1
|
He H, Xue J, Wang W, Liu L, Ye C, Cong Z, Kimata JT, Qin C, Zhou P. Efficient Transduction of Human and Rhesus Macaque Primary T Cells by a Modified Human Immunodeficiency Virus Type 1-Based Lentiviral Vector. Hum Gene Ther 2016; 28:271-285. [PMID: 28042947 DOI: 10.1089/hum.2016.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors efficiently transduce genes to human, but not rhesus, primary T cells and hematopoietic stem cells (HSCs). The poor transduction of HIV-1 vectors to rhesus cells is mainly due to species-specific restriction factors such as rhesus TRIM5α. Previously, several strategies to modify HIV-1 vectors were developed to overcome rhesus TRIM5α restriction. While the modified HIV-1 vectors efficiently transduce rhesus HSCs, they remain suboptimal for rhesus primary T cells. Recently, HIV-1 variants that encode combinations of LNEIE mutations in capsid (CA) protein and SIVmac239 Vif were found to replicate efficiently in rhesus primary T cells. Thus, the present study tested whether HIV-1 vectors packaged by a packaging construct containing these CA substitutions could efficiently transduce both human and rhesus primary CD4 T cells. To accomplish this, LNEIE mutations were made in the packaging construct CEMΔ8.9, and recombinant HIV-1 vectors packaged by Δ8.9 WT or Δ8.9 LNEIE were generated. Transduction rates, CA stability, and vector integration in CEMss-CCR5 and CEMss-CCR5-rhTRIM5α/green fluorescent protein cells, as well as transduction rates in human and rhesus primary CD4 T cells by Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors, were compared. Finally, the influence of rhesus TRIM5α variations in transduction rates to primary CD4 T cells from a cohort of 37 Chinese rhesus macaques was studied. While it maintains efficient transduction for human T-cell line and primary CD4 T cells, Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α-mediated CA degradation, resulting in significantly higher transduction efficiency of rhesus primary CD4 T cells than Δ8.9 WT-packaged HIV-1 vector. Rhesus TRIM5α variations strongly influence transduction efficiency of rhesus primary CD4 T cells by both Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors. Thus, it is concluded that Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α restriction and efficiently transduces both human and rhesus primary T cells.
Collapse
Affiliation(s)
- Huan He
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Jing Xue
- 2 Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science , Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Weiming Wang
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Lihong Liu
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Chaobaihui Ye
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Zhe Cong
- 2 Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science , Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jason T Kimata
- 3 Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, Texas
| | - Chuan Qin
- 2 Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science , Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Paul Zhou
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Sohail M, Zhang M, Litchfield D, Wang L, Kung S, Xie J. Differential expression, distinct localization and opposite effect on Golgi structure and cell differentiation by a novel splice variant of human PRMT5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2444-52. [PMID: 26151339 DOI: 10.1016/j.bbamcr.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/20/2015] [Accepted: 07/03/2015] [Indexed: 01/20/2023]
Abstract
Alternative splicing contributes greatly to the proteomic diversity of metazoans. Protein arginine methyltransferase 5 (PRMT5) methylates arginines of Golgi components and other factors exerting diverse effects on cell growth/differentiation, but the underlying molecular basis for its subcellular distribution and diverse roles has not been fully understood. Here we show the detailed properties of an evolutionarily emerged splice variant of human PRMT5 (PRMT5S) that is distinct from the original isoform (PRMT5L). The isoforms are differentially expressed among mammalian cells and tissues. The PRMT5S is distributed all over the cell but PRMT5L mainly colocalizes with Giantin, a Golgi marker. PRMT5 knockdown led to an enlarged Giantin pattern, which was prevented by the expression of either isoform. Rescuing PRMT5S also increased the percentage of cells with an interphase Giantin pattern compacted at one end of the nucleus, consistent with its cell cycle-arresting effect, while rescuing PRMT5L increased that of the mitotic Giantin patterns of dynamically fragmented structures. Moreover, the isoforms are differentially expressed during neuronal or dendritic cell differentiation, and their ectopic expression showed an opposite effect on dendritic cell differentiation. Furthermore, besides their differential regulation of gene expression, both isoforms also similarly regulate over a thousand genes particularly those involved in apoptosis and differentiation. Taking these properties together, we propose that their differential expression and subcellular localization contribute to spatial and temporal regulation of arginine methylation and gene expression to exert different effects. The novel PRMT5S likely contributes to the observed diverse effects of PRMT5 in cells.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Manli Zhang
- Department of Immunology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - David Litchfield
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Sam Kung
- Department of Immunology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
3
|
Evolutionary emergence of a novel splice variant with an opposite effect on the cell cycle. Mol Cell Biol 2015; 35:2203-14. [PMID: 25870105 DOI: 10.1128/mcb.00190-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/06/2015] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing contributes greatly to the diversification of mammalian proteomes, but the molecular basis for the evolutionary emergence of splice variants remains poorly understood. We have recently found a novel class of splicing regulatory elements between the polypyrimidine tract (Py) and 3' AG (REPA) at intron ends in many human genes, including the multifunctional PRMT5 (for protein arginine methyltransferase 5) gene. The PRMT5 element is comprised of two G tracts that arise in most mammals and accompany significant exon skipping in human transcripts. The G tracts inhibit splicing by recruiting heterogeneous nuclear ribonucleoprotein (hnRNP) H and F (H/F) to reduce U2AF65 binding to the Py, causing exon skipping. The resulting novel shorter variant PRMT5S exhibits a histone H4R3 methylation effect similar to that seen with the original longer PRMT5L isoform but exhibits a distinct localization and preferential control of critical genes for cell cycle arrest at interphase in comparison to PRMT5L. This report thus provides a molecular mechanism for the evolutionary emergence of a novel splice variant with an opposite function in a fundamental cell process. The presence of REPA elements in a large group of genes implies their wider impact on different cellular processes for increased protein diversity in humans.
Collapse
|
4
|
Kim S, Kim N, Presson AP, Metzger ME, Bonifacino AC, Sehl M, Chow SA, Crooks GM, Dunbar CE, An DS, Donahue RE, Chen ISY. Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-long clonal-tracking study. Cell Stem Cell 2014; 14:473-85. [PMID: 24702996 DOI: 10.1016/j.stem.2013.12.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/13/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023]
Abstract
In mice, clonal tracking of hematopoietic stem cells (HSCs) has revealed variations in repopulation characteristics. However, it is unclear whether similar properties apply in primates. Here, we examined this issue through tracking of thousands of hematopoietic stem and progenitor cells (HSPCs) in rhesus macaques for up to 12 years. Approximately half of the clones analyzed contributed to long-term repopulation (over 3-10 years), arising in sequential groups and likely representing self-renewing HSCs. The remainder contributed primarily for the first year. The long-lived clones could be further subdivided into functional groups contributing primarily to myeloid, lymphoid, or both myeloid and lymphoid lineages. Over time, the 4%-10% of clones with robust dual lineage contribution predominated in repopulation. HSPCs expressing a CCR5 shRNA transgene behaved similarly to controls. Our study therefore documents HSPC behavior in a clinically relevant model over a long time frame and provides a substantial system-level data set that is a reference point for future work.
Collapse
Affiliation(s)
- Sanggu Kim
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Namshin Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| | - Angela P Presson
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark E Metzger
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Aylin C Bonifacino
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Mary Sehl
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biomathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samson A Chow
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Dong Sung An
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert E Donahue
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Irvin S Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Xiang L, Ma L, He Y, Wei N, Gong P. Osteogenic differentiation of human periodontal ligament cells after transfection with recombinant lentiviral vector containing follicular dendritic cell secreted protein. J Periodontal Res 2014; 49:554-62. [PMID: 24138099 DOI: 10.1111/jre.12135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Follicular dendritic cell secreted protein (FDC-SP), has been identified in human periodontal ligament (PDL) in a recent study. It is suggested that the expression of FDC-SP might be associated with the osteogenic differentiation and mineralization of human periodontal ligament cells (hPDLCs). However, the intrinsic mechanism regarding this is still unclear. The aim of this study was to establish hPDLCs with safe and efficient overexpression of FDC-SP and to elucidate the influence of FDC-SP transfection on hPDLC osteogenesis in periodontal regeneration. MATERIAL AND METHODS We first applied a recombinant lentiviral vector containing FDC-SP to transfect hPDLCs via different multiplicity of infection (MOI) levels (1, 10, 20, 50 and 100). Western blot was performed to confirm the expression of FDC-SP. MTT assay was employed to evaluate the proliferation status of transfected cells. Then, the extent of osteogenic differentiation was investigated by simultaneous monitoring of alkaline phosphatase (ALP) activity assessment, immunofluorescent staining, the expression patterns of osteoblastic markers and mineralization staining. RESULTS We found that hPDLCs transfected via MOI 20, 50 and 100 exhibited expression of FDC-SP protein compared with MOI 1 and 10. There was no significant effect of FDC-SP transfection (at different MOI levels of 1, 10 and 20) on the proliferation of hPDLCs, whereas higher MOI levels (50 and 100) inhibited cell proliferation ability. In addition, ALP activity decreased significantly in FDC-SP-transfected hPDLCs at day 7. When stained with alizarin red, cells overexpressing FDC-SP formed less mineralized nodules at 21 d post-induction of differentiation, compared with the control cultures. Osteogenic inhibition was also confirmed by ALP immunostaining. Moreover, mRNA expression levels of osteoblastic markers decreased after FDC-SP transfection, which were in accordance with western blot results. CONCLUSION Our data suggest that MOI 20 is optimal to transfect hPDLCs, which achieves safe and efficient overexpression of FDC-SP in transfected cells. Moreover, FDC-SP overexpression inhibits osteogenic differentiation of hPDLCs. The present study contributes to a better understanding of the biological functions governing FDC-SP-induced hPDLC differentiation.
