1
|
Torne AS, Robertson ES. Epigenetic Mechanisms in Latent Epstein-Barr Virus Infection and Associated Cancers. Cancers (Basel) 2024; 16:991. [PMID: 38473352 PMCID: PMC10931536 DOI: 10.3390/cancers16050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr Virus (EBV) is a double-stranded DNA-based human tumor virus that was first isolated in 1964 from lymphoma biopsies. Since its initial discovery, EBV has been identified as a major contributor to numerous cancers and chronic autoimmune disorders. The virus is particularly efficient at infecting B-cells but can also infect epithelial cells, utilizing an array of epigenetic strategies to establish long-term latent infection. The association with histone modifications, alteration of DNA methylation patterns in host and viral genomes, and microRNA targeting of host cell factors are core epigenetic strategies that drive interactions between host and virus, which are necessary for viral persistence and progression of EBV-associated diseases. Therefore, understanding epigenetic regulation and its role in post-entry viral dynamics is an elusive area of EBV research. Here, we present current outlooks of EBV epigenetic regulation as it pertains to viral interactions with its host during latent infection and its propensity to induce tumorigenesis. We review the important epigenetic regulators of EBV latency and explore how the strategies involved during latent infection drive differential epigenetic profiles and host-virus interactions in EBV-associated cancers.
Collapse
Affiliation(s)
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
2
|
Shareena G, Kumar D. Epigenetics of Epstein Barr virus - A review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166838. [PMID: 37544529 DOI: 10.1016/j.bbadis.2023.166838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Epstein Barr is the first-in-human oncogenic virus, closely related to numerous lymphoproliferative and malignant diseases, including HL, BL, NPC, and GC. EBV establishes life-long persistence infection portraying a biphasic viral life cycle: latent period and lytic replication. B-cells serve as critical regions for EBV latent genes, wherein viral gene expression is suppressed, promoting viral genome maintenance and immune recognition evasion. Upon its lytic reactivation, viral gene expression induces its replication, progeny production, and transmission. Dysregulations of epigenetic regulation in expressions of TSGs lead to carcinogenesis. Several studies reveal that EBV is associated with aberrant viral DNA and host genome methylation patterns, promoting immune monitoring, recognition evasiveness and host cell persistence. Among other epigenetic modifications, DNA methylation suppresses the majority of viral latent gene promoters, sparing a few, and acts as a prerequisite for activating EBV's lytic cycle, giving rise to viral progeny. It affects the host's epigenome via reprogramming cells to oncogenic, long-lasting phenotypes, as evident in several malignancies. At each phase of its life cycle, EBV exploits cellular mechanisms of epigenetic regulation, implying its unique host-pathogen relationship. This review summarized the DNA methylation's regulatory roles on several EBV-related promoter regions, along with the host genome in pathological conditions, highlights viral genes involved in a latent, lytic and latent-lytic phase of EBV infection. Moreover, it provides diagrammatic insights into methylation-based pathways in EBV.
Collapse
Affiliation(s)
- Gadde Shareena
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India; UC Davis Comprehensive Cancer Center, Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Baccianti F, Masson C, Delecluse S, Li Z, Poirey R, Delecluse HJ. Epstein-Barr virus infectious particles initiate B cell transformation and modulate cytokine response. mBio 2023; 14:e0178423. [PMID: 37830871 PMCID: PMC10653912 DOI: 10.1128/mbio.01784-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The Epstein-Barr virus efficiently infects and transforms B lymphocytes. During this process, infectious viral particles transport the viral genome to the nucleus of target cells. We show here that these complex viral structures serve additional crucial roles by activating transcription of the transforming genes encoded by the virus. We show that components of the infectious particle sequentially activate proinflammatory B lymphocyte signaling pathways that, in turn, activate viral gene expression but also cause cytokine release. However, virus infection activates expression of ZFP36L1, an RNA-binding stress protein that limits the length and the intensity of the cytokine response. Thus, the infectious particles can activate viral gene expression and initiate cellular transformation at the price of a limited immune response.
Collapse
Affiliation(s)
- Francesco Baccianti
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Charlène Masson
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Susanne Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
- Nierenzentrum Heidelberg e.V., Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Braunschweig, Germany
| | - Zhe Li
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Remy Poirey
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Henri-Jacques Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| |
Collapse
|
4
|
Barbier MT, Del Valle L. Co-Detection of EBV and Human Polyomavirus JCPyV in a Case of AIDS-Related Multifocal Primary Central Nervous System Diffuse Large B-Cell Lymphoma. Viruses 2023; 15:755. [PMID: 36992464 PMCID: PMC10059075 DOI: 10.3390/v15030755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The human neurotropic Polyomavirus JCPyV is the widespread opportunistic causative pathogen of the fatal demyelinating disease progressive multifocal leukoencephalopathy; however, it has also been implicated in the oncogenesis of several types of cancers. It causes brain tumors when intracerebrally inoculated into rodents, and genomic sequences of different strains and expression of the viral protein large T-Antigen have been detected in a wide variety of glial brain tumors and CNS lymphomas. Here, we present a case of an AIDS-related multifocal primary CNS lymphoma in which JCPyV genomic sequences of the three regions of JCPyV and expression of T-Antigen were detected by PCR and immunohistochemistry, respectively. No capsid proteins were detected, ruling out active JCPyV replication. Sequencing of the control region revealed that Mad-4 was the strain of JCPyV present in tumor cells. In addition, expression of viral proteins LMP and EBNA-1 from another ubiquitous oncogenic virus, Epstein-Barr, was also detected in the same lymphocytic neoplastic cells, co-localizing with JCPyV T-Antigen, suggesting a potential collaboration between these two viruses in the process of malignant transformation of B-lymphocytes, which are the site of latency and reactivation for both viruses.
Collapse
Affiliation(s)
- Mallory T. Barbier
- Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Luis Del Valle
- Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Pathology, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
6
|
Hale AE, Moorman NJ. The Ends Dictate the Means: Promoter Switching in Herpesvirus Gene Expression. Annu Rev Virol 2021; 8:201-218. [PMID: 34129370 DOI: 10.1146/annurev-virology-091919-072841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesvirus gene expression is dynamic and complex, with distinct complements of viral genes expressed at specific times in different infection contexts. These complex patterns of viral gene expression arise in part from the integration of multiple cellular and viral signals that affect the transcription of viral genes. The use of alternative promoters provides an increased level of control, allowing different promoters to direct the transcription of the same gene in response to distinct temporal and contextual cues. While once considered rare, herpesvirus alternative promoter usage was recently found to be far more pervasive and impactful than previously thought. Here we review several examples of promoter switching in herpesviruses and discuss the functional consequences on the transcriptional and post-transcriptional regulation of viral gene expression.
Collapse
Affiliation(s)
- Andrew E Hale
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
7
|
B Cell-Specific Transcription Activator PAX5 Recruits p300 To Support EBNA1-Driven Transcription. J Virol 2020; 94:JVI.02028-19. [PMID: 31941781 DOI: 10.1128/jvi.02028-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
The binding of Epstein-Barr Virus (EBV) nuclear antigen 1 (EBNA1) to the latent replication origin (oriP) triggers multiple downstream events to support virus-induced pathogenesis and tumorigenesis. Although EBV is widely recognized as a B-lymphotropic infectious agent, little is known about how tissue-specific factors are involved in the establishment of latency. Here, we showed that EBNA1 binds B cell activator PAX5 to promote EBNA1/oriP-dependent binding and transcription. In addition to showing that short hairpin RNA (shRNA)-mediated PAX5 knockdown substantially abrogated the above EBNA1-dependent functions, two mini-EBV reporter plasmids were used to perform nonlytic nano-luciferase (nLuc) activity and chromatin immunoprecipitation (ChIP) assays to show how EBNA1 cooperates with PAX5 to activate the transcription at the oriP site. The expression plasmids of two PAX5 mutants, V26G (EBNA1 binding mutant) and P80R (which remained EBNA1 associated), were used to assess their capability to restore the defects caused by PAX5 depletion in EBNA1/oriP-mediated binding, transcription, and maintenance of the genome copy number of the mini-EBV episome reporter in BJAB cells stably expressing EBNA1 or that of the EBV genome in EBV-infected BJAB cells. Since p300 is known to be associated with PAX5, we showed that the loss of function of the P80R mutant in support of EBNA1/oriP-mediated transcription under PAX5 depletion conditions was linked to its defective binding to p300. ChIP-quantitative PCR (qPCR) confirmed that P80R indeed failed to recruit p300 to the oriP DNA. Our discovery suggests that EBV has evolved an exquisite strategy to take advantage of tissue-specific factors to enable the establishment of viral latency.IMPORTANCE Although B cells are known to be the primary target for EBV infection, there is limited knowledge regarding the mechanism that determines this preferable tissue tropism. An in-depth understanding of the potential link of tissue-specific factors with the viral genes and their functioning is key to deciphering how EBV induces persistent infection in the distinct types of host cells. In this study, a substantial protein-protein interaction mediated by the B cell-specific activator PAX5 and EBNA1 was identified as the general requirement for the binding of EBNA1 to the latent replication origin and for downstream events. Of importance, the EBNA1-PAX5-p300 network is directly linked to EBNA1-dependent transcription. These findings suggest that targeting the viral gene-associated tissue-specific factors may lead to new therapeutic strategies for EBV-associated malignancies.
