1
|
Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, Soundaramourty C, Mammano F, Corbeau P, Zghidi-Abouzid O, Estaquier J. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect Dis Rep 2025; 17:12. [PMID: 39997464 PMCID: PMC11855486 DOI: 10.3390/idr17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. METHODS By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. RESULTS We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. CONCLUSIONS This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Morgane Picard
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Sonia André
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Steven Boutrais
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Ella Goma Matsetse
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Juliette Dewatines
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Quentin Dueymes
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Elise Thiboutot
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Calaiselvy Soundaramourty
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Fabrizio Mammano
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
- Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France;
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| |
Collapse
|
2
|
Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat Med 2022; 28:1619-1629. [PMID: 35970920 DOI: 10.1038/s41591-022-01937-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022]
Abstract
Checkpoint inhibitor (CPI) therapies provide limited benefit to patients with tumors of low immune reactivity. T cell-inducing vaccines hold promise to exert long-lasting disease control in combination with CPI therapy. Safety, tolerability and recommended phase 2 dose (RP2D) of an individualized, heterologous chimpanzee adenovirus (ChAd68) and self-amplifying mRNA (samRNA)-based neoantigen vaccine in combination with nivolumab and ipilimumab were assessed as primary endpoints in an ongoing phase 1/2 study in patients with advanced metastatic solid tumors (NCT03639714). The individualized vaccine regimen was safe and well tolerated, with no dose-limiting toxicities. Treatment-related adverse events (TRAEs) >10% included pyrexia, fatigue, musculoskeletal and injection site pain and diarrhea. Serious TRAEs included one count each of pyrexia, duodenitis, increased transaminases and hyperthyroidism. The RP2D was 1012 viral particles (VP) ChAd68 and 30 µg samRNA. Secondary endpoints included immunogenicity, feasibility of manufacturing and overall survival (OS). Vaccine manufacturing was feasible, with vaccination inducing long-lasting neoantigen-specific CD8 T cell responses. Several patients with microsatellite-stable colorectal cancer (MSS-CRC) had improved OS. Exploratory biomarker analyses showed decreased circulating tumor DNA (ctDNA) in patients with prolonged OS. Although small study size limits statistical and translational analyses, the increased OS observed in MSS-CRC warrants further exploration in larger randomized studies.
Collapse
|
3
|
Rosen BC, Pedreño-Lopez N, Ricciardi MJ, Reed JS, Sacha JB, Rakasz EG, Watkins DI. Rhesus Cytomegalovirus-Specific CD8 + Cytotoxic T Lymphocytes Do Not Become Functionally Exhausted in Chronic SIVmac239 Infection. Front Immunol 2020; 11:1960. [PMID: 32922404 PMCID: PMC7457070 DOI: 10.3389/fimmu.2020.01960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) exert potent antiviral activity after HIV/SIV infection. However, efforts to harness the antiviral efficacy of CTLs for HIV/SIV prophylaxis and therapy have been severely hindered by two major problems: viral escape and exhaustion. By contrast, CTLs directed against human cytomegalovirus (HCMV), a ubiquitous chronic herpesvirus, seldom select for escape mutations and remain functional and refractory to exhaustion during chronic HCMV and HIV infection. Recently, attempts have been made to retarget HCMV-specific CTLs for cancer immunotherapy. We speculate that such a strategy may also be beneficial in the context of HIV/SIV infection, facilitating CTL-mediated control of HIV/SIV replication. As a preliminary assessment of the validity of this approach, we investigated the phenotypes and functionality of rhesus CMV (RhCMV)-specific CTLs in SIVmac239-infected Indian rhesus macaques (RMs), a crucial HIV animal model system. We recently identified two immunodominant, Mamu-A∗02-restricted CTL epitopes derived from RhCMV proteins and sought to evaluate the phenotypic and functional characteristics of these CTL populations in chronic SIVmac239 infection. We analyzed and directly compared RhCMV- and SIVmac239-specific CTLs during SIVmac239 infection in a cohort of Mamu-A∗01 + and Mamu-A∗02 + RMs. CTL populations specific for at least one of the RhCMV-derived CTL epitopes were detected in ten of eleven Mamu-A∗02 + animals tested, and both populations were detected in five of these animals. Neither RhCMV-specific CTL population exhibited significant changes in frequency, memory phenotype, granzyme B expression, exhaustion marker (PD-1 and CTLA-4) expression, or polyfunctionality between pre- and chronic SIVmac239 infection timepoints. In chronic SIVmac239 infection, RhCMV-specific CTLs exhibited higher levels of granzyme B expression and polyfunctionality, and lower levels of exhaustion marker expression, than SIVmac239-specific CTLs. Additionally, compared to SIVmac239-specific CTLs, greater proportions of RhCMV-specific CTLs were of the terminally differentiated effector memory phenotype (CD28- CCR7-) during chronic SIVmac239 infection. These results suggest that, in contrast to SIVmac239-specific CTLs, RhCMV-specific CTLs maintain their phenotypes and cytolytic effector functions during chronic SIVmac239 infection, and that retargeting RhCMV-specific CTLs might be a promising SIV immunotherapeutic strategy.
Collapse
Affiliation(s)
- Brandon C Rosen
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nuria Pedreño-Lopez
- Department of Pathology, George Washington University School of Medicine, Washington, DC, United States
| | - Michael J Ricciardi
- Department of Pathology, George Washington University School of Medicine, Washington, DC, United States
| | - Jason S Reed
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - David I Watkins
- Department of Pathology, George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
4
|
Haj AK, Breitbach ME, Baker DA, Mohns MS, Moreno GK, Wilson NA, Lyamichev V, Patel J, Weisgrau KL, Dudley DM, O'Connor DH. High-Throughput Identification of MHC Class I Binding Peptides Using an Ultradense Peptide Array. THE JOURNAL OF IMMUNOLOGY 2020; 204:1689-1696. [PMID: 32060132 DOI: 10.4049/jimmunol.1900889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/04/2020] [Indexed: 01/02/2023]
Abstract
Rational vaccine development and evaluation requires identifying and measuring the magnitude of epitope-specific CD8 T cell responses. However, conventional CD8 T cell epitope discovery methods are labor intensive and do not scale well. In this study, we accelerate this process by using an ultradense peptide array as a high-throughput tool for screening peptides to identify putative novel epitopes. In a single experiment, we directly assess the binding of four common Indian rhesus macaque MHC class I molecules (Mamu-A1*001, -A1*002, -B*008, and -B*017) to ∼61,000 8-mer, 9-mer, and 10-mer peptides derived from the full proteomes of 82 SIV and simian HIV isolates. Many epitope-specific CD8 T cell responses restricted by these four MHC molecules have already been identified in SIVmac239, providing an ideal dataset for validating the array; up to 64% of these known epitopes are found in the top 192 SIVmac239 peptides with the most intense MHC binding signals in our experiment. To assess whether the peptide array identified putative novel CD8 T cell epitopes, we validated the method by IFN-γ ELISPOT assay and found three novel peptides that induced CD8 T cell responses in at least two Mamu-A1*001-positive animals; two of these were validated by ex vivo tetramer staining. This high-throughput identification of peptides that bind class I MHC will enable more efficient CD8 T cell response profiling for vaccine development, particularly for pathogens with complex proteomes for which few epitope-specific responses have been defined.
Collapse
Affiliation(s)
- Amelia K Haj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Meghan E Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - David A Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Mariel S Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Gage K Moreno
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Nancy A Wilson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | | | | | - Kim L Weisgrau
- Wisconsin National Primate Research Center, Madison, WI 53715
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; .,Wisconsin National Primate Research Center, Madison, WI 53715
| |
Collapse
|
5
|
A Recombinant Rhesus Monkey Rhadinovirus Deleted of Glycoprotein L Establishes Persistent Infection of Rhesus Macaques and Elicits Conventional T Cell Responses. J Virol 2020; 94:JVI.01093-19. [PMID: 31645449 DOI: 10.1128/jvi.01093-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
A replication-competent, recombinant strain of rhesus monkey rhadinovirus (RRV) expressing the Gag protein of SIVmac239 was constructed in the context of a glycoprotein L (gL) deletion mutation. Deletion of gL detargets the virus from Eph family receptors. The ability of this gL-minus Gag recombinant RRV to infect, persist, and elicit immune responses was evaluated after intravenous inoculation of two Mamu-A*01 + RRV-naive rhesus monkeys. Both monkeys responded with an anti-RRV antibody response, and quantitation of RRV DNA in peripheral blood mononuclear cells (PBMC) by real-time PCR revealed levels similar to those in monkeys infected with recombinant gL+ RRV. Comparison of RRV DNA levels in sorted CD3+ versus CD20+ versus CD14+ PBMC subpopulations indicated infection of the CD20+ subpopulation by the gL-minus RRV. This contrasts with results obtained with transformed B cell lines in vitro, in which deletion of gL resulted in markedly reduced infectivity. Over a period of 20 weeks, Gag-specific CD8+ T cell responses were documented by major histocompatibility complex class I (MHC-I) tetramer staining. Vaccine-induced CD8+ T cell responses, which were predominantly directed against the Mamu-A*01-restricted Gag181-189CM9 epitope, could be inhibited by blockade of MHC-I presentation. Our results indicate that gL and the interaction with Eph family receptors are dispensable for the colonization of the B cell compartment following high-dose infection by the intravenous route, which suggests the existence of alternative receptors. Further, gL-minus RRV elicits cellular immune responses that are predominantly canonical in nature.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with a substantial disease burden in sub-Saharan Africa, often in the context of human immunodeficiency virus (HIV) infection. The related rhesus monkey rhadinovirus (RRV) has shown potential as a vector to immunize monkeys with antigens from simian immunodeficiency virus (SIV), the macaque model for HIV. KSHV and RRV engage cellular receptors from the Eph family via the viral gH/gL glycoprotein complex. We have now generated a recombinant RRV that expresses the SIV Gag antigen and does not express gL. This recombinant RRV was infectious by the intravenous route, established persistent infection in the B cell compartment, and elicited strong immune responses to the SIV Gag antigen. These results argue against a role for gL and Eph family receptors in B cell infection by RRV in vivo and have implications for the development of a live-attenuated KSHV vaccine or vaccine vector.