Collapse
Affiliation(s)
- L Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
6
|
Larochelle A, Dunbar CE. Hematopoietic stem cell gene therapy:assessing the relevance of preclinical models. Semin Hematol 2014; 50:101-30. [PMID: 24014892 DOI: 10.1053/j.seminhematol.2013.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Gong Y, Qian Y, Yang F, Wang H, Yu Y. Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo. Eur J Oral Sci 2014; 122:190-7. [PMID: 24666017 DOI: 10.1111/eos.12122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Yiming Gong
- Department of Stomatology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Yanyan Qian
- Department of Biochemistry and Molecular Biology; Shanghai Medical College; Fudan University; Shanghai China
| | - Fei Yang
- Department of Stomatology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Huijun Wang
- Department of Biochemistry and Molecular Biology; Shanghai Medical College; Fudan University; Shanghai China
| | - Youcheng Yu
- Department of Stomatology; Zhongshan Hospital, Fudan University; Shanghai China
| |
Collapse
|
8
|
Sellers SE, Dumitriu B, Morgan MJ, Hughes WM, Wu CO, Raghavarchari N, Yang Y, Uchida N, Tisdale JF, An DS, Chen IS, Hematti P, Donahue RE, Larochelle A, Young NS, Calado RT, Dunbar CE. No impact of lentiviral transduction on hematopoietic stem/progenitor cell telomere length or gene expression in the rhesus macaque model. Mol Ther 2013; 22:52-8. [PMID: 23863881 DOI: 10.1038/mt.2013.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/10/2013] [Indexed: 01/13/2023] Open
Abstract
The occurrence of clonal perturbations and leukemia in patients transplanted with gamma-retroviral (RV) vector-transduced autologous hematopoietic stem and progenitor cells (HSPCs) has stimulated extensive investigation, demonstrating that proviral insertions may perturb adjacent proto-oncogene expression. Although enhancer-deleted lentiviruses are less likely to result in insertional oncogenesis, there is evidence that they may perturb transcript splicing, and one patient with a benign clonal expansion of lentivirally transduced HPSC has been reported. The rhesus macaque model provides an opportunity for informative long-term analysis to ask whether transduction impacts on long-term HSPC properties. We used two techniques to examine whether lentivirally transduced HSPCs from eight rhesus macaques transplanted 1-13.5 years previously are perturbed at a population level, comparing telomere length as a measure of replicative history and gene expression profile of vector positive versus vector negative cells. There were no differences in telomere lengths between sorted GFP+ and GFP- blood cells, suggesting that lentiviral (LV) transduction did not globally disrupt replicative patterns. Bone marrow GFP+ and GF- CD34+ cells showed no differences in gene expression using unsupervised and principal component analysis. These studies did not uncover any global long-term perturbation of proliferation, differentiation, or other important functional parameters of transduced HSPCs in the rhesus macaque model.
Collapse
Affiliation(s)
- Stephanie E Sellers
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bogdan Dumitriu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mary J Morgan
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William M Hughes
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Colin O Wu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nalini Raghavarchari
- DNA Sequencing and Genomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dong S An
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen Schools of Medicine, Los Angeles, California, USA
| | - Irvin S Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen Schools of Medicine, Los Angeles, California, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert E Donahue
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andre Larochelle
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rodrigo T Calado
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Tarantal AF, Giannoni F, I Lee CC, Wherley J, Sumiyoshi T, Martinez M, Kahl CA, Elashoff D, Louie SG, Kohn DB. Nonmyeloablative conditioning regimen to increase engraftment of gene-modified hematopoietic stem cells in young rhesus monkeys. Mol Ther 2012; 20:1033-45. [PMID: 22294147 PMCID: PMC3345994 DOI: 10.1038/mt.2011.312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/23/2011] [Indexed: 12/24/2022] Open
Abstract
Immune responses to transgene products may lead to rejection of transduced cells, limiting successful gene therapy for genetic diseases. While moderate dosages of chemotherapeutic agents such as busulfan may increase hematopoietic stem cells (HSC) engraftment, they are not immune suppressive and do not abrogate immune responses to transgene products. Studies focused on nonmyeloablative conditioning with busulfan ± fludarabine in a clinically relevant monkey model to induce immune suppression to allow cells expressing a foreign transgene product to persist. Bone marrow CD34(+) HSC were transduced in two equal fractions using simian immunodeficiency virus (SIV)-based lentiviral vectors carrying a nonexpressed DNA sequence tag (NoN) and the green fluorescent protein (GFP) reporter gene. Post-transplant there was no evidence of elimination of cells containing the potentially immunogenic GFP gene; several recipients had stable persistence of cells, and no differences were detected with fludarabine, which was rapidly cleared. Antibodies and cellular immune responses to GFP developed in recipients with the highest levels of GFP-marked cells, although these cells were not eliminated. These studies establish a clinically relevant pediatric primate model to assess the effects of conditioning regimens on the engraftment of transduced HSC and the immune responses to cells expressing a foreign gene product.
Collapse
Affiliation(s)
- Alice F Tarantal
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, California National Primate Research Center, Davis, California, USA
- Department of Pediatrics, University of California, Davis, California, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA
| | - Francesca Giannoni
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
| | - C Chang I Lee
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, California National Primate Research Center, Davis, California, USA
- Department of Pediatrics, University of California, Davis, California, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA
| | - Jennifer Wherley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
| | - Teiko Sumiyoshi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
| | - Michele Martinez
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, California National Primate Research Center, Davis, California, USA
- Department of Pediatrics, University of California, Davis, California, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA
| | - Christoph A Kahl
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
- Present address: Oregon Health and Science University, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Stan G Louie
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, University of Southern California School of Pharmacy, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Effect of over-expressed LRIG3 on cell cycle and survival of glioma cells. ACTA ACUST UNITED AC 2011; 31:667. [PMID: 22038358 DOI: 10.1007/s11596-011-0579-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Indexed: 10/16/2022]
Abstract
This study examined the effects of over-expression of leucine-rich repeats and immunoglobulin-like domains 3 (LRIG3) on the cell cycle and survival of human glioma cell line U87 and U251 and explored the possible mechanisms. The LRIG3 gene was transduced into U87 and U251 cells respectively by using lentivirus and the transduced cells were selected by puromycin. The changes in LRIG3 mRNA and protein levels were measured by RT-PCR and Western blotting. The apoptosis rate was detected by Annexin V-FITC/PI double labeling and the cell cycle was flow cytometrically analyzed. Compared with control cells, LRIG3 mRNA expression in U251 and U87 cells transduced with pLVX-DsRed-LRIG3-Monomer-N1 were increased by 77.6% and 129.7%, and LRIG3 protein expression was raised by 141.3% and 322.7%, respectively. Cell cycle analysis showed that LRIG3 over-expression increased the percentage of cells at G(0)/G(1) phase (P<0.01). Over-expressed LRIG3 could significantly promote the apoptosis of U87 and U251 cells (P<0.05). These findings suggest that the over-expression of LRIG3 could arrest the cell cycle in G(0)/G(1) phase, and promote apoptosis of U87 and U251 cells.
Collapse
|
11
|
Abstract
In this study, we used the rhesus macaque model to determine the impact that AMD3100 has on lymphocyte mobilization, both alone and in combination with G-CSF. Our results indicate that, unlike G-CSF, AMD3100 substantially mobilizes both B and T lymphocytes into the peripheral blood. This led to significant increases in the peripheral blood content of both effector and regulatory T-cell populations, which translated into greater accumulation of these cells in the resulting leukapheresis products. Notably, CD4(+)/CD25(high)/CD127(low)/FoxP3(+) Tregs were efficiently mobilized with AMD3100-containing regimens, with as much as a 4.0-fold enrichment in the leukapheresis product compared with G-CSF alone. CD8(+) T cells were mobilized to a greater extent than CD4(+) T cells, with accumulation of 3.7 ± 0.4-fold more total CD8+ T cells and 6.2 ± 0.4-fold more CD8(+) effector memory T cells in the leukapheresis product compared with G-CSF alone. Given that effector memory T-cell subpopulations may mediate less GVHD compared with other effector T-cell populations and that Tregs are protective against GVHD, our results indicate that AMD3100 may mobilize a GVHD-protective T-cell repertoire, which would be of benefit in allogeneic hematopoietic stem cell transplantation.
Collapse
|
12
|
Walia JS, Neschadim A, Lopez-Perez O, Alayoubi A, Fan X, Carpentier S, Madden M, Lee CJ, Cheung F, Jaffray DA, Levade T, McCart JA, Medin JA. Autologous transplantation of lentivector/acid ceramidase-transduced hematopoietic cells in nonhuman primates. Hum Gene Ther 2011; 22:679-87. [PMID: 21280983 DOI: 10.1089/hum.2010.195] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Farber disease is a rare lysosomal storage disorder (LSD) that manifests due to acid ceramidase (AC) deficiencies and ceramide accumulation. We present a preclinical gene therapy study for Farber disease employing a lentiviral vector (LV-huAC/huCD25) in three enzymatically normal nonhuman primates. Autologous, mobilized peripheral blood (PB) cells were transduced and infused into fully myelo-ablated recipients with tracking for at least 1 year. Outcomes were assessed by measuring the AC specific activity, ceramide levels, vector persistence/integration, and safety parameters. We observed no hematological, biochemical, radiological, or pathological abnormalities. Hematological recovery occurred by approximately 3 weeks. Vector persistence was observed in PB and bone marrow (BM) cells by qualitative and quantitative PCR. We did not observe any clonal proliferation of PB and BM cells. Importantly, AC-specific activity was detected above normal levels in PB and BM cells analyzed post-transplantation and in spleens and livers at the endpoint of the study. Decreases of ceramide in PB cells as well as in spleen and liver tissues were seen. We expect that this study will provide a roadmap for implementation of clinical gene therapy protocols targeting hematopoietic cells for Farber disease and other LSDs.
