1
|
Zong Y, Li H, Chang Y, Li J, He L, Shi W, Guo J. Global research trends in the relationship between influenza and CD4 + T/CD8 + T cells: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2435644. [PMID: 39680034 DOI: 10.1080/21645515.2024.2435644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Influenza pathogens cause many illnesses and deaths yearly, posing a serious threat to global public health. As a result, most studies are increasingly focusing on the role of specific CD4+ T/CD8+ T cells in combating influenza. This study examines the key themes and trends in this field using bibliometric analysis. Literature on influenza and CD4+ T/CD8+ T cells were searched (from 1985 to 2023) in the Web of Science Core Collection (WoSCC) database. Eligible articles were screened according to the inclusion and exclusion criteria for bibliometric analysis using VOSviewer, CiteSpace, and the R package "bibliometrix." A total of 1,071 publications from 47 countries or regions and 1,148 institutions associated with 5,728 authors in the disciplines of immunology, virology, biochemistry, and molecular biology were included. The findings indicate a yearly increase in publications related to influenza and CD4+ T/CD8+ T cells, with the United States, Australia, and China leading in publication volume. The University of Melbourne had the highest volume of publications. Only a few researchers collaborated, and the collaborations were mostly concentrated in the same countries/regions. Professor Katherine Kedzierska, associated with The Peter Doherty Institute for Infection and Immunity, was the most productive academic in this field. According to the analysis of highly cited literature and keywords, the application of cellular immunity in formulating pioneering influenza vaccines is a key direction for future research.The role of CD4+ T/CD8+ T cells in combating the influenza virus has emerged as a significant focus within influenza research literature. This article summarizes the research institutions, authors, journals, hotspots, and application trends of CD4+ T/CD8+ T cells in influenza.
Collapse
Affiliation(s)
- Yanping Zong
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Li
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiajie Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei He
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Weibing Shi
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jinchen Guo
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Tarasenko TN, Warren E, Fuchs A, Singh B, Marin J, Szibor M, McGuire PJ. Cytochrome c oxidase dependent respiration is essential for T cell activation, proliferation and memory formation. RESEARCH SQUARE 2024:rs.3.rs-4875322. [PMID: 39315267 PMCID: PMC11419267 DOI: 10.21203/rs.3.rs-4875322/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
T cell activation, proliferation, and differentiation are fundamentally driven by shifts in cellular metabolism, with mitochondria playing a central role. Cytochrome c oxidase (COX, complex IV) is a key player in this process, as its activity is crucial for apoptosis, mtDNA maintenance, mitochondrial transcription, and mitochondrial respiration (MR), all of which influence T cell fate and function. Despite its known roles, the specific functions of COX required for T cell activity in vivo remain unclear. To isolate the role of MR in T cell function, we reintroduced this capability in COX-deficient T cells using an alternative oxidase (AOX) from Ciona intestinalis. Our findings demonstrate that MR is vital for maintaining metabolic balance during T cell activation by alleviating electron pressure from metabolic reprogramming and preserving redox homeostasis. We further showed that AOX mitigates apoptosis, prevents metabolic disruptions in glycolysis and the tricarboxylic acid cycle, and improves mtDNA maintenance and transcription, indicating that these disturbances are secondary to impaired MR in the absence of COX. Most importantly, the introduction of AOX restored robust effector and memory T cell generation and function in COX-deficient cells. These results highlight the essential role of COX-dependent MR in ensuring cellular health and underscore its pivotal role in T cell proliferation and differentiation.
Collapse
Affiliation(s)
- Tatiana N. Tarasenko
- Metabolism, Infection, and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Warren
- Metabolism, Infection, and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda Fuchs
- Metabolism, Infection, and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bharati Singh
- Metabolism, Infection, and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jose Marin
- Metabolism, Infection, and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marten Szibor
- BioMediTech & Tampere University Hospital, Faculty of Medicine and Health Technology, 33014 Tampere University, Finland
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany
| | - Peter J. McGuire
- Metabolism, Infection, and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Garcia Castillo J, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry method pairing T cell receptor and differentiation state analysis. Nat Immunol 2024; 25:1754-1763. [PMID: 39191945 DOI: 10.1038/s41590-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
T cell antigen receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we present a mass cytometric (CyTOF) approach to track T cell responses by combining antibodies for specific TCR Vα and Vβ chains with antibodies against T cell activation and differentiation proteins in mice. This strategy identifies expansions of CD8+ and CD4+ T cells expressing specific Vβ and Vα chains with varying differentiation states in response to Listeria monocytogenes, tumors and respiratory influenza infection. Expanded T cell populations expressing Vβ chains could be directly linked to the recognition of specific antigens from Listeria, tumor cells or influenza. In the setting of influenza infection, we found that common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the TCR diversity and differentiation state of responding T cells. Thus, we present a method to monitor broad changes in TCR use paired with T cell phenotyping during adaptive immune responses.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Mice
- Listeria monocytogenes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Listeriosis/immunology
- Flow Cytometry/methods
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Lymphocyte Activation/immunology
- CD4-Positive T-Lymphocytes/immunology
- Adaptive Immunity
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Sircy LM, Ramstead AG, Gibbs LC, Joshi H, Baessler A, Mena I, García-Sastre A, Emerson LL, Fairfax KC, Williams MA, Hale JS. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. PLoS Pathog 2024; 20:e1011639. [PMID: 39283916 PMCID: PMC11404825 DOI: 10.1371/journal.ppat.1011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection or immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Lisa C. Gibbs
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lyska L. Emerson
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Keke C. Fairfax
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
5
|
Hulin-Curtis S, Geary JK, MacLachlan BJ, Altmann DM, Baillon L, Cole DK, Greenshields-Watson A, Hesketh SJ, Humphreys IR, Jones IM, Lauder SN, Mason GH, Smart K, Scourfield DO, Scott J, Sukhova K, Stanton RJ, Wall A, Rizkallah PJ, Barclay WS, Gallimore A, Godkin A. A targeted single mutation in influenza A virus universal epitope transforms immunogenicity and protective immunity via CD4 + T cell activation. Cell Rep 2024; 43:114259. [PMID: 38819988 DOI: 10.1016/j.celrep.2024.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/22/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024] Open
Abstract
CD4+ T cells are central to adaptive immunity. Their role in cross-protection in viral infections such as influenza and severe acute respiratory syndrome (SARS) is well documented; however, molecular rules governing T cell receptor (TCR) engagement of peptide-human leukocyte antigen (pHLA) class II are less understood. Here, we exploit an aspect of HLA class II presentation, the peptide-flanking residues (PFRs), to "tune" CD4+ T cell responses within an in vivo model system of influenza. Using a recombinant virus containing targeted substitutions at immunodominant HLA-DR1 epitopes, we demonstrate limited weight loss and improved clinical scores after heterosubtypic re-challenge. We observe enhanced protection linked to lung-derived influenza-specific CD4+ and CD8+ T cells prior to re-infection. Structural analysis of the ternary TCR:pHLA complex identifies that flanking amino acids influence side chains in the core 9-mer peptide, increasing TCR affinity. Augmentation of CD4+ T cell immunity is achievable with a single mutation, representing a strategy to enhance adaptive immunity that is decoupled from vaccine modality.
Collapse
Affiliation(s)
- Sarah Hulin-Curtis
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - James K Geary
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Bruce J MacLachlan
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Danny M Altmann
- Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Laury Baillon
- Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - David K Cole
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Alex Greenshields-Watson
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Sophie J Hesketh
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian M Jones
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Sarah N Lauder
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Georgina H Mason
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Kathryn Smart
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - D Oliver Scourfield
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Jake Scott
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ksenia Sukhova
- Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Richard J Stanton
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Aaron Wall
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Pierre J Rizkallah
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Wendy S Barclay
- Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Awen Gallimore
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Andrew Godkin
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
6
|
Liu Z, Kabir MT, Chen S, Zhang H, Wakim LM, Rehm BHA. Intranasal Epitope-Polymer Vaccine Lodges Resident Memory T Cells Protecting Against Influenza Virus. Adv Healthc Mater 2024; 13:e2304188. [PMID: 38411375 PMCID: PMC11469178 DOI: 10.1002/adhm.202304188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Intranasal vaccines, unlike injectable vaccines, boost immunity along the respiratory tract; this can significantly limit respiratory virus replication and shedding. There remains a need to develop mucosal adjuvants and vaccine delivery systems that are both safe and effective following intranasal administration. Here, biopolymer particles (BP) densely coated with repeats of MHC class I restricted immunodominant epitopes derived from influenza A virus namely NP366, a nucleoprotein-derived epitope and PA224, a polymerase acidic subunit derived epitope, are bioengineered. These BP-NP366/PA224 can be manufactured at a high yield and are obtained at ≈93% purity, exhibiting ambient-temperature stability. Immunological characterization includes comparing systemic and mucosal immune responses mounted following intramuscular or intranasal immunization. Immunization with BP-NP366/PA224 without adjuvant triggers influenza-specific CD8+ T cell priming and memory CD8+ T cell development. Co-delivery with the adjuvant poly(I:C) significantly boosts the size and functionality of the influenza-specific pulmonary resident memory CD8+ T cell pool. Intranasal, but not intramuscular delivery of BP-NP366/PA224 with poly(I:C), provides protection against influenza virus challenge. Overall, the BP approach demonstrates as a suitable antigen formulation for intranasal delivery toward induction of systemic protective T cell responses against influenza virus.
