1
|
Domanico LF, Dunn GP, Kobiler O, Taylor MP. A dual fluorescent herpes simplex virus type 1 recombinant reveals divergent outcomes of neuronal infection. J Virol 2024; 98:e0003224. [PMID: 38651900 PMCID: PMC11092338 DOI: 10.1128/jvi.00032-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
Critical stages of lytic herpes simplex virus type 1 (HSV-1) replication are marked by the sequential expression of immediate early (IE) to early (E), then late (L) viral genes. HSV-1 can also persist in neuronal cells via a non-replicative, transcriptionally repressed infection called latency. The regulation of lytic and latent transcriptional profiles is critical to HSV-1 pathogenesis and persistence. We sought a fluorescence-based approach to observe the outcome of neuronal HSV-1 infection at the single-cell level. To achieve this goal, we constructed and characterized a novel HSV-1 recombinant that enables discrimination between lytic and latent infection. The dual reporter HSV-1 encodes a human cytomegalovirus-immediate early (hCMV-IE) promoter-driven enhanced yellow fluorescent protein (eYFP) to visualize the establishment of infection and an endogenous mCherry-VP26 fusion to report lytic replication. We confirmed that viral gene expression, replication, and spread of infection are not altered by the incorporation of the fluorescent reporters, and fluorescent protein (FP) detection virtuously reports the progression of lytic replication. We demonstrate that the outcome of HSV-1 infection of compartmentalized primary neurons is determined by viral inoculating dose: high-dose axonal inoculation proceeds to lytic replication, whereas low-dose axonal inoculation establishes a latent HSV-1 infection. Interfering with low-dose axonal inoculation via small molecule drugs reports divergent phenotypes of eYFP and mCherry reporter detection, correlating with altered states of viral gene expression. We report that the transcriptional state of neuronal HSV-1 infection is variable in response to changes in the intracellular neuronal environment.IMPORTANCEHerpes simplex virus type 1 (HSV-1) is a prevalent human pathogen that infects approximately 67% of the global human population. HSV-1 invades the peripheral nervous system, where latent HSV-1 infection persists within the host for life. Immunological evasion, viral persistence, and herpetic pathologies are determined by the regulation of HSV-1 gene expression. Studying HSV-1 gene expression during neuronal infection is challenging but essential for the development of antiviral therapeutics and interventions. We used a recombinant HSV-1 to evaluate viral gene expression during infection of primary neurons. Manipulation of cell signaling pathways impacts the establishment and transcriptional state of HSV-1 latency in neurons. The work here provides critical insight into the cellular and viral factors contributing to the establishment of latent HSV-1 infection.
Collapse
Affiliation(s)
- Luke F. Domanico
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Gary P. Dunn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Matthew P. Taylor
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Canova PN, Charron AJ, Leib DA. Models of Herpes Simplex Virus Latency. Viruses 2024; 16:747. [PMID: 38793628 PMCID: PMC11125678 DOI: 10.3390/v16050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily manipulate host genetics and biological pathways, as well as mimicking the immune response and viral pathogenesis in human infections. Although realistically modeling HSV latency is necessary when choosing a model, the cost, time requirement, ethical constraints, and reagent availability are also equally important. Presently, there remains a pressing need for in vivo models that more closely recapitulate human HSV infection. While the current in vivo, ex vivo, and in vitro models used to study HSV latency have limitations, they provide further insights that add to our understanding of latency. In vivo models have shed light on natural infection routes and the interplay between the host immune response and the virus during latency, while in vitro models have been invaluable in elucidating molecular pathways involved in latency. Below, we review the relative advantages and disadvantages of current HSV models and highlight insights gained through each.
Collapse
Affiliation(s)
- Paige N. Canova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - Audra J. Charron
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - David A. Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
3
|
Cuddy SR, Cliffe AR. The Intersection of Innate Immune Pathways with the Latent Herpes Simplex Virus Genome. J Virol 2023; 97:e0135222. [PMID: 37129520 PMCID: PMC10231182 DOI: 10.1128/jvi.01352-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Innate immune responses can impact different stages of viral life cycles. Herpes simplex virus latent infection of neurons and subsequent reactivation provide a unique context for immune responses to intersect with different stages of infection. Here, we discuss recent findings linking neuronal innate immune pathways with the modulation of latent infection, acting at the time of reactivation and during initial neuronal infection to have a long-term impact on the ability of the virus to reactivate.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Arbuckle JH, Vogel JL, Efstathiou S, Kristie TM. Deletion of the Transcriptional Coactivator HCF-1 In Vivo Impairs the Removal of Repressive Heterochromatin from Latent HSV Genomes and Suppresses the Initiation of Viral Reactivation. mBio 2023; 14:e0354222. [PMID: 36692302 PMCID: PMC9973298 DOI: 10.1128/mbio.03542-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Transcription of herpes simplex virus 1 (HSV-1) immediate early (IE) genes is controlled at multiple levels by the cellular transcriptional coactivator, HCF-1. HCF-1 is complexed with epigenetic factors that prevent silencing of the viral genome upon infection, transcription factors that drive initiation of IE gene expression, and transcription elongation factors required to circumvent RNAPII pausing at IE genes and promote productive IE mRNA synthesis. Significantly, the coactivator is also implicated in the control of viral reactivation from latency in sensory neurons based on studies that demonstrate that HCF-1-associated epigenetic and transcriptional elongation complexes are critical to initiate IE expression and viral reactivation. Here, an HCF-1 conditional knockout mouse model (HCF-1cKO) was derived to probe the role and significance of HCF-1 in the regulation of HSV-1 latency/reactivation in vivo. Upon deletion of HCF-1 in sensory neurons, there is a striking reduction in the number of latently infected neurons that initiate viral reactivation. Importantly, this correlated with a defect in the removal of repressive chromatin associated with latent viral genomes. These data demonstrate that HCF-1 is a critical regulatory factor that governs the initiation of HSV reactivation, in part, by promoting the transition of latent viral genomes from a repressed heterochromatic state. IMPORTANCE Herpes simplex virus is responsible for a substantial worldwide disease burden. An initial infection leads to the establishment of a lifelong persistent infection in sensory neurons. Periodic reactivation can result in recurrent oral and genital lesions to more significant ocular disease. Despite the significance of this pathogen, many of the regulatory factors and molecular mechanisms that govern the viral latency-reactivation cycles have yet to be elucidated. Initiation of both lytic infection and reactivation are dependent on the expression of the viral immediate early genes. In vivo deletion of a central component of the IE regulatory paradigm, the cellular transcriptional coactivator HCF-1, reduces the epigenetic transition of latent viral genomes, thus suppressing HSV reactivation. These observations define HCF-1 as a critical regulator that controls the initiation of HSV reactivation from latency in vivo and contribute to understanding of the molecular mechanisms that govern viral reactivation.