Collapse
Affiliation(s)
- Jagdeep S Walia
- Ontario Cancer Institute, University Health Network, Toronto, M5G 2M1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
High-throughput, sensitive quantification of repopulating hematopoietic stem cell clones. J Virol 2010; 84:11771-80. [PMID: 20844053 DOI: 10.1128/jvi.01355-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral vector-mediated gene therapy has been successfully used to correct genetic diseases. However, a number of studies have shown a subsequent risk of cancer development or aberrant clonal growths due to vector insertion near or within proto-oncogenes. Recent advances in the sequencing technology enable high-throughput clonality analysis via vector integration site (VIS) sequencing, which is particularly useful for studying complex polyclonal hematopoietic progenitor/stem cell (HPSC) repopulation. However, clonal repopulation analysis using the current methods is typically semiquantitative. Here, we present a novel system and standards for accurate clonality analysis using 454 pyrosequencing. We developed a bidirectional VIS PCR method to improve VIS detection by concurrently analyzing both the 5' and the 3' vector-host junctions and optimized the conditions for the quantitative VIS sequencing. The assay was validated by quantifying the relative frequencies of hundreds of repopulating HPSC clones in a nonhuman primate. The reliability and sensitivity of the assay were assessed using clone-specific real-time PCR. The majority of tested clones showed a strong correlation between the two methods. This assay permits high-throughput and sensitive assessment of clonal populations and hence will be useful for a broad range of gene therapy, stem cell, and cancer research applications.
Collapse
|
14
|
Enssle J, Trobridge GD, Keyser KA, Ironside C, Beard BC, Kiem HP. Stable marking and transgene expression without progression to monoclonality in canine long-term hematopoietic repopulating cells transduced with lentiviral vectors. Hum Gene Ther 2010; 21:397-403. [PMID: 19947827 DOI: 10.1089/hum.2009.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lentiviral gene transfer vectors have a number of potential advantages over gammaretroviral vectors including more efficient transduction of nondividing cells, a more favorable integration site profile, and the ability to accommodate large transgenes. Here, we present long-term follow-up data of animals that received lentivirus-transduced CD34-enriched cells. Six long-term surviving dogs were available for analysis. Transgene expression was analyzed from at least 12 months to more than 5 years after transplantation in peripheral blood cells and multiple cell lineages. All animals demonstrated long-term stable transgene expression in peripheral blood myeloid, lymphoid, and red blood cells as well as in platelets. Vector integration sites were analyzed by linear amplification-mediated polymerase chain reaction and showed a polyclonal repopulation pattern in all animals. There was no evidence of any development of monoclonality or leukemia in the animals. The stable long-term multilineage transgene expression, together with detection of the same integration site in myeloid and lymphoid cells, strongly suggests the transduction of long-term repopulating stem cells. Our data demonstrate safe and efficient transduction of multilineage long-term repopulating cells with lentiviral vectors and support the use of such vectors for gene therapy studies in patients.
Collapse
Affiliation(s)
- Joerg Enssle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
15
|
Yannaki E, Psatha N, Athanasiou E, Karponi G, Constantinou V, Papadopoulou A, Tasouli A, Kaloyannidis P, Batsis I, Arsenakis M, Anagnostopoulos A, Fassas A. Mobilization of hematopoietic stem cells in a thalassemic mouse model: implications for human gene therapy of thalassemia. Hum Gene Ther 2010; 21:299-310. [PMID: 19795976 DOI: 10.1089/hum.2009.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF)-mobilized blood stem cells may become the preferable source of hematopoietic stem cells (HSCs) for gene therapy because of the higher yield of cells compared with conventional bone marrow harvesting. A G-CSF-associated risk of splenic rupture has been recognized in normal donors of HSCs, but limited information is available about the G-CSF effect in the presence of splenomegaly and extramedullary hematopoiesis. We investigated the G-CSF effect in a thalassemic mouse model (HBB(th-3)) as compared with a normal strain (C57BL/6), in terms of safety, mobilization efficacy, and distribution of stem cells among hematopoietic compartments. There was no death or clinical sequelae of splenic rupture in G-CSF-treated animals of either strain; however, hemorrhagic infarcts in the spleen were detected with low frequency in G-CSF-treated HBB(th-3) mice (12.5%). HBB(th-3) mice mobilized less effectively than C57BL/6 mice (Lin(-)Sca-1(+)c-Kit(+) cells/microl of peripheral blood mononuclear cells [PBMCs]: 90 +/- 55 vs. 255 +/- 174, respectively, p = 0.01; CFU-GM/ml PBMCs: 390 +/- 262 vs. 1131 +/- 875, p = 0.01) because of increased splenic trapping of hematopoietic stem and progenitor cells (Lin(-)Sca-1(+)c-Kit(+) cells per spleen (x10(5)): 487 +/- 35 vs. 109 +/- 19.6, p = 0.01; CFU-GM per spleen (x10(2)): 1470 +/- 347 vs. 530 +/- 425, p = 0.0006). Splenectomy restored the mobilization proficiency of thalassemic mice at comparable levels to normal mice and resulted in the development of a hematopoietic compensatory mechanism in the thalassemic liver that protected splenectomized mice from severe anemia. Our data imply that, in view of human gene therapy for thalassemia, either multiple cycles or alternative ways of mobilization may be required for a sufficient yield of transplantable HSCs. In addition, strategies to minimize the risk of G-CSF-induced splenic infarcts should be explored in a clinical setting.
Collapse
Affiliation(s)
- Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki 57010, Greece.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Large animal models have been instrumental in advancing hematopoietic stem cell (HSC) gene therapy. Here we review the advantages of large animal models, their contributions to the field of HSC gene therapy and recent progress in this field. Several properties of human HSCs including their purification, their cell-cycle characteristics, their response to cytokines and the proliferative demands placed on them after transplantation are more similar in large animal models than in mice. Progress in the development and use of retroviral vectors and ex vivo transduction protocols over the last decade has led to efficient gene transfer in both dogs and nonhuman primates. Importantly, the approaches developed in these models have translated well to the clinic. Large animals continue to be useful to evaluate the efficacy and safety of gene therapy, and dogs with hematopoietic diseases have now been cured by HSC gene therapy. Nonhuman primates allow evaluation of aspects of transplantation as well as disease-specific approaches such as AIDS (acquired immunodeficiency syndrome) gene therapy that can not be modeled well in the dog. Finally, large animal models have been used to evaluate the genotoxicity of viral vectors by comparing integration sites in hematopoietic repopulating cells and monitoring clonality after transplantation.
Collapse
Affiliation(s)
- G D Trobridge
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
17
|
Hayakawa J, Ueda T, Lisowski L, Hsieh MM, Washington K, Phang O, Metzger M, Krouse A, Donahue RE, Sadelain M, Tisdale JF. Transient in vivo beta-globin production after lentiviral gene transfer to hematopoietic stem cells in the nonhuman primate. Hum Gene Ther 2009; 20:563-72. [PMID: 19222366 DOI: 10.1089/hum.2008.186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inherited disorders of globin synthesis remain desirable targets for hematopoietic stem cell (HSC)-based therapies. Gene transfer using retroviral vectors offers an alternative to allogeneic HSC transplantation by the permanent integration of potentially therapeutic genes into primary autologous HSCs. Although proof of principle has been demonstrated in humans, this approach has been met by formidable obstacles, and large-animal models have become increasingly important for the preclinical development of gene addition strategies. Here we report lentiviral gene transfer of the human beta-globin gene under the control of the globin promoter and large fragments of the globin locus control region (LCR) in the nonhuman primate. Using an HIV-1, vesicular stomatitis virus glycoprotein G (VSV-G)-pseudotyped vector, modified to overcome a species-specific restriction to HIV-1, gene transfer to colony-forming units (CFU) derived from mobilized peripheral blood (PB) rhesus CD34+ cells was 84.4 +/- 2.33%. Erythroid cells derived from transduced rhesus CD34+ cells expressed human beta-globin at high levels as assessed by flow cytometry with a human beta-globin-specific antibody. Two rhesus macaques (RQ3586 and RQ3583) were transplanted with mobilized PB CD34+ cells transduced with our modified HIV vector at a multiplicity of infection of 80. High gene transfer rates to CFUs were achieved in vitro (RQ3586, 87.5%; RQ3583, 83.3%), with efficient human beta-globin expression among erythroid progeny generated in vitro. Early posttransplantation, gene transfer rates of 5% or higher were detectable and confirmed by genomic Southern blotting, with equivalent-level human beta-globin expression detected by flow cytometry. Long-term gene marking levels among mononuclear cells and granulocytes assessed by quantitative polymerase chain reaction gradually decreased to about 0.001% at 2 years, likely due to additional HIV-1 restrictive elements in the rhesus macaque. No evidence of clonal hematopoiesis has occurred in our animals in up to 2 years. Current efforts are aimed at developing a lentiviral vector capable of efficiently transducing both human and rhesus HSCs to allow preclinical modeling of globin gene transfer.
