1
|
Barbero-Úriz Ó, Valenti M, Molina M, Fernández-Acero T, Cid VJ. Modeling Necroptotic and Pyroptotic Signaling in Saccharomyces cerevisiae. Biomolecules 2025; 15:530. [PMID: 40305268 PMCID: PMC12025182 DOI: 10.3390/biom15040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The yeast Saccharomyces cerevisiae is the paradigm of a eukaryotic model organism. In virtue of a substantial degree of functional conservation, it has been extensively exploited to understand multiple aspects of the genetic, molecular, and cellular biology of human disease. Many aspects of cell signaling in cancer, aging, or metabolic diseases have been tackled in yeast. Here, we review the strategies undertaken throughout the years for the development of humanized yeast models to study regulated cell death (RCD) pathways in general, and specifically, those related to innate immunity and inflammation, with an emphasis on pyroptosis and necroptosis. Such pathways involve the assembly of distinct modular signaling complexes such as the inflammasome and the necrosome. Like other supramolecular organizing centers (SMOCs), such intricate molecular arrangements trigger the activity of enzymes, like caspases or protein kinases, culminating in the activation of lytic pore-forming final effectors, respectively, Gasdermin D (GSDMD) in pyroptosis and MLKL in necroptosis. Even though pathways related to those governing innate immunity and inflammation in mammals are missing in fungi, the heterologous expression of their components in the S. cerevisiae model provides a "cellular test tube" to readily study their properties and interactions, thus constituting a valuable tool for finding novel therapies.
Collapse
Affiliation(s)
| | | | | | | | - Víctor J. Cid
- Department of Microbiology and Parasitology, School of Pharmacy, Universidad Complutense de Madrid, Pza. de Ramón y Cajal s/n, 28040 Madrid, Spain; (Ó.B.-Ú.); (M.V.); (M.M.); (T.F.-A.)
| |
Collapse
|
2
|
Sapudom J, Alatoom A, Tipay PS, Teo JC. Matrix stiffening from collagen fibril density and alignment modulates YAP-mediated T-cell immune suppression. Biomaterials 2025; 315:122900. [PMID: 39461060 DOI: 10.1016/j.biomaterials.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
T-cells are essential components of the immune system, adapting their behavior in response to the mechanical environments they encounter within the body. In pathological conditions like cancer, the extracellular matrix (ECM) often becomes stiffer due to increased density and alignment of collagen fibrils, which can have a significant impact on T-cell function. In this study, we explored how these ECM properties-density and fibrillar alignment-affect T-cell behavior using three-dimensional (3D) collagen matrices that mimic these conditions. Our results show that increased matrix stiffness, whether due to higher density or alignment, significantly suppresses T-cell activation, reduces cytokine production, and limits proliferation, largely through enhanced YAP signaling. Individually, matrix alignment appears to lower actin levels in activated T-cells and changes migration behavior in both resting and activated T-cells, an effect not observed in matrices with randomly oriented fibrils. Notably, inhibiting YAP signaling was able to restore T-cell activation and improve immune responses, suggesting a potential strategy to boost the effectiveness of immunotherapy in stiff ECM environments. Overall, this study provides new insights into how ECM characteristics influence T-cell function, offering potential avenues for overcoming ECM-induced immunosuppression in diseases such as cancer.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA
| | | | - Jeremy Cm Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA.
| |
Collapse
|
3
|
Wei C, Jiang W, Luo M, Shao F. BBB breakdown caused by plasma membrane pore formation. Trends Cell Biol 2025:S0962-8924(25)00064-9. [PMID: 40140333 DOI: 10.1016/j.tcb.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
The blood-brain barrier, recently reintroduced as the blood-brain border (BBB), is a dynamic interface between the central nervous system (CNS) and the bloodstream. Disruption of the BBB exposes the CNS to peripheral pathogens and harmful substances, causing or worsening various CNS diseases. While traditional views attribute BBB failure to tight junction disruption or increased transcytosis, recent studies highlight the critical role of gasdermin D (GSDMD) pore formation in brain endothelial cells (bECs) during BBB disruption by lipopolysaccharide (LPS) or bacterial infections. This mechanism may also be involved in neurological complications like the 'brain fog' seen in long COVID. Pore formation in bECs may represent a prevalent mechanism causing BBB leakage. Investigating membrane-permeabilizing pores or channels and their effects on BBB integrity is a growing area of research. Further exploration of molecular processes that maintain, disrupt, and restore bEC membrane integrity will advance our understanding of brain vasculature and aid in developing new therapies for BBB-related diseases.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China.
| | - Wei Jiang
- National Institute of Biological Sciences, Beijing, PR China
| | - Minmin Luo
- Chinese Institute for Brain Research, Beijing, PR China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China.
| |
Collapse
|
4
|
Centofanti E, Oyler-Yaniv A, Oyler-Yaniv J. Deep learning-based image classification reveals heterogeneous execution of cell death fates during viral infection. Mol Biol Cell 2025; 36:ar29. [PMID: 39841552 PMCID: PMC11974948 DOI: 10.1091/mbc.e24-10-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Cell fate decisions, such as proliferation, differentiation, and death, are driven by complex molecular interactions and signaling cascades. While significant progress has been made in understanding the molecular determinants of these processes, historically, cell fate transitions were identified through light microscopy that focused on changes in cell morphology and function. Modern techniques have shifted toward probing molecular effectors to quantify these transitions, offering more precise quantification and mechanistic understanding. However, challenges remain in cases where the molecular signals are ambiguous, complicating the assignment of cell fate. During viral infection, programmed cell death (PCD) pathways, including apoptosis, necroptosis, and pyroptosis, exhibit complex signaling and molecular cross-talk. This can lead to simultaneous activation of multiple PCD pathways, which confounds assignment of cell fate based on molecular information alone. To address this challenge, we employed deep learning-based image classification of dying cells to analyze PCD in single herpes simplex virus-1 (HSV-1)-infected cells. Our approach reveals that despite heterogeneous activation of signaling, individual cells adopt predominantly prototypical death morphologies. Nevertheless, PCD is executed heterogeneously within a uniform population of virus-infected cells and varies over time. These findings demonstrate that image-based phenotyping can provide valuable insights into cell fate decisions, complementing molecular assays.
Collapse
Affiliation(s)
- Edoardo Centofanti
- The Department of Systems Biology at Harvard Medical School, Boston, MA 02115
| | - Alon Oyler-Yaniv
- The Department of Systems Biology at Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
5
|
Zhao C, Lin S. PANoptosis in intestinal epithelium: its significance in inflammatory bowel disease and a potential novel therapeutic target for natural products. Front Immunol 2025; 15:1507065. [PMID: 39840043 PMCID: PMC11747037 DOI: 10.3389/fimmu.2024.1507065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount. Consequently, excessive IEC death advances intestinal permeability and as a consequence thereof the translocation of bacteria into the lamina propria, subsequently triggering an inflammatory response, which underpins the clinical disease trajectory of inflammatory bowel disease (IBD). A burgeoning body of evidence illustrates a landscape where IEC undergoes several the model of programmed cell death (PCD) in the pathophysiology and pathogenesis of IBD. Apoptosis, necroptosis, and pyroptosis represent the principal modalities of PCD with intricate specific pathways and molecules. Ample evidence has revealed substantial mechanistic convergence and intricate crosstalk among these three aforementioned forms of cell death, expanding the conceptualization of PANoptosis orchestrated by the PNAoptosome complex. This review provides a concise overview of the molecular mechanisms of apoptosis, necroptosis, and pyroptosis. Furthermore, based on the crosstalk between three cell deaths in IEC, this review details the current knowledge regarding PANoptosis in IEC and its regulation by natural products. Our objective is to broaden the comprehension of innovative molecular mechanisms underlying the pathogenesis of IBD and to furnish a foundation for developing more natural drugs in the treatment of IBD, benefiting both clinical practitioners and research workers.
Collapse
|
6
|
Qi WH, Tang N, Zhao ZJ, Li XQ. Transient receptor potential channels in viral infectious diseases: Biological characteristics and regulatory mechanisms. J Adv Res 2024:S2090-1232(24)00541-1. [PMID: 39551130 DOI: 10.1016/j.jare.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Viral infectious diseases have long posed a challenge to humanity. In recent decades, transient receptor potential (TRP) channels have emerged as newly investigated cation channels. Increasing evidence suggests that TRP channel-mediated Ca2+ homeostasis disruptions, along with associated pathological changes, are critical factors in the onset and progression of viral infectious diseases. However, the precise roles and mechanisms of TRP channels in these diseases remain to be systematically elucidated. AIM OF REVIEW The aim of this review is to systematically summarize recent advances in understanding TRP channels in viral infections, and based on current progress and challenges, propose future directions for research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the classification and biological functions of the TRP family, explores the mechanisms by which TRP channels contribute to viral infections, and highlights specific mechanisms at three levels: virus, host, and outcome. These include the direct role in viral biology and replication, the indirect role in host immunity and inflammation, and the resulting pathological changes. Additionally, we discuss the potential applications of the TRP family in the treatment of viral infectious diseases and propose future research directions.