Collapse
|
8
|
Poling BC, Price AM, Luftig MA, Cullen BR. The Epstein-Barr virus miR-BHRF1 microRNAs regulate viral gene expression in cis. Virology 2017; 512:113-123. [PMID: 28950226 DOI: 10.1016/j.virol.2017.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
The Epstein-Barr virus (EBV) miR-BHRF1 microRNA (miRNA) cluster has been shown to facilitate B-cell transformation and promote the rapid growth of the resultant lymphoblastoid cell lines (LCLs). However, we find that expression of physiological levels of the miR-BHRF1 miRNAs in LCLs transformed with a miR-BHRF1 null mutant (∆123) fails to increase their growth rate. We demonstrate that the pri-miR-BHRF1-2 and 1-3 stem-loops are present in the 3'UTR of transcripts encoding EBNA-LP and that excision of pre-miR-BHRF1-2 and 1-3 by Drosha destabilizes these mRNAs and reduces expression of the encoded protein. Therefore, mutational inactivation of pri-miR-BHRF1-2 and 1-3 in the ∆123 mutant upregulates the expression of not only EBNA-LP but also EBNA-LP-regulated mRNAs and proteins, including LMP1. We hypothesize that this overexpression causes the reduced transformation capacity of the ∆123 EBV mutant. Thus, in addition to regulating cellular mRNAs in trans, miR-BHRF1-2 and 1-3 also regulate EBNA-LP mRNA expression in cis.
Collapse
Affiliation(s)
- Brigid Chiyoko Poling
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| | - Alexander M Price
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| | - Micah A Luftig
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| | - Bryan R Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
9
|
Mercorio R, Bonzini M, Angelici L, Iodice S, Delbue S, Mariani J, Apostoli P, Pesatori AC, Bollati V. Effects of metal-rich particulate matter exposure on exogenous and endogenous viral sequence methylation in healthy steel-workers. ENVIRONMENTAL RESEARCH 2017; 159:452-457. [PMID: 28858759 DOI: 10.1016/j.envres.2017.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Inhaled particles have been shown to produce systemic changes in DNA methylation. Global hypomethylation has been associated to viral sequence reactivation, possibly linked to the activation of pro-inflammatory pathways occurring after exposure. This observation provides a rationale to investigate viral sequence (both exogenous and endogenous) methylation in association to metal-rich particulate matter exposure. To verify this hypothesis, we chose the Wp promoter of the Epstein-Barr Virus (EBV-Wp) and the promoter of the human-endogenous-retrovirus w (HERV-w), respectively as a paradigm of an exogenous and an endogenous retroviral sequence, to be investigated by bisulfite PCR Pyrosequencing. We enrolled 63 male workers in an electric furnace steel plant, exposed to high level of metal-rich particulate matter. RESULTS Comparing samples obtained in the first day of a work week (time 0-baseline, after 2 days off work) and the samples obtained after 3 days of work (time 1-post exposure), the mean methylation of EBV-Wp was significantly higher at baseline compared to post-exposure (meanbaseline = 56.7%5mC; meanpost-exposure = 47.9%5mC; p-value = 0.009), whereas the mean methylation of HERV-w did not significantly differ. Individual exposure to inhalable particles and metals was estimated based on measures in all working areas and time spent by the study subjects in each area. In a regression model adjusted for age, body mass index and smoking, PM and metal components had a positive association with EBV-Wp methylation (i.e. PM10: β = 5.99, p-value < 0.038; nickel: β = 17.82, p-value = 0.02; arsenic: β = 13.59, p-value < 0.015). CONCLUSIONS The difference observed comparing baseline and post-exposure samples may be suggestive of a rapid change in EBV methylation induced by air particles, while correlation between EBV methylation and PM/metal exposure may represent a more stable adaptive mechanism. Future studies investigating a larger panel of viral sequences could better elucidate possible mechanisms and their role in pro-inflammatory pathways leading to systemic health effects.
Collapse
Affiliation(s)
- Roberta Mercorio
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Angelici
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy
| | - Simona Iodice
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36-20133 Milan, Italy
| | - Jacopo Mariani
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy
| | - Pietro Apostoli
- Occupational Medicine and Industrial Hygiene, University of Brescia, Department of Experimental and Applied Medicine, Brescia, Italy
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy.
| |
Collapse
|
10
|
Walentek P. Ciliary transcription factors in cancer--how understanding ciliogenesis can promote the detection and prognosis of cancer types. J Pathol 2016; 239:6-9. [PMID: 26880325 DOI: 10.1002/path.4703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/01/2016] [Accepted: 02/14/2016] [Indexed: 12/24/2022]
Abstract
Cilia play a plethora of roles in normal development and homeostasis as well as in disease. Their involvement in cell signalling processes and ability to inhibit cell cycle progression make them especially interesting subjects of investigation in the context of tumour formation and malignancy. Several key transcription factors regulate the transcriptional programme in cilia formation and some of these, eg RFX factors and FOXJ1, are implicated in cancer formation. Furthermore, RFX factors and FOXJ1 are increasingly being explored for their potential as markers to diagnose, classify and predict the outcome of cancers in patients, including recent work published in this journal on aggressive ependymoma and choroid plexus tumours. Here, some of the key findings and concepts on the roles of ciliary transcription factors in tumourigenesis are highlighted, and a brief perspective is given on how the investigation of ciliogenesis could contribute valuable tools for the diagnosis and prognosis of cancers.
Collapse
Affiliation(s)
- Peter Walentek
- Department of Molecular and Cell Biology, Genetics Genomics and Development Division and Developmental and Regenerative Biology Group, University of California, Berkeley, CA, USA
| |
Collapse
|
11
|
Tierney RJ, Nagra J, Rowe M, Bell AI, Rickinson AB. The Epstein-Barr virus BamHI C promoter is not essential for B cell immortalization in vitro, but it greatly enhances B cell growth transformation. J Virol 2015; 89:2483-93. [PMID: 25540367 PMCID: PMC4325715 DOI: 10.1128/jvi.03300-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/08/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) infection of B cells leads to the sequential activation of two viral promoters, Wp and Cp, resulting in the expression of six EBV nuclear antigens (EBNAs) and the viral Bcl2 homologue BHRF1. The viral transactivator EBNA2 is required for this switch from Wp to Cp usage during the initial stages of infection. EBNA2-dependent Cp transcription is mediated by the EBNA2 response element (E2RE), a region that contains at least two binding sites for cellular factors; one of these sites, CBF1, interacts with RBP-JK, which then recruits EBNA2 to the transcription initiation complex. Here we demonstrate that the B cell-specific transcription factor BSAP/Pax5 binds to a second site, CBF2, in the E2RE. Deletion of the E2RE in the context of a recombinant virus greatly diminished levels of Cp-initiated transcripts during the initial stages of infection but did not affect the levels of Wp-initiated transcripts or EBNA mRNAs. Consistent with this finding, viruses deleted for the E2RE were not markedly impaired in their ability to induce B cell transformation in vitro. In contrast, a larger deletion of the entire Cp region did reduce EBNA mRNA levels early after infection and subsequently almost completely ablated lymphoblastoid cell line (LCL) outgrowth. Notably, however, rare LCLs could be established following infection with Cp-deleted viruses, and these were indistinguishable from wild-type-derived LCLs in terms of steady-state EBV gene transcription. These data indicate that, unlike Wp, Cp is dispensable for the virus' growth-transforming activity. IMPORTANCE Epstein-Barr virus (EBV), a B lymphotropic herpesvirus etiologically linked to several B cell malignancies, efficiently induces B cell proliferation leading to the outgrowth of lymphoblastoid cell lines (LCLs). The initial stages of this growth-transforming infection are characterized by the sequential activation of two viral promoters, Wp and Cp, both of which appear to be preferentially active in target B cells. In this work, we have investigated the importance of Cp activity in initiating B cell proliferation and maintaining LCL growth. Using recombinant viruses, we demonstrate that while Cp is not essential for LCL outgrowth in vitro, it enhances transformation efficiency by >100-fold. We also show that Cp, like Wp, interacts with the B cell-specific activator protein BSAP/Pax5. We suggest that EBV has evolved this two-promoter system to ensure efficient colonization of the host B cell system in vivo.
Collapse
Affiliation(s)
- Rosemary J Tierney
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jasdeep Nagra
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Rowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew I Bell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan B Rickinson
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Abstract
EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.
Collapse
|
13
|
Klein E, Nagy N, Rasul AE. EBV genome carrying B lymphocytes that express the nuclear protein EBNA-2 but not LMP-1: Type IIb latency. Oncoimmunology 2014; 2:e23035. [PMID: 23526738 PMCID: PMC3601171 DOI: 10.4161/onci.23035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The potentially oncogenic Epstein-Barr virus (EBV) is carried by almost all humans in a well equilibrated coexistence. The phenotype of the cells that carry EBV genomes is determined by virally-encoded and cellular proteins. B lymphocyte is the main target of the virus and latent infection of this cell induces proliferation. Nine virus-encoded genes participate in the “growth program” that is expressed in a narrow differentiation window of the B cell. Such cells have the potential to develop malignant proliferations. However, several control mechanism eliminate this danger and the general chronic virus carrier state is most often asymptomatic. One mechanism exploits the normal regulation in the immune system, the T cell mediated modulation of the B cell differentiation state. Another is based on cognate recognition and elimination of the infected cells. The expression of EBV encoded genes in B lymphocytes can be also “restricted,” they do not express all components of the viral growth program. Here, we discuss a rare viral expression in B cells that has not been connected with malignant transformation yet.
Collapse
Affiliation(s)
- Eva Klein
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection. J Virol 2014; 88:14350-63. [PMID: 25275136 DOI: 10.1128/jvi.01895-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Host chromatin assembly can function as a barrier to viral infection. Epstein-Barr virus (EBV) establishes latent infection as chromatin-assembled episomes in which all but a few viral genes are transcriptionally silent. The factors that control chromatin assembly and guide transcription regulation during the establishment of latency are not well understood. Here, we demonstrate that the EBV tegument protein BNRF1 binds the histone H3.3 chaperone Daxx to modulate histone mobility and chromatin assembly on the EBV genome during the early stages of primary infection. We demonstrate that BNRF1 substitutes for the repressive cochaperone ATRX to form a ternary complex of BNRF1-Daxx-H3.3-H4, using coimmunoprecipitation and size-exclusion chromatography with highly purified components. FRAP (fluorescence recovery after photobleaching) assays were used to demonstrate that BNRF1 promotes global mobilization of cellular histone H3.3. Mutation of putative nucleotide binding motifs on BNRF1 attenuates the displacement of ATRX from Daxx. We also show by immunofluorescence combined with fluorescence in situ hybridization that BNRF1 is important for the dissociation of ATRX and Daxx from nuclear bodies during de novo infection of primary B lymphocytes. Virion-delivered BNRF1 suppresses Daxx-ATRX-mediated H3.3 loading on viral chromatin as measured by chromatin immunoprecipitation assays and enhances viral gene expression during early infection. We propose that EBV tegument protein BNRF1 replaces ATRX to reprogram Daxx-mediated H3.3 loading, in turn generating chromatin suitable for latent gene expression. IMPORTANCE Epstein-Barr Virus (EBV) is a human herpesvirus that efficiently establishes latent infection in primary B lymphocytes. Cellular chromatin assembly plays an important role in regulating the establishment of EBV latency. We show that the EBV tegument protein BNRF1 functions to regulate chromatin assembly on the viral genome during early infection. BNRF1 alters the host cellular chromatin assembly to prevent antiviral repressive chromatin and establish chromatin structure permissive for viral gene expression and the establishment of latent infection.
