1
|
Skeletal Muscle Cells Derived from Induced Pluripotent Stem Cells: A Platform for Limb Girdle Muscular Dystrophies. Biomedicines 2022; 10:biomedicines10061428. [PMID: 35740450 PMCID: PMC9220148 DOI: 10.3390/biomedicines10061428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Limb girdle muscular dystrophies (LGMD), caused by mutations in 29 different genes, are the fourth most prevalent group of genetic muscle diseases. Although the link between LGMD and its genetic origins has been determined, LGMD still represent an unmet medical need. Here, we describe a platform for modeling LGMD based on the use of human induced pluripotent stem cells (hiPSC). Thanks to the self-renewing and pluripotency properties of hiPSC, this platform provides a renewable and an alternative source of skeletal muscle cells (skMC) to primary, immortalized, or overexpressing cells. We report that skMC derived from hiPSC express the majority of the genes and proteins that cause LGMD. As a proof of concept, we demonstrate the importance of this cellular model for studying LGMDR9 by evaluating disease-specific phenotypes in skMC derived from hiPSC obtained from four patients.
Collapse
|
2
|
Xian X, Wang Y, Liu G. Genetically Engineered Hamster Models of Dyslipidemia and Atherosclerosis. Methods Mol Biol 2022; 2419:433-459. [PMID: 35237980 DOI: 10.1007/978-1-0716-1924-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Animal models of human diseases play an extremely important role in biomedical research. Among them, mice are widely used animal models for translational research, especially because of ease of generation of genetically engineered mice. However, because of the great differences in biology between mice and humans, translation of findings to humans remains a major issue. Therefore, the exploration of models with biological and metabolic characteristics closer to those of humans has never stopped.Although pig and nonhuman primates are biologically similar to humans, their genetic engineering is technically difficult, the cost of breeding is high, and the experimental time is long. As a result, the application of these species as model animals, especially genetically engineered model animals, in biomedical research is greatly limited.In terms of lipid metabolism and cardiovascular diseases, hamsters have several characteristics different from rats and mice, but similar to those in humans. The hamster is therefore an ideal animal model for studying lipid metabolism and cardiovascular disease because of its small size and short reproduction period. However, the phenomenon of zygote division, which was unexpectedly blocked during the manipulation of hamster embryos for some unknown reasons, had plagued researchers for decades and no genetically engineered hamsters have therefore been generated as animal models of human diseases for a long time. After solving the problem of in vitro development of hamster zygotes, we successfully prepared enhanced green fluorescent protein (eGFP) transgenic hamsters by microinjection of lentiviral vectors into the zona pellucida space of zygotes. On this basis, we started the development of cardiovascular disease models using the hamster embryo culture system combined with the novel genome editing technique of clustered regularly interspaced short palindromic repeats (CRISPR )/CRISPR associated protein 9 (Cas9). In this chapter, we will introduce some of the genetically engineered hamster models with dyslipidemia and the corresponding characteristics of these models. We hope that the genetically engineered hamster models can be further recognized and complement other genetically engineered animal models such as mice, rats, and rabbits. This will lead to new avenues and pathways for the study of lipid metabolism and its related diseases.
Collapse
Affiliation(s)
- Xunde Xian
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Fernández-Eulate G, Leturcq F, Laforêt P, Richard I, Stojkovic T. [Sarcoglycanopathies: state of the art and therapeutic perspectives]. Med Sci (Paris) 2021; 36 Hors série n° 2:22-27. [PMID: 33427632 DOI: 10.1051/medsci/2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sarcoglycanopathies are the third most common cause of autosomal recessive limb girdle muscular dystrophies (LGMD). They are the result of a deficiency in one of the sarcoglycans a, b, g, or d. The usual clinical presentation is that of a symmetrical involvement of the muscles of the pelvic and scapular girdles as well as of the trunk, associated with more or less severe cardio-respiratory impairment and a marked increase of serum CK levels. The first symptoms appear during the first decade, the loss of ambulation occurring often during the second decade. Lesions observed on the muscle biopsy are dystrophic. This is associated with a decrease or an absence of immunostaining of the sarcoglycan corresponding to the mutated gene and, to a lesser degree, of the other three sarcoglycans. Many mutations have been reported in the four incriminated genes and some of them are prevalent in certain populations. To date, there is no curative treatment, which does not prevent the development of many clinical trials, especially in gene therapy.
Collapse
Affiliation(s)
- Gorka Fernández-Eulate
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - France Leturcq
- Laboratoire de biochimie génétique. APHP, Hôpital Cochin, Paris, France
| | - Pascal Laforêt
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France. APHP, CHU Raymond Poincaré, Garches. Université Paris-Saclay, France
| | - Isabelle Richard
- Généthon, 91000, Évry, France - Université Paris-Saclay, Université d'Evry, Inserm, Généthon, unité de recherche Integrare UMR_S951, 91000, Évry, France
| | - Tanya Stojkovic
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Gao DM, Yu HY, Zhou W, Xia BB, Li HZ, Wang ML, Zhao J. Inhibitory effects of recombinant porcine interferon-α on porcine transmissible gastroenteritis virus infections in TGEV-seronegative piglets. Vet Microbiol 2020; 252:108930. [PMID: 33290999 DOI: 10.1016/j.vetmic.2020.108930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
Our previous research obtained purified recombinant porcine interferon-α (rPoIFN-α) containing thioredoxin (Trx) fusion tag in E. coli Rosetta (DE3). Here, we evaluate the efficacy of this rPoIFN-α to prevent piglets from the infection of the transmissible gastroenteritis virus (TGEV) attack. In this experiment, twenty-five TGEV-seronegative piglets were randomly divided into five groups. Group 1 was positive control and only challenged with TGEV; Pigs in groups 2-4 were pretreated with 2 × 10(7)IU/pig, 2 × 10(6)IU/pig, and 2 × 10(5)IU/pig rPoIFN-α before TGEV challenge. The fifth group is a negative control group. The animals of this group are pretreated only with Trx protein-containing PBS solution without TGEV challenge. After 48 h of rPoIFN-α pretreatment, the pigs in groups 1-4 were challenged by TGEV, and the pigs in group 5 were administered with PBS. The surveillance results show that Pigs pre-treated with 2 × 10 (7) IU/pig rPoIFN-α are fully aligned with the violent TGEV attack. Pigs pretreated with 2 × 10 (6) IU/pig rPoIFN-α are partially aligned with the violent TGEV attack. Though piglets pretreated with 2 × 10(6) IU/pig or 2 × 10(5)IU/pig rPoIFN-α cannot be adapted to the challenge of TGEV. However, the use of this dose of rPoIFN-α could put off the clinical signs of pigs than the positive control group of the above. These results indicate that rPoIFN-α can protect pigs from the infection of potential TGEV or delay the appearance of clinical symptoms, and its effect is dose-dependent.
Collapse
Affiliation(s)
- Dong-Mei Gao
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, PR China; Department of Clinical Laboratory, Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| | - Hai-Yang Yu
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| | - Wei Zhou
- Anhui Jiuchuan Biotechnology Co., Ltd., Wuhu, Anhui, PR China
| | - Bing-Bing Xia
- Anhui Jiuchuan Biotechnology Co., Ltd., Wuhu, Anhui, PR China
| | - Hong-Zhang Li
- Department of Gastroenterology, Sanmen People's Hospital, Zhejiang, PR China.
| | - Ming-Li Wang
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, PR China; Anhui Jiuchuan Biotechnology Co., Ltd., Wuhu, Anhui, PR China.
| | - Jun Zhao
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, PR China; Anhui Jiuchuan Biotechnology Co., Ltd., Wuhu, Anhui, PR China; Wuhu Overseas Students Pioneer Park, Wuhu, Anhui, PR China.
| |
Collapse
|
5
|
The ties that bind: functional clusters in limb-girdle muscular dystrophy. Skelet Muscle 2020; 10:22. [PMID: 32727611 PMCID: PMC7389686 DOI: 10.1186/s13395-020-00240-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a genetically pleiomorphic class of inherited muscle diseases that are known to share phenotypic features. Selected LGMD genetic subtypes have been studied extensively in affected humans and various animal models. In some cases, these investigations have led to human clinical trials of potential disease-modifying therapies, including gene replacement strategies for individual subtypes using adeno-associated virus (AAV) vectors. The cellular localizations of most proteins associated with LGMD have been determined. However, the functions of these proteins are less uniformly characterized, thus limiting our knowledge of potential common disease mechanisms across subtype boundaries. Correspondingly, broad therapeutic strategies that could each target multiple LGMD subtypes remain less developed. We believe that three major "functional clusters" of subcellular activities relevant to LGMD merit further investigation. The best known of these is the glycosylation modifications associated with the dystroglycan complex. The other two, mechanical signaling and mitochondrial dysfunction, have been studied less systematically but are just as promising with respect to the identification of significant mechanistic subgroups of LGMD. A deeper understanding of these disease pathways could yield a new generation of precision therapies that would each be expected to treat a broader range of LGMD patients than a single subtype, thus expanding the scope of the molecular medicines that may be developed for this complex array of muscular dystrophies.
Collapse
|
6
|
Yang Q, Li Y, Zhang X, Chen D. Zac1/GPR39 phosphorylating CaMK-II contributes to the distinct roles of Pax3 and Pax7 in myogenic progression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:407-419. [DOI: 10.1016/j.bbadis.2017.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/15/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022]
|
7
|
Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery. Mol Ther 2014; 22:1890-9. [PMID: 25048216 DOI: 10.1038/mt.2014.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/16/2014] [Indexed: 01/01/2023] Open
Abstract
Mutations in fukutin-related protein (FKRP) gene cause a wide spectrum of disease phenotypes including the mild limb-girdle muscular dystrophy 2I (LGMD2I), the severe Walker-Warburg syndrome, and muscle-eye-brain disease. FKRP deficiency results in α-dystroglycan (α-DG) hypoglycosylation in the muscle and heart, which is a biochemical hallmark of dystroglycanopathies. To study gene replacement therapy, we generated and characterized a new mouse model of LGMD2I harboring the human mutation leucine 276 to isoleucine (L276I) in the mouse alleles. The homozygous knock-in mice (L276I(KI)) mimic the classic late onset phenotype of LGMD2I in both skeletal and cardiac muscles. Systemic delivery of human FKRP gene by AAV9 vector in the L276I(KI) mice, at either neonatal age or at the age of 9 months, rendered body wide FKRP expression and restored glycosylation of α-DG in both skeletal and cardiac muscles. FKRP gene therapy ameliorated dystrophic pathology and cardiomyopathy such as muscle degeneration, fibrosis, and myofiber membrane leakage, resulting in restoration of muscle and heart contractile functions. Thus, these results demonstrated that the treatment based on FKRP gene replacement was effective.