Collapse
|
6
|
Iwamoto N, Mason RD, Song K, Gorman J, Welles HC, Arthos J, Cicala C, Min S, King HAD, Belli AJ, Reimann KA, Foulds KE, Kwong PD, Lifson JD, Keele BF, Roederer M. Blocking α 4β 7 integrin binding to SIV does not improve virologic control. Science 2019; 365:1033-1036. [PMID: 31488690 PMCID: PMC9513815 DOI: 10.1126/science.aaw7765] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/26/2019] [Indexed: 07/31/2023]
Abstract
A study in nonhuman primates reported that infusions of an antibody against α4β7 integrin, in combination with antiretroviral therapy, showed consistent, durable control of simian immunodeficiency virus (SIV) in rhesus macaques. The antibody used has pleiotropic effects, so we set out to gain insight into the underlying mechanism by comparing this treatment to treatment with non-neutralizing monoclonal antibodies against the SIV envelope glycoprotein that only block α4β7 binding to SIV Env but have no other host-directed effects. Similar to the initial study, we used an attenuated strain of SIV containing a stop codon in nef. The study used 30 macaques that all began antiretroviral therapy and then were divided into five groups to receive different antibody treatments. Unlike the published report, we found no sustained virologic control by these treatments in vivo.
Collapse
Affiliation(s)
- Nami Iwamoto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kaimei Song
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hugh C Welles
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - James Arthos
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Susie Min
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Hannah A D King
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Aaron J Belli
- MassBiologics, University of Massachusetts Medical School, Boston, MA, USA
| | - Keith A Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, MA, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
7
|
Zhou M, Humbert M, Mukhtar MM, Scinto HB, Vyas HK, Lakhashe SK, Byrareddy SN, Maurer G, Thorat S, Owuor J, Lai Z, Chen Y, Griffiths A, Chenine AL, Gumber S, Villinger F, Montefiori D, Ruprecht RM. Adaptation of an R5 Simian-Human Immunodeficiency Virus Encoding an HIV Clade A Envelope with or without Ablation of Adaptive Host Immunity: Differential Selection of Viral Mutants. J Virol 2019; 93:e02267-18. [PMID: 30760566 PMCID: PMC6475780 DOI: 10.1128/jvi.02267-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/05/2019] [Indexed: 11/20/2022] Open
Abstract
Simian-human immunodeficiency virus (SHIV) infection in rhesus macaques (RMs) resembles human immunodeficiency virus type 1 (HIV-1) infection in humans and serves as a tool to evaluate candidate AIDS vaccines. HIV-1 clade A (HIV-A) predominates in parts of Africa. We constructed an R5 clade A SHIV (SHIV-A; strain SHIV-KNH1144) carrying env from a Kenyan HIV-A. SHIV-A underwent rapid serial passage through six RMs. To allow unbridled replication without adaptive immunity, we simultaneously ablated CD8+ and B cells with cytotoxic monoclonal antibodies in the next RM, resulting in extremely high viremia and CD4+ T-cell loss. Infected blood was then transferred into two non-immune-depleted RMs, where progeny SHIV-A showed increased replicative capacity and caused AIDS. We reisolated SHIV-KNH1144p4, which was replication competent in peripheral blood mononuclear cells (PBMC) of all RMs tested. Next-generation sequencing of early- and late-passage SHIV-A strains identified mutations that arose due to "fitness" virus optimization in the former and mutations exhibiting signatures typical for adaptive host immunity in the latter. "Fitness" mutations are best described as mutations that allow for better fit of the HIV-A Env with SIV-derived virion building blocks or host proteins and mutations in noncoding regions that accelerate virus replication, all of which result in the outgrowth of virus variants in the absence of adaptive T-cell and antibody-mediated host immunity.IMPORTANCE In this study, we constructed a simian-human immunodeficiency virus carrying an R5 Kenyan HIV-1 clade A env (SHIV-A). To bypass host immunity, SHIV-A was rapidly passaged in naive macaques or animals depleted of both CD8+ and B cells. Next-generation sequencing identified different mutations that resulted from optimization of viral replicative fitness either in the absence of adaptive immunity or due to pressure from adaptive immune responses.
Collapse
Affiliation(s)
- Mingkui Zhou
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Humbert
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Muhammad M Mukhtar
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanna B Scinto
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hemant K Vyas
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Samir K Lakhashe
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Siddappa N Byrareddy
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregor Maurer
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- VetCore, Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Swati Thorat
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua Owuor
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Agnès-Laurence Chenine
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Henry M. Jackson Foundation, Bethesda, Maryland, USA
- Military HIV Research Program, Silver Spring, Maryland, USA
| | - Sanjeev Gumber
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - François Villinger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ruth M Ruprecht
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
ALT-803 Transiently Reduces Simian Immunodeficiency Virus Replication in the Absence of Antiretroviral Treatment. J Virol 2018; 92:JVI.01748-17. [PMID: 29118125 DOI: 10.1128/jvi.01748-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023] Open
Abstract
Developing biological interventions to control human immunodeficiency virus (HIV) replication in the absence of antiretroviral therapy (ART) could contribute to the development of a functional cure. As a potential alternative to ART, the interleukin-15 (IL-15) superagonist ALT-803 has been shown to boost the number and function of HIV-specific CD8+ T and NK cell populations in vitro Four simian immunodeficiency virus (SIV)-positive rhesus macaques, three of whom possessed major histocompatibility complex alleles associated with control of SIV and all of whom had received SIV vaccine vectors that had the potential to elicit CD8+ T cell responses, were given ALT-803 in three treatment cycles. The first and second cycles of treatment were separated by 2 weeks, while the third cycle was administered after a 29-week break. ALT-803 transiently elevated the total CD8+ effector and central memory T cell and NK cell populations in peripheral blood, while viral loads transiently decreased by ∼2 logs in all animals. Virus suppression was not sustained as T cells became less responsive to ALT-803 and waned in numbers. No effect on viral loads was observed in the second cycle of ALT-803, concurrent with downregulation of the IL-2/15 common γC and β chain receptors on both CD8+ T cells and NK cells. Furthermore, populations of immunosuppressive T cells increased during the second cycle of ALT-803 treatment. During the third treatment cycle, responsiveness to ALT-803 was restored. CD8+ T cells and NK cells increased again 3- to 5-fold, and viral loads transiently decreased again by 1 to 2 logs.IMPORTANCE Overall, our data show that ALT-803 has the potential to be used as an immunomodulatory agent to elicit effective immune control of HIV/SIV replication. We identify mechanisms to explain why virus control is transient, so that this model can be used to define a clinically appropriate treatment regimen.
Collapse
|
9
|
Holman N, Weinfurter JT, Harsla TR, Wiseman RW, Belli AJ, Michaels AJ, Reimann KA, DeMars RI, Reynolds MR. Isolation of a monoclonal antibody from a phage display library binding the rhesus macaque MHC class I allomorph Mamu-A1*001. PLoS One 2017; 12:e0179039. [PMID: 28719653 PMCID: PMC5515393 DOI: 10.1371/journal.pone.0179039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/23/2017] [Indexed: 11/24/2022] Open
Abstract
Monoclonal antibodies that bind to human leukocyte antigen (HLA) are useful tools for HLA-typing, tracking donor-recipient chimerisms after bone marrow transplants, and characterizing specific major histocompatibility complexes (MHC) on cell surfaces. Unfortunately, equivalent reagents are not available for rhesus macaques, which are commonly used animal as models in organ transplant and infectious disease research. To address this deficiency, we isolated an antibody that recognizes the common Indian rhesus macaque MHC class I molecule, Mamu-A1*001. We induced Mamu-A1*001-binding antibodies by alloimmunizing a female Mamu-A1*001-negative rhesus macaque with peripheral blood mononuclear cells (PBMC) from a male Mamu-A1*001-positive donor. A Fab phage display library was constructed with PBMC from the alloimmunized macaque and panned to isolate an antibody that binds to Mamu-A1*001 but not to other common rhesus macaque MHC class I molecules. The isolated antibody distinguishes PBMC from Mamu-A1*001-positive and -negative macaques. Additionally, the Mamu-A1*001-specific antibody binds the cynomolgus macaque MHC class I ortholog Mafa-A1*001:01 but not variants Mafa-A1*001:02/03, indicating a high degree of binding specificity. The Mamu-A1*001-specific antibody will be useful for identifying Mamu-A1*001-positive rhesus macaques, for detecting Mamu-A1*001-positive cells in populations of Mamu-A1*001-negative cells, and for examining disease processes that alter expression of Mamu-A1*001 on cell surfaces. Moreover, the alloimmunization process we describe will be useful for isolating additional MHC allomorph-specific monoclonal antibodies or antibodies against other polymorphic host proteins which are difficult to isolate with traditional technologies.
Collapse
Affiliation(s)
- Nathan Holman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jason T. Weinfurter
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trevor R. Harsla
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aaron J. Belli
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Anthony J. Michaels
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Keith A. Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Robert I. DeMars
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Reynolds
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Silver ZA, Watkins DI. The role of MHC class I gene products in SIV infection of macaques. Immunogenetics 2017; 69:511-519. [PMID: 28695289 PMCID: PMC5537376 DOI: 10.1007/s00251-017-0997-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 01/27/2023]
Abstract
Human immunodeficiency virus (HIV) remains among the most significant public health threats worldwide. Despite three decades of research following the discovery of HIV, a preventive vaccine remains elusive. The study of HIV elite controllers has been crucial to elaborate the genetic and immunologic determinants that underlie control of HIV replication. Coordinated studies of elite control in humans have, however, been limited by variability among infecting viral strains, host genotype, and the uncertainty of the timing and route of infection. In this review, we discuss the role of nonhuman primate (NHP) models for the elucidation of the immunologic correlates that underlie control of AIDS virus replication. We discuss the importance of major histocompatibility complex class I (MHC-I) alleles in activating CD8+ T-cell populations that promote control of both HIV and simian immunodeficiency virus (SIV) replication. Provocatively, we make the argument that T-cell subsets recognizing the HIV/SIV viral infectivity factor (Vif) protein may be crucial for control of viral replication. We hope that this review demonstrates how an in-depth understanding of the MHC-I gene products associated with elite control of HIV/SIV, and the epitopes that they present, can provide researchers with a glimpse into the protective immune responses that underlie AIDS nonprogression.