Collapse
Affiliation(s)
- Wen-Hui Qi
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Na Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhi-Jing Zhao
- Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China; Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
7
|
Lin Y, Liu K, Lu F, Zhai C, Cheng F. Programmed cell death in Helicobacter pylori infection and related gastric cancer. Front Cell Infect Microbiol 2024; 14:1416819. [PMID: 39145306 PMCID: PMC11322058 DOI: 10.3389/fcimb.2024.1416819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining the normal structure and function of the digestive tract in the body. Infection with Helicobacter pylori (H. pylori) is an important factor leading to gastric damage, promoting the Correa cascade and accelerating the transition from gastritis to gastric cancer. Recent research has shown that several PCD signaling pathways are abnormally activated during H. pylori infection, and the dysfunction of PCD is thought to contribute to the development of gastric cancer and interfere with treatment. With the deepening of studies on H. pylori infection in terms of PCD, exploring the interaction mechanisms between H. pylori and the body in different PCD pathways may become an important research direction for the future treatment of H. pylori infection and H. pylori-related gastric cancer. In addition, biologically active compounds that can inhibit or induce PCD may serve as key elements for the treatment of this disease. In this review, we briefly describe the process of PCD, discuss the interaction between different PCD signaling pathways and the mechanisms of H. pylori infection or H. pylori-related gastric cancer, and summarize the active molecules that may play a therapeutic role in each PCD pathway during this process, with the expectation of providing a more comprehensive understanding of the role of PCD in H. pylori infection.
Collapse
Affiliation(s)
- Yukun Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kunjing Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Changming Zhai
- Department of Rheumatism, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Situmorang PC, Ilyas S, Nugraha SE, Syahputra RA, Nik Abd Rahman NMA. Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Front Pharmacol 2024; 15:1387866. [PMID: 39104398 PMCID: PMC11298448 DOI: 10.3389/fphar.2024.1387866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer refers to the proliferation and multiplication of aberrant cells inside the human body, characterized by their capacity to proliferate and infiltrate various anatomical regions. Numerous biochemical pathways and signaling molecules have an impact on the cancer auto biogenesis process. The regulation of crucial cellular processes necessary for cell survival and proliferation, which are triggered by phytochemicals, is significantly influenced by signaling pathways. These pathways or components are regulated by phytochemicals. Medicinal plants are a significant reservoir of diverse anticancer medications employed in chemotherapy. The anticancer effects of phytochemicals are mediated by several methods, including induction of apoptosis, cessation of the cell cycle, inhibition of kinases, and prevention of carcinogenic substances. This paper analyzes the phytochemistry of seven prominent plant constituents, namely, alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins, focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death receptors, p53, p38, and actin dynamics. Hence, this review has examined a range of phytochemicals, encompassing their structural characteristics and potential anticancer mechanisms. It has underscored the significance of plant-derived bioactive compounds in the prevention of cancer, utilizing diverse molecular pathways. In addition, this endeavor also seeks to incentivize scientists to carry out clinical trials on anticancer medications derived from plants.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
9
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
10
|
Koehler H, Titus D, Lawson C. Cell-type dependence of necroptosis pathways triggered by viral infection. FEBS J 2024; 291:2388-2404. [PMID: 38145501 DOI: 10.1111/febs.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Necroptosis, a potent host defense mechanism, limits viral replication and pathogenesis through three distinct initiation pathways. Toll-like receptor 3 (TLR3) via TIR-domain-containing adapter-inducing interferon-β (TRIF), Z-DNA-binding protein 1 (ZBP1) and tumor necrosis factor (TNF)α mediate necroptosis, with ZBP1 and TNF playing pivotal roles in controlling viral infections, with the role of TLR3-TRIF being less clear. ZBP1-mediated necroptosis is initiated when host ZBP1 senses viral Z-form double stranded RNA and recruits receptor-interacting serine/threonine-protein kinase 3 (RIPK3), driving a mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptosis pathway, whereas TNF-mediated necroptosis is initiated by TNF signaling, which drives a RIPK1-RIPK3-MLKL pathway, resulting in necroptosis. Certain viruses (cytomegalovirus, herpes simplex virus and vaccinia) have evolved to produce proteins that compete with host defense systems, preventing programmed cell death pathways from being initiated. Two engineered viruses deficient of active forms of these proteins, murine cytomegalovirus M45mutRHIM and vaccinia virus E3∆Zα, trigger ZBP1-dependent necroptosis in mouse embryonic fibroblasts. By contrast, when bone-marrow-derived macrophages are infected with the viruses, necroptosis is initiated predominantly through the TNF-mediated pathway. However, when the TNF pathway is blocked by RIPK1 inhibitors or a TNF blockade, ZBP1-mediated necroptosis becomes the prominent pathway in bone-marrow-derived macrophages. Overall, these data implicate a cell-type preference for either TNF-mediated or ZBP1-mediated necroptosis pathways in host responses to viral infections. These preferences are important to consider when evaluating disease models that incorporate necroptosis because they may contribute to tissue-specific reactions that could alter the balance of inflammation versus control of virus, impacting the organism as a whole.
Collapse
Affiliation(s)
- Heather Koehler
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
- College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Derek Titus
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Providence Sacred Heart Spokane Teaching Health Center, Spokane, WA, USA
| | - Crystal Lawson
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
- College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
11
|
Chandra P, Patra U, Mukhopadhyay U, Mukherjee A, Halder P, Koley H, Chawla-Sarkar M. Rotavirus non-structural protein 4 usurps host cellular RIPK1-RIPK3 complex to induce MLKL-dependent necroptotic cell death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119745. [PMID: 38719029 DOI: 10.1016/j.bbamcr.2024.119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
The dynamic interface between invading viral pathogens and programmed cell death (PCD) of the host is a finely regulated process. Host cellular demise at the end of the viral life cycle ensures the release of progeny virions to initiate new infection cycles. Rotavirus (RV), a diarrheagenic virus with double-stranded RNA genome, has been reported to trigger different types of PCD such as apoptosis and pyroptosis in a highly regulated way to successfully disseminate progeny virions. Recently our lab also showed that induction of MLKL-driven programmed necroptosis by RV. However, the host cellular machinery involved in RV-induced necroptosis and the upstream viral trigger responsible for it remained unaddressed. In the present study, the signalling upstream of MLKL-driven necroptosis has been delineated where the involvement of Receptor interacting serine/threonine kinase 3 (RIPK3) and 1 (RIPK1) from the host side and RV non-structural protein 4 (NSP4) as the viral trigger for necroptosis has been shown. Interestingly, RV-NSP4 was found to be an integral component of the necrosome complex by interacting with RIPK1, thereby bypassing the requirement of RIPK1 kinase activity. Subsequently, NSP4-driven elevated cytosolic Ca2+ concentration and Ca2+-binding to NSP4 lead further to RHIM domain-dependent RIPK1-RIPK3 interaction, RIPK3-dependent MLKL phosphorylation, and eventual necroptosis. Overall, this study presents the interplay between RV-NSP4 and the host cellular necrosome complex to induce necroptotic death of host cells.
Collapse
Affiliation(s)
- Pritam Chandra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 Av. Des Martyrs, 38000 Grenoble, France
| | - Arpita Mukherjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India.
| |
Collapse
|
12
|
Kang Y, Hepojoki J, Maldonado RS, Mito T, Terzioglu M, Manninen T, Kant R, Singh S, Othman A, Verma R, Uusimaa J, Wartiovaara K, Kareinen L, Zamboni N, Nyman TA, Paetau A, Kipar A, Vapalahti O, Suomalainen A. Ancestral allele of DNA polymerase gamma modifies antiviral tolerance. Nature 2024; 628:844-853. [PMID: 38570685 PMCID: PMC11041766 DOI: 10.1038/s41586-024-07260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Age of Onset
- Alleles
- COVID-19/immunology
- COVID-19/virology
- COVID-19/genetics
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/immunology
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/immunology
- DNA, Mitochondrial/metabolism
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Founder Effect
- Gene Knock-In Techniques
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon Type I/immunology
- Mitochondrial Diseases/enzymology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/immunology
- Mutation
- RNA, Mitochondrial/immunology
- RNA, Mitochondrial/metabolism
- SARS-CoV-2/immunology
Collapse
Affiliation(s)
- Yilin Kang
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Rocio Sartori Maldonado
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takayuki Mito
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Manninen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Sachin Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Alaa Othman
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Rohit Verma
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Unit of Child Neurology, Oulu University Hospital, Oulu, Finland
| | - Kirmo Wartiovaara
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Lauri Kareinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Safety Authority, Helsinki, Finland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Tuula Anneli Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Anders Paetau
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Alakunle E, Kolawole D, Diaz-Cánova D, Alele F, Adegboye O, Moens U, Okeke MI. A comprehensive review of monkeypox virus and mpox characteristics. Front Cell Infect Microbiol 2024; 14:1360586. [PMID: 38510963 PMCID: PMC10952103 DOI: 10.3389/fcimb.2024.1360586] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Monkeypox virus (MPXV) is the etiological agent of monkeypox (mpox), a zoonotic disease. MPXV is endemic in the forested regions of West and Central Africa, but the virus has recently spread globally, causing outbreaks in multiple non-endemic countries. In this paper, we review the characteristics of the virus, including its ecology, genomics, infection biology, and evolution. We estimate by phylogenomic molecular clock that the B.1 lineage responsible for the 2022 mpox outbreaks has been in circulation since 2016. We interrogate the host-virus interactions that modulate the virus infection biology, signal transduction, pathogenesis, and host immune responses. We highlight the changing pathophysiology and epidemiology of MPXV and summarize recent advances in the prevention and treatment of mpox. In addition, this review identifies knowledge gaps with respect to the virus and the disease, suggests future research directions to address the knowledge gaps, and proposes a One Health approach as an effective strategy to prevent current and future epidemics of mpox.