Collapse
|
8
|
Ohsawa Y, Okada T, Nishimatsu SI, Ishizaki M, Suga T, Fujino M, Murakami T, Uchino M, Tsuchida K, Noji S, Hinohara A, Shimizu T, Shimizu K, Sunada Y. An inhibitor of transforming growth factor beta type I receptor ameliorates muscle atrophy in a mouse model of caveolin 3-deficient muscular dystrophy. J Transl Med 2012; 92:1100-14. [PMID: 22584670 DOI: 10.1038/labinvest.2012.78] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Skeletal muscle expressing Pro104Leu mutant caveolin 3 (CAV3(P104L)) in mouse becomes atrophied and serves as a model of autosomal dominant limb-girdle muscular dystrophy 1C. We previously found that caveolin 3-deficient muscles showed activated intramuscular transforming growth factor beta (TGF-β) signals. However, the cellular mechanism by which loss of caveolin 3 leads to muscle atrophy is unknown. Recently, several small-molecule inhibitors of TGF-β type I receptor (TβRI) kinase have been developed as molecular-targeting drugs for cancer therapy by suppressing intracellular TGF-β1, -β2, and -β3 signaling. Here, we show that a TβRI kinase inhibitor, Ki26894, restores impaired myoblast differentiation in vitro caused by activin, myostatin, and TGF-β1, as well as CAV3(P104L). Oral administration of Ki26894 increased muscle mass and strength in vivo in wild-type mice, and improved muscle atrophy and weakness in the CAV3(P104L) mice. The inhibitor restored the number of satellite cells, the resident stem cells of adult skeletal muscle, with suppression of the increased phosphorylation of Smad2, an effector, and the upregulation of p21 (also known as Cdkn1a), a target gene of the TGF-β family members in muscle. These data indicate that both TGF-β-dependent reduction in satellite cells and impairment of myoblast differentiation contribute to the cellular mechanism underlying caveolin 3-deficient muscle atrophy. TβRI kinase inhibitors could antagonize the activation of intramuscular anti-myogenic TGF-β signals, thereby providing a novel therapeutic rationale for the alternative use of this type of anticancer drug in reversing muscle atrophy in various clinical settings.
Collapse
Affiliation(s)
- Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hampton TG, Kale A, McCue S, Bhagavan HN, Vandongen C. Developmental Changes in the ECG of a Hamster Model of Muscular Dystrophy and Heart Failure. Front Pharmacol 2012; 3:80. [PMID: 22629245 PMCID: PMC3355504 DOI: 10.3389/fphar.2012.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/12/2012] [Indexed: 12/14/2022] Open
Abstract
Aberrant autonomic signaling is being increasingly recognized as an important symptom in neuromuscular disorders. The δ-sarcoglycan-deficient BIO TO-2 hamster is recognized as a good model for studying mechanistic pathways and sequelae in muscular dystrophy and heart failure, including autonomic nervous system (ANS) dysfunction. Recent studies using the TO-2 hamster model have provided promising preclinical results demonstrating the efficacy of gene therapy to treat skeletal muscle weakness and heart failure. Methods to accelerate preclinical testing of gene therapy and new drugs for neuromuscular diseases are urgently needed. The purpose of this investigation was to demonstrate a rapid non-invasive screen for characterizing the ANS imbalance in dystrophic TO-2 hamsters. Electrocardiograms were recorded non-invasively in conscious ∼9-month old TO-2 hamsters (n = 10) and non-myopathic F1B control hamsters (n = 10). Heart rate was higher in TO-2 hamsters than controls (453 ± 12 bpm vs. 311 ± 25 bpm, P < 0.01). Time domain heart rate variability, an index of parasympathetic tone, was lower in TO-2 hamsters (12.2 ± 3.7 bpm vs. 38.2 ± 6.8, P < 0.05), as was the coefficient of variance of the RR interval (2.8 ± 0.9% vs. 16.2 ± 3.4%, P < 0.05) compared to control hamsters. Power spectral analysis demonstrated reduced high frequency and low frequency contributions, indicating autonomic imbalance with increased sympathetic tone and decreased parasympathetic tone in dystrophic TO-2 hamsters. Similar observations in newborn hamsters indicate autonomic nervous dysfunction may occur quite early in life in neuromuscular diseases. Our findings of autonomic abnormalities in newborn hamsters with a mutation in the δ-sarcoglycan gene suggest approaches to correct modulation of the heart rate as prevention or therapy for muscular dystrophies.
Collapse
|
10
|
Chou SH, Kao JH, Tao PL, Law PY, Loh HH. Naloxone can act as an analgesic agent without measurable chronic side effects in mice with a mutant mu-opioid receptor expressed in different sites of pain pathway. Synapse 2012; 66:694-704. [PMID: 22407757 DOI: 10.1002/syn.21555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/03/2012] [Indexed: 12/18/2022]
Abstract
Midbrain periaqueductal gray (PAG) and spinal cord dorsal horn are major action sites of opioid analgesics in the pain pathway. Our previous study has shown that opioid antagonists activate MORS196A-CSTA (a mutant of mu-opioid receptor) as full agonists in vitro cell models and naloxone showed antinociceptive effects after the expression of MORS196A-CSTA in the spinal cord in mice. The purpose of this study is to investigate the site-directed antinociceptive effects of naloxone in mice injected with dsAAV-MORS196A-CSTA-EGFP at spinal cord or at periaqueductal gray. MORS196A-CSTA-EGFP was administered to ICR mice using dsAAV as vector. We measured MORS196A-CSTA-EGFP expression by detecting the EGFP visualization with a fluorescence microscope. The antinociceptive effect of naloxone was determined by tail-flick test and hot plate test. Drug rewarding effect was evaluated by the conditioned place preference test. Naloxone (10 mg/kg, s.c.) elicited both supraspinal and spinal antinociceptive responses in mice injected with the virus at PAG while only spinal antinociceptive response was observed in mice injected with virus at dorsal horn region. Chronic naloxone treatment did not induce physical dependence or rewarding effect in mice injected with MORS196A-CSTA-EGFP in spinal cord or PAG. These data suggest that the observed naloxone-induced antinociceptive response is the consequence of the local expression of MORS196A-CSTA at specific sites of pain pathway. Injection of such MOR mutant and the systemic administration of naloxone can be a new strategy in the management of chronic pain without the various side effects associated with the use of morphine.
Collapse
Affiliation(s)
- Shu-Husan Chou
- Department of Pharmacy, Beitou Armed Forces Hospital, Taipei 112, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
11
|
Abstract
The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The cell-matrix interactions are crucial for normal biological processes and when disrupted they may lead to pathological processes. In particular, the biological importance of ECM-cell membrane-cytoskeleton interactions in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle disorders are presented as well as advances toward the development of treatment.
Collapse
Affiliation(s)
- Virginie Carmignac
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
12
|
Lai NC, Tang T, Gao MH, Saito M, Miyanohara A, Hammond HK. Improved function of the failing rat heart by regulated expression of insulin-like growth factor I via intramuscular gene transfer. Hum Gene Ther 2012; 23:255-61. [PMID: 22017392 DOI: 10.1089/hum.2011.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current methods of gene transfer for heart disease include injection into heart muscle or intracoronary coronary delivery, approaches that typically provide limited expression and are cumbersome to apply. To circumvent these problems, we selected a transgene, insulin-like growth factor-I (IGF-I), which may, in theory, have favorable effects on heart function when secreted from a remote site. We examined the feasibility and efficacy of skeletal muscle injection of adeno-associated virus 5 encoding IGF-I under Tet regulation (AAV5.IGFI-tet) to treat heart failure. Myocardial infarction (MI) was induced in rats by coronary occlusion; 1 week later, rats with impaired left ventricular (LV) function received 2×10(12) genome copies (GC) of AAV5.IGFI-tet in the anterior tibialis muscle, and 4 weeks later, were randomly assigned to receive doxycycline in drinking water to activate IGF-I expression (IGF-On; n=10), or not to receive doxycycline (IGF-Off; n=10). Ten weeks after MI (5 weeks after activation of IGF-I expression), LV size and function were assessed by echocardiography and physiological studies. IGF-On rats showed reduced LV end-systolic dimension (p=0.03) and increased LV ejection fraction (p=0.02). In addition, IGF-On rats showed, before and during dobutamine infusion, increases in cardiac output (p=0.02), stroke work (p=0.0001), LV + dP/dt (p<0.0001), LV relaxation (LV - dP/dt; p=0.03), and systolic arterial blood pressure (p=0.0003). Mean arterial pressure and systemic vascular resistance were unchanged. Activation of IGF-I expression reduced cardiac fibrosis (p=0.048), apoptosis (p<0.0001), and caspase-3/7 activity (p=0.04). Serum IGF-I was increased 5 weeks after transgene activation (p=0.008). These data indicate that skeletal muscle injection of AAV5.IGFI-tet enables tetracycline-activated expression, increases serum IGF-I levels, and improves function of the failing heart.
Collapse
Affiliation(s)
- N Chin Lai
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Adeno-associated virus (AAV) is the most promising gene delivery vehicle for muscle-directed gene therapy. AAV's natural tropism to muscle cells, long-term persistent transgene expression, multiple serotypes, as well as its minimal immune response have made AAV vectors well suited for muscle-directed gene therapy. AAV vector-mediated gene delivery to augment muscle structural proteins, such as dystrophin and sarcoglycans, offers great hope for muscular dystrophy patients. In addition, muscle can be used as a therapeutic platform for AAV vectors to express nonmuscle secretory/regulatory pathway proteins for diabetes, atherosclerosis, hemophilia, cancer, etc. AAV vector can be delivered into both skeletal muscle and cardiac muscle by means of local, regional, and systemic administrations. Successful animal studies have led to several noteworthy clinical trials involving muscle-directed gene therapy. In this chapter, we describe the basic methodology that is currently utilized in the area of AAV-mediated muscle-directed gene therapy. These methods include vector delivery route, vector dosage, detection of transgene expression by immunostaining and western blot, determination of vector copy numbers and quantification of mRNA expression, as well as potential immune responses involved in AAV delivery. Technical details and tips leading to successful experimentation are also discussed.