Collapse
|
15
|
Price AM, Luftig MA. Dynamic Epstein-Barr virus gene expression on the path to B-cell transformation. Adv Virus Res 2014; 88:279-313. [PMID: 24373315 DOI: 10.1016/b978-0-12-800098-4.00006-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus in the γ-herpesvirinae subfamily that contains a 170-180kb double-stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B-cell compartment of the peripheral blood. EBV can be reactivated from its latent state, leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome and structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady-state viral gene expression within EBV-immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection, EBV only expressed the well-characterized latency-associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation and delayed responses in the known latency genes. This chapter summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, the inhibition of apoptosis, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Alexander M Price
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina, 27710 USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina, 27710 USA.
| |
Collapse
|
16
|
Murata T, Sato Y, Kimura H. Modes of infection and oncogenesis by the Epstein-Barr virus. Rev Med Virol 2014; 24:242-53. [PMID: 24578255 DOI: 10.1002/rmv.1786] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/19/2014] [Accepted: 01/23/2014] [Indexed: 12/15/2022]
Abstract
The EBV is a human γ-herpesvirus associated with various neoplasms. It is responsible for causing cancers of B, T, and NK cells as well as cells of epithelial origin. Such diversity in target cells and the complicated steps of oncogenesis are perplexing when we speculate about the mechanisms of action of EBV-positive cancers. Here, we first note three common features that contribute to the development and maintenance of EBV-positive cancers: effects of EBV oncogenes, immunosuppression and evasion/exploitation of the immune system, and genetic and epigenetic predisposition/alteration of the host genome. Then, we demonstrate the mechanisms of oncogenesis and the means by which each EBV-positive cancer develops, with particular focus on the mode of EBV infection. The EBV has two alternative life cycles: lytic and latent. The latter is categorized into four programs (latency types 0-III) in which latent viral genes are expressed differentially depending on the tissue of origin and state of cells. The production of viral latent genes tends to decrease with an increase in time, and, in an approximate manner, the expression levels of viral genes are inversely correlated with the degree of abnormalities in the host genome. Occasional execution of the viral lytic cycle also contributes to oncogenesis. Understanding this life cycle of the EBV and its relevance in oncogenesis may provide valuable clues to the development of effective therapies for the associated cancers.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | |
Collapse
|
17
|
Tempera I, Lieberman PM. Epigenetic regulation of EBV persistence and oncogenesis. Semin Cancer Biol 2014; 26:22-9. [PMID: 24468737 DOI: 10.1016/j.semcancer.2014.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 12/29/2022]
Abstract
Epigenetic mechanisms play a fundamental role in generating diverse and heritable patterns of viral and cellular gene expression. Epstein-Barr virus (EBV) can adopt a variety of gene expression programs that are necessary for long-term viral persistence and latency in multiple host-cell types and conditions. The latent viral genomes assemble into chromatin structures with different histone and DNA modifications patterns that control viral gene expression. Variations in nucleosome organization and chromatin conformations can also influence gene expression by coordinating physical interactions between different regulatory elements. The viral-encoded and host-cell factors that control these epigenetic features are beginning to be understood at the genome-wide level. These epigenetic regulators can also influence viral pathogenesis by expanding tissue tropism, evading immune detection, and driving host-cell carcinogenesis. Here, we review some of the recent findings and perspectives on how the EBV epigenome plays a central role in viral latency and viral-associated carcinogenesis.
Collapse
Affiliation(s)
- Italo Tempera
- The Fels Institute, Department of Microbiology and Immunology, Temple School of Medicine, Philadelphia, PA 19140, United States.
| | | |
Collapse
|
18
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
19
|
Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M, Leslie C, Lieberman PM. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe 2013; 12:233-45. [PMID: 22901543 DOI: 10.1016/j.chom.2012.06.008] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 04/13/2012] [Accepted: 06/01/2012] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV), which is associated with multiple human tumors, persists as a minichromosome in the nucleus of B lymphocytes and induces malignancies through incompletely understood mechanisms. Here, we present a large-scale functional genomic analysis of EBV. Our experimentally generated nucleosome positioning maps and viral protein binding data were integrated with over 700 publicly available high-throughput sequencing data sets for human lymphoblastoid cell lines mapped to the EBV genome. We found that viral lytic genes are coexpressed with cellular cancer-associated pathways, suggesting that the lytic cycle may play an unexpected role in virus-mediated oncogenesis. Host regulators of viral oncogene expression and chromosome structure were identified and validated, revealing a role for the B cell-specific protein Pax5 in viral gene regulation and the cohesin complex in regulating higher order chromatin structure. Our findings provide a deeper understanding of latent viral persistence in oncogenesis and establish a valuable viral genomics resource for future exploration.
Collapse
Affiliation(s)
- Aaron Arvey
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hughes DJ, Marendy EM, Dickerson CA, Yetming KD, Sample CE, Sample JT. Contributions of CTCF and DNA methyltransferases DNMT1 and DNMT3B to Epstein-Barr virus restricted latency. J Virol 2012; 86:1034-45. [PMID: 22072770 PMCID: PMC3255836 DOI: 10.1128/jvi.05923-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/27/2011] [Indexed: 12/29/2022] Open
Abstract
Establishment of persistent Epstein-Barr virus (EBV) infection requires transition from a program of full viral latency gene expression (latency III) to one that is highly restricted (latency I and 0) within memory B lymphocytes. It is well established that DNA methylation plays a critical role in EBV gene silencing, and recently the chromatin boundary protein CTCF has been implicated as a pivotal regulator of latency via its binding to several loci within the EBV genome. One notable site is upstream of the common EBNA gene promoter Cp, at which CTCF may act as an enhancer-blocking factor to initiate and maintain silencing of EBNA gene transcription. It was previously suggested that increased expression of CTCF may underlie its potential to promote restricted latency, and here we also noted elevated levels of DNA methyltransferase 1 (DNMT1) and DNMT3B associated with latency I. Within B-cell lines that maintain latency I, however, stable knockdown of CTCF, DNMT1, or DNMT3B or of DNMT1 and DNMT3B in combination did not result in activation of latency III protein expression or EBNA gene transcription, nor did knockdown of DNMTs significantly alter CpG methylation within Cp. Thus, differential expression of CTCF and DNMT1 and -3B is not critical for maintenance of restricted latency. Finally, mutant EBV lacking the Cp CTCF binding site exhibited sustained Cp activity relative to wild-type EBV in a recently developed B-cell superinfection model but ultimately was able to transition to latency I, suggesting that CTCF contributes to but is not necessarily essential for the establishment of restricted latency.
Collapse
Affiliation(s)
- David J Hughes
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and Penn State Hershey Cancer Institute, Hershey, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
21
|
Palermo RD, Webb HM, West MJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog 2011; 7:e1002334. [PMID: 22046134 PMCID: PMC3203192 DOI: 10.1371/journal.ppat.1002334] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/08/2011] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions.
Collapse
Affiliation(s)
- Richard D. Palermo
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Helen M. Webb
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
22
|
Epstein-Barr virus BamHI W repeat number limits EBNA2/EBNA-LP coexpression in newly infected B cells and the efficiency of B-cell transformation: a rationale for the multiple W repeats in wild-type virus strains. J Virol 2011; 85:12362-75. [PMID: 21957300 DOI: 10.1128/jvi.06059-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The genome of Epstein-Barr virus (EBV), a gammaherpesvirus with potent B-cell growth-transforming ability, contains multiple copies of a 3-kb BamHI W repeat sequence; each repeat carries (i) a promoter (Wp) that initiates transformation by driving EBNA-LP and EBNA2 expression and (ii) the W1W2 exons encoding the functionally active repeat domain of EBNA-LP. The W repeat copy number of a virus therefore influences two potential determinants of its transforming ability: the number of available Wp copies and the maximum size of the encoded EBNA-LP. Here, using recombinant EBVs, we show that optimal B-cell transformation requires a minimum of 5 W repeats (5W); the levels of transforming ability fall progressively with viruses carrying 4, 3, and 2 W repeats, as do the levels of Wp-initiated transcripts expressed early postinfection (p.i.), while viruses with 1 copy of the wild-type W repeat (1W) and 0W are completely nontransforming. We therefore suggest that genetic analyses of EBV transforming function should ensure that wild-type and mutant strains have equal numbers (ideally at least 5) of W copies if the analysis is not to be compromised. Attempts to enhance the transforming function of low-W-copy-number viruses, via the activity of helper EBV strains or by gene repair, suggested that the critical defect is not related to EBNA-LP size but to the failure to achieve sufficiently strong coexpression of EBNA-LP and EBNA2 early postinfection. We further show by the results of ex vivo assays that EBV strains in the blood of infected individuals typically have a mean of 5 to 8 W copies, consistent with the view that evolution has selected for viruses with an optimal transforming function.