Collapse
Affiliation(s)
- Emmanuel Alakunle
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| | - Daniel Kolawole
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| | - Diana Diaz-Cánova
- Department of Medical Biology, UIT – The Arctic University of Norway, Tromsø, Norway
| | - Faith Alele
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Oyelola Adegboye
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ugo Moens
- Department of Medical Biology, UIT – The Arctic University of Norway, Tromsø, Norway
| | - Malachy Ifeanyi Okeke
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
14
|
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Webster JD, Guo H, Dixit VM. Caspase cleavage of RIPK3 after Asp 333 is dispensable for mouse embryogenesis. Cell Death Differ 2024; 31:254-262. [PMID: 38191748 PMCID: PMC10850060 DOI: 10.1038/s41418-023-01255-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
The proteolytic activity of caspase-8 suppresses lethal RIPK1-, RIPK3- and MLKL-dependent necroptosis during mouse embryogenesis. Caspase-8 is reported to cleave RIPK3 in addition to the RIPK3-interacting kinase RIPK1, but whether cleavage of RIPK3 is crucial for necroptosis suppression is unclear. Here we show that caspase-8-driven cleavage of endogenous mouse RIPK3 after Asp333 is dependent on downstream caspase-3. Consistent with RIPK3 cleavage being a consequence of apoptosis rather than a critical brake on necroptosis, Ripk3D333A/D333A knock-in mice lacking the Asp333 cleavage site are viable and develop normally. Moreover, in contrast to mice lacking caspase-8 in their intestinal epithelial cells, Ripk3D333A/D333A mice do not exhibit increased sensitivity to high dose tumor necrosis factor (TNF). Ripk3D333A/D333A macrophages died at the same rate as wild-type (WT) macrophages in response to TNF plus cycloheximide, TNF plus emricasan, or infection with murine cytomegalovirus (MCMV) lacking M36 and M45 to inhibit caspase-8 and RIPK3 activation, respectively. We conclude that caspase cleavage of RIPK3 is dispensable for mouse development, and that cleavage of caspase-8 substrates, including RIPK1, is sufficient to prevent necroptosis.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Katherine E Wickliffe
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Allie Maltzman
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Debra L Dugger
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Hongyan Guo
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, 71103, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
15
|
Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell 2024; 187:235-256. [PMID: 38242081 DOI: 10.1016/j.cell.2023.11.044] [Citation(s) in RCA: 319] [Impact Index Per Article: 319.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Cell death supports morphogenesis during development and homeostasis after birth by removing damaged or obsolete cells. It also curtails the spread of pathogens by eliminating infected cells. Cell death can be induced by the genetically programmed suicide mechanisms of apoptosis, necroptosis, and pyroptosis, or it can be a consequence of dysregulated metabolism, as in ferroptosis. Here, we review the signaling mechanisms underlying each cell-death pathway, discuss how impaired or excessive activation of the distinct cell-death processes can promote disease, and highlight existing and potential therapies for redressing imbalances in cell death in cancer and other diseases.
Collapse
Affiliation(s)
- Kim Newton
- Physiological Chemistry Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Andreas Strasser
- WEHI: Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Vishva M Dixit
- Physiological Chemistry Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
16
|
Williams J, Bonner J, Kibler K, Jacobs BL. Type I Interferon: Monkeypox/Mpox Viruses Achilles Heel? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:125-137. [PMID: 38801575 DOI: 10.1007/978-3-031-57165-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses are notorious for having acquired/evolved numerous genes to counteract host innate immunity. Chordopoxviruses have acquired/evolved at least three different inhibitors of host necroptotic death: E3, which blocks ZBP1-dependent necroptotic cell death, and vIRD and vMLKL that inhibit necroptosis downstream of initial cell death signaling. While this suggests the importance of the necroptotic cell death pathway in inhibiting chordopoxvirus replication, several chordopoxviruses have lost one or more of these inhibitory functions. Monkeypox/mpox virus (MPXV) has lost a portion of the N-terminus of its E3 homologue. The N-terminus of the vaccinia virus E3 homologue serves to inhibit activation of the interferon-inducible antiviral protein, ZBP1. This likely makes MPXV unique among the orthopoxviruses in being sensitive to interferon (IFN) treatment in many mammals, including humans, which encode a complete necroptotic cell death pathway. Thus, IFN sensitivity may be the Achille's Heel for viruses like MPXV that cannot fully inhibit IFN-inducible, ZBP1-dependent antiviral pathways.
Collapse
Affiliation(s)
- Jacqueline Williams
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, USA
- ASU-Banner Center for Neurodegenerative Diseases, Arizona State University, Tempe, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
| | - James Bonner
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, USA
- ASU-Banner Center for Neurodegenerative Diseases, Arizona State University, Tempe, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Karen Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, USA
- ASU-Banner Center for Neurodegenerative Diseases, Arizona State University, Tempe, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
| | - Bertram L Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, USA.
- ASU-Banner Center for Neurodegenerative Diseases, Arizona State University, Tempe, USA.
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, USA.
- School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
17
|
Fletcher P, O'Donnell KL, Doratt BM, Malherbe DC, Clancy CS, Rhoderick JF, Feldmann F, Hanley PW, Ksiazek TG, Geisbert TW, Messaoudi I, Marzi A. Single-dose VSV-based vaccine protects cynomolgus macaques from disease after Taï Forest virus infection. Emerg Microbes Infect 2023:2239950. [PMID: 37470396 PMCID: PMC10392270 DOI: 10.1080/22221751.2023.2239950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Taï Forest virus (TAFV) is a lesser-known ebolavirus that causes lethal infections in chimpanzees and is responsible for a single human case. Limited research has been done on this human pathogen; however, with the recent emergence of filoviruses in West Africa, further investigation and countermeasure development against this virus is warranted.We developed a vesicular stomatitis virus (VSV)-based vaccine expressing the TAFV glycoprotein as the viral antigen and assessed it for protective efficacy in nonhuman primates (NHPs). Following a single high-dose vaccination, NHPs developed antigen-specific binding and neutralizing antibodies as well as modest T cell responses. Importantly, all vaccinated NHPs were uniformly protected from disease after lethal TAFV challenge while the naïve control group succumbed to the disease. Histopathologic lesions consistent with filovirus disease were present in control NHPs but were not observed in vaccinated NHPs. Transcriptional analysis of whole blood samples obtained after vaccination and challenge was performed to gain insight into molecular underpinnings conferring protection. Differentially expressed genes (DEG) detected 7 days post-vaccination were enriched to processes associated with innate immunity and antiviral responses. Only a small number of DEG was detected in vaccinated NHPs post-challenge while over 1,000 DEG were detected in control NHPs at end-stage disease which mapped to gene ontology terms indicative of defense responses and inflammation. Taken together, this data demonstrates the effective single-dose protection of the VSV-TAFV vaccine, and its potential for use in outbreaks.
Collapse
Affiliation(s)
- Paige Fletcher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kyle L O'Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brianna M Doratt
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Delphine C Malherbe
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chad S Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Joseph F Rhoderick
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Thomas G Ksiazek
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
18
|
Ildefonso GV, Oliver Metzig M, Hoffmann A, Harris LA, Lopez CF. A biochemical necroptosis model explains cell-type-specific responses to cell death cues. Biophys J 2023; 122:817-834. [PMID: 36710493 PMCID: PMC10027451 DOI: 10.1016/j.bpj.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a form of regulated cell death associated with degenerative disorders, autoimmune and inflammatory diseases, and cancer. To better understand the biochemical mechanisms regulating necroptosis, we constructed a detailed computational model of tumor necrosis factor-induced necroptosis based on known molecular interactions from the literature. Intracellular protein levels, used as model inputs, were quantified using label-free mass spectrometry, and the model was calibrated using Bayesian parameter inference to experimental protein time course data from a well-established necroptosis-executing cell line. The calibrated model reproduced the dynamics of phosphorylated mixed lineage kinase domain-like protein, an established necroptosis reporter. A subsequent dynamical systems analysis identified four distinct modes of necroptosis signal execution, distinguished by rate constant values and the roles of the RIP1 deubiquitinating enzymes A20 and CYLD. In one case, A20 and CYLD both contribute to RIP1 deubiquitination, in another RIP1 deubiquitination is driven exclusively by CYLD, and in two modes either A20 or CYLD acts as the driver with the other enzyme, counterintuitively, inhibiting necroptosis. We also performed sensitivity analyses of initial protein concentrations and rate constants to identify potential targets for modulating necroptosis sensitivity within each mode. We conclude by associating numerous contrasting and, in some cases, counterintuitive experimental results reported in the literature with one or more of the model-predicted modes of necroptosis execution. In all, we demonstrate that a consensus pathway model of tumor necrosis factor-induced necroptosis can provide insights into unresolved controversies regarding the molecular mechanisms driving necroptosis execution in numerous cell types under different experimental conditions.
