. Izumiya et al. J. Virol. 77:1441-1451, 2003). Sumoylation has emerged as an important posttranslational modification that affects the location and function of cellular and viral proteins and also plays a significant role in transcriptional repression along with Ubc9, the E2 SUMO conjugation enzyme. Here, we provide evidence that K-bZIP is sumoylated at the lysine 158 residue and associates with Ubc9 both in a cell-free system and in virus-infected BCBL-1 cells. Reporter assays showed that the expression of SUMO-specific protease 1 attenuated the transcriptional repression activity of K-bZIP. The expression of a K-bZIPK158R mutant, which was no longer sumoylated, exhibited the reduced transcriptional repression activity. This indicates that sumoylation plays an important part in the transcriptional repression activity of K-bZIP. Finally, chromatin immunoprecipitation experiments demonstrated that K-bZIP interacts with and recruits Ubc9 to specific KSHV promoters. Thus, our data indicate that K-bZIP is a SUMO adaptor, which recruits Ubc9 to specific viral target promoters, thereby exerting its transcriptional repression activity.
Collapse
Affiliation(s)
- Yoshihiro Izumiya
- Department of Biological Chemistry, University of California--Davis (UC Davis), School of Medicine, Sacramento, 95817, USA
| | | | | | | | | | | |
Collapse
|
49
|
Al Mehairi S, Cerasoli E, Sinclair AJ. Investigation of the multimerization region of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) protein K-bZIP: the proposed leucine zipper region encodes a multimerization domain with an unusual structure. J Virol 2005; 79:7905-10. [PMID: 15919946 PMCID: PMC1143620 DOI: 10.1128/jvi.79.12.7905-7910.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The K8 gene of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) shares many functional similarities with the BZLF1 gene of Epstein-Barr virus. The protein products of K8 and BZLF1, K-bZIP (RAP, K8) and Zta (BZLF1, ZEBRA, Z) have both been proposed to be members of the bZIP family of transcription factors, forming multimers via a coiled-coil motif termed a leucine zipper. Substantial evidence supporting this model for Zta is published. Here, we demonstrate that the proposed leucine zipper region of K-bZIP (amino acids 182 to 218) is required for multimer formation but that it does not fold as a coiled coil.
Collapse
Affiliation(s)
- Salama Al Mehairi
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | | | | |
Collapse
|
50
|
Lu M, Suen J, Frias C, Pfeiffer R, Tsai MH, Chuang E, Zeichner SL. Dissection of the Kaposi's sarcoma-associated herpesvirus gene expression program by using the viral DNA replication inhibitor cidofovir. J Virol 2004; 78:13637-52. [PMID: 15564474 PMCID: PMC533899 DOI: 10.1128/jvi.78.24.13637-13652.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of primary effusion lymphoma cells latently infected by Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus-8 [HHV-8]) with agents such as 12-O-tetradecanoylphorbol-13-acetate (TPA) induces a lytic viral replication cycle, with an ordered gene expression program. Initial studies of the KSHV expression program following TPA induction using viral microarrays yielded useful information concerning the viral expression program, but precise kinetic assignments for some genes remained unclear. Classically, late herpesvirus genes require viral DNA replication for maximal expression. We used cidofovir (CDV), a nucleotide-analogue KSHV DNA polymerase inhibitor, to dissect KSHV expression into two components: genes expressed without viral DNA replication and those requiring it. The expression of known immediate-early or early genes (e.g., open reading frames [ORFs] 50, K8 bZIP, and 57) serving lytic regulatory roles was relatively unaffected by the presence of CDV, while known late capsid and tegument structural genes (e.g., ORFs 25, 26, 64, and 67) were CDV sensitive. Latency-associated transcript ORF 73 was unaffected by the presence of TPA or CDV, suggesting that it was constitutively expressed. Expression of several viral cellular gene homologs, including K2 (vIL-6), ORF 72 (vCyclin), ORF 74 (vGPCR), and K9 (vIRF-1), was unaffected by the presence of CDV, while that of others, such as K4.1 (vMIP-III), K11.1 (vIRF-2), and K10.5 (LANA2, vIRF-3), was inhibited. The results distinguish KSHV genes whose full expression required viral DNA replication from those that did not require it, providing additional insights into KSHV replication and pathogenesis strategies and helping to show which viral cell homologs are expressed at particular times during the lytic process.
Collapse
Affiliation(s)
- Michael Lu
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Building 10, Room 10S255 MSC1868, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|