Collapse
Affiliation(s)
- Ziyang Liu
- Department of Microbiology and ImmunologyThe University of MelbourneThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoria3000Australia
| | - Md. Tanvir Kabir
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityDon Young RoadNathanQueensland4111Australia
| | - Shuxiong Chen
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityDon Young RoadNathanQueensland4111Australia
| | - Heran Zhang
- Department of Microbiology and ImmunologyThe University of MelbourneThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoria3000Australia
| | - Linda M. Wakim
- Department of Microbiology and ImmunologyThe University of MelbourneThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoria3000Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityDon Young RoadNathanQueensland4111Australia
| |
Collapse
|
7
|
Lanfermeijer J, van de Ven K, Hendriks M, van Dijken H, Lenz S, Vos M, Borghans JAM, van Baarle D, de Jonge J. The Memory-CD8+-T-Cell Response to Conserved Influenza Virus Epitopes in Mice Is Not Influenced by Time Since Previous Infection. Vaccines (Basel) 2024; 12:419. [PMID: 38675801 PMCID: PMC11054904 DOI: 10.3390/vaccines12040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
To protect older adults against influenza A virus (IAV) infection, innovative strategies are imperative to overcome the decrease in protective immune response with age. One approach involves the boosting of CD8+ T cells at middle age that were previously induced by natural infection. At this stage, the immune system is still fit. Given the high conservation of T-cell epitopes within internal viral proteins, such a response may confer lasting protection against evolving influenza strains at older age, also reducing the high number of influenza immunizations currently required. However, at the time of vaccination, some individuals may have been more recently exposed to IAV than others, which could affect the T-cell response. We therefore investigated the fundamental principle of how the interval between the last infection and booster immunization during middle age influences the CD8+ T-cell response. To model this, female mice were infected at either 6 or 9 months of age and subsequently received a heterosubtypic infection booster at middle age (12 months). Before the booster infection, 6-month-primed mice displayed lower IAV-specific CD8+ T-cell responses in the spleen and lung than 9-month-primed mice. Both groups were better protected against the subsequent heterosubtypic booster infection compared to naïve mice. Notably, despite the different CD8+ T-cell levels between the 6-month- and 9-month-primed mice, we observed comparable responses after booster infection, based on IFNγ responses, and IAV-specific T-cell frequencies and repertoire diversity. Lung-derived CD8+ T cells of 6- and 9-month-primed mice expressed similar levels of tissue-resident memory-T-cell markers 30 days post booster infection. These data suggest that the IAV-specific CD8+ T-cell response after boosting is not influenced by the time post priming.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- AstraZeneca, 2594 AV Den Haag, The Netherlands
| | - Koen van de Ven
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- DICA (Dutch Institute for Clinical Auditing), 2333 AA Leiden, The Netherlands
| | - Marion Hendriks
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Deventer Ziekenhuis, 7416 SE Deventer, The Netherlands
| | - Harry van Dijken
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Stefanie Lenz
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- MSD Animal Health, 5830 AA Boxmeer, The Netherlands
| | - Martijn Vos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Virology & Immunology Research, Department Medical Microbiology and Infection Prevention, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Jørgen de Jonge
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
8
|
Castillo JG, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry approach to track the evolution of T cell responses during infection and immunotherapy by paired T cell receptor repertoire and T cell differentiation state analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575237. [PMID: 38260336 PMCID: PMC10802618 DOI: 10.1101/2024.01.11.575237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
T cell receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we developed a mass cytometric (CyTOF) approach combining antibodies specific for different TCR Vα- and Vβ-chains with antibodies against T cell activation and differentiation proteins to identify antigen-specific expansions of T cell subsets and assess aspects of cellular function. This strategy allowed for the identification of expansions of specific Vβ and Vα chain expressing CD8+ and CD4+ T cells with varying differentiation states in response to Listeria monocytogenes, tumors, and respiratory influenza infection. Expanded Vβ chain expressing T cells could be directly linked to the recognition of specific antigens from Listeria, tumor cells, or influenza. In the setting of influenza infection, we showed that the common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the clonal diversity and differentiation state of responding T cells. Thus, we present a new method to monitor broad changes in TCR specificity paired with T cell differentiation during adaptive immune responses.
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| |
Collapse
|
9
|
Hogan MJ, Maheshwari N, Begg BE, Nicastri A, Hedgepeth EJ, Muramatsu H, Pardi N, Miller MA, Reilly SP, Brossay L, Lynch KW, Ternette N, Eisenlohr LC. Cryptic MHC-E epitope from influenza elicits a potent cytolytic T cell response. Nat Immunol 2023; 24:1933-1946. [PMID: 37828378 DOI: 10.1038/s41590-023-01644-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
The extent to which unconventional forms of antigen presentation drive T cell immunity is unknown. By convention, CD8 T cells recognize viral peptides, or epitopes, in association with classical major histocompatibility complex (MHC) class I, or MHC-Ia, but immune surveillance can, in some cases, be directed against peptides presented by nonclassical MHC-Ib, in particular the MHC-E proteins (Qa-1 in mice and HLA-E in humans); however, the overall importance of nonclassical responses in antiviral immunity remains unclear. Similarly uncertain is the importance of 'cryptic' viral epitopes, defined as those undetectable by conventional mapping techniques. Here we used an immunopeptidomic approach to search for unconventional epitopes that drive T cell responses in mice infected with influenza virus A/Puerto Rico/8/1934. We identified a nine amino acid epitope, termed M-SL9, that drives a co-immunodominant, cytolytic CD8 T cell response that is unconventional in two major ways: first, it is presented by Qa-1, and second, it has a cryptic origin, mapping to an unannotated alternative reading frame product of the influenza matrix gene segment. Presentation and immunogenicity of M-SL9 are dependent on the second AUG codon of the positive sense matrix RNA segment, suggesting translation initiation by leaky ribosomal scanning. During influenza virus A/Puerto Rico/8/1934 infection, M-SL9-specific T cells exhibit a low level of egress from the lungs and strong differentiation into tissue-resident memory cells. Importantly, we show that M-SL9/Qa-1-specific T cells can be strongly induced by messenger RNA vaccination and that they can mediate antigen-specific cytolysis in vivo. Our results demonstrate that noncanonical translation products can account for an important fraction of the T cell repertoire and add to a growing body of evidence that MHC-E-restricted T cells could have substantial therapeutic value.
Collapse
Affiliation(s)
- Michael J Hogan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Nikita Maheshwari
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Bridget E Begg
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emma J Hedgepeth
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A Miller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Century Therapeutics, Philadelphia, PA, USA
| | - Shanelle P Reilly
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Sircy LM, Ramstead AG, Joshi H, Baessler A, Mena I, García-Sastre A, Williams MA, Scott Hale J. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555253. [PMID: 37693425 PMCID: PMC10491174 DOI: 10.1101/2023.08.29.555253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection/immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
11
|
Jia J, Li H, Huang Z, Yu J, Zheng Y, Cao B. Comprehensive immune landscape of lung-resident memory CD8 + T cells after influenza infection and reinfection in a mouse model. Front Microbiol 2023; 14:1184884. [PMID: 37415817 PMCID: PMC10320391 DOI: 10.3389/fmicb.2023.1184884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Background Resident phenotypic memory CD8+ T cells are crucial for immune defense against pathogens. However, little is known about the potential transitions and regulation mechanisms of their function after influenza virus infection and reinfection. In this study, we utilized integrated transcriptome data and in vivo experiments to investigate the key characteristics behind it. Methods Two single-cell RNA sequencing (scRNA-seq) datasets of lung CD8+ T cells and one RNA-seq dataset of lung tissue after infection or reinfection were included. After Seurat procedures classifying CD8+ T subsets, the scCODE algorithm was used to identify the differentially expressed genes for GSVA, GO, and KEGG pathway enrichment. Monocle 3 and CellChat were used to infer pseudotime cell trajectory and cell interactions. The ssGSEA method was used to estimate the relative proportions of immune cells. The findings were confirmed with a mouse model via flow cytometry and RT-PCR analysis. Results Our study refined the landscape of CD8+ T-cell subsets in the lung, showing that CD8+ Trm cells accumulated in the lung within 14 days after influenza infection. The classical CD8+ Trm cells co-expressed a high level of CD49a and even maintained 90 days after primary infection. The ratio of CD8+ Trm cells decreased 1 day after influenza reinfection, which may be parallel with their potential transition into effector types, as observed in trajectory inference analysis. KEGG analysis suggested that PD-L1 expression and PD-1 checkpoint pathway were upregulated in CD8+ Trm cells on day 14 after infection. GO and GSVA analyses revealed that PI3K-Akt-mTOR and type I interferon signaling pathways were enriched in CD8+ Tem and Trm cells after reinfection. Additionally, CCL signaling pathways were involved in cell interaction between CD8+ Trm cells and other cells, with Ccl4-Ccr5 and Ccl5-Ccr5 ligand/receptor pairs being important between CD8+ Trm and other memory subsets after infection and reinfection. Conclusion Our data suggest that resident memory CD8+ T cells with CD49a co-expression account for a large proportion after influenza infection, and they can be rapidly reactivated against reinfection. Function differences exist in CD8+ Trm and Tem cells after influenza infection and reinfection. Ccl5-Ccr5 ligand/receptor pair is important in cell interactions between CD8+ Trm and other subsets.
Collapse
Affiliation(s)
- Ju Jia
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Zhisheng Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiapei Yu
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zheng
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Ng T, Malavet VF, Mansoor MA, Arvelo AC, Dhume K, Prokop E, McKinstry KK, Strutt TM. Intermediate Levels of Pre-Existing Protective Antibody Allow Priming of Protective T Cell Immunity against Influenza. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:628-639. [PMID: 36645384 PMCID: PMC9998374 DOI: 10.4049/jimmunol.2200393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023]
Abstract
Overcoming interfering impacts of pre-existing immunity to generate universally protective influenza A virus (IAV)-specific T cell immunity through vaccination is a high priority. In this study, we passively transfer varied amounts of H1N1-IAV-specific immune serum before H1N1-IAV infection to determine how different levels of pre-existing Ab influence the generation and protective potential of heterosubtypic T cell responses in a murine model. Surprisingly, IAV nucleoprotein-specific CD4 and CD8 T cell responses are readily detected in infected recipients of IAV-specific immune serum regardless of the amount transferred. When compared with responses in control groups and recipients of low and intermediate levels of convalescent serum, nucleoprotein-specific T cell responses in recipients of high levels of IAV-specific serum, which prevent overt weight loss and reduce peak viral titers in the lungs, are, however, markedly reduced. Although detectable at priming, this response recalls poorly and is unable to mediate protection against a lethal heterotypic (H3N2) virus challenge at later memory time points. A similar failure to generate protective heterosubtypic T cell immunity during IAV priming is seen in offspring of IAV-primed mothers that naturally receive high titers of IAV-specific Ab through maternal transfer. Our findings support that priming of protective heterosubtypic T cell responses can occur in the presence of intermediate levels of pre-existing Ab. These results have high relevance to vaccine approaches aiming to incorporate and evaluate cellular and humoral immunity towards IAV and other viral pathogens against which T cells can protect against variants escaping Ab-mediated protection.