Collapse
Affiliation(s)
- Geena V Ildefonso
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marie Oliver Metzig
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California
| | - Leonard A Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas; Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas; Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Carlos F Lopez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
19
|
Liccardi G, Annibaldi A. MLKL post-translational modifications: road signs to infection, inflammation and unknown destinations. Cell Death Differ 2023; 30:269-278. [PMID: 36175538 PMCID: PMC9520111 DOI: 10.1038/s41418-022-01061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Necroptosis is a caspase-independent modality of cell death that requires the activation of the executioner MLKL. In the last ten years the field gained a substantial amount of evidence regarding its involvement in host response to pathogens, TNF-induced inflammatory diseases as well as pathogen recognition receptors (PRR)-induced inflammation. However, there are still a lot of questions that remain unanswered. While it is clear that there are specific events needed to drive MLKL activation, substantial differences between human and mouse MLKL not only highlight different evolutionary pressure, but also provide potential insights on alternative modalities of activation. While in TNF-induced necroptosis it is clear the involvement of the RIPK3 mediated phosphorylation, it still remains to be understood how certain inflammatory in vivo phenotypes are not equally rescued by either RIPK3 or MLKL loss. Moreover, the plethora of different reported phosphorylation events on MLKL, even in cells that do not express RIPK3, suggest indeed that there is more to MLKL than RIPK3-mediated activation, not only in the execution of necroptosis but perhaps in other inflammatory conditions that include IFN response. The recent discovery of MLKL ubiquitination has highlighted a new checkpoint in the regulation of MLKL activation and the somewhat conflicting evidence reported certainly require some untangling. In this review we will highlight the recent findings on MLKL activation and involvement to pathogen response with a specific focus on MLKL post-translational modifications, in particular ubiquitination. This review will highlight the outstanding main questions that have risen from the last ten years of research, trying at the same time to propose potential avenues of research.
Collapse
Affiliation(s)
- Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany.
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931, Cologne, Germany.
| |
Collapse
|
20
|
Abstract
Poxviruses have been long regarded as potent inhibitors of apoptotic cell death. More recently, they have been shown to inhibit necroptotic cell death through two distinct strategies. These strategies involve either blocking virus sensing by the host pattern recognition receptor, ZBP1 (also called DAI) or by influencing receptor interacting protein kinase (RIPK)3 signal transduction by inhibition of activation of the executioner of necroptosis, mixed lineage kinase-like protein (MLKL). Vaccinia virus E3 specifically blocks ZBP1 → RIPK3 → MLKL necroptosis, leaving virus-infected cells susceptible to the TNF death-receptor signaling (e.g., TNFR1 → FADD → RIPK1 → RIPK3 → MLKL), and, potentially, TLR3 → TRIF → RIPK3 → MLKL necroptosis. While E3 restriction of necroptosis appears to be common to many poxviruses that infect vertebrate hosts, another modulatory strategy not observed in vaccinia or variola virus manifests through subversion of MLKL activation. Recently described viral mimics of MLKL in other chordopoxviruses inhibit all three modes of necroptotic cell death. As with inhibition of apoptosis, the evolution of potentially redundant viral mechanisms to inhibit programmed necroptotic cell death emphasizes the importance of this pathway in the arms race between pathogens and their hosts.
Collapse
Affiliation(s)
- Heather S Koehler
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Vaccine Center, Atlanta, GA, 30322, USA
| | - Bertram L Jacobs
- Arizona State University, Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Tempe, AZ, 85287, USA.
| |
Collapse
|
21
|
Lawson CA, Titus DJ, Koehler HS. Approaches to Evaluating Necroptosis in Virus-Infected Cells. Subcell Biochem 2023; 106:37-75. [PMID: 38159223 DOI: 10.1007/978-3-031-40086-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The immune system functions to protect the host from pathogens. To counter host defense mechanisms, pathogens have developed unique strategies to evade detection or restrict host immune responses. Programmed cell death is a major contributor to the multiple host responses that help to eliminate infected cells for obligate intracellular pathogens like viruses. Initiation of programmed cell death pathways during the early stages of viral infections is critical for organismal survival as it restricts the virus from replicating and serves to drive antiviral inflammation immune recruitment through the release of damage-associated molecular patterns (DAMPs) from the dying cell. Necroptosis has been implicated as a critical programmed cell death pathway in a diverse set of diseases and pathological conditions including acute viral infections. This cell death pathway occurs when certain host sensors are triggered leading to the downstream induction of mixed-lineage kinase domain-like protein (MLKL). MLKL induction leads to cytoplasmic membrane disruption and subsequent cellular destruction with the release of DAMPs. As the role of this cell death pathway in human disease becomes apparent, methods identifying necroptosis patterns and outcomes will need to be further developed. Here, we discuss advances in our understanding of how viruses counteract necroptosis, methods to quantify the pathway, its effects on viral pathogenesis, and its impact on cellular signaling.
Collapse
Affiliation(s)
- Crystal A Lawson
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Derek J Titus
- Providence Sacred Heart, Spokane Teaching Health Center, Spokane, WA, USA
| | - Heather S Koehler
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
22
|
Orzalli MH, Parameswaran P. Effector-triggered immunity in mammalian antiviral defense. Trends Immunol 2022; 43:1006-1017. [PMID: 36369102 DOI: 10.1016/j.it.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/12/2023]
Abstract
Effector-triggered immunity (ETI) is a common defense strategy used by mammalian host cells that is engaged upon detection of the enzymatic activities of pathogen-encoded proteins or the effects of their expression on cellular homeostasis. However, in contrast to the effector-triggered responses engaged upon bacterial infection, much less is understood about the activation and consequences of these responses following viral infection. Several recent studies have identified novel mechanisms by which viruses engage ETI, highlighting the importance of these immune responses in antiviral defense. We summarize recent advances in understanding how mammalian cells sense virus-encoded effector proteins, the downstream signaling pathways that are triggered by these sensing events, and how viruses manipulate these pathways to become more successful pathogens.
Collapse
Affiliation(s)
- Megan H Orzalli
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Pooja Parameswaran
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
23
|
Pandian N, Kanneganti TD. PANoptosis: A Unique Innate Immune Inflammatory Cell Death Modality. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1625-1633. [PMID: 36253067 PMCID: PMC9586465 DOI: 10.4049/jimmunol.2200508] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Innate immunity is the first response to protect against pathogens and cellular insults. Pattern recognition receptors sense pathogen- and damage-associated molecular patterns and induce an innate immune response characterized by inflammation and programmed cell death (PCD). In-depth characterization of innate immune PCD pathways has highlighted significant cross-talk. Recent advances led to the identification of a unique inflammatory PCD modality called PANoptosis, which is regulated by multifaceted PANoptosome complexes that are assembled by integrating components from other PCD pathways. The totality of biological effects observed in PANoptosis cannot be accounted for by any other PCD pathway alone. In this review, we briefly describe mechanisms of innate immune cell death, including molecular mechanisms of PANoptosis activation and regulation. We also highlight the PANoptosomes identified to date and provide an overview of the implications of PANoptosis in disease and therapeutic targeting. Improved understanding of innate immune-mediated cell death, PANoptosis, is critical to inform the next generation of treatment strategies.
Collapse
Affiliation(s)
- Nagakannan Pandian
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
24
|
Maslov LN, Popov SV, Mukhomedzyanov AV, Naryzhnaya NV, Voronkov NS, Ryabov VV, Boshchenko AA, Khaliulin I, Prasad NR, Fu F, Pei JM, Logvinov SV, Oeltgen PR. Reperfusion Cardiac Injury: Receptors and the Signaling Mechanisms. Curr Cardiol Rev 2022; 18:63-79. [PMID: 35422224 PMCID: PMC9896422 DOI: 10.2174/1573403x18666220413121730] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
It has been documented that Ca2+ overload and increased production of reactive oxygen species play a significant role in reperfusion injury (RI) of cardiomyocytes. Ischemia/reperfusion induces cell death as a result of necrosis, necroptosis, apoptosis, and possibly autophagy, pyroptosis and ferroptosis. It has also been demonstrated that the NLRP3 inflammasome is involved in RI of the heart. An increase in adrenergic system activity during the restoration of coronary perfusion negatively affected cardiac resistance to RI. Toll-like receptors are involved in RI of the heart. Angiotensin II and endothelin-1 aggravated ischemic/reperfusion injury of the heart. Activation of neutrophils, monocytes, CD4+ T-cells and platelets contributes to cardiac ischemia/reperfusion injury. Our review outlines the role of these factors in reperfusion cardiac injury.