Collapse
Affiliation(s)
- Jesse H. Arbuckle
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jodi L. Vogel
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stacey Efstathiou
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Thomas M. Kristie
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Abstract
Latent infection is a characteristic feature of herpesviruses’ life cycle. Herpes simplex virus 1 is a common human pathogen that establishes lifelong latency in peripheral neurons. Symptomatic or asymptomatic periodic reactivations from the latent state allow the virus to replicate and spread among individuals. The latent viral genomes are found as several quiescent episomes inside the infected nuclei; however, it is not clear if and how many latent genomes are able to reactivate together. To address this question, we developed a quiescent infection assay, which provides a quantitative analysis of the number of genomes reactivating per cell, in cultured immortalized fibroblasts. We found that, almost always, only one viral genome reactivates per cell. We showed that different timing of entry to quiescence did not result in a significant change in the probability of reactivating. Reactivation from this quiescent state allowed only limited intergenomic recombination between two viral strains compared to lytic infection. Following coinfection with a mutant that is unable to reactivate, only coreactivation with a reactivation-proficient recombinant can provide the opportunity for the mutant to reactivate. We speculate that each individual quiescent viral genome has a low and stochastic chance to reactivate in each cell, an assumption that can explain the limited number of genomes reactivating per cell. IMPORTANCE Herpesviruses are highly prevalent and cause significant morbidity in the human and animal populations. Most individuals who are infected with herpes simplex virus (HSV-1), a common human pathogen, will become lifelong carriers of the virus, as HSV-1 establishes latent (quiescent) infections in the host cells. Reactivation from the latent state leads to many of the viral symptoms and to the spread of the virus among individuals. While many triggers for reactivation were identified, how many genomes reactivate from an individual cell and how are these genomes selected remain understudied. Here, we identify that, in most cases, only one genome per cell reactivates. Mutated HSV-1 genomes require coinfection with another strain to allow coreactivation. Our findings suggest that the decision to reactivate is determined for each quiescent genome separately and support the notion that reactivation preferences occur at the single-genome level.
Collapse
|
6
|
Dochnal S, Merchant HY, Schinlever AR, Babnis A, Depledge DP, Wilson AC, Cliffe AR. DLK-Dependent Biphasic Reactivation of Herpes Simplex Virus Latency Established in the Absence of Antivirals. J Virol 2022; 96:e0050822. [PMID: 35608347 PMCID: PMC9215246 DOI: 10.1128/jvi.00508-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/30/2022] [Indexed: 01/07/2023] Open
Abstract
Understanding the molecular mechanisms of herpes simplex virus 1 (HSV-1) latent infection and reactivation in neurons requires the use of in vitro model systems. Establishing a quiescent infection in cultured neurons is problematic, as any infectious virus released can superinfect the cultures. Previous studies have used the viral DNA replication inhibitor acyclovir to prevent superinfection and promote latency establishment. Data from these previous models have shown that reactivation is biphasic, with an initial phase I expression of all classes of lytic genes, which occurs independently of histone demethylase activity and viral DNA replication but is dependent on the cell stress protein DLK. Here, we describe a new model system using HSV-1 Stayput-GFP, a reporter virus that is defective for cell-to-cell spread and establishes latent infections without the need for acyclovir. The establishment of a latent state requires a longer time frame than previous models using DNA replication inhibitors. This results in a decreased ability of the virus to reactivate using established inducers, and as such, a combination of reactivation triggers is required. Using this system, we demonstrate that biphasic reactivation occurs even when latency is established in the absence of acyclovir. Importantly, phase I lytic gene expression still occurs in a histone demethylase and viral DNA replication-independent manner and requires DLK activity. These data demonstrate that the two waves of viral gene expression following HSV-1 reactivation are independent of secondary infection and not unique to systems that require acyclovir to promote latency establishment. IMPORTANCE Herpes simplex virus-1 (HSV-1) enters a latent infection in neurons and periodically reactivates. Reactivation manifests as a variety of clinical symptoms. Studying latency and reactivation in vitro is invaluable, allowing the molecular mechanisms behind both processes to be targeted by therapeutics that reduce the clinical consequences. Here, we describe a novel in vitro model system using a cell-to-cell spread-defective HSV-1, known as Stayput-GFP, which allows for the study of latency and reactivation at the single neuron level. We anticipate this new model system will be an incredibly valuable tool for studying the establishment and reactivation of HSV-1 latent infection in vitro. Using this model, we find that initial reactivation events are dependent on cellular stress kinase DLK but independent of histone demethylase activity and viral DNA replication. Our data therefore further validate the essential role of DLK in mediating a wave of lytic gene expression unique to reactivation.
Collapse
Affiliation(s)
- Sara Dochnal
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Husain Y. Merchant
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Austin R. Schinlever
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Impact of Cultured Neuron Models on α-Herpesvirus Latency Research. Viruses 2022; 14:v14061209. [PMID: 35746680 PMCID: PMC9228292 DOI: 10.3390/v14061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
A signature trait of neurotropic α-herpesviruses (α-HV) is their ability to establish stable non-productive infections of peripheral neurons termed latency. This specialized gene expression program is the foundation of an evolutionarily successful strategy to ensure lifelong persistence in the host. Various physiological stresses can induce reactivation in a subset of latently-infected neurons allowing a new cycle of viral productive cycle gene expression and synthesis of infectious virus. Recurring reactivation events ensure transmission of the virus to new hosts and contributes to pathogenesis. Efforts to define the molecular basis of α-HV latency and reactivation have been notoriously difficult because the neurons harboring latent virus in humans and in experimentally infected live-animal models, are rare and largely inaccessible to study. Increasingly, researchers are turning to cultured neuron infection models as simpler experimental platforms from which to explore latency and reactivation at the molecular level. In this review, I reflect on the strengths and weaknesses of existing neuronal models and briefly summarize the important mechanistic insights these models have provided. I also discuss areas where prioritization will help to ensure continued progress and integration.
Collapse
|
8
|
Cuddy SR, Schinlever AR, Dochnal S, Seegren PV, Suzich J, Kundu P, Downs TK, Farah M, Desai BN, Boutell C, Cliffe AR. Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. eLife 2020; 9:e58037. [PMID: 33350386 PMCID: PMC7773336 DOI: 10.7554/elife.58037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in neurons and periodically reactivates to cause disease. The stimuli that trigger HSV-1 reactivation have not been fully elucidated. We demonstrate HSV-1 reactivation from latently infected mouse neurons induced by forskolin requires neuronal excitation. Stimuli that directly induce neurons to become hyperexcitable also induced HSV-1 reactivation. Forskolin-induced reactivation was dependent on the neuronal pathway of DLK/JNK activation and included an initial wave of viral gene expression that was independent of histone demethylase activity and linked to histone phosphorylation. IL-1β is released under conditions of stress, fever and UV exposure of the epidermis; all known triggers of clinical HSV reactivation. We found that IL-1β induced histone phosphorylation and increased the excitation in sympathetic neurons. Importantly, IL-1β triggered HSV-1 reactivation, which was dependent on DLK and neuronal excitability. Thus, HSV-1 co-opts an innate immune pathway resulting from IL-1 stimulation of neurons to induce reactivation.