Collapse
Affiliation(s)
- Jun Hayakawa
- Molecular and Clinical Hematology Branch (MCHB), National Institutes of Diabetes and Digestive and Kidney Disorders (NIDDK) , National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Development of a human immunodeficiency virus type 1-based lentiviral vector that allows efficient transduction of both human and rhesus blood cells. J Virol 2009; 83:9854-62. [PMID: 19625395 DOI: 10.1128/jvi.00357-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) vectors transduce rhesus blood cells poorly due to a species-specific block by TRIM5alpha and APOBEC3G, which target HIV-1 capsid and viral infectivity factor (Vif), respectively. We sought to develop a lentiviral vector capable of transducing both human and rhesus blood cells by combining components of both HIV-1 and simian immunodeficiency virus (SIV), including SIV capsid (sCA) and SIV Vif. A chimeric HIV-1 vector including sCA (chiHIV) was superior to the conventional SIV in transducing a human blood cell line and superior to the conventional HIV-1 vector in transducing a rhesus blood cell line. Among human CD34(+) hematopoietic stem cells (HSCs), the chiHIV and HIV-1 vectors showed similar transduction efficiencies; in rhesus CD34(+) HSCs, the chiHIV vector yielded superior transduction rates. In in vivo competitive repopulation experiments with two rhesus macaques, the chiHIV vector demonstrated superior marking levels over the conventional HIV-1 vector in all blood lineages (first rhesus, 15 to 30% versus 1 to 5%; second rhesus, 7 to 15% versus 0.5 to 2%, respectively) 3 to 7 months postinfusion. In summary, we have developed an HIV-1-based lentiviral vector system that should allow comprehensive preclinical testing of HIV-1-based therapeutic vectors in the rhesus macaque model with eventual clinical application.
Collapse
|
19
|
Sustained high-level polyclonal hematopoietic marking and transgene expression 4 years after autologous transplantation of rhesus macaques with SIV lentiviral vector-transduced CD34+ cells. Blood 2009; 113:5434-43. [PMID: 19339698 DOI: 10.1182/blood-2008-10-185199] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We previously reported that lentiviral vectors derived from the simian immunodeficiency virus (SIV) were efficient at transducing rhesus hematopoietic repopulating cells. To evaluate the persistence of vector-containing and -expressing cells long term, and the safety implications of SIV lentiviral vector-mediated gene transfer, we followed 3 rhesus macaques for more than 4 years after transplantation with transduced CD34+ cells. All 3 animals demonstrated significant vector marking and expression of the GFP transgene in T cells, B cells, and granulocytes, with mean GFP+ levels of 6.7% (range, 3.3%-13.0%), 7.4% (4.2%-13.4%), and 5.6% (3.1%-10.5%), respectively. There was no vector silencing in hematopoietic cells over time. Vector insertion site analysis of granulocytes demonstrated sustained highly polyclonal reconstitution, with no evidence for progression to oligoclonality. A significant number of clones were found to contribute at both 1-year and 3- or 4-year time points. No vector integrations were detected in the MDS1/EVI1 region, in contrast to our previous findings with a gamma-retroviral vector. These data show that lentiviral vectors can mediate stable and efficient long-term expression in the progeny of transduced hematopoietic stem cells, with an integration profile that may be safer than that of standard Moloney murine leukemia virus (MLV)-derived retroviral vectors.
Collapse
|
20
|
Amorosi S, Russo I, Amodio G, Garbi C, Vitiello L, Palamaro L, Adriani M, Vigliano I, Pignata C. The Cellular Amount of the Common γ-Chain Influences Spontaneous or Induced Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2009; 182:3304-9. [DOI: 10.4049/jimmunol.0802400] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Yu J, Hai Y, Liu G, Fang T, Kung SKP, Xie J. The heterogeneous nuclear ribonucleoprotein L is an essential component in the Ca2+/calmodulin-dependent protein kinase IV-regulated alternative splicing through cytidine-adenosine repeats. J Biol Chem 2008; 284:1505-13. [PMID: 19017650 DOI: 10.1074/jbc.m805113200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of gene expression through alternative pre-mRNA splicing is common in metazoans and is often controlled by intracellular signaling pathways that are important in cell physiology. We have shown that the alternative splicing of a number of genes is controlled by membrane depolarization and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) through CaMKIV-responsive RNA elements (CaRRE1 and CaRRE2); however, the trans-acting factors remain unknown. Here we show that the heterogeneous nuclear ribonucleoprotein (hnRNP) L is a CaRRE1 binding factor in nuclear extracts. An hnRNP L high affinity CA (cytidine-adenosine) repeat element is sufficient to mediate CaMKIV and hnRNP L repression of splicing in a location (3'-splice site proximity)-dependent way. Depletion of hnRNP L by RNA interference followed by rescue with coexpressed exogenous hnRNP L demonstrates that hnRNP L mediates the CaMKIV-regulated splicing through CA repeats in heterologous contexts. Depletion of hnRNP L also led to increased inclusion of the stress axis-regulated exon and a CA repeat-harboring exon under depolarization or with activated CaMKIV. Moreover, hnRNP L binding to CaRRE1 was increased by CaMKIV and, conversely, was reduced by pretreatments with protein phosphatases. Therefore, hnRNP L is an essential component of CaMKIV-regulated alternative splicing through CA repeats, with its phosphorylation likely playing a critical role.
Collapse
Affiliation(s)
- Jiankun Yu
- Department of Physiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Integration site preference of xenotropic murine leukemia virus-related virus, a new human retrovirus associated with prostate cancer. J Virol 2008; 82:9964-77. [PMID: 18684813 DOI: 10.1128/jvi.01299-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a new human gammaretrovirus identified in prostate cancer tissue from patients homozygous for a reduced-activity variant of the antiviral enzyme RNase L. Neither a casual relationship between XMRV infection and prostate cancer nor a mechanism of tumorigenesis has been established. To determine the integration site preferences of XMRV and the potential risk of proviral insertional mutagenesis, we carried out a genome-wide analysis of viral integration sites in the prostate cell line DU145 after an acute XMRV infection and compared the integration site pattern of XMRV with those found for murine leukemia virus and two human retroviruses, human immunodeficiency virus type 1 and human T-cell leukemia virus type 1. Among all retroviruses analyzed, XMRV has the strongest preference for transcription start sites, CpG islands, DNase-hypersensitive sites, and gene-dense regions; all are features frequently associated with structurally open transcription regulatory regions of a chromosome. Analyses of XMRV integration sites in tissues from prostate cancer patients found a similar preference for the aforementioned chromosomal features. Additionally, XMRV integration sites in cancer tissues were associated with cancer breakpoints, common fragile sites, microRNA, and cancer-related genes, suggesting a selection process that favors certain chromosomal integration sites. In both acutely infected cells and cancer tissues, no common integration site was detected within or near proto-oncogenes or tumor suppressor genes. These results are consistent with a model in which XMRV may contribute to tumorigenicity via a paracrine mechanism.
Collapse
|
23
|
Efficient transduction of pigtailed macaque hematopoietic repopulating cells with HIV-based lentiviral vectors. Blood 2008; 111:5537-43. [PMID: 18388180 DOI: 10.1182/blood-2007-09-115022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviral vectors are attractive for hematopoietic stem cell (HSC) gene therapy because they do not require mitosis for nuclear entry, they efficiently transduce hematopoietic repopulating cells, and self-inactivating (SIN) designs can be produced at high titer. Experiments to evaluate HIV-derived lentiviral vectors in nonhuman primates prior to clinical trials have been hampered by low transduction frequencies due in part to host restriction by TRIM5alpha. We have established conditions for efficient transduction of pigtailed macaque (Macaca nemestrina) long-term repopulating cells using VSV-G-pseudotyped HIV-based lentiviral vectors. Stable, long-term, high-level gene marking was observed in 3 macaques using relatively low MOIs (5-10) in a 48-hour ex vivo transduction protocol. All animals studied had rapid neutrophil engraftment with a median of 10.3 days to a count greater than 0.5 x 10(9)/L (500/microL). Expression was detected in all lineages, with long-term marking levels in granulocytes at approximately 20% to 30%, and in lymphocytes at approximately 12% to 23%. All animals had polyclonal engraftment as determined by analysis of vector integration sites. These data suggest that lentiviral vectors should be highly effective for HSC gene therapy, particularly for diseases in which maintaining the engraftment potential of stem cells using short-term ex vivo transduction protocols is critical.
Collapse
|
24
|
Braun SE, Lu XV, Wong FE, Connole M, Qiu G, Chen Z, Slepushkina T, Slepushkin V, Humeau LM, Dropulic B, Johnson RP. Potent inhibition of simian immunodeficiency virus (SIV) replication by an SIV-based lentiviral vector expressing antisense Env. Hum Gene Ther 2007; 18:653-64. [PMID: 17600461 DOI: 10.1089/hum.2007.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In light of findings demonstrating that the macaque TRIM5alpha protein inhibits infection of cells by human immunodeficiency virus (HIV)-1, simian immunodeficiency virus (SIV)-based lentiviral vectors may have distinct advantages over HIV-1 vectors for the transduction of macaque hematopoietic stem cells. We evaluated the ability of an SIV vector (VRX859) encoding an antisense SIV envelope sequence and enhanced green fluorescent protein (GFP) to inhibit viral replication and to transduce rhesus CD34(+) lymphoid progenitor cells. After infection with homologous SIV strains, CD4(+) cell lines transduced with VRX859 exhibited more than 600-fold inhibition of viral replication compared with control cells. Less inhibition was observed with the divergent SIV strain SIVsmE660. Partial inhibition of a chimeric simian-human immunodeficiency virus, which contains an HIV-1 envelope in an SIV backbone, was observed, suggesting that the SIV vector also contributes to viral inhibition independent of the antisense envelope inhibitor. Transduction of rhesus CD34(+) cells with VRX859 at various multiplicities of infection resulted in transduction efficiencies comparable to those obtained with the HIV vector VRX494. However, when we evaluated transduction of rhesus T lymphocyte progenitors by examining GFP expression in CD4(+) T cells derived from transduced CD34(+) cells, we observed more efficient transduction with the SIV-based vector. GFP(+)CD4(+) T cells derived from VRX859-transduced CD34(+) cells strongly inhibited SIVmac239 replication as compared with control CD4(+) T cells. The ability of this SIV-based vector to mediate potent inhibition of SIV replication, coupled with its efficient transduction of rhesus hematopoietic progenitor cells, make it an important candidate for proof-of-principle experiments of stem cell gene therapy in the SIV-macaque model.