Collapse
|
14
|
Gait disturbances in dystrophic hamsters. J Biomed Biotechnol 2011; 2011:235354. [PMID: 21318074 PMCID: PMC3035808 DOI: 10.1155/2011/235354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/08/2010] [Indexed: 11/18/2022] Open
Abstract
The delta-sarcoglycan-deficient hamster is an excellent model to study muscular dystrophy. Gait disturbances, important clinically, have not been described in this animal model. We applied ventral plane videography (DigiGait) to analyze gait in BIO TO-2 dystrophic and BIO F1B control hamsters walking on a transparent treadmill belt. Stride length was ∼13% shorter (P < .05) in TO-2 hamsters at 9 months of age compared to F1B hamsters. Hindlimb propulsion duration, an indicator of muscle strength, was shorter in 9-month-old TO-2 (247 ± 8 ms) compared to F1B hamsters (272 ± 11 ms; P < .05). Braking duration, reflecting generation of ground reaction forces, was delayed in 9-month-old TO-2 (147 ± 6 ms) compared to F1B hamsters (126 ± 8 ms; P < .05). Hindpaw eversion, evidence of muscle weakness, was greater in 9-month-old TO-2 than in F1B hamsters (17.7 ± 1.2° versus 8.7 ± 1.6°; P < .05). Incline and decline walking aggravated gait disturbances in TO-2 hamsters at 3 months of age. Several gait deficits were apparent in TO-2 hamsters at 1 month of age. Quantitative gait analysis demonstrates that dystrophic TO-2 hamsters recapitulate functional aspects of human muscular dystrophy. Early detection of gait abnormalities in a convenient animal model may accelerate the development of therapies for muscular dystrophy.
Collapse
|
15
|
Post-Natal knockdown of fukutin-related protein expression in muscle by long-termRNA interference induces dystrophic pathology [corrected]. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:261-72. [PMID: 21224063 DOI: 10.1016/j.ajpath.2010.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/08/2010] [Accepted: 09/08/2010] [Indexed: 01/15/2023]
Abstract
Limb-girdle muscular dystrophy 2I (LGMD2I) is caused by mutations in the fukutin-related protein (FKRP) gene. Unlike its severe allelic forms, LGMD2I usually involves slower onset and milder course without defects in the central nervous system. The lack of viable animal models that closely recapitulate LGMD2I clinical phenotypes led us to use RNA interference technology to knock down FKRP expression via postnatal gene delivery so as to circumvent embryonic lethality. Specifically, an adeno-associated viral vector was used to deliver short hairpin (shRNA) genes to healthy ICR mice. Adeno-associated viral vectors expressing a single shRNA or two different shRNAs were injected one time into the hind limb muscles. We showed that FKRP expression at 10 months postinjection was reduced by about 50% with a single shRNA and by 75% with the dual shRNA cassette. Dual-cassette injection also reduced a-dystroglycan glycosylation and its affinity to laminin by up to 70% and induced α-dystrophic pathology, including fibrosis and central nucleation, in more than 50% of the myofibers at 10 months after injection. These results suggest that the reduction of approximately or more than 75% of the normal level of FKRP expression induces chronic dystrophic phenotypes in skeletal muscles. Furthermore, the restoration of about 25% of the normal FKRP level could be sufficient for LGMD2I therapy to correct the genetic deficiency effectively and prevent dystrophic pathology.
Collapse
|
16
|
Tang Y, Cummins J, Huard J, Wang B. AAV-directed muscular dystrophy gene therapy. Expert Opin Biol Ther 2010; 10:395-408. [PMID: 20132060 DOI: 10.1517/14712591003604690] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Muscle-directed gene therapy for genetic muscle diseases can be performed by the recombinant adeno-associated viral (rAAV) vector delivery system to achieve long-term therapeutic gene transfer in all affected muscles. AREAS COVERED IN THIS REVIEW Recent progress in rAAV-vector-mediated muscle-directed gene transfer and associated techniques for the treatment of muscular dystrophies (MD). The review covers literature from the past 2 - 3 years. WHAT THE READER WILL GAIN rAAV-directed muscular dystrophy gene therapy can be achieved by mini-dystrophin replacement and exon-skipping strategies. The additional strategies of enhancing muscle regeneration and reducing inflammation in the muscle micro-environment should be useful to optimize therapeutic efficacy. This review compares the merits and shortcomings of different administration methods, promoters and experimental animals that will guide the choice of the appropriate strategy for clinical trials. TAKE HOME MESSAGE Restoration of muscle histopathology and function has been performed using rAAV systemic gene delivery. In addition, the combination of gene replacement and adjuvant therapies in the future may be beneficial with regard to improving muscle regeneration and decreasing myofiber necrosis. The challenges faced by large animal model studies and in human trials arise from gene transfer efficiency and immune response, which may be overcome by optimizing the rAAV vectors utilized and the administration methods.
Collapse
Affiliation(s)
- Ying Tang
- University of Pittsburgh, Department of Orthopaedic Surgery, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
17
|
Zheng H, Qiao C, Wang CH, Li J, Li J, Yuan Z, Zhang C, Xiao X. Efficient retrograde transport of adeno-associated virus type 8 to spinal cord and dorsal root ganglion after vector delivery in muscle. Hum Gene Ther 2010; 21:87-97. [PMID: 19719401 PMCID: PMC2829464 DOI: 10.1089/hum.2009.131] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/31/2009] [Indexed: 11/12/2022] Open
Abstract
The peripheral nervous system (PNS), including peripheral nerves and dorsal root ganglion (DRG), is involved in numerous neurological disorders, such as peripheral neuropathies (diabetic neuropathy, chronic pain, etc.) and demyelination diseases (multiple sclerosis, congenital muscular dystrophy, Charcot-Marie-Tooth disease, etc.). Effective clinical interventions for those diseases are very limited. Gene therapy represents a novel therapeutic strategy for the PNS diseases, especially with simply and minimally invasive delivery methods. Previously, we have shown that adeno-associated virus type 8 (AAV8) can efficiently transduce muscles body wide by a simple intraperitoneal injection in neonatal mice. In this study, we investigated the capacity of AAV8 in transducing PNS in neonatal mice by intraperitoneal injection and also in adult mice by intramuscular injection. Efficient and long-term gene transfer was found in the white matter of the spinal cord, DRG neurons, and peripheral nerves in both groups, treated either as neonates or as adults, particularly neonates. In the adult mice injected with AAV8 in tibialis anterior and gastrocnemius muscles in one of the hind legs, more neurons were transduced in the lower part of the spinal cord than in the upper part; the DRG neurons were transduced more on the vector-injected side than in the contralateral uninjected side. Few cells in the gray matter of the spinal cord were transduced regardless of the delivery methods and age of the mice. These results support the mechanism of vector retrograde transport and suggest that AAV8 crosses blood-nerve barrier poorly. Our finding should have important implications in gene therapy for peripheral neurological disorders.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Chunping Qiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Chi-Hsien Wang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Juan Li
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Jianbin Li
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Zhenhua Yuan
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Xiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514
| |
Collapse
|
18
|
Dean J, Plante J, Huggins GS, Snyder RO, Aikawa R. Role of cyclic AMP-dependent kinase response element-binding protein in recombinant adeno-associated virus-mediated transduction of heart muscle cells. Hum Gene Ther 2009; 20:1005-12. [PMID: 19499975 DOI: 10.1089/hum.2009.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors represent a promising approach to gene delivery for clinical use. Published data indicate that rAAV vector genomes persist in vivo as episomal chromatin in the skeletal muscle of nonhuman primates. In this study, we assessed the interconnection between the transcription factor cyclic AMP response element-binding protein (CREB) and recombinant AAV serotype 2 vector genomes after transduction in vitro and in vivo. rAAV-mediated myocyte transduction was potently blocked in the hearts of mice expressing CREB-S133A, which is a CREB-S133A dominant-negative mutant. Isoproterenol, a strong CREB activator, prominently increased rAAV transduction and the increase was abrogated by silencing the CREB gene with small interfering RNA. In addition, rAAV infection of muscle cells mildly but significantly induced CREB protein phosphorylation at serine-133, and was capable of stimulating CREB-dependent transcription from a reporter plasmid. Using chromatin immunoprecipitation and immunoblotting assays, both CREB and p300 were found to physically associate with two different rAAV genomes. Accordingly, CREB/p300 appears to have a role in rAAV transduction to establish active vector transcription in heart muscle cells.
Collapse
Affiliation(s)
- Jarrod Dean
- Department of Cardiovascular Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Sarcoglycanopathies are a group of autosomal recessive muscle-wasting disorders caused by genetic defects in one of four cell membrane glycoproteins, alpha-, beta-, gamma- or delta-sarcoglycan. These four sarcoglycans form a subcomplex that is closely linked to the major dystrophin-associated protein complex, which is essential for membrane integrity during muscle contraction and provides a scaffold for important signalling molecules. Proper assembly, trafficking and targeting of the sarcoglycan complex is of vital importance, and mutations that severely perturb tetramer formation and localisation result in sarcoglycanopathy. Gene defects in one sarcoglycan cause the absence or reduced concentration of the other subunits. Most genetic defects generate mutated proteins that are degraded through the cell's quality control system; however, in many cases, conformational modifications do not affect the function of the protein, yet it is recognised as misfolded and prematurely degraded. Recent evidence shows that misfolded sarcoglycans could be rescued to the cell membrane by assisting their maturation along the ER secretory pathway. This review summarises the etiopathogenesis of sarcoglycanopathies and highlights the quality control machinery as a potential pharmacological target for therapy of these genetic disorders.