Collapse
Affiliation(s)
- Sean R Cuddy
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Philip V Seegren
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Jon Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Parijat Kundu
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Taylor K Downs
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Mina Farah
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Bimal N Desai
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube CampusGlasgowUnited Kingdom
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
9
|
Choi SJ, Ryu E, Lee S, Huh S, Shin YS, Kang BW, Kim JG, Cho H, Kang H. Adenosine Induces EBV Lytic Reactivation through ADORA1 in EBV-Associated Gastric Carcinoma. Int J Mol Sci 2019; 20:ijms20061286. [PMID: 30875759 PMCID: PMC6471230 DOI: 10.3390/ijms20061286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 02/07/2023] Open
Abstract
Cordyceps species are known to contain numerous bioactive compounds, including cordycepin. Extracts of Cordyceps militaris (CME) are used in diverse medicinal purposes because of their bioactive components. Cordycepin, one of the active components of CME, exhibits anti-proliferative, pro-apoptotic, and anti-inflammatory effects. Cordycepin structurally differs from adenosine in that its ribose lacks an oxygen atom at the 3′ position. We previously reported that cordycepin suppresses Epstein–Barr virus (EBV) gene expression and lytic replication in EBV-associated gastric carcinoma (EBVaGC). However, other studies reported that cordycepin induces EBV gene expression and lytic reactivation. Thus, it was reasonable to clarify the bioactive effects of CME bioactive compounds on the EBV life cycle. We first confirmed that CME preferentially induces EBV gene expression and lytic reactivation; second, we determined that adenosine in CME induces EBV gene expression and lytic reactivation; third, we discovered that the adenosine A1 receptor (ADORA1) is required for adenosine to initiate signaling for upregulating BZLF1, which encodes for a key EBV regulator (Zta) of the EBV lytic cycle; finally, we showed that BZLF1 upregulation by adenosine leads to delayed tumor development in the EBVaGC xenograft mouse model. Taken together, these results suggest that adenosine is an EBV lytic cycle inducer that inhibits EBVaGC development.
Collapse
Affiliation(s)
- Su Jin Choi
- College of Pharmacy and Cancer Research Institute and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Eunhyun Ryu
- College of Pharmacy and Cancer Research Institute and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Seulki Lee
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul 01369, Korea.
| | - Sora Huh
- College of Pharmacy and Cancer Research Institute and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Yu Su Shin
- Department of Medical Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea.
| | - Byung Woog Kang
- Department of Oncology/Hematology and Cancer Research Institute and School of Medicine, Kyungpook National University Hospital and Kyungpook National University, Daegu 41404, Korea.
| | - Jong Gwang Kim
- Department of Oncology/Hematology and Cancer Research Institute and School of Medicine, Kyungpook National University Hospital and Kyungpook National University, Daegu 41404, Korea.
| | - Hyosun Cho
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul 01369, Korea.
| | - Hyojeung Kang
- College of Pharmacy and Cancer Research Institute and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
10
|
Suzich JB, Cliffe AR. Strength in diversity: Understanding the pathways to herpes simplex virus reactivation. Virology 2018; 522:81-91. [PMID: 30014861 DOI: 10.1016/j.virol.2018.07.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023]
Abstract
Herpes simplex virus (HSV) establishes a latent infection in peripheral neurons and can periodically reactivate to cause disease. Reactivation can be triggered by a variety of stimuli that activate different cellular processes to result in increased HSV lytic gene expression and production of infectious virus. The use of model systems has contributed significantly to our understanding of how reactivation of the virus is triggered by different physiological stimuli that are correlated with recrudescence of human disease. Furthermore, these models have led to the identification of both common and distinct mechanisms of different HSV reactivation pathways. Here, we summarize how the use of these diverse model systems has led to a better understanding of the complexities of HSV reactivation, and we present potential models linking cellular signaling pathways to changes in viral gene expression.
Collapse
Affiliation(s)
- Jon B Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, United States
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
11
|
Phelan D, Barrozo ER, Bloom DC. HSV1 latent transcription and non-coding RNA: A critical retrospective. J Neuroimmunol 2017; 308:65-101. [PMID: 28363461 DOI: 10.1016/j.jneuroim.2017.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
Virologists have invested great effort into understanding how the herpes simplex viruses and their relatives are maintained dormant over the lifespan of their host while maintaining the poise to remobilize on sporadic occasions. Piece by piece, our field has defined the tissues in play (the sensory ganglia), the transcriptional units (the latency-associated transcripts), and the responsive genomic region (the long repeats of the viral genomes). With time, the observed complexity of these features has compounded, and the totality of viral factors regulating latency are less obvious. In this review, we compose a comprehensive picture of the viral genetic elements suspected to be relevant to herpes simplex virus 1 (HSV1) latent transcription by conducting a critical analysis of about three decades of research. We describe these studies, which largely involved mutational analysis of the notable latency-associated transcripts (LATs), and more recently a series of viral miRNAs. We also intend to draw attention to the many other less characterized non-coding RNAs, and perhaps coding RNAs, that may be important for consideration when trying to disentangle the multitude of phenotypes of the many genetic modifications introduced into recombinant HSV1 strains.
Collapse
Affiliation(s)
- Dane Phelan
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - Enrico R Barrozo
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| |
Collapse
|
12
|
Jiang X, Brown D, Osorio N, Hsiang C, BenMohamed L, Wechsler SL. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency-associated transcript (LAT)-negative mutant dLAT2903 with a disrupted LAT miR-H2. J Neurovirol 2015; 22:38-49. [PMID: 26069184 DOI: 10.1007/s13365-015-0362-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022]
Abstract
At least six microRNAs (miRNAs) appear to be encoded by the latency-associated transcript (LAT) of herpes simplex virus type 1 (HSV-1). The gene for ICP0, an important immediate early (IE) viral protein, is anti-sense to, and overlaps with, the region of LAT from which miRNA H2 (miR-H2) is derived. We recently reported that a mutant (McK-ΔH2) disrupted for miR-H2 on the wild-type HSV-1 strain McKrae genomic background has increased ICP0 expression, increased neurovirulence, and slightly more rapid reactivation. We report here that HSV-1 mutants deleted for the LAT promoter nonetheless make significant amounts of miR-H2 during lytic tissue culture infection, presumably via readthrough transcription from an upstream promoter. To determine if miR-H2 might also play a role in the HSV-1 latency/reactivation cycle of a LAT-negative mutant, we constructed dLAT-ΔH2, in which miR-H2 is disrupted in dLAT2903 without altering the predicted amino acid sequence of the overlapping ICP0 open reading frame. Similar to McK-ΔH2, dLAT-ΔH2 expressed more ICP0, was more neurovirulent, and had increased reactivation in the mouse TG explant-induced reactivation model of HSV-1 compared with its parental virus. Interestingly, although the increased reactivation of McK-ΔH2 compared with its parental wild-type (wt) virus was subtle and only detected at very early times after explant TG induced reactivation, the increased reactivation of dLAT-ΔH2 compared with its dLAT2903 parental virus appeared more robust and was significantly increased even at late times after induction. These results confirm that miR-H2 plays a role in modulating the HSV-1 reactivation phenotype.