Collapse
Affiliation(s)
- Zachary A Silver
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - David I Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
11
|
Sui Y, Frey B, Wang Y, Billeskov R, Kulkarni S, McKinnon K, Rourke T, Fritts L, Miller CJ, Berzofsky JA. Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathog 2017; 13:e1006395. [PMID: 28498847 PMCID: PMC5448820 DOI: 10.1371/journal.ppat.1006395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/30/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs), which suppress anti-tumor or anti-viral immune responses, are expanded in the peripheral blood and tissues of patients/animals with cancer or viral infectious diseases. We here show that in chronic SIV infection of Indian rhesus macaques, the frequency of MDSCs in the bone marrow (BM) was paradoxically and unexpectedly decreased, but increased in peripheral blood. Reduction of BM MDSCs was found in both CD14+MDSC and Lin-CD15+MDSC subsets. The reduction of MDSCs correlated with high plasma viral loads and low CD4+ T cell counts, suggesting that depletion of BM MDSCs was associated with SIV/AIDS disease progression. Of note, in SHIVSF162P4-infected macaques, which naturally control viral replication within a few months of infection, the frequency of MDSCs in the bone marrow was unchanged. To investigate the mechanisms by which BM MDSCs were reduced during chronic SIV infection, we tested several hypotheses: depletion due to viral infection, alterations in MDSC trafficking, and/or poor MDSC replenishment. We found that the possible mobilization of MDSCs from BM to peripheral tissues and the slow self-replenishment of MDSCs in the BM, along with the viral infection-induced depletion, all contribute to the observed BM MDSC reduction. We first demonstrate MDSC SIV infection in vivo. Correlation between BM CD14+MDSC reduction and CD8+ T cell activation in tissues is consistent with decreased immune suppression by MDSCs. Thus, depletion of BM MDSCs may contribute to the pathologic immune activation during chronic SIV infection and by extension HIV infection. Both cancer and infectious diseases including HIV/AIDS lead to the accumulation of myeloid-derived suppressor cells (MDSCs), which can effectively suppress anti-tumor and anti-viral T cell responses to dampen protective immunity. Using a macaque model, we found unexpectedly that the MDSCs in bone marrow (BM) decreased after chronic simian immunodeficiency virus (SIV) infection compared with healthy controls. This was in sharp contrast to the general increase of MDSCs observed in BM during cancer and other infectious/inflammatory diseases, and also contrary to the MDSC expansion in HIV/SIV-infected PBMCs. We further demonstrated that the loss of MDSCs in the bone marrow was associated with the progression to AIDS disease. Investigating the mechanisms by which the MDSCs were decreased in the SIV-infected bone marrow, we found that the possible mobilization of MDSCs from bone marrow to peripheral tissues and the slow self-replenishment of MDSCs in the bone marrow, along with the viral infection-induced depletion, all contribute to the observed bone marrow MDSC reduction. Indeed, this is the first demonstration to our knowledge of SIV infection of MDSCs in vivo. Because of the suppressive nature of the MDSCs, the CD8+ T cells might not be effective in killing the virally infected MDSCs. It is tempting to speculate that MDSCs may constitute latent reservoirs. Overall, our data showed that MDSCs act as a double-edged sword in HIV/SIV-infection, and the decrease of MDSCs in bone marrow after SIV infection could serve as an indicator of immune regulatory exhaustion and also contribute to the observed immune hyperactivation seen in HIV/AIDS.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (YS); (JAB)
| | - Blake Frey
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Yichuan Wang
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Rolf Billeskov
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Shweta Kulkarni
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Katherine McKinnon
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tracy Rourke
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Linda Fritts
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Jay A. Berzofsky
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (YS); (JAB)
| |
Collapse
|
12
|
Virnik K, Nesti E, Dail C, Hockenbury M, Ni Y, Felber BK, Schief WR, Berkower I. Expression of complete SIV p27 Gag and HIV gp120 engineered outer domains targeted by broadly neutralizing antibodies in live rubella vectors. Vaccine 2017; 35:3272-3278. [PMID: 28483193 DOI: 10.1016/j.vaccine.2017.04.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/30/2022]
Abstract
Infection with HIV or SIV often elicits a potent immune response to viral antigens. This includes T cells and antibodies specific for Gag and Env antigens. In contrast, when given as a vaccine, the same antigens have been weak immunogens, unable to elicit antibodies with comparable titer, durability, or neutralizing activity. We have used the live attenuated rubella vaccine strain RA27/3 as a viral vector to express HIV and SIV antigens. By mimicking an HIV infection, these vectors could elicit stronger and more durable immunity to HIV antigens. The vectors are based on the licensed rubella vaccine strain, which has demonstrated safety and potency in millions of children. One or two doses protect for life against rubella infection. The question was whether rubella vectors could similarly enhance the immunogenicity of a foreign vaccine insert. We have previously reported that rubella vectors can express small protein antigens in vitro and in vivo, where they elicit a strong immune response to the vaccine insert. The vectors have now expressed larger vaccine inserts that include epitope-rich fragments of the Gag matrix and capsid proteins (aa 41-211) or the complete p27 capsid protein with p2 (aa 136-381). These vectors have elicited a robust and durable immune response to Gag in rhesus macaques. This size range also encompasses the engineered outer domain (eOD) of HIV envelope gp120 (172 amino acids). The rubella/eOD-GT6 and GT8 vectors stably expressed glycoproteins that bind germline precursors and mature forms of VRC01-class broadly neutralizing antibodies. These vectors potentially could be used as part of a sequential immunization strategy to initiate the production of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Edmund Nesti
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Cody Dail
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Max Hockenbury
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Yisheng Ni
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, NCI Frederick, Bldg 535, Room 209, Frederick, MD 21702, USA
| | - William R Schief
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ira Berkower
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA.
| |
Collapse
|
13
|
Gonzalez-Nieto L, Domingues A, Ricciardi M, Gutman MJ, Maxwell HS, Pedreño-Lopez N, Bailey V, Magnani DM, Martins MA. Analysis of Simian Immunodeficiency Virus-specific CD8+ T-cells in Rhesus Macaques by Peptide-MHC-I Tetramer Staining. J Vis Exp 2016. [PMID: 28060314 DOI: 10.3791/54881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Peptide-major histocompatibility complex class I (pMHC-I) tetramers have been an invaluable tool to study CD8+ T-cell responses. Because these reagents directly bind to T-cell receptors on the surface of CD8+ T-lymphocytes, fluorochrome-labeled pMHC-I tetramers enable the accurate detection of antigen (Ag)-specific CD8+ T-cells without the need for in vitro re-stimulation. Moreover, when combined with multi-color flow cytometry, pMHC-I tetramer staining can reveal key aspects of Ag-specific CD8+ T-cells, including differentiation stage, memory phenotype, and activation status. These types of analyses have been especially useful in the field of HIV immunology where CD8+ T-cells can affect progression to AIDS. Experimental infection of rhesus macaques with simian immunodeficiency virus (SIV) provides an invaluable tool to study cellular immunity against the AIDS virus. As a result, considerable progress has been made in defining and characterizing T-cell responses in this animal model. Here we present an optimized protocol for enumerating SIV-specific CD8+ T-cells in rhesus macaques by pMHC-I tetramer staining. Our assay permits the simultaneous quantification and memory phenotyping of two pMHC-I tetramer+ CD8+ T-cell populations per test, which might be useful for tracking SIV-specific CD8+ T-cell responses generated by vaccination or SIV infection. Considering the relevance of nonhuman primates in biomedical research, this methodology is applicable for studying CD8+ T-cell responses in multiple disease settings.
Collapse
|
14
|
Okamura T, Tsujimura Y, Soma S, Takahashi I, Matsuo K, Yasutomi Y. Simian immunodeficiency virus SIVmac239 infection and simian human immunodeficiency virus SHIV89.6P infection result in progression to AIDS in cynomolgus macaques of Asian origin. J Gen Virol 2016; 97:3413-3426. [PMID: 27902330 DOI: 10.1099/jgv.0.000641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Simian immunodeficiency virus (SIV) infection models in cynomolgus macaques are important for analysis of the pathogenesis of immunodeficiency virus and for studies on the efficacy of new vaccine candidates. However, very little is known about the pathogenesis of SIV or simian human immunodeficiency virus (SHIV) in cynomolgus macaques from different Asian countries. In the present study, we analysed the infectivity and pathogenicity of CCR5-tropic SIVmac and those of dual-tropic SHIV89.6P inoculated into cynomolgus macaques in Indonesian, Malaysian or Philippine origin. The plasma viral loads in macaques infected with either SIVmac239 or SHIV89.6P were maintained at high levels. CD4+ T cell levels in macaques infected with SIVmac239 gradually decreased. All of the macaques infected with SHIV89.6P showed greatly reduced CD4+ T-cell numbers within 6 weeks of infection. Eight of the 11 macaques infected with SIVmac239 were killed due to AIDS symptoms after 2-4.5 years, while four of the five macaques infected with SHIV89.6P were killed due to AIDS symptoms after 1-3.5 years. We also analysed cynomolgus macaques infected intrarectally with repeated low, medium or high doses of SIVmac239, SIVmac251 or SHIV89.6P. Infection was confirmed by quantitative RT-PCR at more than 5000, 300 and 500 TCID50 for SIVmac239, SIVmac251 and SHIV89.6P, respectively. The present study indicates that cynomolgus macaques of Asian origin are highly susceptible to SIVmac and SHIV infection by both intravenous and mucosal routes. These models will be useful for studies on virus pathogenesis, vaccination and therapeutics against human immunodeficiency virus/AIDS.
Collapse
Affiliation(s)
- Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Yusuke Tsujimura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Shogo Soma
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan.,Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Ichiro Takahashi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo 204-0022, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan.,Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
15
|
Mothé BR, Lindestam Arlehamn CS, Dow C, Dillon MBC, Wiseman RW, Bohn P, Karl J, Golden NA, Gilpin T, Foreman TW, Rodgers MA, Mehra S, Scriba TJ, Flynn JL, Kaushal D, O'Connor DH, Sette A. The TB-specific CD4(+) T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap with humans. Tuberculosis (Edinb) 2015; 95:722-735. [PMID: 26526557 DOI: 10.1016/j.tube.2015.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 01/05/2023]
Abstract
Non-human primate (NHP) models of tuberculosis (TB) immunity and pathogenesis, especially rhesus and cynomolgus macaques, are particularly attractive because of the high similarity of the human and macaque immune systems. However, little is known about the MHC class II epitopes recognized in macaques, thus hindering the establishment of immune correlates of immunopathology and protective vaccination. We characterized immune responses in rhesus macaques vaccinated against and/or infected with Mycobacterium tuberculosis (Mtb), to a panel of antigens currently in human vaccine trials. We defined 54 new immunodominant CD4(+) T cell epitopes, and noted that antigens immunodominant in humans are also immunodominant in rhesus macaques, including Rv3875 (ESAT-6) and Rv3874 (CFP10). Pedigree and inferred restriction analysis demonstrated that this phenomenon was not due to common ancestry or inbreeding, but rather presentation by common alleles, as well as, promiscuous binding. Experiments using a second cohort of rhesus macaques demonstrated that a pool of epitopes defined in the previous experiments can be used to detect T cell responses in over 75% of individual monkeys. Additionally, 100% of cynomolgus macaques, irrespective of their latent or active TB status, responded to rhesus and human defined epitope pools. Thus, these findings reveal an unexpected general repertoire overlap between MHC class II epitopes recognized in both species of macaques and in humans, showing that epitope pools defined in humans can also be used to characterize macaque responses, despite differences in species and antigen exposure. The results have general implications for the evaluation of new vaccines and diagnostics in NHPs, and immediate applicability in the setting of macaque models of TB.