Collapse
Affiliation(s)
- Stephen E Braun
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Herzog RW, Cao O, Hagstrom JN, Wang L. Gene therapy for treatment of inherited haematological disorders. Expert Opin Biol Ther 2007; 6:509-22. [PMID: 16610980 DOI: 10.1517/14712598.6.5.509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene therapy, a molecular medicine based on vector-mediated transfer of therapeutic genes, holds promise for a cure of monogenetic inherited diseases. In recent years, tremendous progress has been reported in the treatment of haematological disorders: clinical trials in severe combined immune deficiencies have been successful by using retroviral vectors to express target genes in haematopoietic stem cells, which after transplantation efficiently reconstituted the immune system concomitant with substantial improvement in the clinical status of patients. Conversely, unexpected adverse events were also encountered. In other work, progress towards clinical studies on ex vivo gene transfer for Fanconi anaemia and haemoglobinopathies has been made. Each approach features a unique treatment strategy and also faces various impediments to success. In the case of the X-linked bleeding disorder haemophilia, several Phase I/II clinical trials were conducted, including in vivo administration of viral vectors to skeletal muscle and liver. Adeno-associated viral gene transfer of coagulation Factor IX has been documented in human subjects, reaching therapeutic levels after infusion into a hepatic blood vessel. However, sustained expression of therapeutic levels (as shown in large animal models of haemophilia) has not yet been achieved in humans. In general, long-term follow-up will be important for assessment of the safety of all existing gene therapy strategies.
Collapse
Affiliation(s)
- Roland W Herzog
- Department of Pediatrics, University of Florida, Cellular and Molecular Therapy, Alachua, FL 32615, USA.
| | | | | | | |
Collapse
|
26
|
An DS, Donahue RE, Kamata M, Poon B, Metzger M, Mao SH, Bonifacino A, Krouse AE, Darlix JL, Baltimore D, Qin FXF, Chen ISY. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci U S A 2007; 104:13110-5. [PMID: 17670939 PMCID: PMC1941789 DOI: 10.1073/pnas.0705474104] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Indexed: 02/07/2023] Open
Abstract
RNAi is a powerful method for suppressing gene expression that has tremendous potential for therapeutic applications. However, because endogenous RNAi plays a role in normal cellular functions, delivery and expression of siRNAs must be balanced with safety. Here we report successful stable expression in primates of siRNAs directed to chemokine (c-c motif) receptor 5 (CCR5) introduced through CD34+ hematopoietic stem/progenitor cell transplant. After hematopoietic reconstitution, to date 14 months after transplant, we observe stably marked lymphocytes expressing siRNAs and consistent down-regulation of chemokine (c-c motif) receptor 5 expression. The marked cells are less susceptible to simian immunodeficiency virus infection ex vivo. These studies provide a successful demonstration that siRNAs can be used together with hematopoietic stem cell transplant to stably modulate gene expression in primates and potentially treat blood diseases such as HIV-1.
Collapse
Affiliation(s)
- Dong Sung An
- Departments of *Hematology and Oncology and Microbiology, Immunology, and
| | - Robert E. Donahue
- Hematology Branch, National Heart, Lung, and Blood Institute, 5 Research Court, Rockville, MD 20850
| | - Masakazu Kamata
- Molecular Genetics and Medicine, AIDS Institute, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095
| | - Betty Poon
- Molecular Genetics and Medicine, AIDS Institute, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095
| | - Mark Metzger
- Hematology Branch, National Heart, Lung, and Blood Institute, 5 Research Court, Rockville, MD 20850
| | - Si-Hua Mao
- Molecular Genetics and Medicine, AIDS Institute, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095
| | - Aylin Bonifacino
- Hematology Branch, National Heart, Lung, and Blood Institute, 5 Research Court, Rockville, MD 20850
| | - Allen E. Krouse
- Hematology Branch, National Heart, Lung, and Blood Institute, 5 Research Court, Rockville, MD 20850
| | - Jean-Luc Darlix
- LaboRetro, Unité de Virologie Humaine, Institut National de la Santé et de la Recherche Médicale, no. 412, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; and
| | - David Baltimore
- Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125
| | - F. Xiao-Feng Qin
- **Department of Immunology, M. D. Anderson Cancer Center, University of Texas, Unit 901, 7455 Fannin Street, Houston, TX 77030
| | - Irvin S. Y. Chen
- Molecular Genetics and Medicine, AIDS Institute, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095
| |
Collapse
|
27
|
Fischer-Lougheed JY, Tarantal AF, Shulkin I, Mitsuhashi N, Kohn DB, Lee CCI, Kearns-Jonker M. Gene therapy to inhibit xenoantibody production using lentiviral vectors in non-human primates. Gene Ther 2006; 14:49-57. [PMID: 16886002 DOI: 10.1038/sj.gt.3302818] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Xenoantibodies to the gal alpha1,3 gal (gal) epitope impede the use of pig tissues for xenotransplantation, a procedure that may help overcome the shortage of human organ donors. Stable gal chimerism and tolerance to gal(+) hearts could be achieved in alpha1,3-galactosyltransferase (alpha1,3GT)(-/-) mice using lentiviral vectors expressing porcine alpha1,3GT, the enzyme that synthesizes the gal carbohydrate. In this study, we evaluated whether chimerism sufficient to inhibit anti-gal xenoantibody responses can be achieved using lentivectors in non-human primates. Rhesus macaques were transplanted with autologous, alpha1,3GT-transduced bone marrow (BM) following sublethal irradation. Simian immunodeficiency virus (SIV)- and human immunodeficiency virus (HIV)-1-derived lentiviral constructs were compared. Chimerism was observed in several hematopoietic lineages in all monkeys. Engraftment in animals receiving SIV-based alpha1,3GT constructs was similar to that achieved using the HIV-1-derived lentivector for the first 2 months post-transplantation, but increased thereafter to reach higher levels by 5 months. Upon immunization with porcine hepatocytes, the production of anti-gal immunoglobulin M xenoantibody was substantially reduced in the gal(+) BM recipients compared to controls. This study is the first to report the application of gene therapy to achieve low-level, long-term gal chimerism sufficient to inhibit production of anti-gal antibodies after immunization with porcine cells in rhesus macaques.
Collapse
Affiliation(s)
- J Y Fischer-Lougheed
- Department of Cardiothoracic Surgery, The Saban Research Institute of Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM. Gene therapy: therapeutic gene causing lymphoma. Nature 2006; 440:1123. [PMID: 16641981 DOI: 10.1038/4401123a] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 03/28/2006] [Indexed: 01/06/2023]
Abstract
The development of T-cell leukaemia following the otherwise successful treatment of three patients with X-linked severe combined immune deficiency (X-SCID) in gene-therapy trials using haematopoietic stem cells has led to a re-evaluation of this approach. Using a mouse model for gene therapy of X-SCID, we find that the corrective therapeutic gene IL2RG itself can act as a contributor to the genesis of T-cell lymphomas, with one-third of animals being affected. Gene-therapy trials for X-SCID, which have been based on the assumption that IL2RG is minimally oncogenic, may therefore pose some risk to patients.
Collapse
Affiliation(s)
- Niels-Bjarne Woods
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
29
|
Trobridge G, Beard BC, Kiem HP. Hematopoietic stem cell transduction and amplification in large animal models. Hum Gene Ther 2006; 16:1355-66. [PMID: 16390267 DOI: 10.1089/hum.2005.16.1355] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Progress in retroviral gene transfer to large animal hematopoietic stem cells (HSCs) has led to efficient, reproducible long-term marking in both canine and nonhuman primate models. Successes for HSC gene therapy have occurred in the severe combined immunodeficiency setting, in which transduced cells have a selective advantage. However, for most diseases, the therapeutic transgene does not confer a sufficient survival advantage, and increasing the percentage of gene-marked cells in vivo will be necessary to observe a therapeutic effect. In vivo amplification should expand the potential of HSC gene therapy, and progress in this area has benefited greatly from the use of large animal models where efficacy and toxicity have often not correlated with results in murine models. To date, the best results have been observed with O(6)-methylguanine-DNA methyltransferase (MGMT) selection, with which increases in gene-marked repopulating cells have been maintained long-term, likely because of the toxicity of 1,3-bis-(2-chloroethyl)-1-nitrosourea and temozolomide to quiescent HSCs. Using MGMT selection, long-term marking levels exceeding 50% can now be routinely attained with minimal toxicity. There is cause to be optimistic that HSC gene therapy with in vivo amplification will soon allow the treatment of several genetic and infectious diseases.