Collapse
Affiliation(s)
- Terry Ng
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Valeria Flores Malavet
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Mishfak A.M. Mansoor
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Andrea C. Arvelo
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Emily Prokop
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - K. Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Tara M. Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| |
Collapse
|
13
|
Groeneveldt C, Kinderman P, van Stigt Thans JJC, Labrie C, Griffioen L, Sluijter M, van den Wollenberg DJM, Hoeben RC, den Haan JMM, van der Burg SH, van Hall T, van Montfoort N. Preinduced reovirus-specific T-cell immunity enhances the anticancer efficacy of reovirus therapy. J Immunother Cancer 2022; 10:jitc-2021-004464. [PMID: 35853671 PMCID: PMC9301813 DOI: 10.1136/jitc-2021-004464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Many solid tumors do not respond to immunotherapy due to their immunologically cold tumor microenvironment (TME). We and others found that oncolytic viruses (OVs), including reovirus type 3 Dearing, can enhance the efficacy of immunotherapy by recruiting CD8+ T cells to the TME. A significant part of the incoming CD8+ T cells is directed toward reovirus itself, which may be detrimental to the efficacy of OVs. However, here we aim to exploit these incoming virus-specific T cells as anticancer effector cells. METHODS We performed an in-depth characterization of the reovirus-induced T-cell response in immune-competent mice bearing pancreatic KPC3 tumors. The immunodominant CD8+ T-cell epitope of reovirus was identified using epitope prediction algorithms and peptide arrays, and the quantity and quality of reovirus-specific T cells after reovirus administration were assessed using high-dimensional flow cytometry. A synthetic long peptide (SLP)-based vaccination strategy was designed to enhance the intratumoral frequency of reovirus-specific CD8+ T cells. RESULTS Reovirus administration did not induce tumor-specific T cells but rather induced high frequencies of reovirus-specific CD8+ T cells directed to the immunodominant epitope. Priming of reovirus-specific T cells required a low-frequent population of cross-presenting dendritic cells which was absent in Batf3-/- mice. While intratumoral and intravenous reovirus administration induced equal systemic frequencies of reovirus-specific T cells, reovirus-specific T cells were highly enriched in the TME exclusively after intratumoral administration. Here, they displayed characteristics of potent effector cells with high expression of KLRG1, suggesting they may be responsive against local reovirus-infected cells. To exploit these reovirus-specific T cells as anticancer effector cells, we designed an SLP-based vaccination strategy to induce a strong T-cell response before virotherapy. These high frequencies of circulating reovirus-specific T cells were reactivated on intratumoral reovirus administration and significantly delayed tumor growth. CONCLUSIONS These findings provide proof of concept that OV-specific T cells, despite not being tumor-specific, can be exploited as potent effector cells for anticancer treatment when primed before virotherapy. This is an attractive strategy for low-immunogenic tumors lacking tumor-specific T cells.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Priscilla Kinderman
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Camilla Labrie
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa Griffioen
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Sluijter
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Rob C Hoeben
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joke M M den Haan
- Molecular Cell Biology and Immunlogy, Amsterdam UMC - Location VUMC, Amsterdam, The Netherlands
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald van Hall
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadine van Montfoort
- Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Louie AY, Tingling J, Dray E, Hussain J, McKim DB, Swanson KS, Steelman AJ. Dietary Cholesterol Causes Inflammatory Imbalance and Exacerbates Morbidity in Mice Infected with Influenza A Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2523-2539. [PMID: 35577367 DOI: 10.4049/jimmunol.2100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
Influenza is a common cause of pneumonia-induced hospitalization and death, but how host factors function to influence disease susceptibility or severity has not been fully elucidated. Cellular cholesterol levels may affect the pathogenesis of influenza infection, as cholesterol is crucial for viral entry and replication, as well as immune cell proliferation and function. However, there is still conflicting evidence on the extent to which dietary cholesterol influences cholesterol metabolism. In this study, we examined the effects of a high-cholesterol diet in modulating the immune response to influenza A virus (IAV) infection in mice. Mice were fed a standard or a high-cholesterol diet for 5 wk before inoculation with mouse-adapted human IAV (Puerto Rico/8/1934), and tissues were collected at days 0, 4, 8, and 16 postinfection. Cholesterol-fed mice exhibited dyslipidemia characterized by increased levels of total serum cholesterol prior to infection and decreased triglycerides postinfection. Cholesterol-fed mice also displayed increased morbidity compared with control-fed mice, which was neither a result of immunosuppression nor changes in viral load. Instead, transcriptomic analysis of the lungs revealed that dietary cholesterol caused upregulation of genes involved in viral-response pathways and leukocyte trafficking, which coincided with increased numbers of cytokine-producing CD4+ and CD8+ T cells and infiltrating dendritic cells. Morbidity as determined by percent weight loss was highly correlated with numbers of cytokine-producing CD4+ and CD8+ T cells as well as granulocytes. Taken together, dietary cholesterol promoted IAV morbidity via exaggerated cellular immune responses that were independent of viral load.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Joseph Tingling
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Evan Dray
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jamal Hussain
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL; .,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
15
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Uddbäck I, Kohlmeier JE, Thomsen AR, Christensen JP. A Novel H-2 d Epitope for Influenza A Polymerase Acidic Protein. Viruses 2022; 14:601. [PMID: 35337006 PMCID: PMC8949235 DOI: 10.3390/v14030601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 01/25/2023] Open
Abstract
Understanding the complexity of the T-cell epitope hierarchy in humans through mouse models can be difficult. In particular, using only one murine strain, the C57BL/6 mouse, to investigate the immune response to influenza virus infection limits our understanding. In the present study, by immunizing C57BL/6 mice with an adenoviral vector encoding the polymerase acidic (AdIiPA) protein of influenza A virus, we were able to induce a high number of PA-specific T cells. However, upon challenge, these cells were only partly protective. When instead immunizing BALB/c mice with AdIiPA, we found that the immunized mice were fully protected against challenge. We found that this protection was dependent on CD8 T cells, and we identified a novel H-2Dd-restricted epitope, PA33. These findings provide a new tool for researchers to study PA-specific immunity in mice with an H-2d haplotype. Additionally, our findings underscore the importance of critically evaluating important limitations of using a single inbred mouse strain in vaccine studies.
Collapse
Affiliation(s)
- Ida Uddbäck
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (I.U.); (A.R.T.)
| | - Jacob E. Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA;
| | - Allan R. Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (I.U.); (A.R.T.)
| | - Jan P. Christensen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (I.U.); (A.R.T.)
| |
Collapse
|
17
|
Martini V, Edmans M, Gubbins S, Jayaraman S, Paudyal B, Morgan S, McNee A, Morin T, Rijal P, Gerner W, Sewell AK, Inoue R, Bailey M, Connelley T, Charleston B, Townsend A, Beverley P, Tchilian E. Spatial, temporal and molecular dynamics of swine influenza virus-specific CD8 tissue resident memory T cells. Mucosal Immunol 2022; 15:428-442. [PMID: 35145208 PMCID: PMC9038527 DOI: 10.1038/s41385-021-00478-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/04/2023]
Abstract
For the first time we have defined naïve, central memory, effector memory and differentiated effector porcine CD8 T cells and analyzed their distribution in lymphoid and respiratory tissues after influenza infection or immunization, using peptide-MHC tetramers of three influenza nucleoprotein (NP) epitopes. The hierarchy of response to the three epitopes changes during the response in different tissues. Most NP-specific CD8 T cells in broncho-alveolar lavage (BAL) and lung are tissue resident memory cells (TRM) that express CD69 and downregulate CD45RA and CCR7. NP-specific cells isolated from BAL express genes characteristic of TRM, but gene expression differs at 7, 21 and 63 days post infection. In all tissues the frequency of NP-specific CD8 cells declines over 63 days almost to background levels but is best maintained in BAL. The kinetic of influenza specific memory CD8 T cell in this natural host species differs from that in small animal models.
Collapse
Affiliation(s)
- Veronica Martini
- The Pirbright Institute, Pirbright, UK.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | | | | | | | | | | | | | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Osaka, Japan
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | | | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peter Beverley
- National Heart and Lung Institute, St Mary's Campus, Imperial College, London, UK
| | | |
Collapse
|
18
|
Gaevert JA, Luque Duque D, Lythe G, Molina-París C, Thomas PG. Quantifying T Cell Cross-Reactivity: Influenza and Coronaviruses. Viruses 2021; 13:1786. [PMID: 34578367 PMCID: PMC8472275 DOI: 10.3390/v13091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
If viral strains are sufficiently similar in their immunodominant epitopes, then populations of cross-reactive T cells may be boosted by exposure to one strain and provide protection against infection by another at a later date. This type of pre-existing immunity may be important in the adaptive immune response to influenza and to coronaviruses. Patterns of recognition of epitopes by T cell clonotypes (a set of cells sharing the same T cell receptor) are represented as edges on a bipartite network. We describe different methods of constructing bipartite networks that exhibit cross-reactivity, and the dynamics of the T cell repertoire in conditions of homeostasis, infection and re-infection. Cross-reactivity may arise simply by chance, or because immunodominant epitopes of different strains are structurally similar. We introduce a circular space of epitopes, so that T cell cross-reactivity is a quantitative measure of the overlap between clonotypes that recognize similar (that is, close in epitope space) epitopes.