Collapse
Affiliation(s)
- Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, 35121
Padova, Italy
| | - Romeo Betto
- C.N.R. Institute of Neuroscience, Neuromuscular Biology and
Physiopathology, 35121 Padova, Italy
| |
Collapse
|
20
|
Phadke AP, Jay C, Chen SJ, Haddock C, Wang Z, Yu Y, Nemunaitis D, Nemunaitis G, Templeton NS, Senzer N, Maples PB, Tong AW, Nemunaitis J. Safety and in vivo expression of a GNE-transgene: a novel treatment approach for hereditary inclusion body myopathy-2. GENE REGULATION AND SYSTEMS BIOLOGY 2009; 3:89-101. [PMID: 19838336 PMCID: PMC2758285 DOI: 10.4137/grsb.s2210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hereditary inclusion body myopathy-2 (HIBM2) is an adult-onset, muscular disease caused by mutations in the GNE gene. HIBM2-associated GNE mutations causing hyposialyation have been proposed to contribute to reduced muscle function in patients with HIBM2, though the exact cause of this disease is unknown. In the current studies we examined pre-clinical in vivo toxicity, and expression of the plasmid-based, CMV driven wild-type GNE plasmid vector. The plasmid vector was injected intramuscularly (IM) or systemically (IV) into BALB/c mice, following encapsulation in a cationic liposome (DOTAP:Cholesterol). Single IM injections of the GNE-lipoplex at 40 μg did not produce overt toxicity or deaths, indicating that the no observable adverse effect level (NOAEL) dose for IM injection was ≥40 μg. Single intravenous (IV) infusion of GNE-lipoplex was lethal in 33% of animals at 100 μg dose, with a small proportion of animals in the 40 μg cohort demonstrating transient toxicity. Thus the NOAEL dose by the IV route was greater than 10 μg and less than or equal to 40 μg. Real-time RT-qPCR analysis demonstrated recombinant human GNE mRNA expression in 100% of muscle tissues that received IM injection of 40 μg GNE-lipoplex, at 2 weeks. These results indicate that GNE-lipoplex gene transfer is safe and can produce durable transgene expression in treated muscles. Our findings support future exploration of the clinical efficacy of GNE-lipoplex for experimental gene therapy of HIBM2.
Collapse
|
21
|
Li J, Sun W, Wang B, Xiao X, Liu XQ. Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther 2008; 19:958-64. [PMID: 18788906 DOI: 10.1089/hum.2008.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inteins catalyze protein splicing in a fashion similar to how self-splicing introns catalyze RNA splicing. Splitinteins catalyze precise ligation of two separate polypeptides through trans-splicing in a highly specific manner. Here we report a method of using protein trans-splicing to circumvent the packaging size limit of gene therapy vectors. To demonstrate this method, we chose a large dystrophin gene and an adeno-associated viral (AAV) vector, which has a small packaging size. A highly functional 6.3-kb Becker-form dystrophin cDNA was broken into two pieces and modified by adding appropriate split-intein coding sequences, resulting in splitgenes sufficiently small for packaging in AAV vectors. The two split-genes, after codelivery into target cells, produced two polypeptides that spontaneously trans-spliced to form the expected Becker-form dystrophin protein in cell culture in vitro. Delivering the split-genes by AAV1 vectors into the muscle of a mouse model of Duchenne muscular dystrophy rendered therapeutic gene expression and benefits.
Collapse
Affiliation(s)
- Juan Li
- Division of Molecular Pharmaceutics, University of North Carolina School of Pharmacy, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
22
|
Nishiyama A, Ampong BN, Ohshima S, Shin JH, Nakai H, Imamura M, Miyagoe-Suzuki Y, Okada T, Takeda S. Recombinant adeno-associated virus type 8-mediated extensive therapeutic gene delivery into skeletal muscle of alpha-sarcoglycan-deficient mice. Hum Gene Ther 2008; 19:719-30. [PMID: 18578595 DOI: 10.1089/hum.2007.184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autosomal recessive limb-girdle muscular dystrophy type 2D (LGMD 2D) is caused by mutations in the alpha-sarcoglycan gene (alpha-SG). The absence of alpha-SG results in the loss of the SG complex at the sarcolemma and compromises the integrity of the sarcolemma. To establish a method for recombinant adeno-associated virus (rAAV)-mediated alpha-SG gene therapy into alpha-SG-deficient muscle, we constructed rAAV serotypes 2 and 8 expressing the human alpha-SG gene under the control of the ubiquitous cytomegalovirus promoter (rAAV2-alpha-SG and rAAV8-alpha-SG). We compared the transduction profiles and evaluated the therapeutic effects of a single intramuscular injection of rAAVs into alpha-SG-deficient (Sgca(-/-)) mice. Four weeks after rAAV2 injection into the tibialis anterior (TA) muscle of 10-day-old Sgca(-/-) mice, transduction of the alpha-SG gene was localized to a limited area of the TA muscle. On the other hand, rAAV8-mediated alpha-SG expression was widely distributed in the hind limb muscle, and persisted for 7 months without inducing cytotoxic and immunological reactions, with a reversal of the muscle pathology and improvement in the contractile force of the Sgca(-/-) muscle. This extensive rAAV8-mediated alpha-SG transduction in LGMD 2D model animals paves the way for future clinical application.
Collapse
Affiliation(s)
- Akiyo Nishiyama
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang B, Li J, Qiao C, Chen C, Hu P, Zhu X, Zhou L, Bogan J, Kornegay J, Xiao X. A canine minidystrophin is functional and therapeutic in mdx mice. Gene Ther 2008; 15:1099-106. [PMID: 18432277 DOI: 10.1038/gt.2008.70] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Duchenne muscular dystrophy (DMD) is the most common and lethal genetic muscle disorder lacking a curative treatment. We wish to use the dystrophin-deficient golden retriever muscular dystrophy (GRMD) dog, a canine model of DMD, to investigate adeno-associated virus (AAV) vector-mediated minidystrophin gene therapy. The dog model is useful in evaluating vector dose requirement and immunological consequences owing to its large size and outbred nature. In this study, we have cloned and constructed a canine minidystrophin gene vector. Owing to limited availability of the GRMD dogs, here we first examined the functions and therapeutic effects of the canine minidystrophin in the mdx mouse model. We observed efficient minigene expression without cellular immune responses in mdx mice after AAV1-cMinidys vector intramuscular injection. We also observed restoration of the missing dystrophin-associated protein complex (DPC) onto the sarcolemma, including sarcoglycans and dystrobrevin, and a partial restoration of alpha-syntrophin and neural nitric oxide synthase (nNOS). In addition, minidystrophin treatment ameliorated dystrophic pathology, such as fibrosis and myofiber central nucleation (CN). CN remained minimal (<2%) after AAV injection in the neonatal mdx mice and was reduced from more than 75% to about 25% after AAV injection in adult mdx mice. Finally, in vivo cell membrane leakage test with Evans blue dye showed that the canine minidystrophin could effectively protect the myofiber plasma membrane integrity. Our results, thus, demonstrated the functionality and therapeutic potential of the canine minidystrophin and paved its way for further testing in the GRMD dog model.
Collapse
Affiliation(s)
- B Wang
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nakae Y, Hirasaka K, Goto J, Nikawa T, Shono M, Yoshida M, Stoward PJ. Subcutaneous injection, from birth, of epigallocatechin-3-gallate, a component of green tea, limits the onset of muscular dystrophy in mdx mice: a quantitative histological, immunohistochemical and electrophysiological study. Histochem Cell Biol 2008; 129:489-501. [PMID: 18264714 DOI: 10.1007/s00418-008-0390-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2008] [Indexed: 11/28/2022]
Abstract
Dystrophic muscles suffer from enhanced oxidative stress. We have investigated whether administration of an antioxidant, epigallocatechin-3-gallate (EGCG), a component of green tea, reduces their oxidative stress and pathophysiology in mdx mice, a mild phenotype model of human Duchenne-type muscular dystrophy. EGCG (5 mg/kg body weight in saline) was injected subcutaneously 4x a week into the backs of C57 normal and dystrophin-deficient mdx mice for 8 weeks after birth. Saline was injected into normal and mdx controls. EGCG had almost no observable effects on normal mice or on the body weights of mdx mice. In contrast, it produced the following improvements in the blood chemistry, muscle histology, and electrophysiology of the treated mdx mice. First, the activities of serum creatine kinase were reduced to normal levels. Second, the numbers of fluorescent lipofuscin granules per unit volume of soleus and diaphragm muscles were significantly decreased by about 50% compared to the numbers in the corresponding saline-treated controls. Third, in sections of diaphragm and soleus muscles, the relative area occupied by histologically normal muscle fibres increased significantly 1.5- to 2-fold whereas the relative areas of connective tissue and necrotic muscle fibres were substantially reduced. Fourth, the times for the maximum tetanic force of soleus muscles to fall by a half increased to almost normal values. Fifth, the amount of utrophin in diaphragm muscles increased significantly by 17%, partially compensating for the lack of dystrophin expression.
Collapse
MESH Headings
- Animals
- Camellia sinensis/chemistry
- Catechin/administration & dosage
- Catechin/analogs & derivatives
- Catechin/pharmacology
- Creatine Kinase/blood
- Electrophysiology
- Immunohistochemistry
- Injections, Subcutaneous
- Lipofuscin/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Contraction/drug effects
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- RNA, Messenger/metabolism
- Utrophin/analysis
- Utrophin/metabolism
Collapse
Affiliation(s)
- Yoshiko Nakae
- Department of Oral and Maxillofacial Anatomy, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Cytotoxic exposure of bone marrow and other non-hematopoietic organs containing self-renewing stem cell populations is associated with damage to the supportive microenvironment. Recent evidence indicates that radical oxygen species resulting from the initial oxidative stress persist for months after ionizing irradiation exposure of tissues including oral cavity, esophagus, lung and bone marrow. Antioxidant gene therapy using manganese superoxide dismutase plasmid liposomes has provided organ-specific radiation protection associated with delay or prevention of acute and late toxicity. Recent evidence has suggested that manganese superoxide dismutase transgene expression in cells of the organ microenvironment contributes significantly to the mechanism of protection. Incorporating this knowledge into designs of novel approaches for stem cell protection is addressed in the present review.