Collapse
Affiliation(s)
- Xianzhi Jiang
- Virology Research, Gavin Herbert Eye Institute and Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Don Brown
- Virology Research, Gavin Herbert Eye Institute and Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Nelson Osorio
- Virology Research, Gavin Herbert Eye Institute and Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Chinhui Hsiang
- Virology Research, Gavin Herbert Eye Institute and Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Lbachir BenMohamed
- Virology Research, Gavin Herbert Eye Institute and Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA, 92697, USA
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute and Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Irvine, CA, 92868-32013, USA
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Steven L Wechsler
- Virology Research, Gavin Herbert Eye Institute and Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA, 92697, USA.
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute and Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA, 92697, USA.
- Department of Microbiology and Molecular Genetics, University of California Irvine, School of Medicine, Irvine, CA, 92697, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA.
- Ophthalmology Research, University of California Irvine, 843 Health Sciences Road, Hewitt Hall (Building 843), Room 2012, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Hogk I, Kaufmann M, Finkelmeier D, Rupp S, Burger-Kentischer A. An In Vitro HSV-1 Reactivation Model Containing Quiescently Infected PC12 Cells. Biores Open Access 2013; 2:250-7. [PMID: 23914331 PMCID: PMC3731678 DOI: 10.1089/biores.2013.0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Advances in the understanding of the infection and reactivation process of herpes simplex type 1 (HSV-1) are generally gained by monolayer cultures or extensive and cost-intensive animal models. So far, no reliable in vitro skin model exists either to investigate the molecular mechanisms involved in controlling latency and virus reactivation or to test pharmaceuticals. Here we demonstrate the first in vitro HSV-1 reactivation model generated by using the human keratinocyte cell line HaCaT grown on a collagen substrate containing primary human fibroblasts. We integrated the unique feature of a quiescently infected neuronal cell line, the rat pheochromocytoma line PC12, within the dermal layer of the three-dimensional skin equivalent. Transmission electron microscopy, a cell-based TCID50 assay, and polymerase chain reaction analysis were used to verify cell latency. Thereby viral DNA could be detected, whereas extracellular as well as intracellular virus activity could not be found. Further, the infected PC12 cells show no spontaneous reactivation within the in vitro skin equivalent. In order to simulate a physiologically comparable HSV-1 infection, we achieved a specific and pointed reactivation of quiescently HSV-1 infected PC12 cells by UVB irradiation at 1000 mJ/cm2.
Collapse
Affiliation(s)
- Ina Hogk
- Institute for Interfacial Engineering and Plasma Technology, University of Stuttgart , Stuttgart, Germany
| | | | | | | | | |
Collapse
|
14
|
DNA damage promotes herpes simplex virus-1 protein expression in a neuroblastoma cell line. J Neurovirol 2013; 19:57-64. [PMID: 23354549 DOI: 10.1007/s13365-012-0140-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/06/2012] [Accepted: 11/13/2012] [Indexed: 02/07/2023]
Abstract
Although the induction of the cellular DNA damage response by herpes simplex virus-1 (HSV-1) infection of epithelial cells in tissue culture promotes productive infection, there has been no experimental observation of the effect of the cellular DNA damage response on HSV-1 infection in vivo or in neuronal derived cell lines in tissue culture. Thus, it has been speculated that the lack of cellular DNA damage induction during infection of neurons may promote latency in these cells. This work examines the profile of HSV-1 promoter induction and protein expression, in the absence or presence of infection; using cellular DNA damage inducing topoisomerase inhibitors (Camptothecin and Etoposide) on a neuroblastoma cell line (C1300) in which HSV-1 infection fails to induce the DNA damage response. In the absence of infection, a plasmid expressing the immediate early ICP0 promoter was the most induced by the DNA damage drug treatments compared to the early (RR) and late (VP16) gene promoters. Similarly, drug treatment of C1300 cells infected with HSV-1 virus showed enhanced protein expression for ICP0, but not ICP4 and VP16 proteins. However, when the cells were infected with a HSV-1 virus defective in the immediate early gene trans-activator VP16 (in814) and treated with the DNA damaging drugs, there was enhanced expression of immediate early and late HSV-1 proteins. Although, viral infection of the neuroblastoma cell alone did not induce DNA damage, cellular DNA damage induced by drug treatments facilitated viral promoter induction and viral protein expression. This implicates a mechanism by which HSV-1 viral genes in a quiescent or latent state may become induced by cellular DNA damage in neuronal cells to facilitate productive infection.
Collapse
|
15
|
Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 2012; 36:684-705. [PMID: 22150699 PMCID: PMC3492847 DOI: 10.1111/j.1574-6976.2011.00320.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency.
Collapse
Affiliation(s)
- Michael P Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
16
|
Roehm PC, Camarena V, Nayak S, Gardner JB, Wilson A, Mohr I, Chao MV. Cultured vestibular ganglion neurons demonstrate latent HSV1 reactivation. Laryngoscope 2011; 121:2268-75. [PMID: 21898423 DOI: 10.1002/lary.22035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/16/2011] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS Vestibular neuritis is a common cause of both acute and chronic vestibular dysfunction. Multiple pathologies have been hypothesized to be the causative agent of vestibular neuritis; however, whether herpes simplex type I (HSV1) reactivation occurs within the vestibular ganglion has not been demonstrated previously by experimental evidence. We developed an in vitro system to study HSV1 infection of vestibular ganglion neurons (VGNs) using a cell culture model system. STUDY DESIGN basic science study. RESULTS Lytic infection of cultured rat VGNs was observed following low viral multiplicity of infection (MOI). Inclusion of acyclovir suppressed lytic replication and allowed latency to be established. Upon removal of acyclovir, latent infection was confirmed with reverse-transcription polymerase chain reaction and by RNA fluorescent in situ hybridization for the latency-associated transcript (LAT). A total of 29% cells in latently infected cultures were LAT positive. The lytic ICP27 transcript was not detected by reverse-transcription polymerase chain reaction (RT-PCR). Reactivation of HSV1 occurred at a high frequency in latently infected cultures following treatment with trichostatin A (TSA), a histone deactylase inhibitor. CONCLUSIONS VGNs can be both lytically and latently infected with HSV1. Furthermore, latently infected VGNs can be induced to reactivate using TSA. This demonstrates that reactivation of latent HSV1 infection in the vestibular ganglion can occur in a cell culture model, and suggests that reactivation of HSV1 infection a plausible etiologic mechanism of vestibular neuritis.