Collapse
|
23
|
trans-Repression of protein expression dependent on the Epstein-Barr virus promoter Wp during latency. J Virol 2011; 85:11435-47. [PMID: 21865378 DOI: 10.1128/jvi.05158-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An ordered silencing of Epstein-Barr virus (EBV) latency gene transcription is critical for establishment of persistent infection within B lymphocytes, yet the mechanisms responsible and the role that the virus itself may play are unclear. Here we describe two B-cell superinfection models with which to address these problems. In the first, Burkitt lymphoma (BL) cells that maintain latency I, when superinfected, initially supported transcription from the common EBNA promoters Wp and Cp (latency III) but ultimately transitioned to latency I (Cp/Wp silent), an essential requirement for establishment of EBV latency in vivo. We used this model to test whether the early lytic-cycle gene BHLF1, implicated in silencing of the Cp/Wp locus, is required to establish latency I. Upon superinfection with EBV deleted for the BHLF1 locus, however, we have demonstrated that BHLF1 is not essential for this aspect of EBV latency. In the second model, BL cells that maintain Wp-restricted latency, a variant program in which Cp is silent but Wp remains active, sustained the latency III program of transcription from the superinfecting-virus genomes, failing to transition to latency I. Importantly, there was substantial reduction in Wp-mediated protein expression from endogenous EBV genomes, in the absence of Cp reactivation, that could occur independent of a parallel decrease in mRNA. Thus, our data provide evidence of a novel, potentially posttranscriptional mechanism for trans-repression of Wp-dependent gene expression. We suggest that this may ensure against overexpression of the EBV nuclear antigens (EBNAs) prior to the transcriptional repression of Wp in cis that occurs upon activation of Cp.
Collapse
|
24
|
Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A 2011; 108:14902-7. [PMID: 21746931 DOI: 10.1073/pnas.1108892108] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epstein-Barr virus nuclear antigen 2 (EBNA2) regulation of transcription through the cell transcription factor RBPJ is essential for resting B-lymphocyte (RBL) conversion to immortal lymphoblast cell lines (LCLs). ChIP-seq of EBNA2 and RBPJ sites in LCL DNA found EBNA2 at 5,151 and RBPJ at 10,529 sites. EBNA2 sites were enriched for RBPJ (78%), early B-cell factor (EBF, 39%), RUNX (43%), ETS (39%), NFκB (22%), and PU.1 (22%) motifs. These motif associations were confirmed by LCL RBPJ ChIP-seq finding 72% RBPJ occupancy and Encyclopedia Of DNA Elements LCL ChIP-seq finding EBF, NFκB RELA, and PU.1 at 54%, 31%, and 17% of EBNA2 sites. EBNA2 and RBPJ were predominantly at intergene and intron sites and only 14% at promoter sites. K-means clustering of EBNA2 site transcription factors identified RELA-ETS, EBF-RUNX, EBF, ETS, RBPJ, and repressive RUNX clusters, which ranked from highest to lowest in H3K4me1 signals and nucleosome depletion, indicative of active chromatin. Surprisingly, although quantitatively less, the same genome sites in RBLs exhibited similar high-level H3K4me1 signals and nucleosome depletion. The EBV genome also had an LMP1 promoter EBF site, which proved critical for EBNA2 activation. LCL HiC data mapped intergenic EBNA2 sites to EBNA2 up-regulated genes. FISH and chromatin conformation capture linked EBNA2/RBPJ enhancers 428 kb 5' of MYC to MYC. These data indicate that EBNA2 evolved to target RBL H3K4me1 modified, nucleosome-depleted, nonpromoter sites to drive B-lymphocyte proliferation in primary human infection. The primed RBL program likely supports antigen-induced proliferation.
Collapse
|
25
|
Amin S, Kumar A, Nilchi L, Wright K, Kozlowski M. Breast cancer cells proliferation is regulated by tyrosine phosphatase SHP1 through c-jun N-terminal kinase and cooperative induction of RFX-1 and AP-4 transcription factors. Mol Cancer Res 2011; 9:1112-25. [PMID: 21719561 DOI: 10.1158/1541-7786.mcr-11-0097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we show that proliferation of breast cancer cells is suppressed by IGF-1-activated JNK MAPK pathway. The molecular mechanism by which c-jun-NH,-kinase (JNK) activation induces antiproliferative signals in IGF-1-stimulated breast cancer cells remains unknown. Tyrosine phosphatase SHP1 is known to negatively regulate signal transduction pathways activated by cell surface receptors including IGF-1. Moreover, SHP1 transcript and protein levels are increased in epithelial tumors. Therefore, we hypothesized that IGF-activated JNK induces expression of SHP1 in breast cancer cells. To further clarify the role of SHP1 in tumor growth, we correlated the proliferation rates of breast adenocarcinoma cells with SHP1 expression and JNK activation. We show that proliferation of serum- or IGF-1-stimulated breast adenocarcinoma cells is negatively regulated by SHP1 and show for the first time that IGF-1-activated JNK induces SHP1 expression in MCF-7 cells used as experimental model. In an attempt to understand the mechanism by which serum- or IGF-1-activated JNK induces SHP1 expression resulting in suppression of cell proliferation, we reveal for the first time that in serum- or IGF-1-stimulated breast cancer MCF-7 cells, JNK induces SHP1 expression through the binding of AP-4 and RFX-1 transcription factors to the epithelial tissue-specific SHP1 promoter. Overall, we show for the first time that IGF-1-stimulated proliferation of breast adenocarcinoma cells is negatively regulated by SHP1 through activation of JNK.
Collapse
Affiliation(s)
- Shahreen Amin
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
26
|
Tempera I, Wiedmer A, Dheekollu J, Lieberman PM. CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog 2010; 6:e1001048. [PMID: 20730088 PMCID: PMC2921154 DOI: 10.1371/journal.ppat.1001048] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 07/15/2010] [Indexed: 12/15/2022] Open
Abstract
The establishment and maintenance of Epstein-Barr Virus (EBV) latent infection requires distinct viral gene expression programs. These gene expression programs, termed latency types, are determined largely by promoter selection, and controlled through the interplay between cell-type specific transcription factors, chromatin structure, and epigenetic modifications. We used a genome-wide chromatin-immunoprecipitation (ChIP) assay to identify epigenetic modifications that correlate with different latency types. We found that the chromatin insulator protein CTCF binds at several key regulatory nodes in the EBV genome and may compartmentalize epigenetic modifications across the viral genome. Highly enriched CTCF binding sites were identified at the promoter regions upstream of Cp, Wp, EBERs, and Qp. Since Qp is essential for long-term maintenance of viral genomes in type I latency and epithelial cell infections, we focused on the role of CTCF in regulating Qp. Purified CTCF bound ∼40 bp upstream of the EBNA1 binding sites located at +10 bp relative to the transcriptional initiation site at Qp. Mutagenesis of the CTCF binding site in EBV bacmids resulted in a decrease in the recovery of stable hygromycin-resistant episomes in 293 cells. EBV lacking the Qp CTCF site showed a decrease in Qp transcription initiation and a corresponding increase in Cp and Fp promoter utilization at 8 weeks post-transfection. However, by 16 weeks post-transfection, bacmids lacking CTCF sites had no detectable Qp transcription and showed high levels of histone H3 K9 methylation and CpG DNA methylation at the Qp initiation site. These findings provide direct genetic evidence that CTCF functions as a chromatin insulator that prevents the promiscuous transcription of surrounding genes and blocks the epigenetic silencing of an essential promoter, Qp, during EBV latent infection. Epstein-Barr Virus (EBV) establishes a latent infection that is associated with several lymphoid and epithelial cell malignancies. The latent virus persists as a circular minichromosome in the nucleus of infected cells. Epigenetic modifications of the viral DNA and chromatin are known to control viral gene expression and genome stability, but the nature and mechanisms of these epigenetic marks are not known. Here, we use viral genome-wide analysis to characterize patterns of DNA and histone methylation, and how these are organized by the chromatin boundary factor CTCF. Mutation of one such CTCF site at the EBV Q promoter results in aberrant accumulation of DNA CpG methylation and histone H3 K9 trimethylation, and the consequent silencing of Qp transcription. We conclude that CTCF chromatin insulator function is required for the epigenetic programming and stable maintenance of latent viral infection.
Collapse
Affiliation(s)
- Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Istituto Pasteur – Fondazione Cenci Bolognetti, Rome, Italy
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Jayaraju Dheekollu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Cozma D, Yu D, Hodawadekar S, Azvolinsky A, Grande S, Tobias JW, Metzgar MH, Paterson J, Erikson J, Marafioti T, Monroe JG, Atchison ML, Thomas-Tikhonenko A. B cell activator PAX5 promotes lymphomagenesis through stimulation of B cell receptor signaling. J Clin Invest 2007; 117:2602-10. [PMID: 17717600 PMCID: PMC1950455 DOI: 10.1172/jci30842] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 05/29/2007] [Indexed: 01/16/2023] Open
Abstract
The presumed involvement of paired box gene 5 (PAX5) in B-lymphomagenesis is based largely on the discovery of Pax5-specific translocations and somatic hypermutations in non-Hodgkin lymphomas. Yet mechanistically, the contribution of Pax5 to neoplastic growth remains undeciphered. Here we used 2 Myc-induced mouse B lymphoma cell lines, Myc5-M5 and Myc5-M12, which spontaneously silence Pax5. Reconstitution of these cells with Pax5-tamoxifen receptor fusion protein (Pax5ER(TAM)) increased neoplastic growth in a hormone-dependent manner. Conversely, expression of dominant-negative Pax5 in murine lymphomas and Pax5 knockdown in human lymphomas negatively affected cell expansion. Expression profiling revealed that Pax5 was required to maintain mRNA levels of several crucial components of B cell receptor (BCR) signaling, including CD79a, a protein with the immunoreceptor tyrosine-based activation motif (ITAM). In contrast, expression of 2 known ITAM antagonists, CD22 and PIR-B, was suppressed. The key role of BCR/ITAM signaling in Pax5-dependent lymphomagenesis was corroborated in Syk, an ITAM-associated tyrosine kinase. Moreover, we observed consistent expression of phosphorylated BLNK, an activated BCR adaptor protein, in human B cell lymphomas. Thus, stimulation of neoplastic growth by Pax5 occurs through BCR and is sensitive to genetic and pharmacological inhibitors of this pathway.