Collapse
Affiliation(s)
- Leonid N. Maslov
- Address correspondence to this author at the Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Kyevskskaya 111A, 634012 Tomsk, Russia; Tel. +7 3822 262174; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mukhopadhyay U, Patra U, Chandra P, Saha P, Gope A, Dutta M, Chawla-Sarkar M. Rotavirus activates MLKL-mediated host cellular necroptosis concomitantly with apoptosis to facilitate dissemination of viral progeny. Mol Microbiol 2021; 117:818-836. [PMID: 34954851 DOI: 10.1111/mmi.14874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022]
Abstract
Reprogramming the host cellular environment is an obligatory facet of viral pathogens to foster their replication and perpetuation. One of such reprogramming events is the dynamic cross-talk between viruses and host cellular death signaling pathways. Rotaviruses (RVs) have been reported to develop multiple mechanisms to induce apoptotic programmed cell death for maximizing viral spread and pathogenicity. However, the importance of non-apoptotic programmed death events has remained elusive in context of RV infection. Here, we report that RV-induced apoptosis accompanies another non-apoptotic mode of programmed cell death pathway called necroptosis to promote host cellular demise at late phase of infection. Phosphorylation of mixed lineage kinase-domain like (MLKL) protein indicative of necroptosis was observed to concur with caspase-cleavage (apoptotic marker) beyond 6 hours of RV infection. Subsequent studies demonstrated phosphorylated-MLKL to oligomerize and to translocate to plasma membrane in RV infected cells, resulting in loss of plasma membrane integrity and release of alarmin molecules e.g., high mobility group box protein 1 (HMGB1) in the extracellular media. Moreover, inhibiting caspase-cleavage and apoptosis could not fully rescue virus-induced cell death but rather potentiated the necroptotic trigger. Interestingly, preventing both apoptosis and necroptosis by small molecules significantly rescued virus-induced host cytopathy by inhibiting viral dissemination.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Upayan Patra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Pritam Chandra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Priyanka Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Animesh Gope
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| |
Collapse
|
26
|
Balachandran S, Mocarski ES. Viral Z-RNA triggers ZBP1-dependent cell death. Curr Opin Virol 2021; 51:134-140. [PMID: 34688984 DOI: 10.1016/j.coviro.2021.10.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
Z-DNA Binding protein 1 (ZBP1) activates Receptor Interacting Protein Kinase 3 (RIPK3) -dependent cell death during lytic infection by members of the orthomyxovirus, herpesvirus and poxvirus families. ZBP1 possesses two Zα domains capable of selective binding to Z-DNA, as well as to Z-RNA. We have now unveiled Z-RNA as the ligand that activates ZBP1 in cells infected with orthomyxoviruses (influenza A and B viruses) and the poxvirus vaccinia virus (VACV). Orthomyxovirus Z-RNA is sensed by ZBP1 in the nucleus of infected cells, resulting in nuclear activation of RIPK3, consequent rupture of the nucleus, and hyper-inflammatory 'nuclear necroptosis'. VACV-generated Z-RNA accumulates in the cytoplasm, where it is sequestered from ZBP1 by E3, the viral E3L gene product. In viruses where the E3 Zα domain has been mutated, ZBP1 senses Z-RNA and triggers RIPK3-dependent necroptosis in the cytoplasm. Z-RNA is thus a new viral pathogen-associated molecular pattern (PAMP).
Collapse
Affiliation(s)
- Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
27
|
Programmed cell death in aortic aneurysm and dissection: A potential therapeutic target. J Mol Cell Cardiol 2021; 163:67-80. [PMID: 34597613 DOI: 10.1016/j.yjmcc.2021.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Rupture of aortic aneurysm and dissection (AAD) remains a leading cause of death. Progressive smooth muscle cell (SMC) loss is a crucial feature of AAD that contributes to aortic dysfunction and degeneration, leading to aortic aneurysm, dissection, and, ultimately, rupture. Understanding the molecular mechanisms of SMC loss and identifying pathways that promote SMC death in AAD are critical for developing an effective pharmacologic therapy to prevent aortic destruction and disease progression. Cell death is controlled by programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis. Although these pathways share common stimuli and triggers, each type of programmed cell death has unique features and activation pathways. A growing body of evidence supports a critical role for programmed cell death in the pathogenesis of AAD, and inhibitors of various types of programmed cell death represent a promising therapeutic strategy. This review discusses the different types of programmed cell death pathways and their features, induction, contributions to AAD development, and therapeutic potential. We also highlight the clinical significance of programmed cell death for further studies.
Collapse
|
28
|
Koehler H, Cotsmire S, Zhang T, Balachandran S, Upton JW, Langland J, Kalman D, Jacobs BL, Mocarski ES. Vaccinia virus E3 prevents sensing of Z-RNA to block ZBP1-dependent necroptosis. Cell Host Microbe 2021; 29:1266-1276.e5. [PMID: 34192517 PMCID: PMC9333947 DOI: 10.1016/j.chom.2021.05.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/02/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Necroptosis mediated by Z-nucleic-acid-binding protein (ZBP)1 (also called DAI or DLM1) contributes to innate host defense against viruses by triggering cell death to eliminate infected cells. During infection, vaccinia virus (VACV) protein E3 prevents death signaling by competing for Z-form RNA through an N-terminal Zα domain. In the absence of this E3 domain, Z-form RNA accumulates during the early phase of VACV infection, triggering ZBP1 to recruit receptor interacting protein kinase (RIPK)3 and execute necroptosis. The C-terminal E3 double-strand RNA-binding domain must be retained to observe accumulation of Z-form RNA and induction of necroptosis. Substitutions of Zα from either ZBP1 or the RNA-editing enzyme double-stranded RNA adenosine deaminase (ADAR)1 yields fully functional E3 capable of suppressing virus-induced necroptosis. Overall, our evidence reveals the importance of Z-form RNA generated during VACV infection as a pathogen-associated molecular pattern (PAMP) unleashing ZBP1/RIPK3/MLKL-dependent necroptosis unless suppressed by viral E3.
Collapse
Affiliation(s)
- Heather Koehler
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Samantha Cotsmire
- Arizona State University, Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Tempe, AZ 85287, USA
| | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jason W Upton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jeffery Langland
- Arizona State University, Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Tempe, AZ 85287, USA
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bertram L Jacobs
- Arizona State University, Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Tempe, AZ 85287, USA.
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
29
|
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) has emerged as a key upstream regulator of cell death and inflammation. RIPK1-mediated signaling governs the outcome of signaling pathways initiated by tumor necrosis factor receptor 1 (TNFR1), Toll-like receptor 3 (TLR3), TLR4, retinoic acid-inducible gene 1 (RIG-I)/melanoma differentiation-associated protein 5 (MDA-5), and Z-binding protein 1 (ZBP1) by signaling for NF-κB activation, mitogen-associated protein kinase (MAPK) and interferon regulatory factor 3/7 (IRF3/7) phosphorylation, and cell death via apoptosis and necroptosis. Both cell death and inflammatory responses play a major role in controlling virus infections. Therefore, viruses have evolved multifaceted mechanisms to exploit host immune responses by targeting RIPK1. This review focuses on the current understanding of RIPK1-mediated inflammatory and cell death pathways and multiple mechanisms by which viruses manipulate these pathways by targeting RIPK1. We also discuss gaps in our knowledge regarding RIPK1-mediated signaling pathways and highlight potential avenues for future research.
Collapse
|
30
|
Santos LD, Antunes KH, Muraro SP, de Souza GF, da Silva AG, Felipe JDS, Zanetti LC, Czepielewski RS, Magnus K, Scotta M, Mattiello R, Maito F, de Souza APD, Weinlich R, Vinolo MAR, Porto BN. TNF-mediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection. Eur Respir J 2021; 57:13993003.03764-2020. [PMID: 33303545 PMCID: PMC8209485 DOI: 10.1183/13993003.03764-2020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
Respiratory syncytial virus (RSV) is the major cause of acute bronchiolitis in infants under 2 years old. Necroptosis has been implicated in the outcomes of respiratory virus infections. We report that RSV infection triggers necroptosis in primary mouse macrophages and human monocytes in a RIPK1-, RIPK3- and MLKL-dependent manner. Moreover, necroptosis pathways are harmful to RSV clearance from alveolar macrophages. Additionally, Ripk3-/- mice were protected from RSV-induced weight loss and presented with reduced viral loads in the lungs.Alveolar macrophage depletion also protected mice from weight loss and decreased lung RSV virus load. Importantly, alveolar macrophage depletion abolished the upregulation of Ripk3 and Mlkl gene expression induced by RSV infection in the lung tissue.Autocrine tumor necrosis factor (TNF)-mediated RSV-triggered macrophage necroptosis and necroptosis pathways were also involved in TNF secretion even when macrophages were committed to cell death, which can worsen lung injury during RSV infection. In line, Tnfr1-/- mice had a marked decrease in Ripk3 and Mlkl gene expression and a sharp reduction in the numbers of necrotic alveolar macrophages in the lungs. Finally, we provide evidence that elevated nasal levels of TNF are associated with disease severity in infants with RSV bronchiolitis.We propose that targeting TNF and/or the necroptotic machinery may be valuable therapeutic approaches to reduce the respiratory morbidity caused by RSV infection in young children.