Collapse
Affiliation(s)
- Pamela C Roehm
- Department of Otolaryngology, NYU School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hsia SC, Bedadala GR, Balish MD. Effects of thyroid hormone on HSV-1 gene regulation: implications in the control of viral latency and reactivation. Cell Biosci 2011; 1:24. [PMID: 21756309 PMCID: PMC3158742 DOI: 10.1186/2045-3701-1-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/14/2011] [Indexed: 02/02/2023] Open
Abstract
Thyroid hormone (TH) is involved in many biological functions such as animal development, cell differentiation, etc. Variation and/or disruption of plasma TH level often led to abnormalities and physiological disorders. TH exerts the effects through its nuclear receptors (TR). Literature showed that procedures resulted in TH alteration also linked to reactivation of several viruses including Herpes Simplex Virus Type -1 (HSV-1). Bioinformatic analyses revealed a number of putative TH responsive elements (TRE) located in the critical regulatory regions of HSV-1 genes such as thymidine kinase (TK), latency associated transcript (LAT), etc. Studies using neuronal cell lines have provided evidences demonstrating that liganded TR regulated viral gene expression via chromatin modification and controlled viral replication. The removal of TH reversed the inhibition and induced the viral replication previously blocked by TH. These results suggest that TH may have implication to participate in the control of reactivation during HSV-1 latency.
Collapse
Affiliation(s)
- Shao-Chung Hsia
- Department of Pharmaceutical Sciences, University of Maryland, Eastern Shore School of Pharmacy, Princess Anne, Maryland 21853, USA.
| | | | | |
Collapse
|
18
|
De Regge N, Van Opdenbosch N, Nauwynck HJ, Efstathiou S, Favoreel HW. Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro. PLoS One 2010; 5:e13076. [PMID: 20927329 PMCID: PMC2947521 DOI: 10.1371/journal.pone.0013076] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 09/07/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several alphaherpesviruses, including herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), establish lifelong latency in neurons of the trigeminal ganglion (TG). Although it is thought that efficient establishment of alphaherpesvirus latency is based on a subtle interplay between virus, neurons and the immune system, it is not clear which immune components are of major importance for the establishment of latency. METHODOLOGY/PRINCIPAL FINDINGS Here, using an in vitro model that enables a natural route of infection, we show that interferon alpha (IFNalpha) has the previously uncharacterized capacity to induce a quiescent HSV-1 and PRV infection in porcine TG neurons that shows strong similarity to in vivo latency. IFNalpha induced a stably suppressed HSV-1 and PRV infection in TG neurons in vitro. Subsequent treatment of neurons containing stably suppressed virus with forskolin resulted in reactivation of both viruses. HSV and PRV latency in vivo is often accompanied by the expression of latency associated transcripts (LATs). Infection of TG neurons with an HSV-1 mutant expressing LacZ under control of the LAT promoter showed activation of the LAT promoter and RT-PCR analysis confirmed that both HSV-1 and PRV express LATs during latency in vitro. CONCLUSIONS/SIGNIFICANCE These data represent a unique in vitro model of alphaherpesvirus latency and indicate that IFNalpha may be a driving force in promoting efficient latency establishment.
Collapse
Affiliation(s)
- Nick De Regge
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nina Van Opdenbosch
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans J. Nauwynck
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Herman W. Favoreel
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
19
|
Valderrama X, Rapin N, Misra V. Zhangfei, a novel regulator of the human nerve growth factor receptor, trkA. J Neurovirol 2008; 14:425-36. [PMID: 19016376 DOI: 10.1080/13550280802275904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The replication of herpes simplex virus (HSV) in epithelial cells, and during reactivation from latency in sensory neurons, depends on a ubiquitous cellular protein called host cell factor (HCF). The HSV transactivator, VP16, which initiates the viral replicative cycle, binds HCF as do some other cellular proteins. Of these, the neuronal transcription factor Zhangfei suppresses the ability of VP16 to initiate the replicative cycle. It also suppresses Luman, another cellular transcription factor that binds HCF. Interactions of nerve growth factor (NGF) and its receptor tropomyosin-related kinase (trkA) appear to be critical for maintaining HSV latency. Because the neuronal transcription factor Brn3a, which regulates trkA expression, has a motif for binding HCF, we investigated if Zhangfei had an effect on its activity. We found that Brn3a required HCF for activating the trkA promoter and Zhangfei suppressed its activity in non-neuronal cells. However, in neuron-like NGF-differentiated PC12 cells, both Brn3a and Zhangfei activated the trkA promoter and induced the expression of endogenous trkA. In addition, capsaicin, a stressor, which activates HSV in in vitro models of latency, decreased levels of Zhangfei and trkA transcripts in NGF-differentiated PC12 cells.
Collapse
Affiliation(s)
- Ximena Valderrama
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
20
|
Interactions between the products of the Herpes simplex genome and Alzheimer's disease susceptibility genes: relevance to pathological-signalling cascades. Neurochem Int 2007; 52:920-34. [PMID: 18164103 DOI: 10.1016/j.neuint.2007.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 11/08/2007] [Accepted: 11/19/2007] [Indexed: 01/07/2023]
Abstract
The products of the Herpes simplex (HSV-1) genome interact with many Alzheimer's disease susceptibility genes or proteins. These in turn affect those of the virus. For example, HSV-1 binds to heparan sulphate proteoglycans (HSPG2), or alpha-2-macroglobulin (A2M), and enters cells via nectin receptors, which are cleaved by gamma-secretase (APH1B, PSEN1, PSEN2, PEN2, NCSTN). The virus also binds to blood-borne lipoproteins and apolipoprotein E (APOE) is able to modify its infectivity. Viral uptake is cholesterol- and lipid raft-dependent (DHCR24, HMGCR, FDPS, RAFTLIN, SREBF1). The virus is transported to the nucleus via the dynein and kinesin (KNS2) motors associated with the microtubule network (MAPT). Amyloid precursor protein (APP) plays a role in this transport. Nuclear export is mediated via disruption of the nuclear lamina and binding to LMNA. Herpes simplex activates kinases (CDC2 and casein kinase 2) whose substrates include APOE, APP, MAPT, PSEN2, and SREBF1. A viral protein is also able to delete mitochondrial DNA, a situation prevalent in Alzheimer's disease. The virus binds to the host transcription factors transcription factor CP2 (TFCP2) and POU2F1 that control many other genes associated with Alzheimer's disease. Viral latency is controlled by IL6 and IL1B and at different stages of its life cycle the virus can either promote or attenuate apoptosis via Fas and tumor necrosis factor pathways (FAS, TNF, DAPK1, PARP1). Viral evasion strategies include inhibition of the antigen processor TAP2, the production of an Fc immunoglobulin receptor mimic (FCER1G) and inhibition of the viral-activated kinase EIF2AK2. These and other host/viral interactions, targeted to certain Alzheimer's disease susceptibility genes, support the idea that some form of synergy between the pathogen and genetic factors may play a role in the pathology of late-onset Alzheimer's disease.