Collapse
Affiliation(s)
- Grant Trobridge
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
30
|
Zhang J, Attar E, Cohen K, Crumpacker C, Scadden D. Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells. Gene Ther 2006; 12:1444-52. [PMID: 15877047 DOI: 10.1038/sj.gt.3302544] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adult hematopoietic and other tissue stem cells have highly constrained cell cycling that limits their susceptibility to standard gene therapy vectors, which depend upon chromosomal integration. Using cytokine cocktails to increase transduction efficiency often compromises subsequent stem cell function in vivo. We previously showed that p21(Waf1/Cip1/Sdi1) (p21) mediates stem cell quiescence in vivo and decreasing its expression ex vivo leads to an expansion of stem cell pool in vivo. Here, we report that application of p21 specific siRNA increased the gene transduction efficiency in hematopoietic stem cells while preserving cell multipotentiality. Both types of siRNA, synthesized siRNA and transcribed shRNA, reduced p21 expression in target cells by 85-98%. The effect of RNAi in these cells was transient and the level of p21 mRNA returned to base line 14-28 days after siRNA treatment. This brief interval of reduction, however, was sufficient to increase transduction efficiency to two- to four-fold in cell cultures, and followed by a seven- to eight-fold increase in mice. The RNAi treated, lentivector-transduced CD34+ cells retained multipotentiality as assessed in vitro by colony formation assay and in vivo by NOD/SCID mouse transplantation assay. Reduction of p21 resulted in an increased chromosomal integration of lentivector into target cellular DNA. Taken together, both synthesized and transcribed siRNA knocked down p21 expression in human CD34+ hematopoietic stem/progenitor cells. Silencing p21 expression increased gene transduction efficiency and vector integration while retaining stem cell multipotentiality. Thus, RNAi targeting of p21 is a useful strategy to increase stem cell gene transfer efficiency. Decreasing p21 expression transiently while increasing gene-transfer vector integration may ultimately facilitate clinical applications of gene therapy.
Collapse
Affiliation(s)
- J Zhang
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
31
|
Horn PA, Morris JC, Neff T, Kiem HP. Stem cell gene transfer--efficacy and safety in large animal studies. Mol Ther 2005; 10:417-31. [PMID: 15336643 DOI: 10.1016/j.ymthe.2004.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022] Open
Affiliation(s)
- Peter A Horn
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, 98109, USA
| | | | | | | |
Collapse
|
32
|
Trobridge G, Beard BC, Kiem HP. Hematopoietic Stem Cell Transduction and Amplification in Large Animal Models. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Lu FZ, Kitazawa Y, Hara Y, Jiang JY, Li XK. Long-term gene expression using the lentiviral vector in rat chondrocytes. Clin Orthop Relat Res 2005; 439:243-52. [PMID: 16205166 DOI: 10.1097/00003086-200510000-00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The optimal approach to a long-term stable transgene expression in chondrocytes has not been established. Recently, lentiviral vectors have been used for transfection of some cultured cell lines. Our study tests the hypothesis that lentiviral vectors lead to longer gene expression in primary chondrocytes. We transfected lentiviral and adenoviral vectors carrying the green fluorescence protein gene to chondrocytes at different infection rates and cultured them in collagen Type I gel for up to 6 weeks. We also transplanted the cells of gel-suspended chondrocytes into the backs of nude mice. The mRNA expression of collagen Type II and aggrecan core protein was tested by real time polymerase chain reaction. The morphologic features and proliferation of chondrocytes were observed. Lentiviral vectors could transfect the green fluorescence protein gene to chondrocytes and the adenoviral vector, and there was no influence on the proliferation and phenotype of the chondrocytes. The percentage of lentiviral green fluorescence protein positive cells was much greater than the adenoviral green fluorescence protein at the end of 6 weeks. Stable green fluorescence protein expression was observed only in the lentivirus-transfected implants. The gene transfected by the lentiviral vector can be expressed efficiently for a long time and may be useful for gene transfer in cartilage defect repair.
Collapse
Affiliation(s)
- Fei-Zhou Lu
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
34
|
Beagles KE, Peterson L, Zhang X, Morris J, Kiem HP. Cyclosporine inhibits the development of green fluorescent protein (GFP)-specific immune responses after transplantation of GFP-expressing hematopoietic repopulating cells in dogs. Hum Gene Ther 2005; 16:725-33. [PMID: 15960603 DOI: 10.1089/hum.2005.16.725] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Green fluorescent proteins (GFPs) have been widely used to monitor gene transfer and expression after lentiviral and oncoretroviral transduction of hematopoietic cells. Studies have shown a complete disappearance of GFP-containing cells after transplantation of GFP-transduced repopulating cells in nonhuman primates that was further shown to be mediated by transgene-specific immune responses. We wished to evaluate whether cyclosporine could prevent immune responses to GFP. We first determined whether an immune response to GFP was responsible for the disappearance of gene-modified cells in dogs. We performed immune assays in two dogs transplanted with lentivirally transduced CD34+ cells. Blood samples were obtained twice per week for up to 800 days and the GFP transgene product was measured by flow cytometry in blood leukocytes. Peripheral blood leukocytes were stimulated in vitro for 5 days, using a panel of GFP peptides. Intracellular levels of tumor necrosis factor alpha (TNF-alpha), measured by flow cytometry, and T cell proliferation after GFP peptide stimulation were measured. Dogs that exhibited a decrease in GFP marking developed potent immune responses in vitro to the transgene product GFP as shown by an increase in GFP-specific TNF-alpha production (p < 0.05) when compared with nontransplanted controls. T cells from dogs with low GFP marking exhibited a significant increase in proliferation in response to GFP peptide stimulation in vitro (p < 0.05). To study whether cyclosporine could inhibit the development of GFP-specific immune responses, we treated five dogs with cyclosporine after transplantation of GFP-transduced hematopoietic cells. Dogs treated with cyclosporine after hematopoietic stem cell transplantation showed stable GFP marking in blood leukocytes over 800 days. Our data suggest that cyclosporine prevents immunoactivation against transgene products after transplantation of GFP-transduced hematopoietic stem cells as indicated by stable GFP marking.
Collapse
Affiliation(s)
- K E Beagles
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
35
|
Sugiyama O, An DS, Kung SPK, Feeley BT, Gamradt S, Liu NQ, Chen ISY, Lieberman JR. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 2005; 11:390-8. [PMID: 15727935 DOI: 10.1016/j.ymthe.2004.10.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 10/28/2004] [Indexed: 12/23/2022] Open
Abstract
We examined the potential of ex vivo gene therapy to enhance bone repair using lentiviral vectors encoding either enhanced green fluorescent protein (EGFP) as a reporter gene or bone morphogenetic protein-2 (BMP-2) downstream of either the cytomegalovirus immediate early (CMV) promoter or the murine leukemia virus long terminal repeat (RhMLV) promoter derived from a murine retrovirus adapted to replicate in a rhesus macaque. In vitro, rat bone marrow stromal cells (BMSCs) transduced with Lenti-CMV-EGFP or Lenti-RhMLV-EGFP demonstrated over 90% transduction efficiency at 1 week and continued to demonstrate stable expression for 8 weeks. ELISA results demonstrated that lentivirus-mediated gene transfer into BMSCs induced stable BMP-2 production in vitro for 8 weeks. Increased EGFP and BMP-2 production was noted with the RhMLV promoter. In addition, we implanted BMSCs transduced with Lenti-RhMLV-BMP-2 into a muscle pouch in the hind limbs of severe combined immune deficient mice. Robust bone formation was noted in animals that received Lenti-RhMLV-BMP-2 cells at 3 weeks. These results demonstrate that lentiviral vectors expressing BMP-2 can induce long-term gene expression in vitro and new bone formation in vivo under the control of the RhMLV promoter. Prolonged gene expression may be advantageous when developing tissue engineering strategies to repair large bone defects.
Collapse
Affiliation(s)
- Osamu Sugiyama
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu B, Daviau J, Nichols CN, Strayer DS. In vivo gene transfer into rat bone marrow progenitor cells using rSV40 viral vectors. Blood 2005; 106:2655-62. [PMID: 15994284 PMCID: PMC1895314 DOI: 10.1182/blood-2005-01-0028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic stem cell (HSC) gene transfer has been attempted almost entirely ex vivo and has been limited by cytokine-induced loss of self-renewal capacity and transplantation-related defects in homing and engraftment. Here, we attempted to circumvent such limitations by injecting vectors directly into the bone marrow (BM) to transduce HSCs in their native environment. Simian virus 40 (SV40)-derived gene delivery vectors were used because they transduce resting CD34+ cells very efficiently. Rats received SV-(Nef-FLAG), carrying FLAG marker epitope--or a control recombinant SV40 (rSV40)--directly into both femoral marrow cavities. Intracellular transgene expression by peripheral blood (PB) or BM cells was detected by cytofluorimetry. An average of 5.3% PB leukocytes expressed FLAG for the entire study--56 weeks. Transgene expression was sustained in multiple cell lineages, including granulocytes (average, 3.3% of leukocytes, 20.4% of granulocytes), CD3+ T lymphocytes (average, 0.53% of leukocytes, 1% of total T cells), and CD45R+ B lymphocytes, indicating gene transfer to long-lived progenitor cells with multilineage capacity. An average of 15% of femoral marrow cells expressed FLAG up to 16.5 months after transduction. Thus, direct intramarrow administration of rSV40s yields efficient gene transfer to rat BM progenitor cells and may be worthy of further investigation.
Collapse
Affiliation(s)
- Bianling Liu
- Department of Pathology, Jefferson Medical College, 1020 Locust St, Rm 251, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
37
|
Kung SKP, Bonifacino A, Metzger ME, Ringpis GE, Donahue RE, Chen ISY. Lentiviral Vector-Transduced Dendritic Cells Induce Specific T Cell Response in a Nonhuman Primate Model. Hum Gene Ther 2005; 16:527-32. [PMID: 15871684 DOI: 10.1089/hum.2005.16.527] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Dendritic cells (DCs) are effective in stimulating and controlling the outcome of T cell responses. Human immunodeficiency virus type 1-based lentiviral vectors can achieve sustained transduction of genes/antigens in dividing and nondividing cells, thus representing a candidate vector for stable expression of antigens in DCs. We previously established conditions for transduction of purified cytokine mobilized rhesus CD34(+) cells in vitro, and transplantation of the autologous transduced cells in a nonhuman primate model in vivo. In the present study, we transplanted DCs derived from EGFP-transduced CD34(+) cells into nonmyeloablated rhesus macaques. Transplantation of DCs stably expressing EGFP into autologous animals induces persistent, long-lived (up to 100 weeks) EGFP-specific T cell responses. Of note, no humoral responses against EGFP are detected in the transplanted animals. These studies provide, to our knowledge, the first demonstration that lentiviral transduction of CD34(+) progenitor cells subsequently differentiated to DCs is capable of priming a specific T cell response in a nonhuman primate in vivo. Taken together, our data provide formal in vivo evidence that lentivirus-transduced dendritic cells represent a potential approach in eliciting cellular immune responses in primates.