Collapse
Affiliation(s)
- Diana Cozma
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Duonan Yu
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Suchita Hodawadekar
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anna Azvolinsky
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Shannon Grande
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - John W. Tobias
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michele H. Metzgar
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jennifer Paterson
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jan Erikson
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Teresa Marafioti
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - John G. Monroe
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michael L. Atchison
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrei Thomas-Tikhonenko
- Department of Pathobiology and
Department of Animal Biology, School of Veterinary Medicine,
Department of Pathology and Laboratory Medicine, School of Medicine, and
Biomedical Informatics Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
28
|
Tierney R, Nagra J, Hutchings I, Shannon-Lowe C, Altmann M, Hammerschmidt W, Rickinson A, Bell A. Epstein-Barr virus exploits BSAP/Pax5 to achieve the B-cell specificity of its growth-transforming program. J Virol 2007; 81:10092-100. [PMID: 17626071 PMCID: PMC2045388 DOI: 10.1128/jvi.00358-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) can infect various cell types but limits its classical growth-transforming function to B lymphocytes, the cells in which it persists in vivo. Transformation initiates with the activation of Wp, a promoter present as tandemly repeated copies in the viral genome. Assays with short Wp reporter constructs have identified two promoter-activating regions, one of which (UAS2) appears to be lineage independent, while the other (UAS1) was B-cell specific and contained two putative binding sites for the B-cell-specific activator protein BSAP/Pax5. To address the physiologic relevance of these findings, we first used chromosome immunoprecipitation assays and found that BSAP is indeed bound to Wp sequences on the EBV genome in transformed cells. Thereafter, we constructed recombinant EBVs carrying two Wp copies, both wild type, with UAS1 or UAS2 deleted, or mutated in the BSAP binding sites. All the viruses delivered their genomes to the B-cell nucleus equally well. However, the BSAP binding mutant (and the virus with UAS1 deleted) showed no detectable activity in B cells, whether measured by early Wp transcription, expression of EBV latent proteins, or outgrowth of transformed cells. This was a B-cell-specific defect since, on entry into epithelial cells, an environment where Wp is not the latent promoter of choice, all the Wp mutant viruses initiated infection as efficiently as wild-type virus. We infer that EBV ensures the B-cell specificity of its growth-transforming function by exploiting BSAP/Pax5 as a lineage-specific activator of the transforming program.
Collapse
Affiliation(s)
- Rosemary Tierney
- Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Klein E, Kis LL, Klein G. Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene 2007; 26:1297-305. [PMID: 17322915 DOI: 10.1038/sj.onc.1210240] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After the primary infection, that may or may not cause infectious mononucleosis, the ubiquitous Epstein-Barr virus (EBV) is carried for lifetime. The great majority of adult humans are virus carriers. EBV was discovered in a B-cell lymphoma (Burkitt lymphoma). EBV infection in humans is the example for the power of immune surveillance against virus transformed, potentially malignant cells. Although the virus can transform B lymphocytes in vitro into proliferating lines, it induces malignancy directly only in immunosuppressed hosts. EBV-induced growth transformation occurs only in B lymphocytes. It is the result of a complex interaction between virally encoded and cellular proteins. Different forms of the virus-cell and the cell-host interactions have evolved during a long period of coexistence between the virus and all Old World (but not New World) primates. The asymptomatic carrier state is based on a viral-strategy that downregulates the expression of the transforming proteins in the virus-carrying cell. In addition to the silent viral-gene carriers and the expressors of the nine virus-encoded genes that drive the growth program, virus carrying cells exist that show other patterns of gene expression, depending on the differentiated state of the host cell. Certain combinations contribute to malignant transformation, but only in conjunction with additional cellular changes. These are induced by direct or cytokine-mediated interactions with normal cells of the immune system.
Collapse
Affiliation(s)
- E Klein
- Microbiology, Tumor and Cell Biology Center, Karolinska Institutet, 171-77 Stockholm, Sweden.
| | | | | |
Collapse
|
30
|
Hutchings IA, Tierney RJ, Kelly GL, Stylianou J, Rickinson AB, Bell AI. Methylation status of the Epstein-Barr virus (EBV) BamHI W latent cycle promoter and promoter activity: analysis with novel EBV-positive Burkitt and lymphoblastoid cell lines. J Virol 2006; 80:10700-11. [PMID: 16920819 PMCID: PMC1641762 DOI: 10.1128/jvi.01204-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) latent cycle promoter Wp, present in each tandemly arrayed copy of the BamHI W region in the EBV genome, drives expression of the EB viral nuclear antigens (EBNAs) at the initiation of virus-induced B-cell transformation. Thereafter, an alternative EBNA promoter, Cp, becomes dominant, Wp activity declines dramatically, and bisulfite sequencing of EBV-transformed lymphoblastoid cell lines (LCLs) shows extensive Wp methylation. Despite this, Wp is never completely silenced in LCLs. Here, using a combination of bisulfite sequencing and methylation-specific PCR, we show that in standard LCLs transformed with wild-type EBV isolates, some Wp copies always remain unmethylated, and in LCLs transformed with a recombinant EBV carrying just two BamHI W copies, Wp is completely unmethylated. Furthermore, we have analyzed rare LCLs, recently established using wild-type EBV isolates, and rare Burkitt lymphoma (BL) cell clones, recently established from tumors carrying EBNA2-deleted EBV genomes, which express EBNAs exclusively from Wp-initiated transcripts. Here, in sharp contrast to standard LCL and BL lines, all resident copies of Wp appear to be predominantly hypomethylated. Thus, studies of B cells with atypical patterns of Wp usage emphasize the strong correlation between the presence of unmethylated Wp sequences and promoter activity.
Collapse
MESH Headings
- B-Lymphocytes/virology
- Base Sequence
- Burkitt Lymphoma/virology
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral/genetics
- DNA Methylation
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Epstein-Barr Virus Nuclear Antigens/genetics
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Humans
- Promoter Regions, Genetic
Collapse
Affiliation(s)
- Isabel A Hutchings
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
31
|
Shannon-Lowe C, Baldwin G, Feederle R, Bell A, Rickinson A, Delecluse HJ. Epstein-Barr virus-induced B-cell transformation: quantitating events from virus binding to cell outgrowth. J Gen Virol 2006; 86:3009-3019. [PMID: 16227222 DOI: 10.1099/vir.0.81153-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) infection and growth activation of human B cells is central to virus biology and disease pathogenesis, but is poorly understood in quantitative terms. Here, using virus at defined m.o.i., the different stages of this process at the single-cell level are followed in vitro. Virus binding to the B-cell surface, assayed by quantitative PCR, is highly efficient, particularly at the low m.o.i. values that most likely reflect physiologic events in vivo. However, only 10-15 % of bound virus genomes reach the cell nucleus, as visualized by sensitive fluorescence in situ hybridization (FISH) assay; viral genomes acquired per cell nucleus range from 1 to >10, depending on the m.o.i. Thereafter, despite differences in initial genome load, almost all nuclear genome-positive cells then go on to express the virus-encoded nuclear antigen EBNA2, upregulate the cell activation antigen CD23 and transit the cell cycle. EBNA2-positive cells in the first cycle post-infection then grow out to lymphoblastoid cell lines (LCLs) just as efficiently as do cells limiting-diluted from already established LCLs. This study therefore identifies EBV genome delivery to the nucleus as a key rate-limiting step in B-cell transformation, and highlights the remarkable efficiency with which a single virus genome, having reached the nucleus, then drives the transformation programme.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- CR-UK Institute for Cancer Studies, The University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - Gouri Baldwin
- CR-UK Institute for Cancer Studies, The University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - Regina Feederle
- German Cancer Centre, Department of Virus Associated Tumours, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | - Andrew Bell
- CR-UK Institute for Cancer Studies, The University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - Alan Rickinson
- CR-UK Institute for Cancer Studies, The University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - Henri-Jacques Delecluse
- German Cancer Centre, Department of Virus Associated Tumours, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| |
Collapse
|
32
|
Kis LL, Takahara M, Nagy N, Klein G, Klein E. Cytokine mediated induction of the major Epstein-Barr virus (EBV)-encoded transforming protein, LMP-1. Immunol Lett 2005; 104:83-8. [PMID: 16386314 DOI: 10.1016/j.imlet.2005.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 10/30/2005] [Accepted: 11/08/2005] [Indexed: 11/27/2022]
Abstract
In the in vitro infected B-cells six EBV-encoded nuclear antigens (EBNA-1-6) and three latent membrane proteins (LMP-1, -2A, -2B) are expressed (type III latency). In addition, other restricted forms of latency occur in the EBV-carrying malignancies. In Burkitt lymphoma (BL) only EBNA-1 is expressed (type I), while in Hodgkin lymphoma (HL), T-, and NK-lymphoma, and nasopharyngeal carcinoma EBNA-1 and LMPs are expressed (type II). B-cells with these three expression patterns have been detected in healthy virus carriers. While in type III latency two viral transcriptional activators, EBNA-2 and -5, are responsible for LMP-1 expression, the mechanism that controls the expression of LMP-1 in type II latent cells is not known. In order to study the interaction of EBV- and HL-derived cells, we studied the in vitro EBV-converted subline of the KMH2 cells that express only EBNA-1 and LMP-2A. Interestingly, exposure of the KMH2-EBV cells to CD40-ligand and IL-4 induced LMP-1 expression, in the absence of EBNA-2. In BL cell lines lacking EBNA-2 another cytokine, IL-10, could induce LMP-1 expression. IL-10 induced LMP-1 also in tonsillar B-cells infected with the EBNA-2-deleted virus strain P3HR-1. Our results show that cytokines are responsible for the expression of LMP-1 in type II latent B-cells. These signals are available in the germinal center environment and in the granulation tissue of HLs. Based on these results we propose that LMP-1 expression is induced by extracellular signals and is not a constitutive characteristic of the EBV-carrying type II B-cells. Cytokine mediated induction of LMP-1 may also explain the heterogeneous expression of this viral gene seen in normal and malignant cells.