Collapse
Affiliation(s)
- Jessica Ann Gaevert
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| | - Daniel Luque Duque
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK; (D.L.D.); (G.L.)
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK; (D.L.D.); (G.L.)
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK; (D.L.D.); (G.L.)
- T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Paul Glyndwr Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| |
Collapse
|
19
|
Roy S, Williams CM, Furuya Y. Detrimental impact of allergic airway disease on live attenuated influenza vaccine. Health Sci Rep 2021; 4:e272. [PMID: 34250267 PMCID: PMC8247940 DOI: 10.1002/hsr2.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sreeja Roy
- Department of Immunology and Microbial DiseaseAlbany Medical CollegeAlbanyNew York
| | - Clare M. Williams
- Department of Immunology and Microbial DiseaseAlbany Medical CollegeAlbanyNew York
| | - Yoichi Furuya
- Department of Immunology and Microbial DiseaseAlbany Medical CollegeAlbanyNew York
| |
Collapse
|
20
|
Wu W, Tian L, Zhang W, Booth JL, Ainsua-Enrich E, Kovats S, Brown BR, Metcalf JP. Long-term cigarette smoke exposure dysregulates pulmonary T cell response and IFN-γ protection to influenza virus in mouse. Respir Res 2021; 22:112. [PMID: 33879121 PMCID: PMC8056367 DOI: 10.1186/s12931-021-01713-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a highly contagious, acute, febrile respiratory infection caused by a negative-sense, single-stranded RNA virus, which belongs in the Orthomyxoviridae family. Cigarette smoke (CS) exposure worsens influenza infection in terms of frequency and severity in both human and animal models. METHODS C57BL/6 mice with or without CS exposure for 6 weeks were inoculated intranasally with a single, non-lethal dose of the influenza A virus (IAV) A/Puerto Rico/8/1934 (PR8) strain. At 7 and 10 days after infection, lung and mediastinal lymph nodes (MLN) cells were collected to determine the numbers of total CD4 + and CD8 + T cells, and IAV-specific CD4 + and CD8 + T cells, using flow cytometry. Bronchoalveolar lavage fluid (BALF) was also collected to determine IFN-γ levels and total protein concentration. RESULTS Although long-term CS exposure suppressed early pulmonary IAV-antigen specific CD8 + and CD4 + T cell numbers and IFN-γ production in response to IAV infection on day 7 post-infection, CS enhanced numbers of these cells and IFN-γ production on day 10. The changes of total protein concentration in BALF are consistent with the changes in the IFN-γ amounts between day 7 and 10, which suggested that excessive IFN-γ impaired barrier function and caused lung injury at the later stage of infection. CONCLUSIONS Our results demonstrated that prior CS exposure caused a biphasic T cell and IFN-γ response to subsequent infection with influenza in the lung. Specifically, the number of IAV antigen-specific T cells on day 10 was greatly increased by CS exposure even though CS decreased the number of the same group of cells on day 7. The result suggested that CS affected the kinetics of the T cell response to IAV, which was suppressed at an early stage and exaggerated at a later stage. This study is the first to describe the different effect of long-term CS on T cell responses to IAV at early and late stages of infection in vivo.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
| | - Lili Tian
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Wei Zhang
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - J Leland Booth
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Erola Ainsua-Enrich
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Susan Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brent R Brown
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Jordan P Metcalf
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
21
|
T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses 2021; 13:v13020199. [PMID: 33525620 PMCID: PMC7911237 DOI: 10.3390/v13020199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Current flu vaccines rely on the induction of strain-specific neutralizing antibodies, which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains. Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans and different animal models. Furthermore, we provide an update on preclinical and clinical studies evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life vaccine policies.
Collapse
|
22
|
Rezinciuc S, Tian Z, Wu S, Hengel S, Pasa-Tolic L, Smallwood HS. Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells. Viruses 2020; 12:v12121409. [PMID: 33302437 PMCID: PMC7762524 DOI: 10.3390/v12121409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection. Activation significantly altered PTMs following influenza infection, histone maps changed as T cells migrated to the site of infection, and T cells responding to secondary infections had significantly more transcription enhancing modifications. Thus, HiPTMap identified and quantified proteoforms and determined changes in CD8 T cell histone PTMs over the course of infection.
Collapse
Affiliation(s)
- Svetlana Rezinciuc
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhixin Tian
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Shawna Hengel
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Heather S. Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Children’s Foundation Research Institute, Memphis, TN 38105, USA
- Correspondence: ; Tel.: +1-(901)-448–3068
| |
Collapse
|
23
|
Kealy L, Di Pietro A, Hailes L, Scheer S, Dalit L, Groom JR, Zaph C, Good-Jacobson KL. The Histone Methyltransferase DOT1L Is Essential for Humoral Immune Responses. Cell Rep 2020; 33:108504. [PMID: 33326791 DOI: 10.1016/j.celrep.2020.108504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/02/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Histone modifiers are essential for the ability of immune cells to reprogram their gene expression during differentiation. The recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like) induces oncogenic gene expression in a subset of B cell leukemias. Despite its importance, its role in the humoral immune system is unclear. Here, we demonstrate that DOT1L is a critical regulator of B cell biology. B cell development is defective in Dot1lf/fMb1Cre/+ mice, culminating in a reduction of peripheral mature B cells. Upon immunization or influenza infection of Dot1lf/fCd23Cre/+ mice, class-switched antibody-secreting cells are significantly attenuated and germinal centers fail to form. Consequently, DOT1L is essential for B cell memory formation. Transcriptome, pathway, and histological analyses identified a role for DOT1L in reprogramming gene expression for appropriate localization of B cells during the initial stage of the response. Together, these results demonstrate an essential role for DOT1L in generating an effective humoral immune response.
Collapse
Affiliation(s)
- Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lauren Hailes
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sebastian Scheer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lennard Dalit
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Colby Zaph
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
24
|
Jung HE, Lee HK. Host Protective Immune Responses against Influenza A Virus Infection. Viruses 2020; 12:v12050504. [PMID: 32375274 PMCID: PMC7291249 DOI: 10.3390/v12050504] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
Influenza viruses cause infectious respiratory disease characterized by fever, myalgia, and congestion, ranging in severity from mild to life-threating. Although enormous efforts have aimed to prevent and treat influenza infections, seasonal and pandemic influenza outbreaks remain a major public health concern. This is largely because influenza viruses rapidly undergo genetic mutations that restrict the long-lasting efficacy of vaccine-induced immune responses and therapeutic regimens. In this review, we discuss the virological features of influenza A viruses and provide an overview of current knowledge of the innate sensing of invading influenza viruses and the protective immune responses in the host.
Collapse
Affiliation(s)
- Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| |
Collapse
|
25
|
Belz GT. Elucidating Specificity Opens a Window to the Complexity of Both the Innate and Adaptive Immune Systems. Viral Immunol 2020; 33:145-152. [PMID: 32286183 PMCID: PMC7185331 DOI: 10.1089/vim.2019.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Science is a tedious and painstaking business. Many discoveries are considered incremental, individually not necessarily earth shattering, but collectively providing the critical broad framework on which pivotal insights can emerge. Transformational discoveries spring from this knowledge legacy of others and spur a fervent discovery process, often driven by technological developments. The seminal discovery of major histocompatibility class restriction I (MHCI) and its role in antiviral infections by Doherty and Zinkernagel in 1974 was one such discovery-the key that unlocked the treasure chest to the rich tapestry of the diversity of the immune system. An army of researchers have teased apart the different elements of the immune response, which now brings us to a deeper understanding of immune memory and protective immunity. In this process, it has uncovered a multitude of cell types that bridge the innate and adaptive arms of the immune system-blurring the line between these two branches-and ultimately fortifying the development of long-term immune protection.