Collapse
Affiliation(s)
- Sam K P Kung
- Department of Microbiology and Immunology and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The hemoglobin disorders of beta-thalassemia and sickle cell disease together constitute the most prevalent group of human monogenic diseases. Although curative allogeneic stem cell transplantation therapy and palliative therapies have been developed for these disorders, the majority of patients still suffer significant morbidity and early mortality. The development of therapeutic approaches based on genetic manipulation of autologous stem cells therefore remains an attractive alternative. In the past 4 years, significant advances have been made toward this goal using lentiviral vectors to obtain high-level expression of complex globin gene cassettes. Therapeutic correction in murine models of both beta-thalassemia and sickle cell anemia has been achieved using this approach. These advances, coupled with progress in the ability to achieve in vivo selection of genetically modified cells, can now be evaluated in the well-developed nonhuman primate autologous transplant model. The goal in these studies is to provide preclinical safety and efficacy data prior to human clinical trials in order to maximize the likelihood of success in the context of an acceptable risk to benefit ratio. Here we review progress in each of these areas.
Collapse
Affiliation(s)
- Derek A Persons
- Department of Hematology/Oncology, Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | | |
Collapse
|
39
|
Silvertown JD, Walia JS, Medin JA. Cloning, sequencing and characterization of lentiviral-mediated expression of rhesus macaque (Macaca mulatta) interleukin-2 receptor alpha cDNA. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:989-1002. [PMID: 15935473 DOI: 10.1016/j.dci.2005.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/22/2005] [Accepted: 02/28/2005] [Indexed: 05/02/2023]
Abstract
The rhesus macaque CD25 (RhCD25) cDNA isolated from rhesus PBMCs was found to share 95.5 and 91.9% homology with the human orthologue at the nucleotide and amino acid levels, respectively. Comparative sequence analyses suggest that both human CD25 (HuCD25) and RhCD25 share identity for most of the critical amino acids previously identified to be essential for viable folding and IL-2 ligand binding. The human leukemic cell line, HH, deficient for IL-2Ralpha was transduced with a lentiviral vector (LV) engineered to express RhCD25 (HH-RhCD25). RhCD25 was characterized for expression by flow cytometric analyses, ELISA, Western blotting, functional signalling, and biological assays in comparison to HuCD25. In summary, vectors expressing the RhCD25 cDNA can be used as a tool to aid in the characterization of soluble CD25 in non-human primate studies, and to provide a tempting alternative as an autologous cell surface marker in rhesus macaque gene therapy and bone marrow transplantation studies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Cloning, Molecular
- DNA, Complementary/genetics
- Gene Expression
- Genetic Vectors
- Humans
- Interleukin-2 Receptor alpha Subunit
- Lentivirus/genetics
- Macaca mulatta/genetics
- Macaca mulatta/immunology
- Molecular Sequence Data
- Receptors, Interleukin/genetics
- Receptors, Interleukin/isolation & purification
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/isolation & purification
- Receptors, Interleukin-2/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Signal Transduction
- Solubility
- Species Specificity
- Transduction, Genetic
Collapse
Affiliation(s)
- Josh D Silvertown
- Division of Experimental Therapeutics, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ont., Canada M5G-2M1
| | | | | |
Collapse
|
40
|
Abstract
Over the past two decades, the ability to transfer genes into hematopoietic stem cells (HSCs) has provided new insights into the behavior of individual stem cells and offered a novel approach for the treatment of various inherited or acquired disorders. At present, gene transfer into HSCs has been achieved mainly using modified retroviruses. While retrovirus-based vectors could efficiently transduce murine HSCs, extrapolation of these methods to large mammals and human clinical trials resulted in very low numbers of gene-marked engrafted cells. In addition, in vitro progenitor assays used to optimize gene transfer procedures were found to poorly predict the outcome of stem cell gene transfer. The focus rapidly turned to the development of superior and more relevant preclinical assays in human stem cell gene transfer research. Xenogeneic transplant models and large animal transplantation system have been invaluable. The development of better assays for evaluating human gene therapy protocols and a better understanding of stem cell and vector biology has culminated over the past decade in multiple strategies to improve gene transfer efficiency into HSCs. Improved gene transfer vectors, optimization of cytokine combination, and incorporation of a recombinant fragment of fibronectin during transduction are examples of novel successful additions to the early gene transfer protocols that have contributed to the first unequivocal clinical benefits resulting from genetic manipulation of HSC.
Collapse
Affiliation(s)
- André Larochelle
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
41
|
|
42
|
Kung SKP, An DS, Bonifacino A, Metzger ME, Ringpis GE, Mao SH, Chen ISY, Donahue RE. Induction of transgene-specific immunological tolerance in myeloablated nonhuman primates using lentivirally transduced CD34+ progenitor cells. Mol Ther 2004; 8:981-91. [PMID: 14664801 DOI: 10.1016/j.ymthe.2003.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Modeling human hematopoietic progenitor cell gene therapy in nonhuman primates allows long-term evaluation of safety, maintenance of gene expression, and potential immune response against transgene products. We transplanted autologous G-CSF/SCF-mobilized CD34+ cells transduced with lentiviral vectors expressing EGFP into myeloablated rhesus macaques. To date, more than 4 years posttransplantation, 0.5-8% EGFP expression is maintained in multiple cell lineages. The animals remain healthy with no evidence of hematopoietic abnormalities or malignancies. To assess immune functions, we actively immunized two of our transplanted animals with purified rEGFP proteins and CpG adjuvant and demonstrated stable levels of EGFP+ cell populations maintained for over 29 months despite four active immunizations. We did not detect a persistent anti-EGFP antibody response or anti-EGFP T cell response in these immunized animals. Immune response to an irrelevant antigen was normal. Taken together, our data provide formal support that transplantation of lentivirally transduced CD34+ progenitor cells in myeloablated rhesus macaques induces specific immunological tolerance toward a foreign transgene.
Collapse
Affiliation(s)
- Sam K P Kung
- Department of Microbiology, Immunology & Molecular Genetics, and Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bannert N, Kurth R. Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A 2004; 101 Suppl 2:14572-9. [PMID: 15310846 PMCID: PMC521986 DOI: 10.1073/pnas.0404838101] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retroelements constitute a large portion of our genomes. One class of these elements, the human endogenous retroviruses (HERVs), is comprised of remnants of ancient exogenous retroviruses that have gained access to the germ line. After integration, most proviruses have been the subject of numerous amplifications and have suffered extensive deletions and mutations. Nevertheless, HERV-derived transcripts and proteins have been detected in healthy and diseased human tissues, and HERV-K, the youngest, most conserved family, is able to form virus-like particles. Although it is generally accepted that the integration of retroelements can cause significant harm by disrupting or disregulating essential genes, the role of HERV expression in the etiology of malignancies and autoimmune and neurologic diseases remains controversial. In recent years, striking evidence has accumulated indicating that some proviral sequences and HERV proteins might even serve the needs of the host and are therefore under positive selection. The remarkable progress in the analysis of host genomes has brought to light the significant impact of HERVs and other retroelements on genetic variation, genome evolution, and gene regulation.
Collapse
|
44
|
Kearns-Jonker M, Fischer-Lougheed J, Shulkin I, Kleihauer A, Mitsuhashi N, Kohn DB, Weinberg K, D'Apice AJF, Starnes VA, Cramer DV. USE OF LENTIVIRAL VECTORS TO INDUCE LONG-TERM TOLERANCE TO GAL+ HEART GRAFTS. Transplantation 2004; 77:1748-54. [PMID: 15201677 DOI: 10.1097/01.tp.0000131174.52424.4a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tolerance to organ grafts has been achieved by establishing a state of stable mixed-cell chimerism after bone marrow transplantation. Gene therapy has been applied to establish chimerism for cells expressing galactose alpha 1,3 galactose in alpha 1,3 galactosyltransferase deficient (gal knockout) mice using retroviral vectors. Limitations to the success of this methodology include short-term expression of the introduced gene and rejection of gal hearts transplanted into these animals within a month. METHODS Autologous bone marrow from gal knockout mice was transduced with a lentiviral vector expressing porcine alpha 1,3 galactosyltransferase and transplanted into lethally irradiated gal knockout mice. Chimerism was monitored by flow cytometry. Hearts from wild type mice (gal/) were transplanted into these animals and palpated daily. Xenoantibodies directed at the gal carbohydrate or porcine xenoantigens were detected by enzyme-linked immunosorbent assay. RESULTS Hearts from wild-type gal/ donors were permanently accepted in all mice receiving autologous, transduced bone marrow before heart transplantation. Control mice rejected gal hearts within 12 to 14 days. Histologic analysis demonstrated classical signs of rejection in controls and normal myocardium with no evidence of rejection in mice chimeric for the gal carbohydrate. Anti-gal xenoantibodies were not produced in gal chimeras, but normal antibody responses to other xenoantigens were detected. Specific tolerance for the gal carbohydrate was achieved by this procedure. CONCLUSIONS These experiments report the first demonstration of permanent survival of gal hearts after transplantation with autologous, transduced bone marrow. Transduction with lentiviral vectors results in long-term, stable chimerism at levels sufficient to induce long-term tolerance to heart grafts in mice.