Collapse
Affiliation(s)
- Bianca R Mothé
- Department of Biology, CSUSM, San Marcos, CA 92096, USA; La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| | | | - Courtney Dow
- Department of Biology, CSUSM, San Marcos, CA 92096, USA
| | - Myles B C Dillon
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Patrick Bohn
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Julie Karl
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Nadia A Golden
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Trey Gilpin
- Department of Biology, CSUSM, San Marcos, CA 92096, USA
| | - Taylor W Foreman
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15216, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, LA 70803, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Department of Pediatrics and Child Health, University of Cape Town, Cape Town 7925, South Africa
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15216, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
HIV-1 Coreceptor CXCR4 Antagonists Promote Clonal Expansion of Viral Epitope-Specific CD8+ T Cells During Acute SIV Infection in Rhesus Monkeys In Vivo. J Acquir Immune Defic Syndr 2015; 69:145-53. [PMID: 25714247 DOI: 10.1097/qai.0000000000000586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The underlying molecular mechanisms and the kinetics of T cell receptor (TCR) repertoire selection during administration of CXCR4 or CCR5 inhibitors in infection of AIDS viruses in vivo have remained largely unexplored. Viral epitope-specific CD8(+) T lymphocytes play a dominant role in the control of HIV and simian immunodeficiency virus (SIV). We hypothesized that blockade of CXCR4 or CCR5 might influence the clonal expansion of epitope-specific CD8(+) T cells, contributing to antiviral immune responses in vivo. METHODS We measured frequencies of the dominant epitope p11C-specific CD8(+) T cells and analyzed the TCR repertoire of those cells in SIV-infected rhesus monkeys treated by CXCR4 or CCR5 inhibitors and vMIP-II, which binds multiple chemokine receptors. RESULTS A significantly increase in the levels of epitope-specific CD8(+) T cells was observed after blockade of CXCR4 or CCR5 compared with untreated control groups. Those CD8(+) T cells exhibited selected usage of TCR Vβ families and complementarity-determining region 3 (CDR3) segments. The clonal expansion of distinct Vβ populations could efficiently inhibit SIV replication in vitro, and CXCR4 inhibitor induced more expansion of epitope-specific CD8(+) T cells than CCR5 antagonist (P < 0.01), whereas vMIP-II treatment showed the most marked augmentation of p11C-specific CD8(+) T cells. CONCLUSIONS Antagonists of HIV coreceptors, particularly CXCR4, play an important role in the clonal expansion of SIV epitope-specific CD8(+) T cells in vivo, thus inhibitors of chemokine receptors such as CXCR4 or CCR5 may contribute to the ability of epitope-specific CD8(+) T cells to inhibit SIV or HIV infection.
Collapse
|
17
|
Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope. J Virol 2015; 89:8130-51. [PMID: 26018167 DOI: 10.1128/jvi.01221-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Antibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen. IMPORTANCE Many in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth.
Collapse
|
18
|
Billingsley JM, Rajakumar PA, Connole MA, Salisch NC, Adnan S, Kuzmichev YV, Hong HS, Reeves RK, Kang HJ, Li W, Li Q, Haase AT, Johnson RP. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling. PLoS Pathog 2015; 11:e1004740. [PMID: 25768938 PMCID: PMC4358830 DOI: 10.1371/journal.ppat.1004740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/10/2015] [Indexed: 01/03/2023] Open
Abstract
The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states. The live attenuated vaccine SIVΔnef can induce robust CD8+ T cell- mediated protection against infection with pathogenic SIV in macaques. Thus, there is substantial interest in characterizing these immune responses to inform HIV vaccine design. Animals challenged at 15–20 weeks post vaccination exhibit robust protection, whereas animals challenged at 5 weeks post-vaccination manifest little protection. Since the frequency of SIV-specific T cells decreases from week 5 to week 20, it is likely that the quality of the response to challenge changes as virus-specific cells differentiate. We applied a novel approach of transcription factor expression profiling to characterize the differences in SIV-specific cell function and phenotype at more protected and less protected time points. Using unsupervised clustering methods informed by expression profiles assessed in purified CD8+ T cell subsets, we show that SIV-specific cells display expression profiles different than any purified CD8+ T cell subset, and intermediate to sorted effector memory and central memory subsets. SIV-specific cells overall appear more effector memory-like at week 5 post-vaccination, and more central memory-like at week 20 post-vaccination. Distinct profiles of CD8+ T cells specific for different SIV epitopes having different immune escape kinetics suggests maturation is regulated by ongoing low-level replication of vaccine virus.
Collapse
Affiliation(s)
- James M. Billingsley
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Premeela A. Rajakumar
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michelle A. Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Nadine C. Salisch
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Crucell Holland BV, Leiden, The Netherlands
| | - Sama Adnan
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yury V. Kuzmichev
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Henoch S. Hong
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hyung-joo Kang
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley T. Haase
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Doolan DL, Apte SH, Proietti C. Genome-based vaccine design: the promise for malaria and other infectious diseases. Int J Parasitol 2014; 44:901-13. [PMID: 25196370 DOI: 10.1016/j.ijpara.2014.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/08/2023]
Abstract
Vaccines are one of the most effective interventions to improve public health, however, the generation of highly effective vaccines for many diseases has remained difficult. Three chronic diseases that characterise these difficulties include malaria, tuberculosis and HIV, and they alone account for half of the global infectious disease burden. The whole organism vaccine approach pioneered by Jenner in 1796 and refined by Pasteur in 1857 with the "isolate, inactivate and inject" paradigm has proved highly successful for many viral and bacterial pathogens causing acute disease but has failed with respect to malaria, tuberculosis and HIV as well as many other diseases. A significant advance of the past decade has been the elucidation of the genomes, proteomes and transcriptomes of many pathogens. This information provides the foundation for new 21st Century approaches to identify target antigens for the development of vaccines, drugs and diagnostic tests. Innovative genome-based vaccine strategies have shown potential for a number of challenging pathogens, including malaria. We advocate that genome-based rational vaccine design will overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued vaccine developers for many years.
Collapse
Affiliation(s)
- Denise L Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.
| | - Simon H Apte
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Carla Proietti
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| |
Collapse
|
20
|
Martins MA, Wilson NA, Piaskowski SM, Weisgrau KL, Furlott JR, Bonaldo MC, Veloso de Santana MG, Rudersdorf RA, Rakasz EG, Keating KD, Chiuchiolo MJ, Piatak M, Allison DB, Parks CL, Galler R, Lifson JD, Watkins DI. Vaccination with Gag, Vif, and Nef gene fragments affords partial control of viral replication after mucosal challenge with SIVmac239. J Virol 2014; 88:7493-516. [PMID: 24741098 PMCID: PMC4054456 DOI: 10.1128/jvi.00601-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/14/2014] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. IMPORTANCE Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by vaccinating rhesus macaques with minigenes encoding fragments of Gag, Vif, and Nef. In contrast to previous mouse studies, this strategy appeared to minimally affect monkey CD8(+) T-cell immundominance hierarchies, as seen by the detection of only one subdominant epitope in Mamu-A*01(+) vaccinees. This finding underscores the difficulty of inducing subdominant CD8(+) T cells by vaccination and demonstrates that strategies other than gene fragmentation may be required to significantly alter immunodominance in primates. Although some of the regimens tested here were extremely immunogenic, vaccine efficacy was limited to a modest reduction in set point viremia after challenge with SIVmac239. No correlates of protection were identified. These results reinforce the notion that vaccine immunogenicity does not predict control of AIDS virus replication.
Collapse
Affiliation(s)
- Mauricio A Martins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nancy A Wilson
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shari M Piaskowski
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessica R Furlott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Richard A Rudersdorf
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karen D Keating
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maria J Chiuchiolo
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn Army Terminal, Brooklyn, New York, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - David B Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn Army Terminal, Brooklyn, New York, USA
| | - Ricardo Galler
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - David I Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
21
|
Osuna CE, Gonzalez AM, Chang HH, Hung AS, Ehlinger E, Anasti K, Alam SM, Letvin NL. TCR affinity associated with functional differences between dominant and subdominant SIV epitope-specific CD8+ T cells in Mamu-A*01+ rhesus monkeys. PLoS Pathog 2014; 10:e1004069. [PMID: 24743648 PMCID: PMC3990730 DOI: 10.1371/journal.ppat.1004069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/28/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the factors that contribute to CD8+ T cell immunodominance hierarchies during viral infection are known. However, the functional differences that exist between dominant and subdominant epitope-specific CD8+ T cells remain poorly understood. In this study, we characterized the phenotypic and functional differences between dominant and subdominant simian immunodeficiency virus (SIV) epitope-specific CD8+ T cells restricted by the major histocompatibility complex (MHC) class I allele Mamu-A*01 during acute and chronic SIV infection. Whole genome expression analyses during acute infection revealed that dominant SIV epitope-specific CD8+ T cells had a gene expression profile consistent with greater maturity and higher cytotoxic potential than subdominant epitope-specific CD8+ T cells. Flow-cytometric measurements of protein expression and anti-viral functionality during chronic infection confirmed these phenotypic and functional differences. Expression analyses of exhaustion-associated genes indicated that LAG-3 and CTLA-4 were more highly expressed in the dominant epitope-specific cells during acute SIV infection. Interestingly, only LAG-3 expression remained high during chronic infection in dominant epitope-specific cells. We also explored the binding interaction between peptide:MHC (pMHC) complexes and their cognate TCRs to determine their role in the establishment of immunodominance hierarchies. We found that epitope dominance was associated with higher TCR:pMHC affinity. These studies demonstrate that significant functional differences exist between dominant and subdominant epitope-specific CD8+ T cells within MHC-restricted immunodominance hierarchies and suggest that TCR:pMHC affinity may play an important role in determining the frequency and functionality of these cell populations. These findings advance our understanding of the regulation of T cell immunodominance and will aid HIV vaccine design.
Collapse
Affiliation(s)
- Christa E. Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Ana Maria Gonzalez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hsun-Hsien Chang
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Shi Hung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Ehlinger
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pathology, Duke University of Medicine, Durham, North Carolina, United States of America
| | - Norman L. Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Verstrepen BE, Verschoor EJ, Fagrouch ZC, Mooij P, de Groot NG, Bontrop RE, Bogers WM, Heeney JL, Koopman G. Strong vaccine-induced CD8 T-cell responses have cytolytic function in a chimpanzee clearing HCV infection. PLoS One 2014; 9:e95103. [PMID: 24740375 PMCID: PMC3989318 DOI: 10.1371/journal.pone.0095103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/22/2014] [Indexed: 12/16/2022] Open
Abstract
A single correlate of effective vaccine protection against chronic HCV infection has yet to be defined. In this study, we analyzed T-cell responses in four chimpanzees, immunized with core-E1-E2-NS3 and subsequently infected with HCV1b. Viral clearance was observed in one animal, while the other three became chronically infected. In the animal that cleared infection, NS3-specific CD8 T-cell responses were observed to be more potent in terms of frequency and polyfunctionality of cytokine producing cells. Unique to this animal was the presence of killing-competent CD8 T-cells, specific for NS31258–1272, being presented by the chimpanzee MHC class I molecule Patr-A*03∶01, and a high affinity recognition of this epitope. In the animals that became chronically infected, T-cells were able to produce cytokines against the same peptide but no cytolysis could be detected. In conclusion, in the animal that was able to clear HCV infection not only cytokine production was observed but also cytolytic potential against specific MHC class I/peptide-combinations.