Collapse
|
21
|
Morales V, Gonzalez-Robayna I, Santana MP, Hernandez I, Fanjul LF. Tumor necrosis factor-alpha activates transcription of inducible repressor form of 3',5'-cyclic adenosine 5'-monophosphate-responsive element binding modulator and represses P450 aromatase and inhibin alpha-subunit expression in rat ovarian granulosa cells by a p44/42 mitogen-activated protein kinase-dependent mechanism. Endocrinology 2006; 147:5932-9. [PMID: 16946004 DOI: 10.1210/en.2006-0635] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proinflammatory cytokine TNFalpha has important actions at the level of the ovary, including inhibition of P450 aromatase (P450AROM) activity and the secretion of inhibin, two proteins that are markers of the granulosa cell's differentiated status. Because the transcription of both P450AROM and inhibin alpha-subunit can be suppressed in the ovary by the inducible repressor isoform of cAMP-responsive element binding modulator (ICER), we have investigated whether TNFalpha and its intracellular messenger ceramide can induce ICER expression and the mechanisms whereby the induction is accomplished. ICER mRNA levels were assessed by RT-PCR in granulosa cells treated with TNFalpha, the ceramide-mobilizing enzyme sphingomyelinase (SMase), or C6-cer, a cell-permeant ceramide analog. Rapid (3 h) yet transient increases in the four isoforms of ICER were observed in response to all treatments. Likewise, ICER protein measured by immunoprecipitation with a specific antibody increases after TNFalpha, SMase, or C6-cer treatment. The mandatory phosphorylation of cAMP-responsive element binding was also observed in response to TNFalpha, SMase, or C6-cer and shown to be prevented by the p44/42 MAPK-specific inhibitor PD098059 but no other kinase blockers. Activation of p44/42 MAPK by the cytokine and its messenger was subsequently demonstrated as well as the inhibition of ICER expression by PD098059. Finally, the blocking of p44/42 MAPK activation prevented TNFalpha inhibition of FSH-dependent increases in P450AROM and inhibin alpha-subunit mRNA levels, thus indicating that p44/42 MAPK-mediated ICER expression may be accountable for the effects of TNFalpha on the expression of both proteins.
Collapse
Affiliation(s)
- Victoria Morales
- Department of Biochemistry and Physiology, Facultad de Medicina, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35016, Spain
| | | | | | | | | |
Collapse
|
22
|
Gussow AM, Giordani NV, Tran RK, Imai Y, Kwiatkowski DL, Rall GF, Margolis TP, Bloom DC. Tissue-specific splicing of the herpes simplex virus type 1 latency-associated transcript (LAT) intron in LAT transgenic mice. J Virol 2006; 80:9414-23. [PMID: 16973547 PMCID: PMC1617271 DOI: 10.1128/jvi.00530-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the regulation of herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) expression and processing in the absence of other cis and trans viral functions, a transgenic mouse containing the region encompassing the LAT promoter (LAP1) and the LAT 5' exon through the 2.0-kb intron was created. LAT expression was detectable by reverse transcriptase PCR (RT-PCR) in a number of tissues, including the dorsal root ganglia (DRG), trigeminal ganglia (TG), brain, skin, liver, and kidney. However, when the accumulation of the 2.0-kb LAT intron was analyzed at the cellular level by in situ hybridization, little or no detectable accumulation was observed in the brain, spinal cord, kidney, or foot, although the 2.0-kb LAT intron was detected at high levels (over 90% of neurons) in the DRG and TG. Northern blot analysis detected the stable 2.0-kb LAT intron only in the sensory ganglia. When relative amounts of the spliced and unspliced LAT within the brain, liver, kidney, spinal cord, TG, and DRG were analyzed by real-time RT-PCR, splicing of the 2.0-kb LAT intron was significantly more efficient in the sensory ganglia than in other tissues. Finally, infection of both transgenic mice and nontransgenic littermates with HSV-1 revealed no differences in lytic replication, establishment of latency, or reactivation, suggesting that expression of the LAT transgene in trans has no significant effect on those functions. Taken together, these data indicate that the regulation of expression and processing of LAT RNA within the mouse is highly cell-type specific and occurs in the absence of other viral cis- and trans-acting factors.
Collapse
Affiliation(s)
- Anne M Gussow
- Department of Molecular Genetics and Microbiology, Box 100266, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gober MD, Wales SQ, Hunter JC, Sharma BK, Aurelian L. Stress up-regulates neuronal expression of the herpes simplex virus type 2 large subunit of ribonucleotide reductase (R1; ICP10) by activating activator protein 1. J Neurovirol 2005; 11:329-36. [PMID: 16162476 DOI: 10.1080/13550280591002423] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) genes expressed in neuronal cells in response to stress stimuli that trigger latency reactivation are largely unknown. Using a chloramphenicol acetyltransferase (CAT) reporter assay we found that stress caused a significant (P < .001) increase in ICP10 expression in neuronal cells. Up-regulation correlated with activator protein (AP)-1 activation, notably c-Jun and c-Fos that bind cognate elements in the ICP10 promoter. It was blocked by mutation of the AP-1 motifs in the ICP10 promoter. ICP10 expression protected neuronal cells from stress-induced apoptosis. The data suggest that ICP10 may contribute to HSV-2 reactivation by increasing neuronal survival.
Collapse
Affiliation(s)
- Michael D Gober
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201-1559, USA
| | | | | | | | | |
Collapse
|
24
|
Danaher RJ, Jacob RJ, Steiner MR, Allen WR, Hill JM, Miller CS. Histone deacetylase inhibitors induce reactivation of herpes simplex virus type 1 in a latency-associated transcript-independent manner in neuronal cells. J Neurovirol 2005; 11:306-17. [PMID: 16036811 PMCID: PMC1361429 DOI: 10.1080/13550280590952817] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Histone acetylation is implicated in the regulation of herpes simplex virus type 1 (HSV-1) latency. However, the role of histone acetylation in HSV-1 reactivation is less clear. In this study, the well-established model system, quiescently infected, neuronally differentiated PC12 (QIF-PC12) cells, was used to address the participation of histone acetylation in HSV-1 reactivation. In this model, sodium butyrate and trichostatin A (TSA), two histone deacetylase inhibitors, stimulated production of infectious HSV-1 progeny from a quiescent state. To identify viral genes responsive to TSA, the authors analyzed representative alpha, beta, and gamma viral genes using quantitative real-time polymerase chain reaction. Only the latency-associated transcript (LAT) accumulated in response to TSA treatment, under culture conditions that restricted virus replication and spread. This led the authors to evaluate the importance of LAT expression on TSA-induced reactivation. In QIF-PC12 cells, the LAT deletion mutant virus dLAT2903 reactivated equivalently with its wild-type parental strain (McKrae) after TSA treatment, as well as forskolin and heat stress treatment. Both viruses also reactivated equivalently from latently infected trigeminal ganglia explants from rabbits. In contrast, there was a marked reduction in the recovery of dLAT2903, as compared to wild-type virus, from the eyes of latently infected rabbits following epinephrine iontophoresis. These combined in vitro, ex vivo, and in vivo data suggest that LAT is not required for reactivation from latently infected neuronal cells per se, but may enhance processes that allow for the arrival of virus at, or close to, the site of original inoculation (i.e., recrudescence).