Collapse
Affiliation(s)
- J S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213-2532, USA.
| |
Collapse
|
26
|
Danièle N, Richard I, Bartoli M. Ins and outs of therapy in limb girdle muscular dystrophies. Int J Biochem Cell Biol 2007; 39:1608-24. [PMID: 17339125 DOI: 10.1016/j.biocel.2007.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies are hereditary degenerative muscle diseases that cause life-long disability in patients. They comprise the well-known Duchenne Muscular Dystrophy (DMD) but also the group of Limb Girdle Muscular Dystrophies (LGMD) which account for a third to a fourth of DMD cases. From the clinical point of view, LGMD are characterised by predominant effects on the proximal limb muscles. The LGMD group is still growing today and consists of 19 autosomal dominant and recessive forms (LGMD1A to LGMD1G and LGMD2A to LGMD2M). The proteins involved are very diverse and include sarcomeric, sarcolemmal and enzymatic proteins. With respect to this variability and in line with the intense search for a potent therapeutic approach for DMD, many different strategies have been tested in rodent models. These include replacing the lost function by gene transfer or stem cell transplantation, using a related protein for functional substitution, increasing muscle mass, or blocking the molecular pathological mechanisms by pharmacological means to alleviate the symptoms. The purpose of this review is to summarize current data arising from these preclinical studies and to examine the potential of the tested strategies to lead to clinical applications.
Collapse
|
27
|
Ravenscroft G, Nowak KJ, Jackaman C, Clément S, Lyons MA, Gallagher S, Bakker AJ, Laing NG. Dissociated flexor digitorum brevis myofiber culture system—A more mature muscle culture system. ACTA ACUST UNITED AC 2007; 64:727-38. [PMID: 17654606 DOI: 10.1002/cm.20223] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Considerable knowledge regarding skeletal muscle physiology and disease has been gleaned from cultured myoblastic cell lines or isolated primary myoblasts. Such muscle cultures can be induced to differentiate into multinucleated myotubes that become striated. However they in general do not fully mature and therefore do not model mature muscle. Contrastingly, fresh and cultured dissociated adult mouse flexor digitorum brevis (FDB) myofibers have been studied for many years. We aimed to investigate the possibility of using the FDB myofiber culture system for drug screening and thus long-term cultures of enzymatically dissociated FDB myofibers were established in 96-well plates. Ca2+ handling experiments were used to investigate the functional state of the myofibers. Imaging of intracellular Ca2+ during electric field stimulation revealed that calcium handling was maintained throughout the culture period of at least 8 days. Western blot and immunostaining analysis showed that the FDB cultures maintained expression of mature proteins throughout the culture period, including alpha-sarcoglycan, dystrophin, fast myosin heavy chain and skeletal muscle alpha-actin. The high levels of the fetal proteins cardiac alpha-actin and utrophin, seen in cultured C2C12 myotubes, were absent in the FDB cultures. The expression of developmentally mature proteins and the absence of fetal proteins, in addition to the maintenance of normal calcium handling, highlights the FDB culture system as a more mature and perhaps more relevant culture system for the study of adult skeletal muscle function. Moreover, it may be a useful system for screening therapeutic agents for the treatment of skeletal muscle disorders.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, West Australian Institute for Medical Research, Nedlands, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fougerousse F, Bartoli M, Poupiot J, Arandel L, Durand M, Guerchet N, Gicquel E, Danos O, Richard I. Phenotypic Correction of α-Sarcoglycan Deficiency by Intra-arterial Injection of a Muscle-specific Serotype 1 rAAV Vector. Mol Ther 2007; 15:53-61. [PMID: 17164775 DOI: 10.1038/sj.mt.6300022] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 09/14/2006] [Indexed: 11/08/2022] Open
Abstract
alpha-Sarcoglycanopathy (limb-girdle muscular dystrophy type 2D, LGMD2D) is a recessive muscular disorder caused by deficiency in alpha-sarcoglycan, a transmembrane protein part of the dystrophin-associated complex. To date, no treatment exists for this disease. We constructed recombinant pseudotype-1 adeno-associated virus (rAAV) vectors expressing the human alpha-sarcoglycan cDNA from a ubiquitous or a muscle-specific promoter. Evidence of specific immune response leading to disappearance of the vector was observed with the ubiquitous promoter. In contrast, efficient and sustained transgene expression with correct sarcolemmal localization and without evident toxicity was obtained with the muscle-specific promoter after intra-arterial injection into the limbs of an LGMD2D murine model. Transgene expression resulted in restoration of the sarcoglycan complex, histological improvement, membrane stabilization, and correction of pseudohypertrophy. More importantly, alpha-sarcoglycan transfer produced full rescue of the contractile force deficits and stretch sensibility and led to an increase of the global activity of the animals when both posterior limbs are injected. Our results establish the feasibility for AAV-mediated alpha-sarcoglycan gene transfer as a therapeutic approach.
Collapse
|
29
|
Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, Swanson MS. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A 2006; 103:11748-53. [PMID: 16864772 PMCID: PMC1544241 DOI: 10.1073/pnas.0604970103] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Indexed: 01/19/2023] Open
Abstract
RNA-mediated pathogenesis is a recently developed disease model that proposes that certain types of mutant genes produce toxic transcripts that inhibit the activities of specific proteins. This pathogenesis model was proposed first for the neuromuscular disease myotonic dystrophy (DM), which is associated with the expansion of structurally related (CTG)(n) and (CCTG)(n) microsatellites in two unrelated genes. At the RNA level, these expansions form stable hairpins that alter the pre-mRNA splicing activities of two antagonistic factor families, the MBNL and CELF proteins. It is unclear which altered activity is primarily responsible for disease pathogenesis and whether other factors and biochemical pathways are involved. Here, we show that overexpression of Mbnl1 in vivo mediated by transduction of skeletal muscle with a recombinant adeno-associated viral vector rescues disease-associated muscle hyperexcitability, or myotonia, in the HSA(LR) poly(CUG) mouse model for DM. Myotonia reversal occurs concurrently with restoration of the normal adult-splicing patterns of four pre-mRNAs that are misspliced during postnatal development in DM muscle. Our results support the hypothesis that the loss of MBNL1 activity is a primary pathogenic event in the development of RNA missplicing and myotonia in DM and provide a rationale for therapeutic strategies designed either to overexpress MBNL1 or inhibit MBNL1 interactions with CUG and CCUG repeat expansions.
Collapse
Affiliation(s)
- Rahul N. Kanadia
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Jihae Shin
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Yuan Yuan
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Stuart G. Beattie
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Thurman M. Wheeler
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642
| | - Charles A. Thornton
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| |
Collapse
|
30
|
Rivière C, Danos O, Douar AM. Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Ther 2006; 13:1300-8. [PMID: 16688207 DOI: 10.1038/sj.gt.3302766] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adeno-associated viral (AAV) vectors promote long-term gene transfer into muscle in many animal species. Increased expression levels may be obtained by using alternative serotypes in combination with repeated administrations. Here we compared AAV vectors based on serotypes 1, 2 and 5 in immunocompetent mice and assessed the feasibility of multiple administrations of either identical (readministration) or different (cross-administration) serotype-based vectors. A 1-year-long dose-response study confirmed the superiority of recombinant (r)AAV1, achieving transduction levels 5 to 10-fold higher than rAAV2 and rAAV5 in mouse skeletal muscle, respectively. Repeated administration demonstrated that increased gene transfer level was achieved with a second injection of rAAV1 following the first administration of rAAV2 or rAAV5. A readministration study with a vector encoding a different gene allowed the evaluation of gene expression from the second vector only. All three rAAVs were inhibited when the animals were previously exposed to the same serotype. In contrast, no significant change in gene expression from the second vector was observed in cross-administration. A humoral immune response was elicited against the viral capsid for all three serotypes following the initial exposure. Neutralizing antibody (NAB) levels correlated with the vector dose injected. No significant cross-reactivity of NAB from a given serotype toward another was observed in vitro. These data provide the first direct comparative evaluation of re- and cross-administration of rAAV1, rAAV2 and rAAV5 in muscle, and further indicate that rAAV1 is capable of transducing muscle tissue when cross-administered.
Collapse
Affiliation(s)
- C Rivière
- Gene Therapy, CNRS UMR 8115, Généthon, Evry, France
| | | | | |
Collapse
|
31
|
Draviam RA, Wang B, Li J, Xiao X, Watkins SC. Mini-dystrophin efficiently incorporates into the dystrophin protein complex in living cells. J Muscle Res Cell Motil 2006; 27:53-67. [PMID: 16496225 DOI: 10.1007/s10974-006-9055-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 01/03/2006] [Indexed: 11/27/2022]
Abstract
Dystrophin is a critical muscle cell structural protein which when deficient results in Duchenne muscular dystrophy. Recently miniature versions of the dystrophin gene have been constructed that ameliorate the pathology in mouse models. To characterize mini-dystrophin's incorporation into the dystrophin protein complex in living cells, two fusion proteins were constructed where mini-dystrophin is fused to the N- or C-terminus of an enhanced green fluorescent protein reporter gene. Both fusion proteins correctly localize at the plasma membrane in vitro and in vivo. Live cell microscopy establishes that mini-dystrophin translocates directly to the PM of differentiating muscle cells, within 4 h of expression. Latrunculin A treatment, actin and beta-dystroglycan binding domain deletion constructs, and co-immunoprecipitation assays demonstrate that mini-dystrophin is firmly anchored to the sarcolemma primarily through its connections to beta-dystroglycan, mimicking effects seen with wild type dystrophin. Furthermore, point mutations made within the putative beta-dystroglycan anchoring ZZ domain of mini-dystrophin result in an ablation of beta-dystroglycan binding and a nuclear translocation of the protein. These results demonstrate that mini-dystrophin is efficiently bound and incorporated into the dystrophin protein complex, via beta-dystroglycan in living cells, similarly to the full length dystrophin protein.