Collapse
Affiliation(s)
- Babs E. Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Ernst J. Verschoor
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Zahra C. Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Natasja G. de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Ronald E. Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Willy M. Bogers
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
de Santana MGV, Neves PCC, dos Santos JR, Lima NS, dos Santos AAC, Watkins DI, Galler R, Bonaldo MC. Improved genetic stability of recombinant yellow fever 17D virus expressing a lentiviral Gag gene fragment. Virology 2014; 452-453:202-11. [PMID: 24606697 DOI: 10.1016/j.virol.2014.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/11/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
We have previously designed a method to construct viable recombinant Yellow Fever (YF) 17D viruses expressing heterologous polypeptides including part of the Simian Immunodeficiency Virus (SIV) Gag protein. However, the expressed region, encompassing amino acid residues from 45 to 269, was genetically unstable. In this study, we improved the genetic stability of this recombinant YF 17D virus by introducing mutations in the IRES element localized at the 5' end of the SIV gag gene. The new stable recombinant virus elicited adaptive immune responses similar to those induced by the original recombinant virus. It is, therefore, possible to increase recombinant stability by removing functional motifs from the insert that may have deleterious effects on recombinant YF viral fitness.
Collapse
Affiliation(s)
- Marlon G Veloso de Santana
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil; Department of Pathology, University of Miami, Miller School of Medicine, United States of America
| | - Patrícia C C Neves
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Juliana Ribeiro dos Santos
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Noemia S Lima
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alexandre A C dos Santos
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - David I Watkins
- Department of Pathology, University of Miami, Miller School of Medicine, United States of America
| | - Ricardo Galler
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Baroncelli S, Negri DRM, Michelini Z, Cara A. Macaca mulatta,fascicularisandnemestrinain AIDS vaccine development. Expert Rev Vaccines 2014; 7:1419-34. [DOI: 10.1586/14760584.7.9.1419] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Song H, Sidney J, Wiseman RW, Josleyn N, Cohen M, Blaney JE, Jahrling PB, Sette A. Characterizing monkeypox virus specific CD8+ T cell epitopes in rhesus macaques. Virology 2013; 447:181-6. [PMID: 24210113 PMCID: PMC4771384 DOI: 10.1016/j.virol.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/13/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022]
Abstract
To characterize T cell epitopes in monkeypox virus (MPXV) infected rhesus macaques, we utilized IFNγ Elispot assay to screen 400 predicted peptides from 20MPXV proteins. Two peptides from the F8L protein, an analog of E9L protein in vaccinia, were found to elicit CD8+ T cell responses. Prediction and in vitro MHC binding analyses suggest that one is restricted by Mamu-A1(⁎)001 and another by Mamu-A1(⁎)002. The Mamu-A1(⁎)002 epitope is completely identical in all reported sequences for variola, vaccinia, cowpox and MPXV. The Mamu-A1(⁎)001 epitope is conserved in MPXV and vaccinia, and has one residue substitution (V6>I) in some cowpox sequences and all variola sequences. Given CD8+ T-cell epitopes from E9L were also identified in humans and mice, our data suggested that F8L/E9L may be a dominant pox viral protein for CD8+ T cell responses, and may be considered as a target when designing vaccines that target pox-specific T cell responses.
Collapse
Affiliation(s)
- Haifeng Song
- Integrated Research Facility, NIAID/NIH, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Virnik K, Hockenbury M, Ni Y, Beren J, Pavlakis GN, Felber BK, Berkower I. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques. Retrovirology 2013; 10:99. [PMID: 24041113 PMCID: PMC3849444 DOI: 10.1186/1742-4690-10-99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/22/2013] [Indexed: 01/13/2023] Open
Abstract
Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, NIH Campus, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I, Gilbride RM, Lewis MS, Gilliam AN, Ventura AB, Malouli D, Xu G, Richards R, Whizin N, Reed JS, Hammond KB, Fischer M, Turner JM, Legasse AW, Axthelm MK, Edlefsen PT, Nelson JA, Lifson JD, Früh K, Picker LJ. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 2013; 340:1237874. [PMID: 23704576 PMCID: PMC3816976 DOI: 10.1126/science.1237874] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CD8(+) T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of antipathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing rhesus cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8(+) T cells that recognize unusual, diverse, and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8(+) T cell responses is suppressed by the RhCMV-encoded Rh189 gene (corresponding to human CMV US11), and the promiscuous MHC class I- and class II-restricted CD8(+) T cell responses occur only in the absence of the Rh157.5, Rh157.4, and Rh157.6 (human CMV UL128, UL130, and UL131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8(+) T cell epitope recognition.
Collapse
Affiliation(s)
- Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Isabel Scholz
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Matthew S. Lewis
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Awbrey N. Gilliam
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Guangwu Xu
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Rebecca Richards
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Nathan Whizin
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jason S. Reed
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Katherine B. Hammond
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Miranda Fischer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - John M. Turner
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Alfred W. Legasse
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Paul T. Edlefsen
- Population Sciences and Computational Biology Programs, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
28
|
Mothé BR, Southwood S, Sidney J, English AM, Wriston A, Hoof I, Shabanowitz J, Hunt DF, Sette A. Peptide-binding motifs associated with MHC molecules common in Chinese rhesus macaques are analogous to those of human HLA supertypes and include HLA-B27-like alleles. Immunogenetics 2013; 65:371-86. [PMID: 23417323 PMCID: PMC3633659 DOI: 10.1007/s00251-013-0686-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 01/23/2013] [Indexed: 02/07/2023]
Abstract
Chinese rhesus macaques are of particular interest in simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) research as these animals have prolonged kinetics of disease progression to acquired immunodeficiency syndrome (AIDS), compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of major histocompatibility complex (MHC) molecules, including their MHC/peptide-binding motifs, provides valuable information for measuring cellular immune responses and deciphering outcomes of infection and vaccine efficacy. In this study, we have provided detailed characterization of six prevalent Chinese rhesus macaque MHC class I alleles, yielding a combined phenotypic frequency of 29 %. The peptide-binding specificity of two of these alleles, Mamu-A2*01:02 and Mamu-B*010:01, as well as the previously characterized allele Mamu-B*003:01 (and Indian rhesus Mamu-B*003:01), was found to be analogous to that of alleles in the HLA-B27 supertype family. Specific alleles in the HLA-B27 supertype family, including HLA-B*27:05, have been associated with long-term nonprogression to AIDS in humans. All six alleles characterized in the present study were found to have specificities analogous to HLA supertype alleles. These data contribute to the concept that Chinese rhesus macaque MHC immunogenetics is more similar to HLA than their Indian rhesus macaque counterparts and thereby warrants further studies to decipher the role of these alleles in the context of SIV infection.
Collapse
Affiliation(s)
- Bianca R Mothé
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Virnik K, Ni Y, Berkower I. Enhanced expression of HIV and SIV vaccine antigens in the structural gene region of live attenuated rubella viral vectors and their incorporation into virions. Vaccine 2013; 31:2119-25. [PMID: 23474312 DOI: 10.1016/j.vaccine.2013.02.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/31/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
Despite the urgent need for an HIV vaccine, its development has been hindered by virus variability, weak immunogenicity of conserved epitopes, and limited durability of the immune response. For other viruses, difficulties with immunogenicity were overcome by developing live attenuated vaccine strains. However, there is no reliable method of attenuation for HIV, and an attenuated strain would risk reversion to wild type. We have developed rubella viral vectors, based on the live attenuated vaccine strain RA27/3, which are capable of expressing important HIV and SIV vaccine antigens. The rubella vaccine strain has demonstrated safety, immunogenicity, and long lasting protection in millions of children. Rubella vectors combine the growth and immunogenicity of live rubella vaccine with the antigenicity of HIV or SIV inserts. This is the first report showing that live attenuated rubella vectors can stably express HIV and SIV vaccine antigens at an insertion site located within the structural gene region. Unlike the Not I site described previously, the new site accommodates a broader range of vaccine antigens without interfering with essential viral functions. In addition, antigens expressed at the structural site were controlled by the strong subgenomic promoter, resulting in higher levels and longer duration of antigen expression. The inserts were expressed as part of the structural polyprotein, processed to free antigen, and incorporated into rubella virions. The rubella vaccine strain readily infects rhesus macaques, and these animals will be the model of choice for testing vector growth in vivo and immunogenicity.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Bldg 29, Room 523, NIH Campus, Bethesda, MD 20892, United States
| | | | | |
Collapse
|
30
|
Wiseman RW, Karl JA, Bohn PS, Nimityongskul FA, Starrett GJ, O'Connor DH. Haplessly hoping: macaque major histocompatibility complex made easy. ILAR J 2013; 54:196-210. [PMID: 24174442 PMCID: PMC3814398 DOI: 10.1093/ilar/ilt036] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Major histocompatibility complex (MHC) gene products control the repertoire of T cell responses that an individual may create against pathogens and foreign tissues. This text will review the current understanding of MHC genetics in nonhuman primates, with a focus on Mauritian-origin cynomolgus macaques (Macaca fascicularis) and Indian-origin rhesus macaques (Macaca mulatta). These closely related macaque species provide important experimental models for studies of infectious disease pathogenesis, vaccine development, and transplantation research. Recent advances resulting from the application of several cost effective, high-throughput approaches, with deep sequencing technologies have revolutionized our ability to perform MHC genotyping of large macaque cohorts. Pyrosequencing of cDNA amplicons with a Roche/454 GS Junior instrument, provides excellent resolution of MHC class I allelic variants with semi-quantitative estimates of relative levels of transcript abundance. Introduction of the Illumina MiSeq platform significantly increased the sample throughput, since the sample loading workflow is considerably less labor intensive, and each instrument run yields approximately 100-fold more sequence data. Extension of these sequencing methods from cDNA to genomic DNA amplicons further streamlines the experimental workflow and opened opportunities for retrospective MHC genotyping of banked DNA samples. To facilitate the reporting of MHC genotypes, and comparisons between groups of macaques, this text also introduces an intuitive series of abbreviated rhesus MHC haplotype designations based on a major Mamu-A or Mamu-B transcript characteristic for ancestral allele combinations. The authors believe that the use of MHC-defined macaques promises to improve the reproducibility, and predictability of results from pre-clinical studies for translation to humans.