Collapse
Affiliation(s)
- Robert J. Danaher
- Oral Medicine Section, Center for Oral Health Research and
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, Lexington, KY 40536-0297
| | - Robert J. Jacob
- Oral Medicine Section, Center for Oral Health Research and
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, Lexington, KY 40536-0297
| | - Marion R. Steiner
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, Lexington, KY 40536-0297
| | - Will R. Allen
- Oral Medicine Section, Center for Oral Health Research and
| | - James M. Hill
- LSU Eye Center, Departments of Ophthalmology, Pharmacology, Microbiology, and Neuroscience, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Craig S. Miller
- Oral Medicine Section, Center for Oral Health Research and
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, Lexington, KY 40536-0297
- * Corresponding author: Dr. Craig S. Miller, Oral Medicine Section, MN324, University of Kentucky College of Dentistry, 800 Rose Street, Lexington, KY 40536-0297 Tel: 859-323-5598 (office), Fax: 859-323-9136, E-mail address:
| |
Collapse
|
25
|
Abstract
The survival strategy of herpes simplex virus centres on the establishment of latency in sensory neurons innervating the site of primary infection followed by periodic reactivation to facilitate transmission. This is a highly evolved and efficient survival mechanism, which despite being the subject of intense research, has proven remarkably difficult to dissect at a molecular level. This review will focus on data, emerging from both in vitro and in vivo model systems, which provide a framework for a mechanistic understanding of latency and the existence and possible significance of non-uniform latent states.
Collapse
Affiliation(s)
- S Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
26
|
Abstract
HSV triggers and blocks apoptosis in cell type-specific fashion. This review discusses present understanding of the role of apoptosis and signaling cascades in neuronal pathogenesis and survival and summarizes present findings relating to the modulation of these strictly balanced processes by HSV infection. Underscored are the findings that HSV-1, but not HSV-2, triggers apoptosis in CNS neurons and causes encephalitis in adult subjects. Mechanisms responsible for the different outcomes of infection with the two HSV serotypes are described, including the contribution of viral antiapoptotic genes, notably the HSV-2 gene ICP10PK. Implications for the potential use of HSV vectors in future therapeutic developments are discussed.
Collapse
Affiliation(s)
- L Aurelian
- Virology/Immunology Laboratories, University of Maryland, Bressler, Room 4-023, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
27
|
Myles ME, Azcuy AM, Nguyen NT, Reisch ER, Barker SA, Thompson HW, Hill JM. Bupropion (Zyban, Wellbutrin) inhibits nicotine-induced viral reactivation in herpes simplex virus type 1 latent rabbits. J Pharmacol Exp Ther 2004; 311:640-4. [PMID: 15254144 DOI: 10.1124/jpet.104.070862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We reported that nicotine applied via a transdermal patch (21 mg/day) induced viral reactivation and ocular shedding in herpes simplex virus type 1 (HSV-1) latent rabbits. One possible mechanism of action involves the release of catecholamines and other similar agents, triggering HSV reactivation. Bupropion (Zyban, Wellbutrin), a non-nicotine aid to smoking cessation, inhibits neuronal uptake of norepinephrine, serotonin, and dopamine. To determine whether bupropion inhibits HSV reactivation, rabbits latent with HSV-1 were grouped (at least 10 rabbits/group) and treated as follows: nicotine patch (transdermal delivery) and bupropion [Zyban sustained-release tablets (150 mg) twice a day (oral)], nicotine patch only, Zyban tablets only [twice a day (oral)], nicotine patch with oral placebo [twice a day (oral)], or no drug treatment. Eyes were swabbed for 22 consecutive days. The appearance of HSV-1 in the tear film was significantly less frequent in the bupropion-treated rabbits, in terms of positive rabbits/total rabbits, positive eyes/total eyes, and positive swabs/total swabs. Nicotine-treated rabbits had 78/440 (17.7%) positive/total swabs, and nicotine/placebo-treated rabbits had 149/792 (18.8%) positive/total swabs, whereas bupropion-treated rabbits had 23/440 (5.2%), and nicotine/bupropion-treated rabbits had 47/792 (5.9%) positive/total swabs. Thus, bupropion significantly reduces nicotine-induced HSV reactivation in latent rabbits.
Collapse
Affiliation(s)
- Marvin E Myles
- Louisiana State University Eye Center, 2020 Gravier Street, Suite B, New Orleans, LA 70112-2234, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Inducible cAMP early repressor, an endogenous antagonist of cAMP responsive element-binding protein, evokes neuronal apoptosis in vitro. J Neurosci 2003. [PMID: 12805292 DOI: 10.1523/jneurosci.23-11-04519.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Active CREB (cAMP responsive element-binding protein) transcription factor is crucial for neuronal survival. Several members of the CREM/ICER (cAMP responsive element modulator/inducible cAMP early repressor) protein family may act as endogenous CREB antagonists. However, their involvement in a process of programmed cell death remains unexplored. Here we report that ICER may play such a role in neuronal apoptosis because it is upregulated in apoptotic neurons in vitro, and overexpression of ICER, delivered in adenoviral vector, evokes programmed cell death of three different kinds of cultured neurons, namely those derived from hippocampal dentate gyrus, cerebral cortex, and superior cervical ganglion. Reporter gene assay with a promoter containing a CREB-responsive sequence revealed a decrease in both basal and induced CRE-dependent gene expression in neurons overexpressing ICER. Finally, the level of expression of the anti-apoptotic protein Bcl-2, a well known CREB target, was markedly diminished in ICER-treated neurons. We suggest that the naturally occurring CREB functional antagonist ICER may have a specific function in programmed cell death of neurons, probably by silencing the expression of anti-apoptotic genes.