Collapse
Affiliation(s)
- Loránd L Kis
- Microbiology and Tumor Biology Center, Karolinska Institute, S-17177 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
33
|
Boito R, Menniti M, Amato R, Palmieri C, Marinaro C, Iuliano R, Tripodi G, Cusi D, Fuiano G, Perrotti N. RFX-1, a putative alpha Adducin interacting protein in a human kidney library. FEBS Lett 2005; 579:6439-43. [PMID: 16289097 DOI: 10.1016/j.febslet.2005.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Revised: 10/20/2005] [Accepted: 10/20/2005] [Indexed: 02/06/2023]
Abstract
Adducin regulates tubular absorption of sodium by modulating the expression levels of the sodium-potassium-ATPase in renal tubular cells. Adducin is a candidate gene in the pathogenesis of hypertension. Yeast two hybrid screen showed a specific interaction between human alpha Adducin and the regulatory factor for X box (RFX-1), a nuclear protein that down regulates the expression of several proteins in non neuronal cells. The interaction was confirmed in cells through co-immunoprecipitation and colocalization experiments. The binding of alpha Adducin to RFX-I and their nuclear co-localization suggests that Adducin can have a role in modulating the transcriptional regulating activity of RFX-I.
Collapse
Affiliation(s)
- Rosalia Boito
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore", Università Magna Graecia, Catanzaro, Campus di Germaneto, Viale Europa, 88100 Catanzaro, Italy; Unit of Nephrology, Policlinico Universitario "Mater Domini", Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Adamson AL, Wright N, LaJeunesse DR. Modeling early Epstein-Barr virus infection in Drosophila melanogaster: the BZLF1 protein. Genetics 2005; 171:1125-35. [PMID: 16079238 PMCID: PMC1456816 DOI: 10.1534/genetics.105.042572] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis and is associated with several forms of cancer, including lymphomas and nasopharyngeal carcinoma. The EBV immediate-early protein BZLF1 functions as a transcriptional activator of EBV early gene expression and is essential for the viral transition between latent and lytic replication. In addition to its role in the EBV life cycle, BZLF1 (Z) also has profound effects upon the host cellular environment, including disruption of cell cycle regulation, signal transduction pathways, and transcription. In an effort to understand the nature of Z interactions with the host cellular environment, we have developed a Drosophila model of early EBV infection, where we have expressed Z in the Drosophila eye. Using this system, we have identified a highly conserved interaction between the Epstein-Barr virus Z protein and shaven, a Drosophila homolog of the human Pax2/5/8 family of genes. Pax5 is a well-characterized human gene involved with B-cell development. The B-cell-specific Pax5 also promotes the transcription of EBV latent genes from the EBV Wp promoter. Our work clearly demonstrates that the Drosophila system is an appropriate and powerful tool for identifying the underlying genetic networks involved in human infectious disease.
Collapse
Affiliation(s)
- Amy L Adamson
- Department of Biology, University of North Carolina, Greensboro, North Carolina, 27402, USA.
| | | | | |
Collapse
|
35
|
Chau CM, Lieberman PM. Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus. J Virol 2004; 78:12308-19. [PMID: 15507618 PMCID: PMC525066 DOI: 10.1128/jvi.78.22.12308-12319.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The oncogenic potential of latent Epstein-Barr virus (EBV) can be regulated by epigenetic factors controlling LMP1 and EBNA2 gene transcription. The EBV latency control region (LCR) constitutes approximately 12 kb of viral sequence spanning the divergent promoters of LMP1 and EBNA2 and encompasses the EBV latent replication origin OriP and RNA polymerase III-transcribed EBV-encoded RNA genes. We have used the chromatin immunoprecipitation assay to examine the chromatin architecture of the LCR in different types of EBV latency programs. We have found that histone H3 K4 methylation (H3mK4) was enriched throughout a large domain that extended from internal repeat 1 (IR1) to the terminal repeat in type III latency where EBNA2 and LMP1 genes are expressed. In type I latency where EBNA2 and LMP1 genes are transcriptionally silent, the H3mK4 domain contracts and does not enter the EBNA2 or LMP1 promoters. In contrast, histone H3 K9 methylation (H3mK9), associated with silent heterochromatin, was enriched in the EBNA2 and LMP1 upstream control regions in type I but not type III cells. MTA [5'-deoxy-5'(methylthio)adenosine], a pharmacological inhibitor of protein methylation, globally reduced histone H3mK4 and inhibited EBNA2 transcription in type III cells. 5'-Azacytidine, an inhibitor of DNA methylation that derepresses EBNA2 transcription in type I latency, caused H3mK4 expansion and a corresponding loss of H3mK9 at IR1. The chromatin boundary protein and transcription repressor CCCTC-binding factor was enriched at the EBNA2 transcription control region in type I but not type III cells. We also present evidence that OriP binding factors EBNA1 and ORC2 can interact with sequences outside of OriP including a region within IR1 that may influence EBNA2 transcription status. These results indicate that types I and III latency programs have distinct histone methylation patterns in the LCR and suggest that chromatin architecture coordinates gene expression of LMP1 and EBNA2.
Collapse
Affiliation(s)
- Charles M Chau
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
36
|
Portis T, Ikeda M, Longnecker R. Epstein–Barr virus LMP2A: regulating cellular ubiquitination processes for maintenance of viral latency? Trends Immunol 2004; 25:422-6. [PMID: 15275641 DOI: 10.1016/j.it.2004.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Toni Portis
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
37
|
Horvath GC, Kistler WS, Kistler MK. RFX2 is a potential transcriptional regulatory factor for histone H1t and other genes expressed during the meiotic phase of spermatogenesis. Biol Reprod 2004; 71:1551-9. [PMID: 15229132 DOI: 10.1095/biolreprod.104.032268] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
H1t is a novel linker histone variant synthesized in mid- to late pachytene spermatocytes. Its regulatory region is of interest because developmentally specific expression has been impressed on an otherwise ubiquitously expressed promoter. Using competitive band-shift assays and specific antisera, we have now shown that the H1t-60 CCTAGG palindrome motif region binds members of the RFX family of transcriptional regulators. The testis-specific binding complex contains RFX2, probably as a homodimer. Other DNA-protein complexes obtained from testis as well as somatic organs contain RFX1, primarily as a heterodimer. Western blots confirmed that RFX2 expression is greatly enhanced in adult testis and that RFX2 is equally prominent in highly enriched populations of late pachytene spermatocytes and round spermatids. Immunohistochemistry carried out on mouse testis showed that RFX2 is strongly expressed in pachytene spermatocytes, remains high in early round spermatids, and declines only in advance of nuclear condensation. Maximum expression correlates well with the appearance of H1t. In contrast, RFX1 immunoreactivity in germ cells was only detected in late round spermatids. RFX-specific band complexes were also identified for both the mouse lamin C2 and Sgy promoters, using either testis nuclear extracts or in vitro-synthesized RFX2. These results call attention to RFX2 as a transcription factor with obvious potential for the regulation of gene expression during meiosis and the early development of spermatids.
Collapse
Affiliation(s)
- Gary C Horvath
- Department of Chemistry and Biochemistry and The School of Medicine, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
38
|
Kis LL, Nishikawa J, Takahara M, Nagy N, Matskova L, Takada K, Elmberger PG, Ohlsson A, Klein G, Klein E. In vitro EBV-infected subline of KMH2, derived from Hodgkin lymphoma, expresses only EBNA-1, while CD40 ligand and IL-4 induce LMP-1 but not EBNA-2. Int J Cancer 2004; 113:937-45. [PMID: 15514968 DOI: 10.1002/ijc.20654] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In about 50% of classical Hodgkin lymphomas, the Hodgkin/Reed Sternberg (H/RS) cells carry Epstein-Barr virus (EBV). The viral gene expression in these cells is restricted to EBNA-1, EBERs, LMP-1 and LMP-2 (type II latency). The origin of H/RS cells was defined as crippled germinal center B cells that escaped apoptosis. In spite of numerous attempts, only few typical Hodgkin lymphoma (HL) lines have been established. This suggests that the cells require survival factors that they receive in the in vivo microenvironment. If EBV is expected to drive the cells for growth in culture, the absence of EBNA-2 may explain the incapacity of H/RS cells for in vitro proliferation. In EBV carrying B lymphocytes, functional EBNA-2 and LMP-1 proteins are required for in vitro growth. For analysis of the interaction between EBV and the H/RS cells, we infected the CD21-positive HL line KMH2 with the B958 and Akata viral strains. Only EBNA-1 expression was detected in a few cells in spite of the fact that all cells could be infected. Using a neomycin-resistance-tagged recombinant EBV strain (Akata-Neo) we established an EBV-positive subline that was carried on selective medium. In contrast to the type II EBV expression pattern of H/RS cells in vivo, the KMH2 EBV cells did not express LMP-1. The EBV expression pattern could be modified in this type I subline. LMP-1 could be induced by the histone deacetylase inhibitors TSA and n-butyrate, by 5-AzaC, a demethylating agent, and by phorbol ester. None of these treatments induced EBNA-2. Importantly, exposure to CD40 ligand and IL-4 induced LMP-1 without EBNA-2 expression and lytic replication. The KMH2 EBV cells expressed LMP-2A, but not LMP-2B mRNAs. This result is highly relevant for the type II expression pattern of H/RS cells in vivo, since these stimuli can be provided by the surrounding activated T lymphocytes.