Collapse
Affiliation(s)
- Gabrielle T. Belz
- The University of Queensland Diamantina Institute, Brisbane, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medial Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
26
|
Smith A, Rodriguez L, El Ghouayel M, Nogales A, Chamberlain JM, Sortino K, Reilly E, Feng C, Topham DJ, Martínez-Sobrido L, Dewhurst S. A Live Attenuated Influenza Vaccine Elicits Enhanced Heterologous Protection When the Internal Genes of the Vaccine Are Matched to Those of the Challenge Virus. J Virol 2020; 94:e01065-19. [PMID: 31748399 PMCID: PMC6997774 DOI: 10.1128/jvi.01065-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality, despite the availability of viral vaccines. The efficacy of live attenuated influenza vaccines (LAIVs) has been especially poor in recent years. One potential reason is that the master donor virus (MDV), on which all LAIVs are based, contains either the internal genes of the 1960 A/Ann Arbor/6/60 or the 1957 A/Leningrad/17/57 H2N2 viruses (i.e., they diverge considerably from currently circulating strains). We previously showed that introduction of the temperature-sensitive (ts) residue signature of the AA/60 MDV into a 2009 pandemic A/California/04/09 H1N1 virus (Cal/09) results in only 10-fold in vivo attenuation in mice. We have previously shown that the ts residue signature of the Russian A/Leningrad/17/57 H2N2 LAIV (Len LAIV) more robustly attenuates the prototypical A/Puerto Rico/8/1934 (PR8) H1N1 virus. In this work, we therefore introduced the ts signature from Len LAIV into Cal/09. This new Cal/09 LAIV is ts in vitro, highly attenuated (att) in mice, and protects from a lethal homologous challenge. In addition, when our Cal/09 LAIV with PR8 hemagglutinin and neuraminidase was used to vaccinate mice, it provided enhanced protection against a wild-type Cal/09 challenge relative to a PR8 LAIV with the same attenuating mutations. These findings suggest it may be possible to improve the efficacy of LAIVs by better matching the sequence of the MDV to currently circulating strains.IMPORTANCE Seasonal influenza infection remains a major cause of disease and death, underscoring the need for improved vaccines. Among current influenza vaccines, the live attenuated influenza vaccine (LAIV) is unique in its ability to elicit T-cell immunity to the conserved internal proteins of the virus. Despite this, LAIV has shown limited efficacy in recent years. One possible reason is that the conserved, internal genes of all current LAIVs derive from virus strains that were isolated between 1957 and 1960 and that, as a result, do not resemble currently circulating influenza viruses. We have therefore developed and tested a new LAIV, based on a currently circulating pandemic strain of influenza. Our results show that this new LAIV elicits improved protective immunity compared to a more conventional LAIV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing
- Antibodies, Viral/immunology
- Dogs
- Female
- HEK293 Cells
- Humans
- Immunogenicity, Vaccine/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H2N2 Subtype/genetics
- Influenza A Virus, H2N2 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred C57BL
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Andrew Smith
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester, Rochester, New York, USA
| | - Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Maya El Ghouayel
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Jeffrey M Chamberlain
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Katherine Sortino
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Emma Reilly
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
| | - Changyong Feng
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
27
|
Gilfillan CB, Wang C, Mohsen MO, Rufer N, Hebeisen M, Allard M, Verdeil G, Irvine DJ, Bachmann MF, Speiser DE. Murine CD8 T-cell functional avidity is stable in vivo but not in vitro: Independence from homologous prime/boost time interval and antigen density. Eur J Immunol 2019; 50:505-514. [PMID: 31785153 PMCID: PMC7187562 DOI: 10.1002/eji.201948355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 01/13/2023]
Abstract
It is known that for achieving high affinity antibody responses, vaccines must be optimized for antigen dose/density, and the prime/boost interval should be at least 4 weeks. Similar knowledge is lacking for generating high avidity T‐cell responses. The functional avidity (FA) of T cells, describing responsiveness to peptide, is associated with the quality of effector function and the protective capacity in vivo. Despite its importance, the FA is rarely determined in T‐cell vaccination studies. We addressed the question whether different time intervals for short‐term homologous vaccinations impact the FA of CD8 T‐cell responses. Four‐week instead of 2‐week intervals between priming and boosting with potent subunit vaccines in C57BL/6 mice did not improve FA. Equally, similar FA was observed after vaccination with virus‐like particles displaying low versus high antigen densities. Interestingly, FA was stable in vivo but not in vitro, depending on the antigen dose and the time interval since T‐cell activation, as observed in murine monoclonal T cells. Our findings suggest dynamic in vivo modulation for equal FA. We conclude that low antigen density vaccines or a minimal 4‐week prime/boost interval are not crucial for the T‐cell's FA, in contrast to antibody responses.
Collapse
Affiliation(s)
| | - Chensu Wang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Mona O Mohsen
- Inselspital, Universitaetsklinik RIA, Immunologie, Bern, Switzerland.,Jenner Institute, University of Oxford, Oxford, UK
| | - Nathalie Rufer
- Department of Oncology, University of Lausanne, Switzerland.,Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Martin F Bachmann
- Inselspital, Universitaetsklinik RIA, Immunologie, Bern, Switzerland.,Jenner Institute, University of Oxford, Oxford, UK
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Switzerland.,Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
28
|
Warren R, Domm W, Yee M, Campbell A, Malone J, Wright T, Mayer-Pröschel M, O'Reilly MA. Ataxia-telangiectasia mutated is required for the development of protective immune memory after influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2019; 317:L591-L601. [PMID: 31509427 PMCID: PMC6879906 DOI: 10.1152/ajplung.00031.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 01/26/2023] Open
Abstract
Ataxia-telangiectasia (A-T), caused by mutations in the A-T mutated (ATM) gene, is a neurodegenerative disorder affecting ∼1 in 40,000-100,000 children. Recurrent respiratory infections are a common and challenging comorbidity, often leading to the development of bronchiectasis in individuals with A-T. The role of ATM in development of immune memory in response to recurrent respiratory viral infections is not well understood. Here, we infect wild-type (WT) and Atm-null mice with influenza A virus (IAV; HKx31, H3N2) and interrogate the immune memory with secondary infections designed to challenge the B cell memory response with homologous infection (HKx31) and the T cell memory response with heterologous infection (PR8, H1N1). Although Atm-null mice survived primary and secondary infections, they lost more weight than WT mice during secondary infections. This enhanced morbidity to secondary infections was not attributed to failure to effectively clear virus during the primary IAV infection. Instead, Atm-null mice developed persistent peribronchial inflammation, characterized in part by clusters of B220+ B cells. Additionally, levels of select serum antibodies to hemagglutinin-specific IAV were significantly lower in Atm-null than WT mice. These findings reveal that Atm is required to mount a proper memory response to a primary IAV infection, implying that vaccination of children with A-T by itself may not be sufficiently protective against respiratory viral infections.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - William Domm
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Andrew Campbell
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Jane Malone
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Terry Wright
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
29
|
Pizzolla A, Wakim LM. Memory T Cell Dynamics in the Lung during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:374-381. [PMID: 30617119 DOI: 10.4049/jimmunol.1800979] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/08/2018] [Indexed: 01/06/2023]
Abstract
Influenza A virus is highly contagious, infecting 5-15% of the global population every year. It causes significant morbidity and mortality, particularly among immunocompromised and at-risk individuals. Influenza virus is constantly evolving, undergoing continuous, rapid, and unpredictable mutation, giving rise to novel viruses that can escape the humoral immunity generated by current influenza virus vaccines. Growing evidence indicates that influenza-specific T cells resident along the respiratory tract are highly effective at providing potent and rapid protection against this inhaled pathogen. As these T cells recognize fragments of the virus that are highly conserved and less prone to mutation, they have the potential to provide cross-strain protection against a wide breadth of influenza viruses, including newly emerging strains. In this review, we will discuss how influenza-specific memory T cells in the lung are established and maintained and how we can harness this knowledge to design broadly protective influenza A virus vaccines.
Collapse
Affiliation(s)
- Angela Pizzolla
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
30
|
Ioannidou K, Randin O, Semilietof A, Maby-El Hajjami H, Baumgaertner P, Vanhecke D, Speiser DE. Low Avidity T Cells Do Not Hinder High Avidity T Cell Responses Against Melanoma. Front Immunol 2019; 10:2115. [PMID: 31555299 PMCID: PMC6742971 DOI: 10.3389/fimmu.2019.02115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/02/2022] Open
Abstract
The efficacy of T cells depends on their functional avidity, i. e., the strength of T cell interaction with cells presenting cognate antigen. The overall T cell response is composed of multiple T cell clonotypes, involving different T cell receptors and variable levels of functional avidity. Recently, it has been proposed that the presence of low avidity tumor antigen-specific CD8 T cells hinder their high avidity counterparts to protect from tumor growth. Here we analyzed human cytotoxic CD8 T cells specific for the melanoma antigen Melan-A/MART-1. We found that the presence of low avidity T cells did not result in reduced cytotoxicity of tumor cells, nor reduced cytokine production, by high avidity T cells. In vivo in NSG-HLA-A2 mice, the anti-tumor effect of high avidity T cells was similar in presence or absence of low avidity T cells. These data indicate that low avidity T cells are not hindering anti-tumor T cell responses, a finding that is reassuring because low avidity T cells are an integrated part of natural T cell responses.
Collapse
Affiliation(s)
- Kalliopi Ioannidou
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Olivier Randin
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Aikaterini Semilietof
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Hélène Maby-El Hajjami
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Dominique Vanhecke
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV), Lausanne, Switzerland
| |
Collapse
|
31
|
Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses. Nat Commun 2019; 10:2846. [PMID: 31253788 PMCID: PMC6599079 DOI: 10.1038/s41467-019-10661-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/24/2019] [Indexed: 11/08/2022] Open
Abstract
The magnitude of T cell responses to infection is a function of the naïve T cell repertoire combined with the context and duration of antigen presentation. Using mass spectrometry, we identify and quantify 21 class 1 MHC-restricted influenza A virus (IAV)-peptides following either direct or cross-presentation. All these peptides, including seven novel epitopes, elicit T cell responses in infected C57BL/6 mice. Directly presented IAV epitopes maintain their relative abundance across distinct cell types and reveal a broad range of epitope abundances. In contrast, cross-presented epitopes are more uniform in abundance. We observe a clear disparity in the abundance of the two key immunodominant IAV antigens, wherein direct infection drives optimal nucleoprotein (NP)366–374 presentation, while cross-presentation is optimal for acid polymerase (PA)224–233 presentation. The study demonstrates how assessment of epitope abundance in both modes of antigen presentation is necessary to fully understand the immunogenicity and response magnitude to T cell epitopes. CTL responses are critical in protection against pathogens. Here, using mass spectrometry and flow cytometry, the authors characterize the kinetics of influenza A virus class I MHC epitopes cross-presented in professional antigen presenting cells and identify new epitopes that elicit T cell responses in infected mice.
Collapse
|
32
|
Suarez-Ramirez JE, Chandiran K, Brocke S, Cauley LS. Immunity to Respiratory Infection Is Reinforced Through Early Proliferation of Lymphoid T RM Cells and Prompt Arrival of Effector CD8 T Cells in the Lungs. Front Immunol 2019; 10:1370. [PMID: 31258537 PMCID: PMC6587114 DOI: 10.3389/fimmu.2019.01370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Cross-protection between serologically distinct strains of influenza A virus (IAV) is mediated by memory CD8 T cells that recognize epitopes from conserved viral proteins. Early viral control begins with activation of tissue-resident memory CD8 T cells (TRM) cells at the site of viral replication. These CD8 T cells do not act in isolation, as protection against disseminated infection is reinforced by multiple waves of effector cells (TEFF) that enter the lungs with different kinetics. To define how a protective CTL response evolves, we compared the functional properties of antiviral CD8 T cells in the respiratory tract and local lymphoid tissues. When analyzed 30 dpi, large numbers of antiviral CD8 T cells in the lungs and mediastinal lymph nodes (MLNs) expressed canonical markers of TRM cells (CD69 and/or CD103). The check point inhibitor PD-1 was also highly expressed on NP-specific CD8 T cells in the lungs, while the ratios of CD8 T cells expressing CD69 and CD103 varied according to antigen specificity. We next used in vitro experiments to identify conditions that induce a canonical TRM phenotype and found that that naïve and newly activated CD8 T cells maintain CD103 expression during culture with transforming growth factor-beta (TGFβ), while central memory CD8 T cells (TCM) do not express CD103 under similar conditions. In vivo experiments showed that the distribution of antiviral CTLs in the MLN changed when immune mice were treated with reagents that block interactions with PD-L1. Importantly, the lymphoid TRM cells were poised for early proliferation upon reinfection with a different strain of IAV and defenses in the lungs were augmented by a transient increase in numbers of TEFF cells at the site of infection. As the interval between infections increased, lymphoid TRM cells were replaced with TCM cells which proliferated with delayed kinetics and contributed to an exaggerated inflammatory response in the lungs.