Collapse
MESH Headings
- Actins/metabolism
- Active Transport, Cell Nucleus/physiology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line
- Cell Membrane/metabolism
- Dystroglycans/metabolism
- Dystrophin/genetics
- Dystrophin/metabolism
- Green Fluorescent Proteins/metabolism
- Humans
- Macromolecular Substances/metabolism
- Molecular Weight
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Protein Binding/physiology
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sarcolemma/metabolism
- Thiazolidines/pharmacology
Collapse
Affiliation(s)
- Romesh A Draviam
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. romesh@ pitt.edu
| | | | | | | | | |
Collapse
|
32
|
Zhu T, Zhou L, Mori S, Wang Z, McTiernan CF, Qiao C, Chen C, Wang DW, Li J, Xiao X. Sustained Whole-Body Functional Rescue in Congestive Heart Failure and Muscular Dystrophy Hamsters by Systemic Gene Transfer. Circulation 2005; 112:2650-9. [PMID: 16230483 DOI: 10.1161/circulationaha.105.565598] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The success of muscular dystrophy gene therapy requires widespread and stable gene delivery with minimal invasiveness. Here, we investigated the therapeutic effect of systemic delivery of adeno-associated virus (AAV) vectors carrying human delta-sarcoglycan (delta-SG) gene in TO-2 hamsters, a congestive heart failure and muscular dystrophy model with a delta-SG gene mutation. METHODS AND RESULTS A single injection of double-stranded AAV serotype 8 vector carrying human delta-SG gene without the need of any physical or pharmaceutical interventions achieved nearly complete gene transfer and tissue-specific expression in the heart and skeletal muscles of the diseased hamsters. Broad and sustained (>12 months) restoration of the missing delta-SG gene in the TO-2 hamsters corrected muscle cell membrane leakiness throughout the body and normalized serum creatine kinase levels (a 50- to 100-fold drop). Histological examination revealed minimal or the absence of central nucleation, fibrosis, and calcification in the skeletal muscle and heart. Whole-body functional analysis such as treadmill running showed dramatic improvement, similar to the wild-type F1B hamsters. Furthermore, cardiac functional studies with echocardiography revealed significantly increased percent fractional shortening and decreased left ventricular end-diastolic and end-systolic dimensions in the treated TO-2 hamsters. The survival time of the animals was also dramatically extended. CONCLUSIONS Systemic gene transfer of delta-SG by the AAV serotype 8 vector could effectively ameliorate cardiac and skeletal muscle pathology, profoundly improve cardiac and whole-body functions, and significantly prolong the lifespan of the treated TO-2 hamsters.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Qiao C, Li J, Zhu T, Draviam R, Watkins S, Ye X, Chen C, Li J, Xiao X. Amelioration of laminin-alpha2-deficient congenital muscular dystrophy by somatic gene transfer of miniagrin. Proc Natl Acad Sci U S A 2005; 102:11999-2004. [PMID: 16103356 PMCID: PMC1189311 DOI: 10.1073/pnas.0502137102] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Congenital muscular dystrophy (CMD) is characterized by severe muscle wasting, premature death in early childhood, and lack of effective treatment. Most of the CMD cases are caused by genetic mutations of laminin-alpha2, which is essential for the structural integrity of muscle extracellular matrix. Here, we report that somatic gene delivery of a structurally unrelated protein, a miniature version of agrin, functionally compensates for laminin-alpha2 deficiency in the murine models of CMD. Adeno-associated virus-mediated overexpression of miniagrin restored the structural integrity of myofiber basal lamina, inhibited interstitial fibrosis, and ameliorated dystrophic pathology. Furthermore, systemic gene delivery of miniagrin into multiple vital muscles significantly improved whole body growth and motility and quadrupled the lifespan (50% survival) of the dystrophic mice. Thus, our study demonstrated the efficacy of somatic gene therapy in a mouse model of CMD.
Collapse
Affiliation(s)
- Chunping Qiao
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Danieli-Betto D, Esposito A, Germinario E, Sandonà D, Martinello T, Jakubiec-Puka A, Biral D, Betto R. Deficiency of alpha-sarcoglycan differently affects fast- and slow-twitch skeletal muscles. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1328-37. [PMID: 16002556 DOI: 10.1152/ajpregu.00673.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alpha-sarcoglycan (Sgca) is a transmembrane glycoprotein of the dystrophin complex located at skeletal and cardiac muscle sarcolemma. Defects in the alpha-sarcoglycan gene (Sgca) cause the severe human-type 2D limb girdle muscular dystrophy. Because Sgca-null mice develop progressive muscular dystrophy similar to human disorder they are a valuable animal model for investigating the physiopathology of the disorder. In this study, biochemical and functional properties of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of the Sgca-null mice were analyzed. EDL muscle of Sgca-null mice showed twitch and tetanic kinetics comparable with those of wild-type controls. In contrast, soleus muscle showed reduction of twitch half-relaxation time, prolongation of tetanic half-relaxation time, and increase of maximal rate of rise of tetanus. EDL muscle of Sgca-null mice demonstrated a marked reduction of specific twitch and tetanic tensions and a higher resistance to fatigue compared with controls, changes that were not evident in dystrophic soleus. Contrary to EDL fibers, soleus muscle fibers of Sgca-null mice distinctively showed right shift of the pCa-tension (pCa is the negative log of Ca2+ concentration) relationships and reduced sensitivity to caffeine of sarcoplasmic reticulum. Both EDL and soleus muscles showed striking changes in myosin heavy-chain (MHC) isoform composition, whereas EDL showed a larger number of hybrid fibers than soleus. In contrast to the EDL, soleus muscle of Sgca-null mice contained a higher number of regenerating fibers and thus higher levels of embryonic MHC. In conclusion, this study revealed profound distinctive biochemical and physiological modifications in fast- and slow-twitch muscles resulting from alpha-sarcoglycan deficiency.
Collapse
|
35
|
Vrbová G. Function induced modifications of gene expression: an alternative approach to gene therapy of Duchenne muscular dystrophy. J Muscle Res Cell Motil 2005; 25:187-92. [PMID: 15360134 DOI: 10.1023/b:jure.0000035893.59267.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Duchenne muscular dystrophy a large gene that codes for dystrophin is altered. The possibility that the defective gene/protein could be at least in part substituted by other molecules that the diseased muscle is able to produce and that have a function similar to that of dystrophin is being discussed. Muscle fibres have a tremendous adaptive potential, and the expression of several protein isoforms can be induced by either stretch or long-term change of activity. The exploitation of this ability of muscle cells to express new genes, which would code for proteins that will not be alien to the individual, for treatment of Duchenne muscular dystrophy is being considered. The argument for this approach is strengthened by results that in patients with Duchenne muscular dystrophy the progress of the disease can be slowed with changes of muscle activity.
Collapse
Affiliation(s)
- Gerta Vrbová
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
36
|
Louboutin JP, Wang L, Wilson JM. Gene transfer into skeletal muscle using novel AAV serotypes. J Gene Med 2005; 7:442-51. [PMID: 15517544 DOI: 10.1002/jgm.686] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal muscle is an interesting target for gene delivery because of its mass and because the vectors can be delivered in a noninvasive way. Adeno-associated virus (AAV) vectors are capable of transducing skeletal muscle fibers and achieving stable and safe transgene expression. To date, most animal experiments using AAV have been based on AAV serotype 2, but some recent studies have demonstrated that AAV1 is more efficient than AAV2/2 in transducing muscle fibers. Recently, novel AAVs (AAV7 and AAV8) were isolated from rhesus macaques. METHODS We injected three different muscles (gastrocnemius, soleus, biceps femoris) of immunocompetent C57BL/6 mice with different pseudotyped AAV serotypes (AAV2/1, AAV2/2, AAV2/5, AAV2/7 and AAV2/8) and quantitatively compared the different gene transfer efficiencies. RESULTS The efficiencies of transduction in skeletal muscle with AAV2/7 and AAV2/8 were similar to AAV2/1, and higher than that seen with AAV2/2 and AAV2/5. All serotypes were able to transduce both slow and fast muscle fibers similarly at the vector titer used (1x10(11) genome copies per mouse). Despite a limited inflammatory response (slightly higher when using AAV2/2, AAV2/7 and AAV2/8 vectors than AAV2/1 and AAV2/5), transgene expression was observed throughout the length of the experiment. DISCUSSION These results show that AAV2/7 and AAV2/8 are able to transduce muscle fibers of immunocompetent mice very efficiently, offering new perspectives in gene transfer of skeletal muscle.
Collapse
Affiliation(s)
- Jean-Pierre Louboutin
- Gene Therapy Program, Department of Medicine, Division of Medical Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
37
|
Rolling F. Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Ther 2004; 11 Suppl 1:S26-32. [PMID: 15454954 DOI: 10.1038/sj.gt.3302366] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal degenerative diseases such as retinal macular degeneration and retinitis pigmentosa constitute a broad group of diseases that all share one critical feature, the progressive apoptotic loss of cells in the retina. There is currently no effective treatment available by which the course of these disorders can be modified, and visual dysfunction often progresses to total blindness. Gene therapy represents an attractive approach to treating retinal degeneration because the eye is easily accessible and allows local application of therapeutic vectors with reduced risk of systemic effects. Furthermore, transgene expression within the retina and effects of treatments may be monitored by a variety of noninvasive examinations. An increasing number of strategies for molecular treatment of retinal disease rely on recombinant adeno-associated virus (rAAV) as a therapeutic gene delivery vector. Before rAAV-mediated gene therapy for retinal degeneration becomes a reality, there are a number of important requirements that include: (1) evaluation of different rAAV serotypes, (2) screening of vectors in large animals in order to ensure that they mediate safe and long-term gene expression, (3) appropriate regulation of therapeutic gene expression, (4) evaluation of vectors carrying a therapeutic gene in relevant animal models, (5) identification of suitable patients, and finally (6) manufacture of clinical grade vector. All these steps towards gene therapy are still being explored. Outcomes of these studies will be discussed in the order in which they occur, from vector studies to preclinical assessment of the therapeutic potential of rAAV in animal models of retinal degeneration.