Collapse
Affiliation(s)
- Loránd L Kis
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nishikawa J, Kis LL, Liu A, Zhang X, Takahara M, Bandobashi K, Kiss C, Nagy N, Okita K, Klein G, Klein E. Upregulation of LMP1 expression by histone deacetylase inhibitors in an EBV carrying NPC cell line. Virus Genes 2004; 28:121-128. [PMID: 14739656 DOI: 10.1023/b:viru.0000012268.35297.ff] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES In about 60% of Epstein-Barr virus (EBV) carrying nasopharyngeal carcinomas (NPC) LMP1 expressing cells can be detected. The frequency of LMP1 positive cells and the expression level varies from cell to cell in the different tumors. Cell lines derived from EBV positive NPCs loose the virus during in vitro culture. The in vitro infected NPC cell line TWO3-EBV used in our study carries the neomycin-resistance gene containing EBV and expresses low level of LMP1. With this cell line it was thus possible to study the regulation of LMP1 expression by modification of chromatin acetylation state. STUDY DESIGN The TWO-EBV cell line was treated with n -butyrate (NB) or trichostatin A (TSA). RESULTS Shown by immunoblotting, the LMP1 level was elevated in the treated samples. Already 2 h after TSA exposure LMP1 expression was higher and it increased up to 24 h. Immunofluorescence staining showed that nearly all cells were LMP1 positive. Neither EBNA2 nor BZLF1 were induced. Tested first 2 h after the treatment, acetylated histone H3 and H4 were already detectable, and their level increased up to 8 h. Chromatin immunoprecipitation (ChIP) verified that the LMP1-promoter (LMP1p) (ED-L1) was acetylated after TSA treatment. CONCLUSION EBV carrying epithelial cells do not express EBNA-2. We showed that LMP1 expression was upregulated by histone deacetylase inhibitors in an in vitro infected, EBV carrier NPC cell line.
Collapse
Affiliation(s)
- Jun Nishikawa
- Microbiology and Tumor Biology Center, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li H, Minarovits J. Host cell-dependent expression of latent Epstein-Barr virus genomes: regulation by DNA methylation. Adv Cancer Res 2003; 89:133-56. [PMID: 14587872 DOI: 10.1016/s0065-230x(03)01004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus associated with a wide spectrum of malignant neoplasms. Expression of latent (growth transformation-associated) EBV genes is host cell specific. Transcripts for EBV-encoded nuclear antigens (EBNAs) are initiated at one of the alternative promoters: Wp, Cp (for EBNA1-6), or Qp (for EBNA1 only). Wp is active shortly after EBV infection of human B cells in vitro but is progressively methylated and silenced in established lymphoblastoid cell lines (LCLs). In parallel Cp, an unmethylated, lymphoid-specific promoter is switched on. In contrast, Cp is methylated and silent in Burkitt's lymphoma (BL) cell lines, which keep the phenotype of BL biopsy cells (group I BL lines). These cells use Qp for the initiation of EBNA1 messages. Qp is unmethylated both in group I BLs (Qp on) and in LCLs (Qp off). Thus, DNA methylation does not play a role in silencing Qp. In LCLs and nasopharyngeal carcinoma (NPC) cells, transcripts for latent membrane protein 1 (LMP1) are initiated from LMP1p, a promoter regulated by CpG methylation. LMPlp is silent in group I BL lines but can be activated by demethylating agents. Promoter silencing by CpG methylation involves both direct interference with transcription factor binding (Wp, Cp) and indirect mechanisms involving the recruitment of histone deacetylases (LMPlp). A dyad symmetry sequence(DS) within oriP (the latent origin of EBV replication) and intragenic RNA polymerase III control regions of EBER 1 and 2 transcription units are invariably unmethylated in EBV-carrying cells.
Collapse
Affiliation(s)
- Hul Li
- Microbiological Research Group, National Center for Epidemiology, H-1529 Budapest, Hungary
| | | |
Collapse
|
41
|
Yoshioka M, Kikuta H, Ishiguro N, Endo R, Kobayashi K. Latency pattern of Epstein-Barr virus and methylation status in Epstein-Barr virus-associated hemophagocytic syndrome. J Med Virol 2003; 70:410-9. [PMID: 12767005 DOI: 10.1002/jmv.10411] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Expression of different panels of latent gene transcripts is controlled by usage of three distinct Epstein-Barr virus (EBV) nuclear antigen (EBNA) promoters (Wp, Cp, and Qp). EBV-associated hemophagocytic syndrome, which is often a fatal disease and generally occurs after primary EBV infection, is characterized by monoclonal or oligoclonal proliferation of EBV-infected T cells. The latency pattern and EBNA promoter (Wp, Cp, and Qp) usage in EBV-infected cells from three patients with EBV-associated hemophagocytic syndrome were examined by reverse transcription-polymerase chain reaction (PCR). Three samples from the patients expressed EBER, EBNA1, EBNA2, latent membrane protein (LMP)1, and LMP2A transcripts. The transcripts of EBNA1 were initiated from not only Wp/Cp but also Qp. Lytic cycle Fp-initiated EBNA1 and EBV lytic gene BZLF1 transcripts were not detected. The methylation statuses of three EBNA promoters in three patients with EBV-associated hemophagocytic syndrome and in two patients with infectious mononucleosis were also analyzed using bisulfite PCR analysis. Wp was hypermethylated, and Qp was unmethylated in both diseases. Cp was highly methylated in EBV-associated hemophagocytic syndrome, however, whereas Cp was almost unmethylated in infectious mononucleosis. These results suggest that there may be distinct EBV-infected cell populations in EBV-associated hemophagocytic syndrome, which exhibit different patterns of EBV latent gene expression. The methylation status in Cp and phenotype of EBV-infected cells may be critical differences in EBV-associated hemophagocytic syndrome and infectious mononucleosis.
Collapse
MESH Headings
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Child, Preschool
- DNA Methylation
- DNA, Viral/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Epstein-Barr Virus Nuclear Antigens/biosynthesis
- Epstein-Barr Virus Nuclear Antigens/genetics
- Female
- Gene Silencing
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Histiocytosis, Non-Langerhans-Cell/blood
- Histiocytosis, Non-Langerhans-Cell/metabolism
- Histiocytosis, Non-Langerhans-Cell/virology
- Humans
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Male
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA-Binding Proteins/biosynthesis
- RNA-Binding Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomal Proteins
- Spleen/metabolism
- Spleen/virology
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Viral Matrix Proteins/biosynthesis
- Viral Matrix Proteins/genetics
- Viral Proteins
- Virus Latency
Collapse
Affiliation(s)
- Mikio Yoshioka
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
42
|
Yoshioka M, Kikuta H, Ishiguro N, Ma X, Kobayashi K. Unique Epstein-Barr virus (EBV) latent gene expression, EBNA promoter usage and EBNA promoter methylation status in chronic active EBV infection. J Gen Virol 2003; 84:1133-1140. [PMID: 12692278 DOI: 10.1099/vir.0.18777-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic active Epstein-Barr virus infection (CAEBV) has been considered to be a non-neoplastic T-cell lymphoproliferative disease associated with Epstein-Barr virus (EBV) infection. In EBV-associated diseases, the cell phenotype-dependent differences in EBV latent gene expression may reflect the strategy of the virus in relation to latent infection. We previously reported that EBV latent gene expression was restricted; EBV nuclear antigen 1 (EBNA1) transcripts were consistently detected in all spleen samples from five CAEBV patients, but EBNA2 transcripts were detected in only one sample. EBV latent gene expression is controlled by distinct usage of three EBNA promoters (Cp, Wp and Qp). In this study, we examined the EBNA promoter usage by RT-PCR and the methylation status in the Cp and Wp regions using bisulfite PCR analysis in spleen samples from CAEBV patients. EBNA1 transcripts were unexpectedly initiated not from Qp but from Cp in all samples in spite of the restricted form of latency. Furthermore, while Cp was active, Cp was heavily methylated, indicating that CAEBV has unique EBV latent gene expression, EBNA promoter usage and EBNA promoter methylation status, in part due to unique splicing of Cp-initiated transcripts and an activation mechanism in hypermethylated Cp.
Collapse
Affiliation(s)
- Mikio Yoshioka
- Department of Pediatrics, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideaki Kikuta
- Department of Pediatrics, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Nobuhisa Ishiguro
- Department of Pediatrics, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Xiaoming Ma
- Department of Pediatrics, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Kunihiko Kobayashi
- Department of Pediatrics, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
43
|
Nakayama A, Murakami H, Maeyama N, Yamashiro N, Sakakibara A, Mori N, Takahashi M. Role for RFX transcription factors in non-neuronal cell-specific inactivation of the microtubule-associated protein MAP1A promoter. J Biol Chem 2003; 278:233-40. [PMID: 12411430 DOI: 10.1074/jbc.m209574200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule-associated protein MAP1A is expressed abundantly in mature neurons and is necessary for maintenance of neuronal morphology and localization of some molecules in association with the microtubule-based cytoskeleton. Previous studies indicated that its complementary expression together with MAP1B during nervous system development is regulated at the transcriptional level and that the mouse Map1A gene is transcribed under the control of 5' and intronic promoters. In this study, we investigated the regulatory mechanisms that govern the neuronal cell-specific activation of the MAP1A 5' promoter. We found that two regulatory factor for X box (RFX) binding sites in exon1 of both the mouse and human genes are important for effective transcriptional repression observed only in non-neuronal cells by reporter assays. Among RFX transcription factor family members, RFX1 and 3 mainly interact with repressive elements in vitro. Cotransfection studies indicated that RFX1, which is expressed ubiquitously, down-regulated the MAP1A 5' promoter activity in non-neuronal cells. Unexpectedly, RFX3, which is abundantly expressed in neuronal cells, down-regulated the transactivity as well, when it was expressed in non-neuronal cells. Both RFX1 and 3 did not down-regulate the transactivity in neuronal cells. These results suggest that RFX1 and 3 are pivotal factors in down-regulation of the MAP1A 5' promoter in non-neuronal cells. The cell type-specific down-regulation, however, does not depend simply on which RFX interacts with the elements, but seems to depend on underlying profound mechanisms.