Collapse
Affiliation(s)
- Roger W. Wiseman
- Address correspondence and reprint requests to Dr. Roger Wiseman, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 555 Science Drive, Madison, WI 53711 or email
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Successful vaccine development for infectious diseases has largely been achieved in settings where natural immunity to the pathogen results in clearance in at least some individuals. HIV presents an additional challenge in that natural clearance of infection does not occur, and the correlates of immune protection are still uncertain. However, partial control of viremia and markedly different outcomes of disease are observed in HIV-infected persons. Here, we examine the antiviral mechanisms implicated by one variable that has been consistently associated with extremes of outcome, namely HLA class I alleles, and in particular HLA-B, and examine the mechanisms by which this modulation is likely to occur and the impact of these interactions on evolution of the virus and the host. Studies to date provide evidence for both HLA-dependent and epitope-dependent influences on viral control and viral evolution and have important implications for the continued quest for an effective HIV vaccine.
Collapse
|
32
|
Virnik K, Ni Y, Berkower I. Live attenuated rubella viral vectors stably express HIV and SIV vaccine antigens while reaching high titers. Vaccine 2012; 30:5453-8. [PMID: 22776214 DOI: 10.1016/j.vaccine.2012.06.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/25/2012] [Indexed: 11/18/2022]
Abstract
Live attenuated viruses make potent and effective vaccines. Despite the urgent need for an HIV vaccine, this approach has not been feasible, since it has not been possible to attenuate the virus reliably and guarantee vaccine safety. Instead, live viral vectors have been proposed that could present HIV vaccine antigens in the most immunogenic way, in the context of an active infection. We have adapted the rubella vaccine strain RA27/3 as a vector to express HIV and SIV antigens, and tested the effect of insert size and composition on vector stability and viral titer. We have identified an acceptor site in the rubella nonstructural gene region, where foreign genes can be expressed as a fusion protein with the nonstructural protein P150 without affecting essential viral functions. The inserts were expressed as early genes of rubella, under control of the rubella genomic promoter. At this site, HIV and SIV antigens were expressed stably for at least seven passages, as the rubella vectors reached high titers. Rubella readily infects rhesus macaques, and these animals will provide an ideal model for testing the new vectors for replication in vivo, immunogenicity, and protection against SIV or SHIV challenge.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, NIH Campus, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
33
|
Nomura T, Matano T. Association of MHC-I genotypes with disease progression in HIV/SIV infections. Front Microbiol 2012; 3:234. [PMID: 22754552 PMCID: PMC3386493 DOI: 10.3389/fmicb.2012.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/11/2012] [Indexed: 12/27/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTLs) are major effectors in acquired immune responses against viral infection. Virus-specific CTLs recognize specific viral peptides presented by major histocompatibility complex class-I (MHC-I) on the surface of virus-infected target cells via their T cell receptor (TCR) and eliminate target cells by both direct and indirect mechanisms. In human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections, host immune responses fail to contain the virus and allow persistent viral replication, leading to AIDS progression. CTL responses exert strong suppressive pressure on HIV/SIV replication and cumulative studies have indicated association of HLA/MHC-I genotypes with rapid or slow AIDS progression.
Collapse
Affiliation(s)
- Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
34
|
Moore C, Sidney J, English AM, Wriston A, Hunt DF, Shabanowitz J, Southwood S, Bradley K, Lafont BAP, Mothé BR, Sette A. Identification of the peptide-binding motif recognized by the pigtail macaque class I MHC molecule Mane-A1*082:01 (Mane A*0301). Immunogenetics 2012; 64:461-8. [PMID: 22278177 PMCID: PMC3626442 DOI: 10.1007/s00251-012-0600-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/13/2012] [Indexed: 11/29/2022]
Abstract
Rhesus and pigtail macaques have proven to be valuable animal models for several important human diseases, including HIV, where they exhibit similar pathology and disease progression. Because rhesus macaques have been extensively characterized in terms of their major histocompatibility complex (MHC) class I alleles, their demand has soared, making them increasingly difficult to obtain for research purposes. This problem has been exacerbated by a continued export ban in place since 1978. Pigtail macaques represent a potential alternative animal model. However, because their MHC class I alleles have not been characterized in detail, their use has been hindered. To address this, in the present study, we have characterized the peptide binding specificity of the pigtail macaque class I allele Mane-A1*082:01 (formerly known as Mane A*0301), representative of the second most common MHC class I antigen detected across several cohorts. The motif was defined on the basis of binding studies utilizing purified MHC protein and panels of single amino acid substitution analog peptides, as well as sequences of peptide ligands eluted from Mane-A1*082:01. Based on these analyses, Mane-A1*082:01 was found to recognize a motif with H in position 2 and the aromatic residues F and Y, or the hydrophobic/aliphatic residue M, at the C-terminus. Finally, analysis of the binding of a combinatorial peptide library allowed the generation of a detailed quantitative motif that proved effective in the prediction of a set of high-affinity binders derived from chimeric SIV/HIV, an important model virus for studying HIV infection in humans.
Collapse
Affiliation(s)
- Carrie Moore
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - A. Michelle English
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Amanda Wriston
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Donald F. Hunt
- Department of Chemistry and Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Scott Southwood
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Kate Bradley
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bernard A. P. Lafont
- Non-Human Primate Immunogenetics and Cellular Immunology Unit, Laboratory of Molecular Microbiology, NIAID/NIH, Bethesda, MD 20892, USA
| | - Bianca R. Mothé
- Department of Biological Sciences, California State University–San Marcos, San Marcos, CA 92069, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
35
|
Sette A, Sidney J, Southwood S, Moore C, Berry J, Dow C, Bradley K, Hoof I, Lewis MG, Hildebrand WH, McMurtrey CP, Wilson NA, Watkins DI, Mothé BR. A shared MHC supertype motif emerges by convergent evolution in macaques and mice, but is totally absent in human MHC molecules. Immunogenetics 2012; 64:421-34. [PMID: 22322672 PMCID: PMC3349854 DOI: 10.1007/s00251-011-0598-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/25/2011] [Indexed: 02/07/2023]
Abstract
The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the Dd mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These “G2” alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the “G2” alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans.
Collapse
Affiliation(s)
- Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bilello JP, Manrique JM, Shin YC, Lauer W, Li W, Lifson JD, Mansfield KG, Johnson RP, Desrosiers RC. Vaccine protection against simian immunodeficiency virus in monkeys using recombinant gamma-2 herpesvirus. J Virol 2011; 85:12708-20. [PMID: 21900170 PMCID: PMC3209374 DOI: 10.1128/jvi.00865-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/27/2011] [Indexed: 12/21/2022] Open
Abstract
Recombinant strains of replication-competent rhesus monkey rhadinovirus (RRV) were constructed in which strong promoter/enhancer elements were used to drive expression of simian immunodeficiency virus (SIV) Env or Gag or a Rev-Tat-Nef fusion protein. Cultured rhesus monkey fibroblasts infected with each recombinant strain were shown to express the expected protein. Three RRV-negative and two RRV-positive rhesus monkeys were inoculated intravenously with a mixture of these three recombinant RRVs. Expression of SIV Gag was readily detected in lymph node biopsy specimens taken at 3 weeks postimmunization. Impressive anti-SIV cellular immune responses were elicited on the basis of major histocompatibility complex (MHC) tetramer staining and gamma interferon enzyme-linked immunospot (ELISPOT) assays. Responses were much greater in magnitude in the monkeys that were initially RRV negative but were still readily detected in the two monkeys that were naturally infected with RRV at the time of immunization. By 3 weeks postimmunization, responses measured by MHC tetramer staining in the two Mamu-A*01(+) RRV-negative monkeys reached 9.3% and 13.1% of all CD8(+) T cells in peripheral blood to the Gag CM9 epitope and 2.3% and 7.3% of all CD8(+) T cells in peripheral blood to the Tat SL8 epitope. Virus-specific CD8(+) T cell responses persisted at high levels up to the time of challenge at 18 weeks postimmunization, and responding cells maintained an effector memory phenotype. Despite the ability of the RRVenv recombinant to express high levels of Env in cultured cells, and despite the appearance of strong anti-RRV antibody responses in immunized monkeys, anti-Env antibody responses were below our ability to detect them. Immunized monkeys, together with three unimmunized controls, were challenged intravenously with 10 monkey infectious doses of SIVmac239. All five immunized monkeys and all three controls became infected with SIV, but peak viral loads were 1.2 to 3.0 log(10) units lower and chronic-phase viral loads were 1.0 to 3.0 log(10) units lower in immunized animals than the geometric mean of unimmunized controls. These differences were statistically significant. Anti-Env antibody responses following challenge indicated an anamnestic response in the vaccinated monkeys. These findings further demonstrate the potential of recombinant herpesviruses as preventive vaccines for AIDS. We hypothesize that this live, replication-competent, persistent herpesvirus vector could match, or come close to matching, live attenuated strains of SIV in the degree of protection if the difficulty with elicitation of anti-Env antibody responses can be overcome.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Gammaherpesvirinae/genetics
- Gammaherpesvirinae/immunology
- Gene Products, env/administration & dosage
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/administration & dosage
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Genetic Vectors
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/virology
- Humans
- Immunity, Cellular
- Immunoenzyme Techniques
- Kidney/cytology
- Kidney/metabolism
- Kidney/virology
- Macaca mulatta/genetics
- Macaca mulatta/immunology
- Macaca mulatta/virology
- Neutralization Tests
- Plasmids
- Recombination, Genetic
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/genetics
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/immunology
- Vaccination
- Viral Load
- Virus Replication
Collapse
Affiliation(s)
- John P. Bilello
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - Julieta M. Manrique
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - Young C. Shin
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - William Lauer
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - Wenjun Li
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick Inc., National Cancer Institute, NCI Frederick, Frederick, Maryland 21702
| | - Keith G. Mansfield
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - R. Paul Johnson
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| | - Ronald C. Desrosiers
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
| |
Collapse
|
37
|
Reed JS, Sidney J, Piaskowski SM, Glidden CE, León EJ, Burwitz BJ, Kolar HL, Eernisse CM, Furlott JR, Maness NJ, Walsh AD, Rudersdorf RA, Bardet W, McMurtrey CP, O’Connor DH, Hildebrand WH, Sette A, Watkins DI, Wilson NA. The role of MHC class I allele Mamu-A*07 during SIV(mac)239 infection. Immunogenetics 2011; 63:789-807. [PMID: 21732180 PMCID: PMC3706270 DOI: 10.1007/s00251-011-0541-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/19/2011] [Indexed: 01/23/2023]
Abstract
Virus-specific CD8(+) T cells play an important role in controlling HIV/SIV replication. These T cells recognize intracellular pathogen-derived peptides displayed on the cell surface by individual MHC class I molecules. In the SIV-infected rhesus macaque model, five Mamu class I alleles have been thoroughly characterized with regard to peptide binding, and a sixth was shown to be uninvolved. In this study, we describe the peptide binding of Mamu-A1*007:01 (formerly Mamu-A*07), an allele present in roughly 5.08% of Indian-origin rhesus macaques (n = 63 of 1,240). We determined a preliminary binding motif by eluting and sequencing endogenously bound ligands. Subsequently, we used a positional scanning combinatorial library and panels of single amino acid substitution analogs to further characterize peptide binding of this allele and derive a quantitative motif. Using this motif, we selected and tested 200 peptides derived from SIV(mac)239 for their capacity to bind Mamu-A1*007:01; 33 were found to bind with an affinity of 500 nM or better. We then used PBMC from SIV-infected or vaccinated but uninfected, A1*007:01-positive rhesus macaques in IFN-γ Elispot assays to screen the peptides for T-cell reactivity. In all, 11 of the peptides elicited IFN-γ(+) T-cell responses. Six represent novel A1*007:01-restricted epitopes. Furthermore, both Sanger and ultradeep pyrosequencing demonstrated the accumulation of amino acid substitutions within four of these six regions, suggestive of selective pressure on the virus by antigen-specific CD8(+) T cells. Thus, it appears that Mamu-A1*007:01 presents SIV-derived peptides to antigen-specific CD8(+) T cells and is part of the immune response to SIV(mac)239.