Collapse
|
29
|
Jaworski J, Mioduszewska B, Sánchez-Capelo A, Figiel I, Habas A, Gozdz A, Proszynski T, Hetman M, Mallet J, Kaczmarek L. Inducible cAMP early repressor, an endogenous antagonist of cAMP responsive element-binding protein, evokes neuronal apoptosis in vitro. J Neurosci 2003; 23:4519-26. [PMID: 12805292 PMCID: PMC6740802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Active CREB (cAMP responsive element-binding protein) transcription factor is crucial for neuronal survival. Several members of the CREM/ICER (cAMP responsive element modulator/inducible cAMP early repressor) protein family may act as endogenous CREB antagonists. However, their involvement in a process of programmed cell death remains unexplored. Here we report that ICER may play such a role in neuronal apoptosis because it is upregulated in apoptotic neurons in vitro, and overexpression of ICER, delivered in adenoviral vector, evokes programmed cell death of three different kinds of cultured neurons, namely those derived from hippocampal dentate gyrus, cerebral cortex, and superior cervical ganglion. Reporter gene assay with a promoter containing a CREB-responsive sequence revealed a decrease in both basal and induced CRE-dependent gene expression in neurons overexpressing ICER. Finally, the level of expression of the anti-apoptotic protein Bcl-2, a well known CREB target, was markedly diminished in ICER-treated neurons. We suggest that the naturally occurring CREB functional antagonist ICER may have a specific function in programmed cell death of neurons, probably by silencing the expression of anti-apoptotic genes.
Collapse
Affiliation(s)
- Jacek Jaworski
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw 02-093, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hunsperger EA, Wilcox CL. Caspase-3-dependent reactivation of latent herpes simplex virus type 1 in sensory neuronal cultures. J Neurovirol 2003; 9:390-8. [PMID: 12775421 DOI: 10.1080/13550280390201678] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Life-long latent herpes simplex virus type 1 (HSV-1) is harbored in sensory neurons where sporadic reactivation occurs. Reactivation stimuli may involve activation of apoptotic signaling in the neuron. Previous experiments have demonstrated that reactivation of latent HSV-1 in dorsal root ganglion (DRG) neuronal cultures occurred following nerve growth factor (NGF) deprivation. NGF deprivation stimulates apoptotic signaling by activating the proapoptotic proteolytic enzyme, caspase-3. When DRG neuronal cultures harboring latent HSV-1 were treated with a caspase-3-specific inhibitor, NGF deprivation-induced reactivation was significantly reduced. Interestingly, the caspase-3 inhibitor had no effect on productive HSV-1 infection. Furthermore, activation of caspase-3 with either C2-ceramide or a recombinant adenovirus expressing caspase-3 caused significant HSV-1 reactivation.
Collapse
|
31
|
Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PGE. Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J Neurovirol 2003; 9:194-204. [PMID: 12707850 DOI: 10.1080/13550280390194000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 11/11/2002] [Accepted: 11/13/2002] [Indexed: 01/07/2023]
Abstract
Two human alpha-herpesviruses, herpes simplex virus (HSV)-1 and varicella zoster virus (VZV), account for the most frequent and serious neurologic disease caused by any of the eight human herpesviruses. Both HSV-1 and VZV become latent in ganglia. In this review, the authors describe features of latency for these viruses, such as distribution, prevalence, abundance, and configuration of viral DNA in latently infected human ganglia, as well as transcription, translation, and cell type infected. Studies of viral latency in animal models are also discussed. For each virus, remaining questions and future studies to understand the mechanism of latency are discussed with respect to prevention of serious cutaneous, ocular, and neurologic disease produced by virus reactivation.
Collapse
Affiliation(s)
- Bradley M Mitchell
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
32
|
Thomas DL, Lock M, Zabolotny JM, Mohan BR, Fraser NW. The 2-kilobase intron of the herpes simplex virus type 1 latency-associated transcript has a half-life of approximately 24 hours in SY5Y and COS-1 cells. J Virol 2002; 76:532-40. [PMID: 11752144 PMCID: PMC136830 DOI: 10.1128/jvi.76.2.532-540.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) 2-kb latency-associated transcript (LAT) is a stable intron, which accumulates in cells both lytically and latently infected with HSV-1. We have used a tetracycline-repressible expression system to determine the half-life of the 2-kb LAT RNA intron in the human neuroblastoma cell line SY5Y. Using Northern hybridization analyses of RNA isolated from transiently transfected SY5Y cells over time after repression of LAT expression, we measured the half-life of the 2-kb LAT to be approximately 24 h. Thus, unlike typical introns that are rapidly degraded in a matter of seconds following excision, the 2-kb LAT intron has a half-life similar to those of some of the more stable cellular mRNAs. Furthermore, a similar half-life was measured for the 2-kb LAT in transiently transfected nonneuronal monkey COS-1 cells, suggesting that the stability of the 2-kb LAT is neither cell type nor species specific. Previously, we found that the determinant responsible for the unusual stability of the 2-kb LAT maps to the 3' terminus of the intron. At this site is a nonconsensus intron branch point located adjacent to a predicted stem-loop structure that is hypothesized to prevent debranching by cellular enzymes. Here we show that mutations which alter the predicted stem-loop structure, such that branching is redirected, either reduce or abolish the stability of the 2-kb LAT intron.
Collapse
Affiliation(s)
- Darby L Thomas
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
33
|
Panet A, Braun E, Honigman A, Steiner I. Genetic pituitary dwarfism with high serum concentation of growth hormone--a new inborn error of metabolism? J Theor Biol 1966; 236:88-94. [PMID: 15967186 DOI: 10.1016/j.jtbi.2005.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/17/2005] [Accepted: 02/23/2005] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus (HSV) 1 has adapted to the human host through two modes of infection, the acute-transient infection that may cause diseases (such as encephalitis) and the latent state, which is a source for recurrent infection and disease. While much information has been gathered on the cellular and molecular concomitants of establishment and maintenance of HSV-1 latent state, the biological basis of viral reactivation is still unclear. Despite their obvious differences, HSV-1 and the bacterial temperate virus, the bacteriophage lambda, shares four distinct features that may help understand the viral latency phenomenon: (i) two modes of life cycle and a decision point to choose either latency (HSV-1) and lysogeny (bacteriophage lambda), or active replication, that results in cell destruction, (ii) establishment of lysogeny/latency of the respective virus is associated with protection from cell death, (iii) immunity/resistance to super-infection, (iv) agents that trigger mammalian and bacterial cell death also induce reactivation of both HSV-1 and lambda bacteriophage. Thus, despite their differences, these two viruses might display analogous mechanism(s) of reactivation. Based on clinical and experimental data, we propose in this hypothesis that while HSV-1 latency, like bacteriophage lambda lysogeny, is associated with protection from cell death and restriction to super-infection, viral reactivation from the latent state is triggered by exogenous stress signals that interfere with cellular viability and may eventually lead to cell death.
Collapse
Affiliation(s)
- Amos Panet
- Department of Virology, Hadassah University Hospital, P.O. Box 12000, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|