Collapse
Affiliation(s)
- Leonardo Duarte Santos
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Stéfanie Primon Muraro
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Emerging Viruses, Dept of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,These authors contributed equally to this work
| | - Gabriela Fabiano de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Emerging Viruses, Dept of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,These authors contributed equally to this work
| | - Amanda Gonzalez da Silva
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline de Souza Felipe
- Laboratory of Immunoinflammation, Dept of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Rafael Sanguinetti Czepielewski
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Dept of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen Magnus
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Scotta
- Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rita Mattiello
- Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabio Maito
- Laboratory of Oral Pathology, Health Science School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Dept of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Bárbara Nery Porto
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Life and Health Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil .,Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
31
|
Gou H, Bian Z, Cai R, Chu P, Song S, Li Y, Jiang Z, Zhang K, Yang D, Li C. RIPK3-Dependent Necroptosis Limits PRV Replication in PK-15 Cells. Front Microbiol 2021; 12:664353. [PMID: 34149651 PMCID: PMC8211757 DOI: 10.3389/fmicb.2021.664353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Pigs infected by pseudorabies virus (PRV) display necrotic pathology in multiple organs. The mechanism by which PRV induces cell death is still unclear. Recently, necroptosis was identified as a programmed process dependent on the receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase-like protein (MLKL). In this study, we demonstrated that PRV induced RIPK3-dependent necroptosis in PK-15 cells. The data showed that PRV infection caused cell death with Propidium Iodide (PI)-positive staining. Transmission electron microscopy analysis indicated plasma membrane disruption in PRV-infected cells. A pan-caspase inhibitor did not prevent PRV-induced necrotic cell death. Western blot analysis indicated that caspase-3 and caspase-8 were not cleaved during PRV infection. Although the transcription of tumor necrosis factor-alpha (TNF-α) was increased by PRV infection, RIPK1 was shown to be not involved in PRV-induced necrotic cell death by use of its specific inhibitor. Further experiments indicated that the phosphorylation of RIPK3 and MLKL was upregulated in PRV-infected cells. Stable shRNA knockdown of RIPK3 or MLKL had a recovery effect on PRV-induced necrotic cell death. Meanwhile, viral titers were enhanced in RIPK3 and MLKL knockdown cells. Hence, we concluded that initiation of necroptosis in host cells plays a limiting role in PRV infection. Considering that necroptosis is an inflammatory form of programmed cell death, our data may be beneficial for understanding the necrotic pathology of pigs infected by PRV.
Collapse
Affiliation(s)
- Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Zhibiao Bian
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Rujian Cai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Pinpin Chu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Yan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Zhiyong Jiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Dongxia Yang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| |
Collapse
|
32
|
Abstract
Nearly all animal cells contain proteins evolved to trigger the destruction of the cell in which they reside. The activation of these proteins occurs via sequential programs, and much effort has been expended in delineating the molecular mechanisms underlying the resulting processes of programmed cell death (PCD). These efforts have led to the definition of apoptosis as a form of nonimmunogenic PCD that is required for normal development and tissue homeostasis, and of pyroptosis and necroptosis as forms of PCD initiated by pathogen infection that are associated with inflammation and immune activation. While this paradigm has served the field well, numerous recent studies have highlighted cross talk between these programs, challenging the idea that apoptosis, pyroptosis, and necroptosis are linear pathways with defined immunological outputs. Here, we discuss the emerging idea of cell death as a signaling network, considering connections between cell death pathways both as we observe them now and in their evolutionary origins. We also discuss the engagement and subversion of cell death pathways by pathogens, as well as the key immunological outcomes of these processes.
Collapse
Affiliation(s)
- Annelise G Snyder
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA;
| |
Collapse
|
33
|
Prasher P, Sharma M, Zacconi F, Gupta G, Aljabali AA, Mishra V, Tambuwala MM, Kapoor DN, Negi P, Andreoli Pinto TDJ, Singh I, Chellappan DK, Dua K. Synthesis and Anticancer Properties of ‘Azole’ Based Chemotherapeutics as Emerging Chemical Moieties: A Comprehensive Review. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999200820152501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Azole frameworks serve as privileged scaffolds in the contemporary drug design
paradigm owing to their unique physicochemical profile that promotes the development
of highly selective, physiological benevolent chemotherapeutics. Several azole nuclei
function as bioisostere in medicinal chemistry and prompt the development of tailored
therapeutics for targeting the desired biological entities. Besides, the azole scaffold forms
an integral part in the advanced drug designing methodologies, such as target template insitu
drug synthesis, that assists in rapid identification of the hit molecules form a diverse
pool of leads; and direct biomolecule-drug conjugation, along with bioorthogonal strategies
that ensure localization, and superior target specificity of the directed therapeutic.
Lastly, the structural diversity of azole framework and high yielding click synthetic methods
provide a comprehensive Structure-Activity Relationship analysis for design optimization of the potential
drug molecules by fine-tuning the placement of different substituents critical for the activity. This review provides
a comprehensive analysis of the synthesis and anticancer potential of azole based chemotherapeutics.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun 248007, India
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302 017, Jaipur, India
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, United Kingdom
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Post box no. 9, Solan, Himachal Pradesh 173 229, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Post box no. 9, Solan, Himachal Pradesh 173 229, India
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo 05508-000, Brazil
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Dinesh K. Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
34
|
Liu Z, Nailwal H, Rector J, Rahman MM, Sam R, McFadden G, Chan FKM. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation. Immunity 2021; 54:247-258.e7. [PMID: 33444549 DOI: 10.1016/j.immuni.2020.11.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The vaccine strain against smallpox, vaccinia virus (VACV), is highly immunogenic yet causes relatively benign disease. These attributes are believed to be caused by gene loss in VACV. Using a targeted small interfering RNA (siRNA) screen, we identified a viral inhibitor found in cowpox virus (CPXV) and other orthopoxviruses that bound to the host SKP1-Cullin1-F-box (SCF) machinery and the essential necroptosis kinase receptor interacting protein kinase 3 (RIPK3). This "viral inducer of RIPK3 degradation" (vIRD) triggered ubiquitination and proteasome-mediated degradation of RIPK3 and inhibited necroptosis. In contrast to orthopoxviruses, the distantly related leporipoxvirus myxoma virus (MYXV), which infects RIPK3-deficient hosts, lacks a functional vIRD. Introduction of vIRD into VACV, which encodes a truncated and defective vIRD, enhanced viral replication in mice. Deletion of vIRD reduced CPXV-induced inflammation, viral replication, and mortality, which were reversed in RIPK3- and MLKL-deficient mice. Hence, vIRD-RIPK3 drives pathogen-host evolution and regulates virus-induced inflammation and pathogenesis.
Collapse
Affiliation(s)
- Zhijun Liu
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| | - Himani Nailwal
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jonah Rector
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| | - Masmudur M Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Richard Sam
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA; Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
35
|
Faizan MI, Ahmad T. Altered mitochondrial calcium handling and cell death by necroptosis: An emerging paradigm. Mitochondrion 2020; 57:47-62. [PMID: 33340710 DOI: 10.1016/j.mito.2020.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
The classical necroptosis signaling is mediated by death receptors (DRs) that work in synergy with traditional caspase inhibitory signals. Currently, potential therapeutic molecules are in various phases of clinical trials for a spectrum of pathological conditions associated with necroptosis. However, a non-classical model of necroptosis has also emerged over the last decade with a relatively unexplored molecular mechanism. Although in vitro studies and preclinical models have shown its close association with mitochondrial dysfunction (mito-dysfunction), contradictory reports have emerged which complicate its definitiveness. Though impaired mitochondrial calcium ([Ca2+]m) handling is established in necrotic cell death, how this interplay regulates necroptosis is yet to be elucidated. Taking these questions into consideration, we have discussed various molecular aspects of necroptosis with the emerging role of mito-dysfunction. Based on the central role of altered [Ca2+]m handling in mito-dysfunction mediated necroptosis, we have provided a comprehensive molecular insight into this emerging paradigm. Potential reasons for the contradictory findings regarding the role of mito-dysfunction in necroptosis in general and mitochondrial-dependent necroptosis in specific are discussed. We also provide insights into the current understanding of how [Ca2+]m can be a critical determinant in deciding the cell fate under certain pathological conditions, while under others it may be dispensable. Lastly, we have highlighted the key molecular targets which have a direct implication for therapeutic intervention in conditions that are associated with impaired [Ca2+]m handling and cell death by necroptosis.
Collapse
Affiliation(s)
- Md Imam Faizan
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025 India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025 India.
| |
Collapse
|
36
|
The diverse roles of RIP kinases in host-pathogen interactions. Semin Cell Dev Biol 2020; 109:125-143. [PMID: 32859501 PMCID: PMC7448748 DOI: 10.1016/j.semcdb.2020.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Receptor Interacting Protein Kinases (RIPKs) are cellular signaling molecules that are critical for homeostatic signaling in both communicable and non-communicable disease processes. In particular, RIPK1, RIPK2, RIPK3 and RIPK7 have emerged as key mediators of intracellular signal transduction including inflammation, autophagy and programmed cell death, and are thus essential for the early control of many diverse pathogenic organisms. In this review, we discuss the role of each RIPK in host responses to bacterial and viral pathogens, with a focus on studies that have used pathogen infection models rather than artificial stimulation with purified pathogen associated molecular patterns. We also discuss the intricate mechanisms of host evasion by pathogens that specifically target RIPKs for inactivation, and finally, we will touch on the controversial issue of drug development for kinase inhibitors to treat chronic inflammatory and neurological disorders, and the implications this may have on the outcome of pathogen infections.
Collapse
|
37
|
Abstract
Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of intrinsic, innate, and adaptive viral immune evasion. Here, we employed multiplexed tandem mass tag-based proteomics to characterize host proteins targeted for degradation late during HCMV infection. This approach revealed that mixed lineage kinase domain-like protein (MLKL), a key terminal mediator of cellular necroptosis, was rapidly and persistently degraded by the minimally passaged HCMV strain Merlin but not the extensively passaged strain AD169. The strain Merlin viral inhibitor of apoptosis pUL36 was necessary and sufficient both to degrade MLKL and to inhibit necroptosis. Furthermore, mutation of pUL36 Cys131 abrogated MLKL degradation and restored necroptosis. As the same residue is also required for pUL36-mediated inhibition of apoptosis by preventing proteolytic activation of procaspase-8, we define pUL36 as a multifunctional inhibitor of both apoptotic and necroptotic cell death.