Collapse
Affiliation(s)
- Mary Kearns-Jonker
- Department of Cardiothoracic Surgery, Children's Hospital of Los Angeles and the University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Horn PA, Keyser KA, Peterson LJ, Neff T, Thomasson BM, Thompson J, Kiem HP. Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol. Blood 2004; 103:3710-6. [PMID: 14739227 DOI: 10.1182/blood-2003-07-2414] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34+ hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)– and granulocyte-colony stimulating factor (G-CSF)–primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.
Collapse
Affiliation(s)
- Peter A Horn
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Hanawa H, Hematti P, Keyvanfar K, Metzger ME, Krouse A, Donahue RE, Kepes S, Gray J, Dunbar CE, Persons DA, Nienhuis AW. Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 2004; 103:4062-9. [PMID: 14976042 DOI: 10.1182/blood-2004-01-0045] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High-titer, HIV-1-based lentiviral vector particles were found to transduce cytokine-mobilized rhesus macaque CD34(+) cells and clonogenic progenitors very poorly (< 1%), reflecting the postentry restriction in rhesus cells to HIV infection. To overcome this barrier, we developed a simian immunodeficiency virus (SIV)-based vector system. A single exposure to a low concentration of amphotropic pseudotyped SIV vector particles encoding the green fluorescent protein (GFP) resulted in gene transfer into 68% +/- 1% of rhesus bulk CD34(+) cells and 75% +/- 1% of clonogenic progenitors. Polymerase chain reaction (PCR) analysis of DNA from individual hematopoietic colonies confirmed these relative transduction efficiencies. To evaluate SIV vector-mediated stem cell gene transfer in vivo, 3 rhesus macaques underwent transplantation with transduced, autologous cytokine-mobilized peripheral blood CD34(+) cells following myeloablative conditioning. Hematopoietic reconstitution was rapid, and an average of 18% +/- 8% and 15% +/- 7% GFP-positive granulocytes and monocytes, respectively, were observed 4 to 6 months after transplantation, consistent with the average vector copy number of 0.19 +/- 0.05 in peripheral blood leukocytes as determined by real-time PCR. Vector insertion site analysis demonstrated polyclonal reconstitution with vector-containing cells. SIV vectors appear promising for evaluating gene therapy approaches in nonhuman primate models.
Collapse
Affiliation(s)
- Hideki Hanawa
- Experimental Hematology Division, Department of Hematology/Oncology, St Jude Children's Research Hospital, 332 N Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tripp A, Liu Y, Sieburg M, Montalbano J, Wrzesinski S, Feuer G. Human T-cell leukemia virus type 1 tax oncoprotein suppression of multilineage hematopoiesis of CD34+ cells in vitro. J Virol 2003; 77:12152-64. [PMID: 14581552 PMCID: PMC254283 DOI: 10.1128/jvi.77.22.12152-12164.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Accepted: 08/13/2003] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are highly related viruses that differ in disease manifestation. HTLV-1 is the etiologic agent of adult T-cell leukemia and lymphoma, an aggressive clonal malignancy of human CD4-bearing T lymphocytes. Infection with HTLV-2 has not been conclusively linked to lymphoproliferative disorders. We previously showed that human hematopoietic progenitor (CD34(+)) cells can be infected by HTLV-1 and that proviral sequences were maintained after differentiation of infected CD34(+) cells in vitro and in vivo. To investigate the role of the Tax oncoprotein of HTLV on hematopoiesis, bicistronic lentiviral vectors were constructed encoding the HTLV-1 or HTLV-2 tax genes (Tax1 and Tax2, respectively) and the green fluorescent protein marker gene. Human hematopoietic progenitor (CD34(+)) cells were infected with lentivirus vectors, and transduced cells were cultured in a semisolid medium permissive for the development of erythroid, myeloid, and primitive progenitor colonies. Tax1-transduced CD34(+) cells displayed a two- to fivefold reduction in the total number of hematopoietic clonogenic colonies that arose in vitro, in contrast to Tax2-transduced cells, which showed no perturbation of hematopoiesis. The ratio of colony types that developed from Tax1-transduced CD34(+) cells remained unaffected, suggesting that Tax1 inhibited the maturation of relatively early, uncommitted hematopoietic stem cells. Since previous reports have linked Tax1 expression with initiation of apoptosis, lentiviral vector-mediated transduction of Tax1 or Tax2 was investigated in CEM and Jurkat T-cell lines. Ectopic expression of either Tax1 or Tax2 failed to induce apoptosis in T-cell lines. These data demonstrate that Tax1 expression perturbs development and maturation of pluripotent hematopoietic progenitor cells, an activity that is not displayed by Tax2, and that the suppression of hematopoiesis is not attributable to induction of apoptosis. Since hematopoietic progenitor cells may serve as a latently infected reservoir for HTLV infection in vivo, the different abilities of HTLV-1 and -2 Tax to suppress hematopoiesis may play a role in the respective clinical outcomes after infection with HTLV-1 or -2.
Collapse
Affiliation(s)
- Adam Tripp
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | |
Collapse
|
48
|
Morris JC, Conerly M, Thomasson B, Storek J, Riddell SR, Kiem HP. Induction of cytotoxic T-lymphocyte responses to enhanced green and yellow fluorescent proteins after myeloablative conditioning. Blood 2003; 103:492-9. [PMID: 14512305 DOI: 10.1182/blood-2003-07-2324] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lentiviral vectors are increasingly being used for transferring genes into hematopoietic stem cells (HSCs) due to their ability to transduce nondividing cells. Whereas results in in vitro studies and the nonobese diabetic/severe combined immunodeficiency (NOD/SCID) model have been highly encouraging, studies in large animals have not confirmed the superior transduction of HSCs using lentiviral vectors versus oncoretroviral vectors. In contrast to the stable gene marking we have consistently achieved with oncoretroviral vectors in animals that received myeloablative conditioning, we observed the complete disappearance of genetically modified enhanced green or yellow fluorescent protein-expressing cells in 5 baboons that received transplants of HSCs transduced with lentiviral vectors alone or in combination with oncoretroviral vectors. Immune responses to transgene products have been found to be involved in the disappearance of gene-modified cells after nonmyeloablative conditioning. Thus, we examined whether the disappearance of gene-modified cells after ablative conditioning may be due to an immune response. In 4 of 5 animals, cytotoxic T lymphocytes specific for the transgene protein were readily detected, demonstrating that immune reactions were responsible for the disappearance of the gene-marked cells in the animals. In summary, we report the induction of transgene-specific immune responses after transplantation of lentivirally transduced repopulating cells in a myeloablative setting.
Collapse
Affiliation(s)
- Julia C Morris
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98105, USA
| | | | | | | | | | | |
Collapse
|
49
|
An DS, Xie Y, Mao SH, Morizono K, Kung SKP, Chen ISY. Efficient lentiviral vectors for short hairpin RNA delivery into human cells. Hum Gene Ther 2003; 14:1207-12. [PMID: 12908971 DOI: 10.1089/104303403322168037] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RNA interference is an evolutionarily conserved process of gene silencing that in plants serves as a natural defense mechanism against exogenous viral agents. RNA interference is becoming an important tool for the study of biological processes through reverse genetics and has potential for therapeutic applications in humans; however, effective delivery is still a major issue. Small interfering RNA (siRNA) and short hairpin RNA (shRNA) have been introduced into cells by transfection of chemically synthesized and RNA expression via plasmid cassettes utilizing RNA polymerase III transcription. The employment of siRNA/shRNA for gene knockout requires an efficient stable transfection or transduction process. Here, we report the successful construction of lentiviral vectors to express shRNA stably in human cells. We demonstrate that lentiviral vectors expressing siRNA directed to the reporter gene luciferase, when stably transduced into human cells without drug selection, are capable of protecting the cells from infection by a lentiviral vector encoding humanized firefly luciferase as a reporter gene. We observed 16- to 43-fold reduction of gene expression in infected cells transduced with shRNA vectors relative to cells transduced with control vectors. This model system demonstrates the utility of lentiviral vectors to stably express shRNA as both a cellular gene knockout tool and as a means to inhibit exogenous infectious agents such as viruses in human cells.
Collapse
Affiliation(s)
- Dong Sung An
- Department of Microbiology, Immunology, and Molecular Genetics and Medicine, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
50
|
Nienhuis AW, Hanawa H, Sawai N, Sorrentino BP, Persons DA. Development of gene therapy for hemoglobin disorders. Ann N Y Acad Sci 2003; 996:101-11. [PMID: 12799288 DOI: 10.1111/j.1749-6632.2003.tb03238.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hemoglobin disorders, severe beta-thalassemia and sickle cell anemia, are prevalent monogenetic disorders which cause severe morbidity and mortality worldwide. Gene therapy approaches to these disorders envision stem cell targeted gene transfer, autologous transplantation of gene-corrected stem cells, and functional, phenotypically corrective globin gene expression in developing erythroid cells. Lentiviral vector systems potentially appear to afford adequately efficient gene transfer into stem cells and are capable, with appropriate genetic engineering, of transferring a globin gene with the regulatory elements required to achieve high-level, erythroid-specific expression. Herein are results obtained in use of lentiviral vectors to insert a gamma-globin gene into murine stem cells with phenotypic correction of the thalassemia phenotype. Further, we have developed a drug-selection system for genetically modified stem cells based on a mutant form of methylguanine, methyltransferase, which allows selective amplification of genetically modified stem cells with phenotypic correction even in the absence of myeloablation prior to stem cell transplantation. These advances provide essential preclinical data which build toward the development of effective gene therapy for the severe hemoglobin disorders.
Collapse
Affiliation(s)
- Arthur W Nienhuis
- Division of Experimental Hematology, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | | | |
Collapse
|