Collapse
Affiliation(s)
- F Rolling
- Laboratoire de Thérapie Génique, INSERM U649, CHU-Hotel DIEU, Nantes Cedex, France
| |
Collapse
|
38
|
Athanasopoulos T, Graham IR, Foster H, Dickson G. Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther 2004; 11 Suppl 1:S109-21. [PMID: 15454965 DOI: 10.1038/sj.gt.3302379] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic muscle disorder caused by recessive mutations in the dystrophin gene. The size of the gene (2.4 Mb) and mRNA (14 kb) in addition to immunogenicity problems and inefficient transduction of mature myofibres by currently available vector systems are formidable obstacles to the development of efficient gene therapy approaches. Adeno-associated viral (AAV) vectors overcome many of the problems associated with other vector systems (nonpathogenicity and minimal immunogenicity, extensive cell and tissue tropism) but accommodate limited transgene capacity (<5 kb). As a result of these observations, a number of laboratories worldwide have engineered a series of microdystrophin cDNAs based on genotype-phenotype relationship in Duchenne (DMD) and Becker (BMD) dystrophic patients, and transgenic studies in mdx mice. Recent progress in characterization of AAV serotypes from various species has demonstrated that alternative AAV serotypes are far more efficient in transducing muscle than the traditionally used AAV2. This article summarizes the current progress in the field of recombinant adeno-associated viral (rAAV) delivery for DMD, including optimization of recombinant AAV-microdystrophin vector systems/cassettes targeting the skeletal and cardiac musculature.
Collapse
Affiliation(s)
- T Athanasopoulos
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | | | | | | |
Collapse
|
39
|
Abstract
Skeletal muscles are composed of fibres of different types, each type being identified by the isoform of myosin heavy chain which is expressed as slow 1, fast 2A, fast 2X, and fast 2B. Slow fibres are resistant to fatigue due to their highly oxidative metabolism whereas 2X and 2B fibres are easily fatiguable and fast 2A fibres exhibit intermediate fatigue resistance. Slow fibres and fast fibres are present in equal proportions in the adult human diaphragm while intercostal muscles contain a higher proportion of fast fibres. A small fibre size, abundance of capillaries, and a high aerobic oxidative enzyme activity are typical features of diaphragm fibres and give them the resistance to fatigue required by their continuous activity. Because of their fibre composition, intercostal muscles are less resistant to fatigue. The structural and functional characteristics of respiratory muscle fibres are not fixed, however, and can be modified in response to several physiological and pathological conditions such as training (adaptation to changes in respiratory load), adaptation to hypoxia, age related changes, and changes associated with respiratory diseases. The properties of respiratory muscle fibres can also be modified by pharmacological agents such as beta2 agonists and corticosteroids used for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- B Polla
- Hospital S Biagio, Department of Pneumology, Alessandria, Italy.
| | | | | | | |
Collapse
|
40
|
Abstract
The dystrophin glycoprotein complex (DGC) is a specialization of cardiac and skeletal muscle membrane. This large multicomponent complex has both mechanical stabilizing and signaling roles in mediating interactions between the cytoskeleton, membrane, and extracellular matrix. Dystrophin, the protein product of the Duchenne and X-linked dilated cardiomyopathy locus, links cytoskeletal and membrane elements. Mutations in additional DGC genes, the sarcoglycans, also lead to cardiomyopathy and muscular dystrophy. Animal models of DGC mutants have shown that destabilization of the DGC leads to membrane fragility and loss of membrane integrity, resulting in degeneration of skeletal muscle and cardiomyocytes. Vascular reactivity is altered in response to primary degeneration in striated myocytes and arises from a vascular smooth muscle cell-extrinsic mechanism.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/therapy
- Caveolin 3
- Caveolins/physiology
- Cricetinae
- Cytoskeletal Proteins/chemistry
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/physiology
- Dystroglycans
- Dystrophin/chemistry
- Dystrophin/genetics
- Dystrophin/physiology
- Genetic Therapy
- Humans
- Laminin/genetics
- Laminin/physiology
- Macromolecular Substances
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mesocricetus
- Mice
- Models, Molecular
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myocardium/ultrastructure
- Neuropeptides/chemistry
- Neuropeptides/genetics
- Neuropeptides/physiology
- Nitric Oxide Synthase/physiology
- Nitric Oxide Synthase Type I
- Protein Conformation
- Protein Structure, Tertiary
- Sarcolemma/physiology
- Sarcolemma/ultrastructure
- Sarcomeres/chemistry
- Sarcomeres/ultrastructure
- Stem Cell Transplantation
Collapse
Affiliation(s)
- Karen A Lapidos
- Department of Molecular Genetics and Cell Biology, University of Chicago, Ill 60637, USA
| | | | | |
Collapse
|
41
|
Sifringer M, Uhlenberg B, Lammel S, Hanke R, Neumann B, von Moers A, Koch I, Speer A. Identification of transcripts from a subtraction library which might be responsible for the mild phenotype in an intrafamilially variable course of Duchenne muscular dystrophy. Hum Genet 2003; 114:149-56. [PMID: 14600829 DOI: 10.1007/s00439-003-1041-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 09/18/2003] [Indexed: 10/26/2022]
Abstract
While frame-shift mutations are usually found in Duchenne muscular dystrophy (DMD), in-frame mutations are associated with the less severe phenotype of Becker's muscular dystrophy. Exceptions have been reported in both directions suggesting the existence of modifying genes, which might be helpful for innovation of new therapeutic strategies. We report on the very rare case of an intrafamilially different course of DMD, with the younger brother being far less affected than the older one when compared at the same age. In this context, we constructed a subtraction library enriched for transcripts over-expressed in the patient with the milder phenotype. Twelve random clones were sequenced, followed by database analysis. Six of them, casein kinase 1 alpha 1, RAP2B, dynactin 3 light chain, core binding factor beta, myosin light polypeptide 2 and one hypothetical gene, were further analysed by real-time RT-PCR. All these genes were over-expressed 3-20 times in the less affected patient compared with the more severely affected one. Casein kinase 1 and the hypothetical gene showed even a slightly higher expression than the control. Up-regulation of myosin light polypeptide 2, one of the most sensitive markers of muscle fibre regeneration, obviously reflects the milder phenotype. Casein kinase 1, dynactin and core binding factor are supposed to be involved in cell cycle pathways. RAP is a component of the signalling network which controls fundamental cellular processes such as proliferation and differentiation. All four might be interesting candidates for a therapeutic approach to diminish progression of dystrophy in DMD.
Collapse
Affiliation(s)
- Marco Sifringer
- Department of Neuropediatrics, Charité, Humboldt-University Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Li J, Wang D, Qian S, Chen Z, Zhu T, Xiao X. Efficient and long-term intracardiac gene transfer in delta-sarcoglycan-deficiency hamster by adeno-associated virus-2 vectors. Gene Ther 2003; 10:1807-13. [PMID: 12960970 DOI: 10.1038/sj.gt.3302078] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracardiac gene transfer and gene therapy have been investigated with different vector systems. Here we used adeno-associated virus (AAV) vectors to deliver either a reporter gene or a therapeutic gene into the heart of golden Syrian hamsters. The method of gene delivery was direct infusion of the AAV2 vectors into the coronary artery ex vivo in a heterotopically transplanted heart. When an AAV2 vector carrying the Lac-Z gene driven by CMV promoter was delivered into the heart of healthy hamsters, effective gene transfer was achieved in up to 90% of the cardiomyocytes. Lac-Z gene expression persisted for more than 1 year without immune rejection or promoter shutoff. Furthermore, when an AAV2 vector carrying human delta-sarcoglycan gene was similarly delivered into the heart of Bio14.6 Syrian hamster, a congestive heart failure and limb girdle muscular dystrophy animal model, widespread therapeutic gene transfer was achieved in a majority of the cardiomyocytes. Efficient expression of the human delta-sarcoglycan gene in the dystrophic hamster hearts restored the entire sarcoglycan complex that was missing due to the primary deficiency of delta-sarcoglycan. Transgene expression persisted for 4 months (the duration of the study) without immune rejection or promoter shutoff. These results indicate that AAV is a promising vector system for cardiac gene therapy.
Collapse
Affiliation(s)
- J Li
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
43
|
Endesfelder S, Bucher S, Kliche A, Reszka R, Speer A. Transfection of normal primary human skeletal myoblasts with p21 and p57 antisense oligonucleotides to improve their proliferation: a first step towards an alternative molecular therapy approach of Duchenne muscular dystrophy. J Mol Med (Berl) 2003; 81:355-62. [PMID: 12732930 DOI: 10.1007/s00109-003-0439-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 03/14/2003] [Indexed: 02/03/2023]
Abstract
Duchenne muscular dystrophy (DMD), caused by the absence of dystrophin, is associated with decreased muscle cell proliferation. An increased p21 mRNA level in DMD patients may be involved in the process. In this context we are interested to improve the proliferation of primary human skeletal muscle cells (SkMC) by a reduction in the cell cycle proteins p21 and p57 using the appropriate antisense oligonucleotides (ASO). Therefore a transfection procedure needs to be optimized in which the oligonucleotide enters the SkMC with a minimal loss of cell vitality and high efficiency. Three different formulations, Effectene, DAC40, and SuperFect, were compared. Proliferation was analyzed comparing cells transfected with p21 and/or p57 ASO vs. cells transfected with scrambled ASO using a bromodeoxyuridine assay. Under optimal conditions (a mixture of 0.25 microg ASO, 5 microl Effectene, 0.8 microl enhancer) SkMC transfected with p21 ASO reveal an average increase in cell proliferation of 32.5+/-11% after 24 h. p57 ASO shows the same effect, but concomitant transfection of p21 and p57 does not enhance it. A cell vitality of 78+/-14% after 24 h was determined by the MTT test. SkMC transfected with DAC40 reveal a maximal increase in proliferation of 38+/-7% after 48 h and show a vitality of 65+/-8%. In contrast to both these formulations, SuperFect was found to be highly toxic for SkMC, with more than 70% dead cells after 24 h. The increase in proliferation, the functional biological effect of p21 ASO, is well correlated with a decrease in p21 detected by western blot analysis of 31.6% for Effectene. Transfection efficiency was measured directly by FACS analysis using FITC-labeled ASO and data showing ASO internalization in 75.8+/-11.2% of the cell population for Effectene and 74.4+/-6.6% cells for DAC40. Taken together transient transfection of p21 or p57 ASO into primary human SkMC using Effectene significantly improves their proliferation compared to transfection with scrambled ASO without a major loss of cell vitality. This represents a basis for the transfer of this technique to dystrophin-deficient SkMC cultures and the introduction of the short interference-RNA technique which might enhance the effect on cell proliferation.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Division
- Cell Survival
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclin-Dependent Kinase Inhibitor p57
- Cyclins/genetics
- Cyclins/metabolism
- Dystrophin/biosynthesis
- Dystrophin/genetics
- Gene Expression/drug effects
- Genetic Therapy
- Humans
- Mice
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/physiology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oligonucleotides, Antisense
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Biotechnology, University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
| | | | | | | | | |
Collapse
|
44
|
Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, Briot D, Chérel Y, Chenuaud P, Samulski J, Moullier P, Rolling F. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003; 7:774-81. [PMID: 12788651 DOI: 10.1016/s1525-0016(03)00098-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We previously described chimeric recombinant adeno-associated virus (rAAV) vectors 2/4 and 2/5 as the most efficient vectors in rat retina. We now characterize these two vectors carrying the CMV.gfp genome following subretinal injection in the Wistar rat, beagle dog, and cynomolgus macaque. Both serotypes displayed stable GFP expression for the duration of the experiment (6 months) in all three animal models. Similar to the AAV-2 serotype, AAV-2/5 transduced both RPE and photoreceptor cells, with higher level of transduction in photoreceptors, whereas rAAV-2/4 transduction was unambiguously restricted to RPE cells. This unique specificity found conserved among all three species makes AAV-2/4-derived vectors attractive for retinal diseases originating in RPE such as Leber congenital amaurosis (RPE65) or retinitis pigmentosa due to a mutated mertk gene. To provide further important preclinical data, vector shedding was monitored by PCR in various biological fluids for 2 months post-rAAV administration. Following rAAV-2/4 and -5 subretinal delivery in dogs (n = 6) and in nonhuman primates (n = 2), vector genome was found in lacrymal and nasal fluids for up to 3-4 days and in the serum for up to 15-20 days. Overall, these findings will have a practical impact on the development of future gene therapy trials of retinal diseases.