Collapse
Affiliation(s)
- Jenny E Suarez-Ramirez
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Karthik Chandiran
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Stefan Brocke
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Linda S Cauley
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
33
|
Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2019; 284:91-105. [PMID: 29944766 DOI: 10.1111/imr.12662] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4 T cells convey a number of discrete functions to protective immunity to influenza, a complexity that distinguishes this arm of adaptive immunity from B cells and CD8 T cells. Although the most well recognized function of CD4 T cells is provision of help for antibody production, CD4 T cells are important in many aspects of protective immunity. Our studies have revealed that viral antigen specificity is a key determinant of CD4 T cell function, as illustrated both by mouse models of infection and human vaccine responses, a factor whose importance is due at least in part to events in viral antigen handling. We discuss research that has provided insight into the diverse viral epitope specificity of CD4 T cells elicited after infection, how this primary response is modified as CD4 T cells home to the lung, establish memory, and after challenge with a secondary and distinct influenza virus strain. Our studies in human subjects point out the challenges facing vaccine efforts to facilitate responses to novel and avian strains of influenza, as well as strategies that enhance the ability of CD4 T cells to promote protective antibody responses to both seasonal and potentially pandemic strains of influenza.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony T DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
34
|
Chu KL, Batista NV, Wang KC, Zhou AC, Watts TH. GITRL on inflammatory antigen presenting cells in the lung parenchyma provides signal 4 for T-cell accumulation and tissue-resident memory T-cell formation. Mucosal Immunol 2019; 12:363-377. [PMID: 30487647 DOI: 10.1038/s41385-018-0105-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/02/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023]
Abstract
T-cell responses in the lung are critical for protection against respiratory pathogens. TNFR superfamily members play important roles in providing survival signals to T cells during respiratory infections. However, whether these signals take place mainly during priming in the secondary lymphoid organs and/or in the peripheral tissues remains unknown. Here we show that under conditions of competition, GITR provides a T-cell intrinsic advantage to both CD4 and CD8 effector T cells in the lung tissue, as well as for the formation of CD4 and CD8 tissue-resident memory T cells during respiratory influenza infection in mice. In contrast, under non-competitive conditions, GITR has a preferential effect on CD8 over CD4 T cells. The nucleoprotein-specific CD8 T-cell response partially compensated for GITR deficiency by expansion of higher affinity T cells; whereas, the polymerase-specific response was less flexible and more GITR dependent. Following influenza infection, GITR is expressed on lung T cells and GITRL is preferentially expressed on lung monocyte-derived inflammatory antigen presenting cells. Accordingly, we show that GITR+/+ T cells in the lung parenchyma express more phosphorylated-ribosomal protein S6 than their GITR-/- counterparts. Thus, GITR signaling within the lung tissue critically regulates effector and tissue-resident memory T-cell accumulation.
Collapse
Affiliation(s)
- Kuan-Lun Chu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Kuan Chung Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Angela C Zhou
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
CD4 + T help promotes influenza virus-specific CD8 + T cell memory by limiting metabolic dysfunction. Proc Natl Acad Sci U S A 2019; 116:4481-4488. [PMID: 30787194 DOI: 10.1073/pnas.1808849116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is continued interest in developing novel vaccine strategies that induce establish optimal CD8+ cytotoxic T lymphocyte (CTL) memory for pathogens like the influenza A viruses (IAVs), where the recall of IAV-specific T cell immunity is able to protect against serologically distinct IAV infection. While it is well established that CD4+ T cell help is required for optimal CTL responses and the establishment of memory, when and how CD4+ T cell help contributes to determining the ideal memory phenotype remains unclear. We assessed the quality of IAV-specific CD8+ T cell memory established in the presence or absence of a concurrent CD4+ T cell response. We demonstrate that CD4+ T cell help appears to be required at the initial priming phase of infection for the maintenance of IAV-specific CTL memory, with "unhelped" memory CTL exhibiting intrinsic dysfunction. High-throughput RNA-sequencing established that distinct transcriptional signatures characterize the helped vs. unhelped IAV-specific memory CTL phenotype, with the unhelped set showing a more "exhausted T cell" transcriptional profile. Moreover, we identify that unhelped memory CTLs exhibit defects in a variety of energetic pathways, leading to diminished spare respiratory capacity and diminished capacity to engage glycolysis upon reactivation. Hence, CD4+ T help at the time of initial priming promotes molecular pathways that limit exhaustion by channeling metabolic processes essential for the rapid recall of memory CD8+ T cells.
Collapse
|
36
|
Assessing the role of the T-box transcription factor Eomes in B cell differentiation during either Th1 or Th2 cell-biased responses. PLoS One 2018; 13:e0208343. [PMID: 30521606 PMCID: PMC6283461 DOI: 10.1371/journal.pone.0208343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022] Open
Abstract
Successful T-dependent humoral responses require the production of antibody-secreting plasmablasts, as well as the formation of germinal centers which eventually form high-affinity B cell memory. The ability of B cells to differentiate into germinal center and plasma cells, as well as the ability to tailor responses to different pathogens, is driven by transcription factors. In T cells, the T-box transcription factors T-bet and Eomesodermin (Eomes) regulate effector and memory T cell differentiation, respectively. While T-bet has a critical role in regulating anti-viral B cell responses, a role for Eomes in B cells has yet to be described. We therefore investigated whether Eomes was required for B cell differentiation during either Th1 or Th2 cell-biased immune responses. Here, we demonstrate that deletion of Eomes specifically in B cells did not affect B cell differentiation in response to vaccination, as well as following viral or helminth infection. In contrast to its established role in CD8+ T cells, Eomes did not influence memory B cell differentiation. Finally, the use of an Eomes reporter mouse confirmed the lack of Eomes expression during immune responses. Thus, germinal center and plasma cell differentiation and the formation of isotype-switched memory B cells in response to infection are independent of Eomes expression.
Collapse
|
37
|
Harland KL, Fox A, Nüssing S, Hensen L, Kedzierska K, Turner SJ, Kelso A. Limited Phenotypic and Functional Plasticity of Influenza Virus–Specific Memory CD8+T Cells during Activation in an Alternative Cytokine Environment. THE JOURNAL OF IMMUNOLOGY 2018; 201:3282-3293. [DOI: 10.4049/jimmunol.1701672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
|
38
|
Lanzer KG, Cookenham T, Reiley WW, Blackman MA. Virtual memory cells make a major contribution to the response of aged influenza-naïve mice to influenza virus infection. IMMUNITY & AGEING 2018; 15:17. [PMID: 30093911 PMCID: PMC6081820 DOI: 10.1186/s12979-018-0122-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Background A diverse repertoire of naïve T cells is thought to be essential for a robust response to new infections. However, a key aspect of aging of the T cell compartment is a decline in numbers and diversity of peripheral naïve T cells. We have hypothesized that the age-related decline in naïve T cells forces the immune system to respond to new infections using cross-reactive memory T cells generated to previous infections that dominate the aged peripheral T cell repertoire. Results Here we confirm that the CD8 T cell response of aged, influenza-naïve mice to primary infection with influenza virus is dominated by T cells that derive from the memory T cell pool. These cells exhibit the phenotypic characteristics of virtual memory cells rather than true memory cells. Furthermore, we find that the repertoire of responding CD8 T cells is constrained compared with that of young mice, and differs significantly between individual aged mice. After infection, these virtual memory CD8 T cells effectively develop into granzyme-producing effector cells, and clear virus with kinetics comparable to naïve CD8 T cells from young mice. Conclusions The response of aged, influenza-naive mice to a new influenza infection is mediated largely by memory CD8 T cells. However, unexpectedly, they have the phenotype of VM cells. In response to de novo influenza virus infection, the VM cells develop into granzyme-producing effector cells and clear virus with comparable kinetics to young CD8 T cells.
Collapse
Affiliation(s)
| | - Tres Cookenham
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983 USA
| | - William W Reiley
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983 USA
| | | |
Collapse
|
39
|
Infantino S, Light A, O'Donnell K, Bryant V, Avery DT, Elliott M, Tangye SG, Belz G, Mackay F, Richard S, Tarlinton D. Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation. Nat Commun 2017; 8:891. [PMID: 29026071 PMCID: PMC5638811 DOI: 10.1038/s41467-017-01009-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/11/2017] [Indexed: 01/11/2023] Open
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMT) is a common post-translational modification in mammalian cells, regulating many important functions including cell signalling, proliferation and differentiation. Here we show the role of PRMT1 in B-cell activation and differentiation. PRMT1 expression and activity in human and mouse peripheral B cells increases in response to in vitro or in vivo activation. Deletion of the Prmt1 gene in mature B cells establishes that although the frequency and phenotype of peripheral B cell subsets seem unaffected, immune responses to T-cell-dependent and -independent antigens are substantially reduced. In vitro activation of Prmt1-deficient B cells with a variety of mitogens results in diminished proliferation, differentiation and survival, effects that are correlated with altered signal transduction from the B cell receptor. Thus PRMT1 activity in B cells is required for correct execution of multiple processes that in turn are necessary for humoral immunity. PRMT1 is an arginine methyltransferase involved in a variety of cell functions. Here the authors delete PRMT1 specifically in mature B cells to show the importance of arginine methylation for B cell proliferation, differentiation and survival, and thereby for humoral immunity.