Collapse
Affiliation(s)
- Jason S. Reed
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109
| | - Shari M. Piaskowski
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Chrystal E. Glidden
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Enrique J. León
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Benjamin J. Burwitz
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Holly L. Kolar
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | | | - Jessica R. Furlott
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Nicholas J. Maness
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Andrew D. Walsh
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Richard A. Rudersdorf
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Curtis P. McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - William H. Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109
| | - David I. Watkins
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Nancy A. Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| |
Collapse
|
38
|
Wu Y, Gao F, Liu J, Qi J, Gostick E, Price DA, Gao GF. Structural Basis of Diverse Peptide Accommodation by the Rhesus Macaque MHC Class I Molecule Mamu-B*17: Insights into Immune Protection from Simian Immunodeficiency Virus. THE JOURNAL OF IMMUNOLOGY 2011; 187:6382-92. [DOI: 10.4049/jimmunol.1101726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
CD8+ T cell escape mutations in simian immunodeficiency virus SIVmac239 cause fitness defects in vivo, and many revert after transmission. J Virol 2011; 85:12804-10. [PMID: 21957309 DOI: 10.1128/jvi.05841-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Virus-specific CD8(+) T lymphocytes select for escape mutations in human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). To assess the effects of these mutations on viral fitness, we introduced escape mutations into 30 epitopes (bound by five major histocompatibility complex class I [MHC-I] molecules) in three different viruses. Two of these MHC-I alleles are associated with elite control. Two of the three viruses demonstrated reduced fitness in vivo, and 27% of the introduced mutations reverted. These findings suggest that T cell epitope diversity may not be such a daunting problem for the development of an HIV vaccine.
Collapse
|
40
|
Vojnov L, Martins MA, Almeida JR, Ende Z, Rakasz EG, Reynolds MR, Leon EJ, Weisgrau KL, Burwitz BJ, Folkvord JM, Veloso de Santana MG, Costa Neves PC, Connick E, Skinner PJ, Gostick E, O'Connor DH, Wilson NA, Bonaldo MC, Galler R, Price DA, Douek DC, Watkins DI. GagCM9-specific CD8+ T cells expressing limited public TCR clonotypes do not suppress SIV replication in vivo. PLoS One 2011; 6:e23515. [PMID: 21887264 PMCID: PMC3162554 DOI: 10.1371/journal.pone.0023515] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/19/2011] [Indexed: 11/19/2022] Open
Abstract
Several lines of evidence suggest that HIV/SIV-specific CD8(+) T cells play a critical role in the control of viral replication. Recently we observed high levels of viremia in Indian rhesus macaques vaccinated with a segment of SIVmac239 Gag (Gag(45-269)) that were subsequently infected with SIVsmE660. These seven Mamu-A*01(+) animals developed CD8(+) T cell responses against an immunodominant epitope in Gag, GagCM9, yet failed to control virus replication. We carried out a series of immunological and virological assays to understand why these Gag-specific CD8(+) T cells could not control virus replication in vivo. GagCM9-specific CD8(+) T cells from all of the animals were multifunctional and were found in the colonic mucosa. Additionally, GagCM9-specific CD8(+) T cells accessed B cell follicles, the primary residence of SIV-infected cells in lymph nodes, with effector to target ratios between 20-250 GagCM9-specific CD8(+) T cells per SIV-producing cell. Interestingly, vaccinated animals had few public TCR clonotypes within the GagCM9-specific CD8(+) T cell population pre- and post-infection. The number of public TCR clonotypes expressed by GagCM9-specific CD8(+) T cells post-infection significantly inversely correlated with chronic phase viral load. It is possible that these seven animals failed to control viral replication because of the narrow TCR repertoire expressed by the GagCM9-specific CD8(+) T cell population elicited by vaccination and infection.
Collapse
Affiliation(s)
- Lara Vojnov
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mauricio A. Martins
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jorge R. Almeida
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zachary Ende
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eva G. Rakasz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Matthew R. Reynolds
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Enrique J. Leon
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Benjamin J. Burwitz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joy M. Folkvord
- University of Colorado Denver School of Medicine, Denver, Colorado, United States of America
| | | | - Patrícia C. Costa Neves
- Laboratorio de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Elizabeth Connick
- University of Colorado Denver School of Medicine, Denver, Colorado, United States of America
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Emma Gostick
- Department of Infection, Immunity and Biochemistry, Cardiff University, Wales, United Kingdom
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy A. Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Myrna C. Bonaldo
- Laboratorio de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Ricardo Galler
- Instituto de Tecnologia em Imunobiologicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - David A. Price
- Department of Infection, Immunity and Biochemistry, Cardiff University, Wales, United Kingdom
| | - Danny C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David I. Watkins
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
41
|
Vojnov L, Bean AT, Peterson EJ, Chiuchiolo MJ, Sacha JB, Denes FS, Sandor M, Fuller DH, Fuller JT, Parks CL, McDermott AB, Wilson NA, Watkins DI. DNA/Ad5 vaccination with SIV epitopes induced epitope-specific CD4⁺ T cells, but few subdominant epitope-specific CD8⁺ T cells. Vaccine 2011; 29:7483-90. [PMID: 21839132 DOI: 10.1016/j.vaccine.2011.07.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 02/07/2023]
Abstract
The goals of a T cell-based vaccine for HIV are to reduce viral peak and setpoint and prevent transmission. While it has been relatively straightforward to induce CD8(+) T cell responses against immunodominant T cell epitopes, it has been more difficult to broaden the vaccine-induced CD8(+) T cell response against subdominant T cell epitopes. Additionally, vaccine regimens to induce CD4(+) T cell responses have been studied only in limited settings. In this study, we sought to elicit CD8(+) T cells against subdominant epitopes and CD4(+) T cells using various novel and well-established vaccine strategies. We vaccinated three Mamu-A*01(+) animals with five Mamu-A*01-restricted subdominant SIV-specific CD8(+) T cell epitopes. All three vaccinated animals made high frequency responses against the Mamu-A*01-restricted Env TL9 epitope with one animal making a low frequency CD8(+) T cell response against the Pol LV10 epitope. We also induced SIV-specific CD4(+) T cells against several MHC class II DRBw*606-restricted epitopes. Electroporated DNA with pIL-12 followed by a rAd5 boost was the most immunogenic vaccine strategy. We induced responses against all three Mamu-DRB*w606-restricted CD4 epitopes in the vaccine after the DNA prime. Ad5 vaccination further boosted these responses. Although we successfully elicited several robust epitope-specific CD4(+) T cell responses, vaccination with subdominant MHC class I epitopes elicited few detectable CD8(+) T cell responses. Broadening the CD8(+) T cell response against subdominant MHC class I epitopes was, therefore, more difficult than we initially anticipated.
Collapse
Affiliation(s)
- Lara Vojnov
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI 53711, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Maness NJ, Walsh AD, Rudersdorf RA, Erickson PA, Piaskowski SM, Wilson NA, Watkins DI. Chinese origin rhesus macaque major histocompatibility complex class I molecules promiscuously present epitopes from SIV associated with molecules of Indian origin; implications for immunodominance and viral escape. Immunogenetics 2011; 63:587-97. [PMID: 21626440 DOI: 10.1007/s00251-011-0538-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 05/19/2011] [Indexed: 01/21/2023]
Abstract
The presentation of identical peptides by different major histocompatibility complex class I (MHC-I) molecules, termed promiscuity, is a controversial feature of T cell-mediated immunity to pathogens. The astounding diversity of MHC-I molecules in human populations, presumably to enable binding of equally diverse peptides, implies promiscuity would be a rare phenomenon. However, if it occurs, it would have important implications for immunity. We screened 77 animals for responses to peptides known to bind MHC-I molecules that were not expressed by these animals. Some cases of supposed promiscuity were determined to be the result of either non-identical optimal peptides or were simply not mapped to the correct MHC-I molecule in previous studies. Cases of promiscuity, however, were associated with alterations of immunodominance hierarchies, either in terms of the repertoire of peptides presented by the different MHC-I molecules or in the magnitude of the responses directed against the epitopes themselves. Specifically, we found that the Mamu-B*017:01-restricted peptides Vif HW8 and cRW9 were also presented by Mamu-A2*05:26 and targeted by an animal expressing that allele. We also found that the normally subdominant Mamu-A1*001:01 presented peptide Gag QI9 was also presented by Mamu-B*056:01. Both A2*05:26 and B*056:01 are molecules typically or exclusively expressed by animals of Chinese origin. These data clearly demonstrate that MHC-I epitope promiscuity, though rare, might have important implications for immunodominance and for the transmission of escape mutations, depending on the relative frequencies of the given alleles in a population.
Collapse
Affiliation(s)
- Nicholas James Maness
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI 53711, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities. Immunogenetics 2011; 63:275-90. [PMID: 21274527 PMCID: PMC3068250 DOI: 10.1007/s00251-010-0502-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/07/2010] [Indexed: 01/15/2023]
Abstract
The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques' major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC-peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses.