Collapse
Affiliation(s)
- Michel Weber
- Laboratoire de Thérapie Génique, INSERM ERM01-05, CHU-Hotel DIEU, Bat. J. Monnet, 30 Avenue J. Monnet, 44035, Nantes Cedex 01, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lu QL, Liang HD, Partridge T, Blomley MJK. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 2003; 10:396-405. [PMID: 12601394 DOI: 10.1038/sj.gt.3301913] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Accepted: 08/29/2002] [Indexed: 11/09/2022]
Abstract
Intramuscular injection of naked plasmid DNA is a safe approach to the systemic delivery of therapeutic gene products, but with limited efficiency. We have investigated the use of microbubble ultrasound to augment naked plasmid DNA delivery by direct injection into mouse skeletal muscle in vivo, in both young (4 weeks) and older (6 months) mice. We observed that the albumin-coated microbubble, Optison (licensed for echocardiography in patients), significantly improves the transfection efficiency even in the absence of ultrasound. The increase in transgene expression is age related as Optison improves transgene expression less efficiently in older mice than in younger mice. More importantly, Optison markedly reduces muscle damage associated with naked plasmid DNA and the presence of cationic polymer PEI 25000. Ultrasound at moderate power (3 W/cm2 1 MHz, 60 s exposure, duty cycle 20%), combined with Optison, increases transfection efficiency in older, but not in young, mice. The safe clinical use of microbubbles and therapeutic ultrasound and, particularly, the protective effect of the microbubbles against tissue damage provide a highly promising approach for gene delivery in muscle in vivo.
Collapse
Affiliation(s)
- Q L Lu
- Muscle Cell Biology, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
46
|
Virus-based vectors for gene expression in mammalian cells: Adeno-associated virus. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Lu QL, Bou-Gharios G, Partridge TA. Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther 2003; 10:131-42. [PMID: 12571642 DOI: 10.1038/sj.gt.3301874] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ever since the publication of the first reports in 1990 using skeletal muscle as a direct target for expressing foreign transgenes, an avalanche of papers has identified a variety of proteins that can be synthesized and correctly processed by skeletal muscle. The impetus to the development of such applications is not only amelioration of muscle diseases, but also a range of therapeutic applications, from immunization to delivery of therapeutic proteins, such as clotting factors and hormones. Although the most efficient way of introducing transgenes into muscle fibres has been by a variety of recombinant viral vectors, there are potential benefits in the use of non-viral vectors. In this review we assess the recent advances in construction and delivery of naked plasmid DNA to skeletal muscle and highlight the options available for further improvements to raise efficiency to therapeutic levels.
Collapse
Affiliation(s)
- Q L Lu
- Muscle Cell Biology Group, MRC Clinical Sciences Center, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, London W12 0NN, UK
| | | | | |
Collapse
|
48
|
Qiao C, Wang B, Zhu X, Li J, Xiao X. A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packaging cell lines. J Virol 2002; 76:13015-27. [PMID: 12438627 PMCID: PMC136669 DOI: 10.1128/jvi.76.24.13015-13027.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previous attempts to establish 293cell-based stable and high-titer adeno-associated virus (AAV) packaging cell lines were unsuccessful, primarily due to adenovirus E1-activated Rep gene expression, which exerts cytostatic and cytotoxic effects on the host cells. Control of the two large AAV Rep proteins (Rep78/68) was insufficient to eliminate the adverse effects, because of the leaky expression of the two small Rep proteins (Rep52/40). However, it was unsuccessful to control Rep52/40 gene expression since its promoter is located within the coding sequence of Rep78/68. To tightly regulate all four Rep proteins by using their own promoters, we have developed a novel gene control paradigm termed "dual splicing switch," which disrupts all four Rep genes by inserting into their shared coding region an intron that harbors transcription termination sequences flanked the LoxP sites. As a result, the structure and activities of the Rep gene promoters, both p5 and p19, are not affected; however, all of the Rep transcripts are prematurely terminated and the genes were inactivated. Removal of the terminator by Cre protein reactivates the transcription of all four Rep proteins derived from their own promoters. This switch system was initially tested in the lacZ gene and a 600-fold induction of beta-galactosidase activity was observed. Using the dual splicing switch strategy, we have subsequently established a number of AAV packaging cell lines from 293 cells, which showed a normal growth rate, high stability, and more importantly, high yields of AAV vectors. Such a gene control paradigm is also useful for other viruses, e.g., autonomous parvoviruses. Finally, the high-titer 293-based AAV packaging cell lines should greatly reduce the risk of wild-type adenovirus contamination and provide a scalable AAV vector production method for both preclinical and clinical studies.
Collapse
Affiliation(s)
- Chunping Qiao
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
49
|
Mattson JP, Miller TA, Poole DC, Delp MD. Fiber composition and oxidative capacity of hamster skeletal muscle. J Histochem Cytochem 2002; 50:1685-92. [PMID: 12486092 DOI: 10.1177/002215540205001214] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hamster is a valuable biological model for physiological investigation. Despite the obvious importance of the integration of cardiorespiratory and muscular system function, little information is available regarding hamster muscle fiber type and oxidative capacity, both of which are key determinants of muscle function. The purpose of this investigation was to measure immunohistochemically the relative composition and size of muscle fibers composed of types I, IIA, IIX, and IIB fibers in hamster skeletal muscle. The oxidative capacity of each muscle was also assessed by measuring citrate synthase activity. Twenty-eight hindlimb, respiratory, and facial muscles or muscle parts from adult (144-147 g bw) male Syrian golden hamsters (n=3) were dissected bilaterally, weighed, and frozen for immunohistochemical and biochemical analysis. Combining data from all 28 muscles analyzed, type I fibers made up 5% of the muscle mass, type IIA fibers 16%, type IIX fibers 39%, and type IIB fibers 40%. Mean fiber cross-sectional area across muscles was 1665 +/- 328 microm(2) for type I fibers, 1900 +/- 417 microm(2) for type IIA fibers, 3230 +/- 784 microm(2) for type IIX fibers, and 4171 +/- 864 microm(2) for type IIB fibers. Citrate synthase activity was most closely related to the population of type IIA fibers (r=0.68, p<0.0001) and was in the rank order of type IIA > I > IIX > IIB. These data demonstrate that hamster skeletal muscle is predominantly composed of type IIB and IIX fibers.
Collapse
Affiliation(s)
- John P Mattson
- Department of Exercise and Sport Science, University of Utah, Salt Lake City 84112, USA.
| | | | | | | |
Collapse
|
50
|
Smythe GM, Lai MC, Grounds MD, Rakoczy PE. Adeno-associated virus-mediated vascular endothelial growth factor gene therapy in skeletal muscle before transplantation promotes revascularization of regenerating muscle. TISSUE ENGINEERING 2002; 8:879-91. [PMID: 12459067 DOI: 10.1089/10763270260424240] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Successful clinical transplantation of whole skeletal muscles can be limited by impaired muscle revascularization and regeneration. The aim of this study was to enhance the revascularization (and hence speed of regeneration) of transplanted whole muscles by transducing muscles with the vascular endothelial growth factor (VEGF) gene before transplantation, using a recombinant adeno-associated virus (rAAV). The rAAV encoding VEGF and green fluorescent protein (GFP) (rAAV.VEGF.GFP) was injected into the tibialis anterior muscles of adult BALB/c mice. One month after injection whole muscle autotransplantation was performed. Muscles were sampled 7 days after autografting. GFP expression was examined as an indicator of persistent transgene expression after grafting, and immunohistochemistry was used to identify VEGF, blood vessels, and newly formed myotubes. After grafting, GFP expression persisted only in a few surviving myofibers in the periphery of rAAV.VEGF.GFP-pretreated muscles, although abundant VEGF expression was seen in myogenic cells in all grafted muscles. Quantitative analysis demonstrated that, although only small numbers of rAAV.VEGF.GFP-transduced myofibers were present, whole muscle grafts preinjected with rAAV.VEGF.GFP were significantly more vascular than saline-injected and uninjected control muscle grafts. Furthermore, rAAV.VEGF.GFP-injected whole muscle transplants were further advanced in terms of regeneration (myotube formation) compared with the uninjected control muscle transplants. This study clearly shows that rAAV-mediated VEGF expression persists only in myofibers that survive the necrosis induced by muscle transplantation; however, this amount of VEGF results in significantly increased revascularization and regeneration of whole muscle transplants.
Collapse
Affiliation(s)
- Gayle M Smythe
- Department of Anatomy and Human Biology, University of Western Australia, Crawley, Perth, Australia 6009
| | | | | | | |
Collapse
|