Collapse
|
38
|
Balachandran S, Rall GF. Benefits and Perils of Necroptosis in Influenza Virus Infection. J Virol 2020; 94:e01101-19. [PMID: 32051270 PMCID: PMC7163144 DOI: 10.1128/jvi.01101-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 12/27/2022] Open
Abstract
Influenza A viruses (IAV) are lytic viruses that have recently been found to activate necroptosis in many of the cell types they infect. Necroptotic cell death is potently immunogenic and limits IAV spread by directly eliminating infected cells and by mobilizing both innate and adaptive immune responses. The benefits of necroptosis to the host, however, may sometimes be outweighed by the potentially deleterious hyperinflammatory consequences of activating this death modality in pulmonary and other tissues.
Collapse
Affiliation(s)
- Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Glenn F Rall
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Caspase-8-dependent control of NK- and T cell responses during cytomegalovirus infection. Med Microbiol Immunol 2019; 208:555-571. [PMID: 31098689 DOI: 10.1007/s00430-019-00616-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022]
Abstract
Caspase-8 (CASP8) impacts antiviral immunity in expected as well as unexpected ways. Mice with combined deficiency in CASP8 and RIPK3 cannot support extrinsic apoptosis or RIPK3-dependent programmed necrosis, enabling studies of CASP8 function without complications of unleashed necroptosis. These extrinsic cell death pathways are naturally targeted by murine cytomegalovirus (MCMV)-encoded cell death suppressors, showing they are key to cell-autonomous host defense. Remarkably, Casp8-/-Ripk3-/-, Ripk1-/-Casp8-/-Ripk3-/- and Casp8-/-Ripk3K51A/K51A mice mount robust antiviral T cell responses to control MCMV infection. Studies in Casp8-/-Ripk3-/- mice show that CASP8 restrains expansion of MCMV-specific natural killer (NK) and CD8 T cells without compromising contraction or immune memory. Infected Casp8-/-Ripk3-/- or Casp8-/-Ripk3K51A/K51A mice have higher levels of virus-specific NK cells and CD8 T cells compared to matched RIPK3-deficient littermates or WT mice. CASP8, likely acting downstream of Fas death receptor, dampens proliferation of CD8 T cells during expansion. Importantly, contraction proceeds unimpaired in the absence of extrinsic death pathways owing to intact Bim-dependent (intrinsic) apoptosis. CD8 T cell memory develops in Casp8-/-Ripk3-/- mice, but memory inflation characteristic of MCMV infection is not sustained in the absence of CASP8 function. Despite this, Casp8-/-Ripk3-/- mice are immune to secondary challenge. Interferon (IFN)γ is recognized as a key cytokine for adaptive immune control of MCMV. Ifngr-/-Casp8-/-Ripk3-/- mice exhibit increased lifelong persistence in salivary glands as well as lungs compared to Ifngr-/- and Casp8-/-Ripk3-/- mice. Thus, mice deficient in CASP8 and RIPK3 are more dependent on IFNγ mechanisms for sustained T cell immune control of MCMV. Overall, appropriate NK- and T cell immunity to MCMV is dependent on host CASP8 function independent of RIPK3-regulated pathways.
Collapse
|
40
|
Feng Y, Livingston-Rosanoff D, Roback L, Sundararajan A, Speck SH, Mocarski ES, Daley-Bauer LP. Remarkably Robust Antiviral Immune Response despite Combined Deficiency in Caspase-8 and RIPK3. THE JOURNAL OF IMMUNOLOGY 2018; 201:2244-2255. [PMID: 30194111 DOI: 10.4049/jimmunol.1800110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023]
Abstract
Caspase-8 (Casp8)-mediated signaling triggers extrinsic apoptosis while suppressing receptor-interacting protein kinase (RIPK) 3-dependent necroptosis. Although Casp8 is dispensable for the development of innate and adaptive immune compartments in mice, the importance of this proapoptotic protease in the orchestration of immune response to pathogens remains to be fully explored. In this study, Casp8-/-Ripk3-/- C57BL/6 mice show robust innate and adaptive immune responses to the natural mouse pathogen, murine CMV. When young, these mice lack lpr-like lymphoid hyperplasia and accumulation of either B220 + CD3+ or B220-CD3+CD4+ and CD8+ T cells with increased numbers of immature myeloid cells that are evident in older mice. Dendritic cell activation and cytokine production drive both NK and T cell responses to control viral infection in these mice, suggesting that Casp8 is dispensable to the generation of antiviral host defense. Curiously, NK and T cell expansion is amplified, with greater numbers observed by 7 d postinfection compared with either Casp8+/-Ripk3-/- or wild type (Casp8+/+Ripk3+/+ ) littermate controls. Casp8 and RIPK3 are natural targets of virus-encoded cell death suppressors that prevent infected cell apoptosis and necroptosis, respectively. It is clear from the current studies that the initiation of innate immunity and the execution of cytotoxic lymphocyte functions are all preserved despite the absence of Casp8 in responding cells. Thus, Casp8 and RIPK3 signaling is completely dispensable to the generation of immunity against this natural herpesvirus infection, although the pathways driven by these initiators serve as a crucial first line for host defense within virus-infected cells.
Collapse
Affiliation(s)
- Yanjun Feng
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Devon Livingston-Rosanoff
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Linda Roback
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Aarthi Sundararajan
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Samuel H Speck
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Lisa P Daley-Bauer
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
41
|
Species-independent contribution of ZBP1/DAI/DLM-1-triggered necroptosis in host defense against HSV1. Cell Death Dis 2018; 9:816. [PMID: 30050136 PMCID: PMC6062522 DOI: 10.1038/s41419-018-0868-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Necroptosis complements apoptosis as a host defense pathway to stop virus infection. Herpes simplex virus shows a propensity to trigger necroptosis of mouse cells and mice even though cell death is blocked in human cells through UL39-encoded ICP6. This ribonucleotide reductase large subunit (R1) nucleates RHIM-dependent oligomerization of RIP3 kinase (RIPK3, also known as RIP3) in mouse cells but inhibits activation in cells from the natural human host. By interrogating the comparative behavior of ICP6-deficient viruses in mouse and human cells, here we unveil virus-induced necroptosis mediated by Z-DNA-binding protein 1 (ZBP1, also known as DAI). ZBP1 acts as a pathogen sensor to detect nascent RNA transcripts rather than input viral DNA or viral DNA generated through replication. Consistent with the implicated role of virus-induced necroptosis in restricting infection, viral pathogenesis is restored in Zbp1−/−, Ripk3−/− and Mlkl−/− mice. Thus, in addition to direct activation of RIPK3 via ICP6, HSV1 infection in mice and mouse cells triggers virus-induced necroptosis through ZBP1. Importantly, virus-induced necroptosis is also induced in human HT-29 cells by ICP6 mutant viruses; however, ZBP1 levels must be elevated for this pathway to be active. Thus, our studies reveal a common, species-independent role of this nucleic acid sensor to detect the presence of this virus. HSV1 ICP6 functions as a bona fide RHIM signaling inhibitor to block virus-induced necroptosis in its natural host. Altogether, ZBP1-dependent restriction of herpesvirus infection emerges as a potent antiviral armament of the innate immune system.
Collapse
|
42
|
Brault M, Olsen TM, Martinez J, Stetson DB, Oberst A. Intracellular Nucleic Acid Sensing Triggers Necroptosis through Synergistic Type I IFN and TNF Signaling. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29540580 DOI: 10.4049/jimmunol.1701492] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sensing of viral nucleic acids within the cytosol is essential for the induction of innate immune responses following infection. However, this sensing occurs within cells that have already been infected. The death of infected cells can be beneficial to the host by eliminating the virus's replicative niche and facilitating the release of inflammatory mediators. In this study, we show that sensing of intracellular DNA or RNA by cGAS-STING or RIG-I-MAVS, respectively, leads to activation of RIPK3 and necroptosis in bone marrow-derived macrophages. Notably, this requires signaling through both type I IFN and TNF receptors, revealing synergy between these pathways to induce cell death. Furthermore, we show that hyperactivation of STING in mice leads to a shock-like phenotype, the mortality of which requires activation of the necroptotic pathway and IFN and TNF cosignaling, demonstrating that necroptosis is one outcome of STING signaling in vivo.