Collapse
Affiliation(s)
- Simona Infantino
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia. .,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, 3004, Australia.
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kristy O'Donnell
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, 3004, Australia
| | - Vanessa Bryant
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, NSW, 2010, Australia
| | - Gabrielle Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Fabienne Mackay
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stephane Richard
- Lady Davis Institute for Medical Research, McGill University, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada, H3T 1E2
| | - David Tarlinton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia. .,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, 3004, Australia.
| |
Collapse
|
40
|
Yoshizawa A, Bi K, Keskin DB, Zhang G, Reinhold B, Reinherz EL. TCR-pMHC encounter differentially regulates transcriptomes of tissue-resident CD8 T cells. Eur J Immunol 2017; 48:128-150. [PMID: 28872670 DOI: 10.1002/eji.201747174] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/18/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
To investigate the role of TCR-pMHC interaction in regulating lung CD8 tissue-resident T cell (TR ) differentiation, polyclonal responses were compared against NP366-374 /Db and PA224-233 /Db , two immunodominant epitopes that arise during influenza A infection in mice. Memory niches distinct from iBALTs develop within the lamina propria, supporting CD103+ and CD103- CD8 TR generation and intraepithelial translocation. Gene set enrichment analysis (GSEA) and weighted gene co-expression network analysis (WGCNA) identify dominant TCR, adherens junction, RIG-I-like and NOD-like pattern recognition receptor as well as TGF-β signaling pathways and memory signatures among PA224-233 /Db T cells consistent with T resident memory (TRM ) status. In contrast, NP366-374 /Db T cells exhibit enrichment of effector signatures, upregulating pro-inflammatory mediators even among TRM . While NP366-374 /Db T cells manifest transcripts linked to canonical exhaustion pathways, PA224-233 /Db T cells exploit P2rx7 purinoreceptor attenuation. The NP366-374 /Db CD103+ subset expresses the antimicrobial lactotransferrin whereas PA224-233 /Db CD103+ utilizes pore-forming mpeg-1, with <22% of genes correspondingly upregulated in CD103+ (or CD103- ) subsets of both specificities. Thus, TCR-pMHC interactions among TR and antigen presenting cells in a tissue milieu strongly impact CD8 T cell biology.
Collapse
Affiliation(s)
- Akihiro Yoshizawa
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kevin Bi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Derin B Keskin
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Guanglan Zhang
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
| | - Bruce Reinhold
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Pizzolla A, Nguyen THO, Smith JM, Brooks AG, Kedzieska K, Heath WR, Reading PC, Wakim LM. Resident memory CD8 + T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci Immunol 2017; 2:2/12/eaam6970. [PMID: 28783656 DOI: 10.1126/sciimmunol.aam6970] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
Abstract
Nasal epithelial tissue of the upper respiratory tract is the first site of contact by inhaled pathogens such as influenza virus. We show that this region is key to limiting viral spread to the lower respiratory tract and associated disease pathology. Immunization of the upper respiratory tract leads to the formation of local tissue-resident memory CD8+ T cells (Trm cells). Unlike Trm cells in the lung, these cells develop independently of local cognate antigen recognition and transforming growth factor-β signaling and persist with minimal decay, representing a long-term protective population. Repertoire characterization revealed unexpected differences between lung and nasal tissue Trm cells, the composition of which was shaped by the developmental need for lung, but not nasal, Trm cells to recognize antigen within their local tissue. We show that influenza-specific Trm cells in the nasal epithelia can block the transmission of influenza virus from the upper respiratory tract to the lung and, in doing so, prevent the development of severe pulmonary disease. Our findings reveal the protective capacity and longevity of upper respiratory tract Trm cells and highlight the potential of targeting these cells to augment protective responses induced to respiratory viral vaccines.
Collapse
Affiliation(s)
- Angela Pizzolla
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Jeffrey M Smith
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Katherine Kedzieska
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - William R Heath
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,World Health Organization Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
42
|
c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses. Cell Rep 2017; 19:461-470. [PMID: 28423310 DOI: 10.1016/j.celrep.2017.03.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/24/2017] [Accepted: 03/21/2017] [Indexed: 11/22/2022] Open
Abstract
Humoral immune responses are tailored to the invading pathogen through regulation of key transcription factors and their networks. This is critical to establishing effective antibody-mediated responses, yet it is unknown how B cells integrate pathogen-induced signals to drive or suppress transcriptional programs specialized for each class of pathogen. Here, we detail the key role of the transcription factor c-Myb in regulating the T-bet-mediated anti-viral program. Deletion of c-Myb in mature B cells significantly increased serum IgG2c and CXCR3 expression by upregulating T-bet, normally suppressed during Th2-cell-mediated responses. Enhanced expression of T-bet resulted in aberrant plasma cell differentiation within the germinal center, mediated by CXCR3 expression. These findings identify a dual role for c-Myb in limiting inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Identifying such intrinsic regulators of specialized antibody responses can assist in vaccine design and therapeutic intervention in B-cell-mediated immune disorders.
Collapse
|
43
|
Isakova-Sivak I, Korenkov D, Smolonogina T, Tretiak T, Donina S, Rekstin A, Naykhin A, Shcherbik S, Pearce N, Chen LM, Bousse T, Rudenko L. Comparative studies of infectivity, immunogenicity and cross-protective efficacy of live attenuated influenza vaccines containing nucleoprotein from cold-adapted or wild-type influenza virus in a mouse model. Virology 2016; 500:209-217. [PMID: 27829176 DOI: 10.1016/j.virol.2016.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
Abstract
This study sought to improve an existing live attenuated influenza vaccine (LAIV) by including nucleoprotein (NP) from wild-type virus rather than master donor virus (MDV). H7N9 LAIV reassortants with 6:2 (NP from MDV) and 5:3 (NP from wild-type virus) genome compositions were compared with regard to their growth characteristics, induction of humoral and cellular immune responses in mice, and ability to protect mice against homologous and heterologous challenge viruses. Although, in general, the 6:2 reassortant induced greater cell-mediated immunity in C57BL6 mice than the 5:3 vaccine, mice immunized with the 5:3 LAIV were better protected against heterologous challenge. The 5:3 LAIV-induced CTLs also had better in vivo killing activity against target cells loaded with the NP366 epitope of recent influenza viruses. Modification of the genome of reassortant vaccine viruses by incorporating the NP gene from wild-type viruses represents a simple strategy to improve the immunogenicity and cross-protection of influenza vaccines.
Collapse
Affiliation(s)
| | - Daniil Korenkov
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | | | - Tatiana Tretiak
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Svetlana Donina
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Andrey Rekstin
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Anatoly Naykhin
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | | | - Nicholas Pearce
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Li-Mei Chen
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tatiana Bousse
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
44
|
Vashist A, Kaushik A, Vashist A, Jayant RD, Tomitaka A, Ahmad S, Gupta YK, Nair M. Recent trends on hydrogel based drug delivery systems for infectious diseases. Biomater Sci 2016; 4:1535-1553. [PMID: 27709137 PMCID: PMC5162423 DOI: 10.1039/c6bm00276e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Since centuries, the rapid spread and cure of infectious diseases have been a major concern to the progress and survival of humans. These diseases are a global burden and the prominent cause for worldwide deaths and disabilities. Nanomedicine has emerged as the most excellent tool to eradicate and halt their spread. Various nanoformulations (NFs) using advanced nanotechnology are in demand. Recently, hydrogel and nanogel based drug delivery devices have posed new prospects to simulate the natural intelligence of various biological systems. Owing to their unique porous interpenetrating network design, hydrophobic drug incorporation and stimulus sensitivity hydrogels owe excellent potential as targeted drug delivery systems. The present review is an attempt to highlight the recent trends of hydrogel based drug delivery systems for the delivery of therapeutic agents and diagnostics for major infectious diseases including acquired immune deficiency syndrome (AIDS), malaria, tuberculosis, influenza and ebola. Future prospects and challenges are also described.
Collapse
Affiliation(s)
- Arti Vashist
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Ajeet Kaushik
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rahul Dev Jayant
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Asahi Tomitaka
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, New Delhi, 110025, India
| | - Y K Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhavan Nair
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| |
Collapse
|
45
|
DiPiazza A, Richards K, Batarse F, Lockard L, Zeng H, García-Sastre A, Albrecht RA, Sant AJ. Flow Cytometric and Cytokine ELISpot Approaches To Characterize the Cell-Mediated Immune Response in Ferrets following Influenza Virus Infection. J Virol 2016; 90:7991-8004. [PMID: 27356897 PMCID: PMC4988159 DOI: 10.1128/jvi.01001-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/18/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Influenza virus infections represent a significant socioeconomic and public health burden worldwide. Although ferrets are considered by many to be ideal for modeling human responses to influenza infection and vaccination, efforts to understand the cellular immune response have been severely hampered by a paucity of standardized procedures and reagents. In this study, we developed flow cytometric and T cell enzyme-linked immunosorbent spot (ELISpot) approaches to characterize the leukocyte composition and antigen-specific T cell response within key lymphoid tissues following influenza virus infection in ferrets. Through a newly designed and implemented set of serological reagents, we used multiparameter flow cytometry to directly quantify the frequency of CD4(+) and CD8(+) T cells, Ig(+) B cells, CD11b(+) myeloid-derived cells, and major histocompatibility complex (MHC) class II-positive antigen-presenting cells (APCs) both prior to and after intranasal infection with A/California/04/09 (H1N1). We found that the leukocyte composition was altered at 10 days postinfection, with notable gains in the frequency of T cells and myeloid cells within the draining lymph node. Furthermore, these studies revealed that the antigen specificity of influenza virus-reactive CD4 and CD8 T cells was very broad, with recognition of the viral HA, NA, M1, NS1, and NP proteins, and that total reactivity to influenza virus postinfection represented approximately 0.1% of the circulating peripheral blood mononuclear cells (PBMC). Finally, we observed distinct patterns of reactivity between individual animals, suggesting heterogeneity at the MHC locus in ferrets within commercial populations, a finding of considerable interest in efforts to move the ferret model forward for influenza vaccine and challenge studies. IMPORTANCE Ferrets are an ideal animal model to study transmission, diseases, and vaccine efficacies of respiratory viruses because of their close anatomical and physiological resemblances to humans. However, a lack of reagents has limited our understanding of the cell-mediated immune response following infection and vaccination. In this study, we used cross-reactive and ferret-specific antibodies to study the leukocyte composition and antigen-specific CD4 and CD8 T cell responses following influenza A/California/04/09 (H1N1) virus infection. These studies revealed strikingly distinct patterns of reactivity between CD4 and CD8 T cells, which were overlaid with differences in protein-specific responses between individual animals. Our results provide a first, in-depth look at the T cell repertoire in response to influenza infection and suggest that there is considerable heterogeneity at the MHC locus, which is akin to that in humans and an area of intense research interest.