Collapse
|
44
|
Transcriptionally abundant major histocompatibility complex class I alleles are fundamental to nonhuman primate simian immunodeficiency virus-specific CD8+ T cell responses. J Virol 2011; 85:3250-61. [PMID: 21270169 DOI: 10.1128/jvi.02355-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus (SIV)-infected macaques are the preferred animal model for human immunodeficiency virus (HIV) vaccines that elicit CD8(+) T cell responses. Unlike humans, whose CD8(+) T cell responses are restricted by a maximum of six HLA class I alleles, macaques express up to 20 distinct major histocompatibility complex class I (MHC-I) sequences. Interestingly, only a subset of macaque MHC-I sequences are transcriptionally abundant in peripheral blood lymphocytes. We hypothesized that highly transcribed MHC-I sequences are principally responsible for restricting SIV-specific CD8(+) T cell responses. To examine this hypothesis, we measured SIV-specific CD8(+) T cell responses in MHC-I homozygous Mauritian cynomolgus macaques. Each of eight CD8(+) T cell responses defined by full-proteome gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay were restricted by four of the five transcripts that are transcriptionally abundant (>1% of total MHC-I transcripts in peripheral blood lymphocytes). The five transcriptionally rare transcripts shared by these animals did not restrict any detectable CD8(+) T cell responses. Further, seven CD8(+) T cell responses were defined by identifying peptide binding motifs of the three most frequent MHC-I transcripts on the M3 haplotype. Combined, these results suggest that transcriptionally abundant MHC-I transcripts are principally responsible for restricting SIV-specific CD8(+) T cell responses. Thus, only a subset of the thousands of known MHC-I alleles in macaques should be prioritized for CD8(+) T cell epitope characterization.
Collapse
|
45
|
Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity 2010; 33:530-41. [PMID: 21029963 PMCID: PMC3320742 DOI: 10.1016/j.immuni.2010.09.017] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/20/2010] [Accepted: 09/23/2010] [Indexed: 02/08/2023]
Abstract
The sequence of microbial genomes made all potential antigens of each pathogen available for vaccine development. This increased by orders of magnitude potential vaccine targets in bacteria, parasites, and large viruses and revealed virtually all their CD4(+) and CD8(+) T cell epitopes. The genomic information was first used for the development of a vaccine against serogroup B meningococcus, and it is now being used for several other bacterial vaccines. In this review, we will first summarize the impact that genome sequencing has had on vaccine development, and then we will analyze how the genomic information can help further our understanding of immunity to infection or vaccination and lead to the design of better vaccines by diving into the world of T cell immunity.
Collapse
Affiliation(s)
- Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92130, USA
| | | |
Collapse
|
46
|
CD8+ T cell recognition of cryptic epitopes is a ubiquitous feature of AIDS virus infection. J Virol 2010; 84:11569-74. [PMID: 20739530 DOI: 10.1128/jvi.01419-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vaccines designed to elicit AIDS virus-specific CD8+ T cells should engender broad responses. Emerging data indicate that alternate reading frames (ARFs) of both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) encode CD8+ T cell epitopes, termed cryptic epitopes. Here, we show that SIV-specific CD8+ T cells from SIV-infected rhesus macaques target 14 epitopes in eight ARFs during SIV infection. Animals recognized up to five epitopes, totaling nearly one-quarter of the anti-SIV responses. The epitopes were targeted by high-frequency responses as early as 2 weeks postinfection and in the chronic phase. Hence, previously overlooked ARF-encoded epitopes could be important components of AIDS vaccines.
Collapse
|
47
|
Solomon C, Southwood S, Hoof I, Rudersdorf R, Peters B, Sidney J, Pinilla C, Marcondes MCG, Ling B, Marx P, Sette A, Mothé BR. The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype. Immunogenetics 2010; 62:451-64. [PMID: 20480161 PMCID: PMC2890073 DOI: 10.1007/s00251-010-0450-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 04/19/2010] [Indexed: 01/30/2023]
Abstract
Of the two rhesus macaque subspecies used for AIDS studies, the Simian immunodeficiency virus-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection, providing both insight into pathogenesis and a system for testing novel vaccines. Despite the Chinese rhesus macaque potentially being a more relevant model for AIDS outcomes than the Indian rhesus macaque, the Chinese-origin rhesus macaques have not been well-characterized for their major histocompatibility complex (MHC) composition and function, reducing their greater utilization. In this study, we characterized a total of 50 unique Chinese rhesus macaques from several varying origins for their entire MHC class I allele composition and identified a total of 58 unique complete MHC class I sequences. Only nine of the sequences had been associated with Indian rhesus macaques, and 28/58 (48.3%) of the sequences identified were novel. From all MHC alleles detected, we prioritized Mamu-A1*02201 for functional characterization based on its higher frequency of expression. Upon the development of MHC/peptide binding assays and definition of its associated motif, we revealed that this allele shares peptide binding characteristics with the HLA-B7 supertype, the most frequent supertype in human populations. These studies provide the first functional characterization of an MHC class I molecule in the context of Chinese rhesus macaques and the first instance of HLA-B7 analogy for rhesus macaques.
Collapse
Affiliation(s)
- Christopher Solomon
- Department of Biological Sciences, California State University - San Marcos, San Marcos, CA 92096 USA
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| | - Scott Southwood
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| | - Ilka Hoof
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Richard Rudersdorf
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Bjoern Peters
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| | - John Sidney
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, La Jolla, CA 92037 USA
| | | | - Binhua Ling
- Department of Tropical Medicine, School of Public Health, Tulane University, New Orleans, LA 70112 USA
| | - Preston Marx
- Department of Tropical Medicine, School of Public Health, Tulane University, New Orleans, LA 70112 USA
| | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| | - Bianca R. Mothé
- Department of Biological Sciences, California State University - San Marcos, San Marcos, CA 92096 USA
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| |
Collapse
|
48
|
Multi-low-dose mucosal simian immunodeficiency virus SIVmac239 challenge of cynomolgus macaques immunized with "hyperattenuated" SIV constructs. J Virol 2009; 84:2304-17. [PMID: 20032177 DOI: 10.1128/jvi.01995-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyperattenuated simian immunodeficiency virus SIVmac239-derived constructs Delta5-CMV and Delta6-CCI are an effort to render SIV incapable of, in practical terms, both reversion and recombination while maintaining the immune features of SIV as a retrovirus. Primary inoculation of cynomolgus macaques with 10(8) 50% tissue culture infective doses (TCID(50)) of Delta5-CMV or Delta6-CCI induced low-level humoral and cellular responses detectable in the absence of measureable in vivo replication. The first of three DNA boosts resulted in elevated gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) responses to Gag, Pol, and Env in the Delta5-CMV vaccine group compared to the Delta6-CCI vaccine group (P = 0.001). Weekly intrarectal challenge with a low dose of SIVmac239 followed by a dose escalation was conducted until all animals became infected. The mean peak viral load of the Delta5-CMV-vaccinated animals (3.7 x 10(5) copies/ml) was approximately 1 log unit lower than that of the control animals. More dramatically, the viral load set point of these animals was decreased by 3 log units compared to that of the controls (<50 versus 1.64 x 10(4) copies/ml; P < 0.0001). Seventy-five percent (6/8) of vaccine recipients controlled virus below 1,000 copies/ml for at least 6 months, with a subset controlling virus and maintaining substantial CD4 T-cell counts for close to 2 years of follow-up. The correlates of protection from SIV disease progression may lie in the rapidity and protective value of immune responses that occur early in primary SIV infection. Prior immunization with hyperattenuated SIVmac239, even if sterilizing immunity is not achieved, may allow a more advantageous host response.
Collapse
|
49
|
Freissmuth D, Hiltgartner A, Stahl-Hennig C, Fuchs D, Tenner-Racz K, Racz P, Uberla K, Strasak A, Dierich MP, Stoiber H, Falkensammer B. Analysis of humoral immune responses in rhesus macaques vaccinated with attenuated SIVmac239Deltanef and challenged with pathogenic SIVmac251. J Med Primatol 2009; 39:97-111. [PMID: 20015159 DOI: 10.1111/j.1600-0684.2009.00398.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND To determine the correlation between protection and humoral immune response against simian immunodeficiency virus (SIVmac251), 11 macaques were immunized with live-attenuated SIVmac239Deltanef either intravenously or via the tonsils and exposed to SIVmac251 after either 6 or 15 months along with unvaccinated controls. RESULTS Independent of the route of vaccine application, viremia was significantly reduced in vaccinees compared with controls 2 weeks post-challenge. Concomitantly, viremia correlated inversely with SIV-specific IgG, complement-mediated lysis and neutralizing antibodies and these parameters seemed to contribute to reduced viremia. During chronic infection, six monkeys controlled viremia in the circulation (two or fewer infectious units per 10(6) PBMCs) and showed no signs of trapping in lymphatic tissues (Appendix S1). CONCLUSIONS As no significant differences were observed throughout the study, with respect to the humoral immune response and viremia control, between the two vaccinated cohorts, mucosal immunization strategies are recommended due to more simplified application.
Collapse
Affiliation(s)
- Doris Freissmuth
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Salisch NC, Kaufmann DE, Awad AS, Reeves RK, Tighe DP, Li Y, Piatak M, Lifson JD, Evans DT, Pereyra F, Freeman GJ, Johnson RP. Inhibitory TCR coreceptor PD-1 is a sensitive indicator of low-level replication of SIV and HIV-1. THE JOURNAL OF IMMUNOLOGY 2009; 184:476-87. [PMID: 19949078 DOI: 10.4049/jimmunol.0902781] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ongoing antigenic stimulation appears to be an important prerequisite for the persistent expression of programmed death 1 (PD-1), an inhibitory TCR coreceptor of the CD28 family. Although recent publications have emphasized the utility of PD-1 as a marker for dysfunctional T cells in chronic viral infections, its dependence on antigenic stimulation potentially renders it a sensitive indicator of low-level viral replication. To explore the antigenic threshold for the maintenance of PD-1 expression on virus-specific T cells, we compared PD-1 expression on virus-specific and memory T cell populations in controlled and uncontrolled SIV and HIV-1 infection. In both controlled live attenuated SIV infection in rhesus macaques and HIV-1 infection in elite controllers, elevated levels of PD-1 expression were observed on SIV- and HIV-1-specific CD8(+) T cells. However, in contrast to chronic wild-type SIV infection and uncontrolled HIV-1 infection, controlled SIV/HIV-1 infection did not result in increased expression of PD-1 on total memory T cells. PD-1 expression on SIV-specific CD8(+) T cells rapidly decreased after the emergence of CTL escape in cognate epitopes, but was maintained in the setting of low or undetectable levels of plasma viremia in live attenuated SIV-infected macaques. After inoculation of naive macaques with a single-cycle SIV, PD-1 expression on SIV-specific CD8(+) T cells initially increased, but was rapidly downregulated. These results demonstrate that PD-1 can serve as a sensitive indicator of persistent, low-level virus replication and that generalized PD-1 expression on T lymphocytes is a distinguishing characteristic of uncontrolled lentiviral infections.
Collapse
Affiliation(s)
- Nadine C Salisch
- Division of Immunology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|