Collapse
Affiliation(s)
- Atsuo Nakayama
- Department of Pathology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Yoo LI, Woloszynek J, Templeton S, Speck SH. Deletion of Epstein-Barr virus regulatory sequences upstream of the EBNA gene promoter Wp1 is unfavorable for B-Cell immortalization. J Virol 2002; 76:11763-9. [PMID: 12388739 PMCID: PMC136791 DOI: 10.1128/jvi.76.22.11763-11769.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the six Epstein-Barr virus (EBV) EBNA genes is coordinately regulated, being driven by either the Cp promoter, which is encoded within the unique region just upstream of the EBV major internal repeat (IR-1), or by the Wp promoter, which is encoded within the IR-1 repeat and thus present in multiple copies. Previous analyses of Cp- and Wp-initiated transcription have identified a shared cis-regulatory element mapping to the region extending from -169 to -369 bp upstream of the Wp transcription initiation site (M. T. Puglielli, N. Desai, and S. H. Speck, J. Virol. 71:120-128, 1997). To assess the impact of this regulatory region on Cp and Wp activity in the context of the viral genome, we attempted to delete this regulatory region upstream of the first copy of Wp (Wp1). While 10 recombinant viruses were obtained in which this deletion was incorporated in the interior of the IR-1 repeat, only a single lymphoblastoid cell line (LCL) immortalized by a recombinant EBV harboring the deletion upstream of Wp1 was recovered. In contrast, using a control targeting vector in which the Wp regulatory sequences were intact but which contained a sequence tag within the W0 exon, we demonstrated that of the five recombinant viruses analyzed in which the crossover event had occurred upstream of the Wp sequence tag, four had incorporated the tagged sequences into Wp1 of the virus. Taken together, these results indicate that deletion of the regulatory sequences from -369 to -169 bp upstream of Wp1 is unfavorable for EBV-driven B-cell immortalization but is tolerated within the interior of the IR-1 repeat. Analysis of promoter usage in the clone 9-60 LCL, in which the W enhancer sequences were deleted upstream of Wp1, revealed the following: (i) the level of Cp-initiated transcription was significantly diminished compared to that of wild-type LCLs; (ii) the decreased Cp-initiated transcription was not efficiently compensated by transcription initiation from Wp1; and (iii) transcription initiation from downstream Wp promoters was detectable. This is the first report of an LCL in which transcription initiation from a Wp downstream of Wp1 has been documented.
Collapse
Affiliation(s)
- Lina I Yoo
- Division of Microbiology and Immunology, Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
45
|
Sengupta PK, Fargo J, Smith BD. The RFX family interacts at the collagen (COL1A2) start site and represses transcription. J Biol Chem 2002; 277:24926-37. [PMID: 11986307 DOI: 10.1074/jbc.m111712200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription start site of the collagen alpha2(1) gene (COL1A2) has a sequence-specific binding site for a DNA methylation-responsive binding protein called regulatory factor for X-box 1 (RFX1) (Sengupta, P. K., Erhlich, M., and Smith, B. D. (1999) J. Biol. Chem. 274, 36649-36655). In this report, we demonstrate that RFX1 forms homodimers as well as heterodimers with RFX2 spanning the collagen transcription start site. Methylation at +7 on the coding strand increases RFX1 complex formation in gel shift assays. Methylation on the template strand, however, does not increase RFX1 complex formation. DNA from human fibroblasts contains minimal methylation on the coding strand (<4%) with variable methylation on the template strand. RFX1 acts as a repressor of collagen transcription as judged by in vitro transcription and co-transfection assays with an unmethylated collagen promoter-reporter construct. In addition, an RFX5 complex present in human fibroblasts interacts with the collagen RFX site, which is not sensitive to methylation. This is the first demonstration of RFX5 complex formation on a gene other than major histocompatibility complex (MHC) promoters. Also, RFX5 represses transcription of a collagen promoter-reporter construct in rat fibroblasts that have no detectable RFX5 complex formation or protein. RFX5 complex activates MHC II transcription by interacting with an interferon-gamma (IFN-gamma)-inducible protein, major histocompatibility class II trans-activator (CIITA). Collagen transcription is repressed by IFN-gamma in a dose-dependent manner in human but not in rat fibroblasts. IFN-gamma enhances RFX5 binding activity, and CIITA is present in the RFX5 complex of IFN-gamma-treated human fibroblasts. CIITA repressed collagen gene transcription more effectively in human fibroblasts than in rat fibroblasts, suggesting that the RFX5 complex may, in part, recruit CIITA protein to the collagen transcription start site. Thus the RFX family may be important repressors of collagen gene transcription through a RFX binding site spanning the transcription start site.
Collapse
Affiliation(s)
- Pritam K Sengupta
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
46
|
Emelyanov AV, Kovac CR, Sepulveda MA, Birshtein BK. The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells. J Biol Chem 2002; 277:11156-64. [PMID: 11799127 DOI: 10.1074/jbc.m111763200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pax5 (BSAP) is essential for B cell development and acts both as a transcriptional activator and a repressor. Using a yeast two-hybrid assay to identify potential coregulators of Pax5, we identified Daxx, a protein that is highly conserved, ubiquitously expressed, and essential for embryonic mouse development. The interaction between Pax5 and Daxx involves the partial homeodomain of Pax5 and the C-terminal fragment of Daxx. A component of promyelocytic leukemia protein nuclear bodies, Daxx has been implicated in apoptosis and characterized as a transcriptional corepressor. Upon transient transfection assay of Daxx in B cells expressing endogenous Daxx and Pax5, we observed not only transcriptional corepression but also, unexpectedly, coactivation in M12.4.1 and A20 mouse B cell lines. Pax5 domains required for coactivation were identified using 293T cells. Coactivation apparently involves recruitment of the CREB binding protein (CBP), because we precipitated complexes containing Pax5, Daxx, and CBP in B cell lines. These data suggest that Daxx can affect Pax5's roles as an activator or repressor in B cells and describe a role for Daxx as a transcriptional coactivator.
Collapse
Affiliation(s)
- Alexander V Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
47
|
Katan-Khaykovich Y, Shaul Y. Nuclear import and DNA-binding activity of RFX1. Evidence for an autoinhibitory mechanism. ACTA ACUST UNITED AC 2001; 268:3108-16. [PMID: 11358531 DOI: 10.1046/j.1432-1327.2001.02211.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RFX1 binds and regulates the enhancers of a number of viruses and cellular genes. RFX1 belongs to the evolutionarily conserved RFX protein family that shares a DNA-binding domain and a conserved C-terminal region. In RFX1 this conserved region mediates dimerization, and is followed by a unique C-terminal tail, containing a highly acidic stretch. In HL-60 cells nuclear translocation of RFX1 is regulated by protein kinase C with unknown mechanisms. By confocal fluorescence microscopy, we have identified a nonclassical nuclear localization signal (NLS) at the extreme C-terminus. The adjacent 'acidic region', which showed no independent NLS activity, potentiated the function of the NLS. Subcellular fractionation showed that the tight association of RFX1 with the nucleus is mediated by its DNA-binding domain and enhanced by the dimerization domain. In contrast, the acidic region inhibited nuclear association, by down-regulating the DNA-binding activity of RFX1. These data suggest an autoinhibitory interaction, which may regulate the function of RFX1 at the level of DNA binding. The C-terminal tail thus constitutes a composite localization domain, which on the one hand mediates nuclear import of RFX1, and on the other hand inhibits its association with the nucleus and binding to DNA. The participation of the acidic region in both activities suggests a mechanism by which the nuclear import and DNA-binding activity of RFX1 may be coordinately regulated by phosphorylation by kinases such as PKC.
Collapse
Affiliation(s)
- Y Katan-Khaykovich
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
48
|
Tierney RJ, Kirby HE, Nagra JK, Desmond J, Bell AI, Rickinson AB. Methylation of transcription factor binding sites in the Epstein-Barr virus latent cycle promoter Wp coincides with promoter down-regulation during virus-induced B-cell transformation. J Virol 2000; 74:10468-79. [PMID: 11044091 PMCID: PMC110921 DOI: 10.1128/jvi.74.22.10468-10479.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Epstein-Barr virus latent cycle promoters for nuclear antigen expression, Wp and Cp, are activated sequentially during virus-induced transformation of B cells to B lymphoblastoid cell lines (LCLs) in vitro. Previously published restriction enzyme studies have indicated hypomethylation of CpG dinucleotides in the Wp and Cp regions of the viral genome in established LCLs, whereas these same regions appeared to be hypermethylated in Burkitt's lymphoma cells, where Wp and Cp are inactive. Here, using the more sensitive technique of bisulfite genomic sequencing, we reexamined the situation in established LCLs with the typical pattern of dominant Cp usage; surprisingly, this showed substantial methylation in the 400-bp regulatory region upstream of the Wp start site. This was not an artifact of long-term in vitro passage, since, in cultures of recently infected B cells, we found progressive methylation of Wp (but not Cp) regulatory sequences occurring between 7 and 21 days postinfection, coincident with the period in which dominant nuclear antigen promoter usage switches from Wp to Cp. Furthermore, in the equivalent in vivo situation, i.e., in the circulating B cells of acute infectious mononucleosis patients undergoing primary EBV infection, we again frequently observed selective methylation of Wp but not Cp sequences. An effector role for methylation in Wp silencing was supported by methylation cassette assays of Wp reporter constructs and by bandshift assays, where the binding of two sets of transcription factors important for Wp activation in B cells, BSAP/Pax5 and CREB/ATF proteins, was shown to be blocked by methylation of their binding sites.
Collapse
MESH Headings
- B-Lymphocytes/virology
- Binding Sites
- Burkitt Lymphoma/virology
- Cell Transformation, Viral
- DNA Methylation
- DNA, Viral/chemistry
- DNA, Viral/metabolism
- Genes, Reporter
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Herpesvirus 4, Human/physiology
- Humans
- Infectious Mononucleosis/blood
- Infectious Mononucleosis/virology
- Promoter Regions, Genetic/genetics
- Sequence Analysis, DNA
- Sulfites/chemistry
- Transcription Factors/metabolism
- Tumor Cells, Cultured
- Virus Latency
Collapse
Affiliation(s)
- R J Tierney
- CRC Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|