Collapse
Affiliation(s)
- Anthony DiPiazza
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Katherine Richards
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Frances Batarse
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Laura Lockard
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, New York, USA Global Health and Emerging Pathogens Institute at Icahn School of Medicine, New York, New York, USA Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York, New York, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, New York, USA Global Health and Emerging Pathogens Institute at Icahn School of Medicine, New York, New York, USA
| | - Andrea J Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
46
|
Bracchi-Ricard V, Zha J, Smith A, Lopez-Rodriguez DM, Bethea JR, Andreansky S. Chronic spinal cord injury attenuates influenza virus-specific antiviral immunity. J Neuroinflammation 2016; 13:125. [PMID: 27245318 PMCID: PMC4886448 DOI: 10.1186/s12974-016-0574-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
Background Individuals suffering from spinal cord injury (SCI) are at higher risk for respiratory-related viral infections such as influenza. In a previous study (Zha et al., J Neuroinflammation 11:65, 2014), we demonstrated that chronic spinal cord injury caused impairment in CD8+T cell function with increased expression of the immunosuppressive protein, programmed cell death 1 (PD-1). The present study was undertaken to establish whether chronic SCI-induced immune deficits would affect antiviral immunity directed against primary and secondary infections. Methods Six to seven weeks following a SCI contusion at thoracic level T9, mice were infected intranasally with influenza virus. Virus-specific immunity was analyzed at various time points post-infection and compared to uninjured controls. Results We report that chronic thoracic SCI impairs the ability of the animals to mount an adequate antiviral immune response. While all uninjured control mice cleared the virus from their lungs by day 10 post-infection, a significant number (approximately 70 %) of chronic SCI mice did not clear the virus and succumbed to infection-induced mortality. This was attributed to severe deficits in both virus-specific antibody production and CD8+ T cell response in injured mice after primary infection. We also determined that previously acquired humoral immunity was maintained after spinal cord injury as vaccination against influenza A prior to injury-protected mice from a homologous viral challenge. In contrast, prior immunization did not protect mice from a heterotypic challenge with a different strain of influenza virus. Conclusions Taken together, our data demonstrate that chronic SCI attenuates virus-specific humoral and cellular immunity during the establishment of primary response and impairs the development of memory CD8+ T cells. In contrast, B cell memory acquired through vaccination prior to SCI is preserved after injury which demonstrates that antigen-specific memory cells are refractory following injury. Our study defines important parameters of the deficits of chronic SCI-induced immune depression during a viral respiratory infection. Our objective is to better understand the mechanisms of spinal cord injury-induced immune depression with the goal of developing more effective therapies and reduce mortality due to complications from influenza and other infections. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0574-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valerie Bracchi-Ricard
- The Miami Project to Cure Paralysis, Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Ji Zha
- The Miami Project to Cure Paralysis, Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Annalise Smith
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Darlah M Lopez-Rodriguez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - John R Bethea
- The Miami Project to Cure Paralysis, Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Department of Biology, Drexel University, Philadelphia, PA, 19104, USA.
| | - Samita Andreansky
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
47
|
Di Mario G, Garulli B, Sciaraffia E, Facchini M, Donatelli I, Castrucci MR. A heat-inactivated H7N3 vaccine induces cross-reactive cellular immunity in HLA-A2.1 transgenic mice. Virol J 2016; 13:56. [PMID: 27036323 PMCID: PMC4815128 DOI: 10.1186/s12985-016-0513-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/23/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cross-reactive immunity against heterologous strains of influenza virus has the potential to provide partial protection in individuals that lack the proper neutralizing antibodies. In particular, the boosting of memory CD8+ T cell responses to conserved viral proteins can attenuate disease severity caused by influenza virus antigenic variants or pandemic strains. However, little is yet known about which of these conserved internal antigens would better induce and/or recall memory CD8+ T cells after in vivo administration of an inactivated whole virus vaccine. METHODS We explored the CD8 + T cell responses to selected epitopes of the internal proteins of an H7N3 influenza virus that were cross-reactive with A/PR/8/34 virus in HLA-A2.1 transgenic (AAD) mice. RESULTS CD8+ T cells against dominant and subdominant epitopes were detected upon infection of mice with live H7N3 virus, whereas immunization with non-replicating virus elicited CD8+ T cell responses against mostly immunodominant epitopes, which were rapidly recalled following infection with A/PR/8/34 virus. These vaccine-induced T cell responses were able to reduce the lung viral load in mice challenged intranasally with the heterologous influenza virus. CONCLUSIONS A single immunization with non-replicating influenza virus vaccines may be able to elicit or recall cross-reactive CD8+ T cell responses to conserved immunodominant epitopes and, to some extent, counteract an infection by heterologous virus.
Collapse
Affiliation(s)
- Giuseppina Di Mario
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Bruno Garulli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Ester Sciaraffia
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Marzia Facchini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Isabella Donatelli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Maria R Castrucci
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| |
Collapse
|
48
|
Lee PHY, Bird N, MacKenzie-Kludas C, Mansell A, Kedzierska K, Brown L, McAuley J. Induction of memory cytotoxic T cells to influenza A virus and subsequent viral clearance is not modulated by PB1-F2-dependent inflammasome activation. Immunol Cell Biol 2015; 94:439-46. [PMID: 26667784 PMCID: PMC4890051 DOI: 10.1038/icb.2015.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
Abstract
Expression of the viral virulence protein PB1-F2 during infection has been linked to NLRP3 inflammasome complex activation in macrophages and induction of early inflammatory events enhancing immunopathology during influenza disease. We sought to determine whether PB1-F2-specific NLRP3 inflammasome activation influenced the magnitude and/or robustness of the CD8+ T-cell responses specific for conserved viral antigens and subsequent virus elimination. Using murine heterosubtypic viral infection models, we showed that mice infected with virus unable to produce PB1-F2 protein showed no deficit in the overall magnitude and functional memory responses of CD8+ T cells established during the effector phase compared with those infected with wild-type PB1-F2-expressing virus and were equally capable of mounting robust recall responses. These data indicate that while expression of PB1-F2 protein can induce inflammatory events, the capacity to generate memory CD8+ T cells specific for immunodominant viral epitopes remains uncompromised.
Collapse
Affiliation(s)
- Patricia Hoi Yee Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nicola Bird
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Charley MacKenzie-Kludas
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ashley Mansell
- Pattern Recognition Receptors and Inflammation Group, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lorena Brown
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Julie McAuley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity. Sci Rep 2015; 5:17577. [PMID: 26627732 PMCID: PMC4667252 DOI: 10.1038/srep17577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune activation through multiple innate sensor proteins, and investigated its role in anti-IFV defense and lung pathogenesis in a mouse model recapitulating severe influenza pneumonia with ARDS. We found that influenza pneumonia was dramatically attenuated in Card9-deficient mice, which showed improved mortality with reduced inflammatory cytokines and chemokines in the infected lungs. However, viral clearance, type-I interferon production, and the development of anti-viral B and T cell immunity were not compromised by CARD9 deficiency. Syk or CARD9-deficient DCs but not macrophages showed impaired cytokine but not type-I interferon production in response to IFV in vitro, indicating a possible role for the Syk-CARD9 pathway in DCs in excessive inflammation of IFV-infected lungs. Therefore, inhibition of this pathway is an ideal therapeutic target for severe influenza pneumonia without affecting viral clearance.
Collapse
|
50
|
Ramsbottom KM, Sacirbegovic F, Hawkins ED, Kallies A, Belz GT, Van Ham V, Haynes NM, Durrant MJ, Humbert PO, Russell SM, Oliaro J. Lethal giant larvae-1 deficiency enhances the CD8(+) effector T-cell response to antigen challenge in vivo. Immunol Cell Biol 2015; 94:306-11. [PMID: 26391810 DOI: 10.1038/icb.2015.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/20/2015] [Accepted: 08/18/2015] [Indexed: 01/31/2023]
Abstract
Lethal giant larvae-1 (Lgl-1) is an evolutionary conserved protein that regulates cell polarity in diverse lineages; however, the role of Lgl-1 in the polarity and function of immune cells remains to be elucidated. To assess the role of Lgl-1 in T cells, we generated chimeric mice with a hematopoietic system deficient for Lgl-1. Lgl-1 deficiency did not impair the activation or function of peripheral CD8(+) T cells in response to antigen presentation in vitro, but did skew effector and memory T-cell differentiation. When challenged with antigen-expressing virus or tumor, Lgl-1-deficient mice displayed altered T-cell responses. This manifested in a stronger antiviral and antitumor effector CD8(+) T-cell response, the latter resulting in enhanced control of MC38-OVA tumors. These results reveal a novel role for Lgl-1 in the regulation of virus-specific T-cell responses and antitumor immunity.
Collapse
Affiliation(s)
- Kelly M Ramsbottom
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Faruk Sacirbegovic
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Edwin D Hawkins
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Lo Celso Laboratory, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Axel Kallies
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gabrielle T Belz
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Vanessa Van Ham
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Nicole M Haynes
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Michael J Durrant
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah M Russell
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Centre for Micro-photonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jane Oliaro
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|