Collapse
Affiliation(s)
- Michelle Brault
- Department of Immunology, University of Washington, Seattle, WA 98109.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195; and
| | - Tayla M Olsen
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Daniel B Stetson
- Department of Immunology, University of Washington, Seattle, WA 98109;
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA 98109;
| |
Collapse
|
43
|
Abstract
The programmed self-destruction of infected cells is a powerful antimicrobial strategy in metazoans. For decades, apoptosis represented the dominant mechanism by which the virus-infected cell was thought to undergo programmed cell death. More recently, however, new mechanisms of cell death have been described that are also key to host defense. One such mechanism in vertebrates is programmed necrosis, or "necroptosis", driven by receptor-interacting protein kinase 3 (RIPK3). Once activated by innate immune stimuli, including virus infections, RIPK3 phosphorylates the mixed lineage kinase domain-like protein (MLKL), which then disrupts cellular membranes to effect necroptosis. Emerging evidence demonstrates that RIPK3 can also mediate apoptosis and regulate inflammasomes. Here, we review studies on the mechanisms by which viruses activate RIPK3 and the pathways engaged by RIPK3 that drive cell death.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas, Austin, TX, USA
| | - Maria Shubina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
44
|
Orozco S, Oberst A. RIPK3 in cell death and inflammation: the good, the bad, and the ugly. Immunol Rev 2018; 277:102-112. [PMID: 28462521 DOI: 10.1111/imr.12536] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Necroptosis is a form of cell death that can be observed downstream of death receptor or pattern recognition receptor signaling under certain cellular contexts, or in response to some viral and bacterial infections. The receptor interacting protein kinases-1 (RIPK1) and RIPK3 are at the core of necroptotic signaling, among other proteins. Because this pathway is normally halted by the pro-apoptotic protease caspase-8 and the IAP ubiquitin ligases, how and when necroptosis is triggered in physiological settings are ongoing questions. Interestingly, accumulating evidence suggests that RIPK3 has functions beyond the induction of necroptotic cell death, especially in the areas of tissue injury and sterile inflammation. Here, we will discuss the role of RIPK3 in a variety of physiological conditions, including necroptotic and non-necroptotic cell death, in the context of viral and bacterial infections, tissue damage, and inflammation.
Collapse
Affiliation(s)
- Susana Orozco
- Department of Immunology, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA.,Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| |
Collapse
|
45
|
Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3. Proc Natl Acad Sci U S A 2017; 114:11506-11511. [PMID: 29073079 DOI: 10.1073/pnas.1700999114] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vaccinia virus (VACV) encodes an innate immune evasion protein, E3, which contains an N-terminal Z-nucleic acid binding (Zα) domain that is critical for pathogenicity in mice. Here we demonstrate that the N terminus of E3 is necessary to inhibit an IFN-primed virus-induced necroptosis. VACV deleted of the Zα domain of E3 (VACV-E3LΔ83N) induced rapid RIPK3-dependent cell death in IFN-treated L929 cells. Cell death was inhibited by the RIPK3 inhibitor, GSK872, and infection with this mutant virus led to phosphorylation and aggregation of MLKL, the executioner of necroptosis. In 293T cells, induction of necroptosis depended on expression of RIPK3 as well as the host-encoded Zα domain-containing DNA sensor, DAI. VACV-E3LΔ83N is attenuated in vivo, and pathogenicity was restored in either RIPK3- or DAI-deficient mice. These data demonstrate that the N terminus of the VACV E3 protein prevents DAI-mediated induction of necroptosis.
Collapse
|
46
|
Sridharan H, Ragan KB, Guo H, Gilley RP, Landsteiner VJ, Kaiser WJ, Upton JW. Murine cytomegalovirus IE3-dependent transcription is required for DAI/ZBP1-mediated necroptosis. EMBO Rep 2017; 18:1429-1441. [PMID: 28607035 PMCID: PMC5538628 DOI: 10.15252/embr.201743947] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 11/09/2022] Open
Abstract
DNA-dependent activator of interferon regulatory factors/Z-DNA binding protein 1 (DAI/ZBP1) is a crucial sensor of necroptotic cell death induced by murine cytomegalovirus (MCMV) in its natural host. Here, we show that viral capsid transport to the nucleus and subsequent viral IE3-dependent early transcription are required for necroptosis. Necroptosis induction does not depend on input virion DNA or newly synthesized viral DNA A putative RNA-binding domain of DAI/ZBP1, Zα2, is required to sense virus and trigger necroptosis. Thus, MCMV IE3-dependent transcription from the viral genome plays a crucial role in activating DAI/ZBP1-dependent necroptosis. This implicates RNA transcripts generated by a large double-stranded DNA virus as a biologically relevant ligand for DAI/ZBP1 during natural viral infection.
Collapse
Affiliation(s)
- Haripriya Sridharan
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Katherine B Ragan
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Hongyan Guo
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Ryan P Gilley
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Vanessa J Landsteiner
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - William J Kaiser
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Jason W Upton
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
47
|
Jordan JJ, Chhim S, Margulies CM, Allocca M, Bronson RT, Klungland A, Samson LD, Fu D. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage. Cell Death Dis 2017; 8:e2947. [PMID: 28726787 PMCID: PMC5550884 DOI: 10.1038/cddis.2017.343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022]
Abstract
Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents.
Collapse
Affiliation(s)
- Jennifer J Jordan
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophea Chhim
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Carrie M Margulies
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mariacarmela Allocca
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Arne Klungland
- Department of Molecular Microbiology A3.3021, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Leona D Samson
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dragony Fu
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
48
|
Abstract
Antiviral transcriptional responses and regulated cell death are crucial components of the host response to virus infection. However, in contrast to the signaling pathways that promote antiviral transcription, those that initiate cell death following virus infection are less understood. Several recent studies have identified pattern recognition receptors (PRRs) of the mammalian innate immune system that activate cell death pathways. These same receptors also have established roles in the induction of antiviral gene expression. In this review we discuss the mechanisms by which PRRs can serve dual roles as initiators of inflammatory gene expression and as inducers of apoptosis and necroptosis following virus infection.
Collapse
Affiliation(s)
- Megan H Orzalli
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Jacalin Has Chemopreventive Effects on Colon Cancer Development. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4614357. [PMID: 28676858 PMCID: PMC5476885 DOI: 10.1155/2017/4614357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/03/2017] [Indexed: 01/03/2023]
Abstract
Colorectal cancer, which is one of the most common causes of cancer-related deaths worldwide, has a slow natural history that provides a great opportunity for prevention strategies. Plant-derived natural products have received considerable attention because of their inherent colorectal cancer chemopreventive effects. The plant lectin jacalin specifically recognizes the tumor-associated Thomsen-Friedenreich antigen and has antiproliferative effects on human colon cancer cells, highlighting its potential antitumor activity. To evaluate jacalin's potential application in colorectal cancer chemoprevention, we studied its effects on the early stages of carcinogenesis. Balb/c mice were given 4 intrarectal deposits of 0.1 ml solution of Methyl-N'-Nitro-N-Nitroso-Guanidine (5 mg/ml) twice a week (with a 3-day interval) for 2 weeks. Starting 2 weeks before carcinogen administration, animals were treated orally with jacalin (0.5 and 25 μg) three times a week (on alternate weekdays) for 10 weeks. We show that jacalin treatment reduced the number of preneoplastic lesions in carcinogen-exposed mice. This anticarcinogenic activity was associated with decreased colonic epithelial cell proliferation and stromal COX-2 expression and with increased intestinal production of TNF-α. Our results demonstrate that jacalin is able to modulate the early stages of colon carcinogenesis and emphasize its promising chemopreventive activity in colorectal cancer.
Collapse
|
50
|
Schock SN, Chandra NV, Sun Y, Irie T, Kitagawa Y, Gotoh B, Coscoy L, Winoto A. Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway. Cell Death Differ 2017; 24:615-625. [PMID: 28060376 DOI: 10.1038/cdd.2016.153] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 01/02/2023] Open
Abstract
Necroptosis is a form of necrotic cell death that requires the activity of the death domain-containing kinase RIP1 and its family member RIP3. Necroptosis occurs when RIP1 is deubiquitinated to form a complex with RIP3 in cells deficient in the death receptor adapter molecule FADD or caspase-8. Necroptosis may play a role in host defense during viral infection as viruses like vaccinia can induce necroptosis while murine cytomegalovirus encodes a viral inhibitor of necroptosis. To see how general the interplay between viruses and necroptosis is, we surveyed seven different viruses. We found that two of the viruses tested, Sendai virus (SeV) and murine gammaherpesvirus-68 (MHV68), are capable of inducing dramatic necroptosis in the fibrosarcoma L929 cell line. We show that MHV68-induced cell death occurs through the cytosolic STING sensor pathway in a TNF-dependent manner. In contrast, SeV-induced death is mostly independent of TNF. Knockdown of the RNA sensing molecule RIG-I or the RIP1 deubiquitin protein, CYLD, but not STING, rescued cells from SeV-induced necroptosis. Accompanying necroptosis, we also find that wild type but not mutant SeV lacking the viral proteins Y1 and Y2 result in the non-ubiquitinated form of RIP1. Expression of Y1 or Y2 alone can suppress RIP1 ubiquitination but CYLD is dispensable for this process. Instead, we found that Y1 and Y2 can inhibit cIAP1-mediated RIP1 ubiquitination. Interestingly, we also found that SeV infection of B6 RIP3-/- mice results in increased inflammation in the lung and elevated SeV-specific T cells. Collectively, these data identify viruses and pathways that can trigger necroptosis and highlight the dynamic interplay between pathogen-recognition receptors and cell death induction.
Collapse
Affiliation(s)
- Suruchi N Schock
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Neha V Chandra
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Yuefang Sun
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Takashi Irie
- Department of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan
| | - Laurent Coscoy
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Astar Winoto
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| |
Collapse
|