1
|
Qiu L, Gao X, Shao X, Xi J, Chen S, Pham T, Wang Y, Dong J, Rao SD, Hao J, Lo JH, Yang R, Engel EA, Crump CM, Yuan W. HSV-1 UL56 protein recruits cellular NEDD4-family ubiquitin ligases to suppress CD1d expression and NKT cell function. J Virol 2025; 99:e0214024. [PMID: 40047437 PMCID: PMC11998485 DOI: 10.1128/jvi.02140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Herpesviruses, including α-herpesvirus and herpes simplex virus (HSV-1), are masters of immune evasion. Previously we demonstrated that CD1d-restricted NKT cells are required for optimal anti-HSV-1 immune responses and HSV-1 efficiently downregulates CD1d to suppress NKT cell function. To delineate how the virus evades NKT cell function and establishes infection in vivo, we screened an HSV-1 expression library to identify the viral gene(s) downregulating CD1d and discovered that a leaky late gene, UL56, most efficiently suppresses CD1d expression by degrading the protein, apparently via both proteasome- and lysosome-dependent pathways. To investigate the molecular mechanism of UL56 suppression of CD1d expression, we purified and identified UL56-associated proteins by mass spectrometry. The most abundant associated proteins were members of NEDD4 E3 ubiquitin ligase family. Interestingly overexpression of one member, NEDD4L is sufficient to downregulate CD1d expression. However, different from the K5 protein from Kaposi sarcoma's herpesvirus (KSHV), UL56 and NEDD4L did not directly ubiquitinate CD1d. CD1d protein lacking the key lysine residue in its cytoplasmic tail is similarly downregulated by UL56 and NEDD4L protein. Co-expression of UL56 and NEDD4L synergistically reduced the CD1d expression, suggesting that UL56 collaborates with NEDD4L to downregulate CD1d. During in vivo infection, UL56-deficient mutant virus showed significantly weaker virulence in NKT-sufficient mice but demonstrated higher virulence in mutant mice lacking NKT cells. All our results supported that at least one of the pathogenesis functions of UL56 is its suppression of NKT cell function during infection. IMPORTANCE In the large DNA genomes of herpeviruses, there are many genes encoding associate proteins. Most of these proteins are not essential for viral replication but play key roles in viral pathogenesis, in particular, modulating the host immune system to allow efficient viral replication in vivo and latency. The HSV-1 UL56 gene is one of such genes, and its exact pathogenic roles have remain elusive. After we demonstrated the essential roles of CD1d-restricted NKT cells in anti-HSV-1 immunity during HSV-1 ocular infection (P. Rao, X. Wen, J. H. Lo, S. Kim, X. Li, et al., J Virol 92:e01490-18, 2018, https://doi.org/10.1128/jvi.01490-18), we now screened the HSV-1 expression library and identified UL56 is a key factor downregulating CD1d and suppressing NKT cell function. In this manuscript, we are reporting our molecular mechanism study of how UL56 evades CD1d antigen presentation and NKT cell function.
Collapse
Affiliation(s)
- Lingxi Qiu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xuedi Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xinyue Shao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jingwen Xi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Thanh Pham
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yi Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan Dong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samhita Divakar Rao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jingting Hao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae Ho Lo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rirong Yang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Han C, Gui C, Su B, Liu N, Yan H, Lan K. DR5 is a restriction factor for human herpesviruses. Proc Natl Acad Sci U S A 2025; 122:e2417372122. [PMID: 40063798 PMCID: PMC11929488 DOI: 10.1073/pnas.2417372122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/04/2025] [Indexed: 03/25/2025] Open
Abstract
Restriction factors are dominant proteins that target different essential steps of the viral life cycle; thus, these proteins provide an early line of defense against viruses. Here, we found that the internalization of DR5, an important receptor of the extrinsic apoptotic pathway, initiates apoptosis to inhibit Kaposi sarcoma-associated herpesvirus (KSHV) lytic replication. An evolutionary analysis of the DR5 sequence demonstrated that three amino acids underwent positive selection in primates. Notably, one of these positive selection sites, A62, is essential for the antiviral function of DR5 and is important for the binding of DR5 to its ligand, TNF-related apoptosis-inducing ligand. Moreover, DR5 exhibits broad antiviral activity against and inhibits various herpesviruses, including Epstein-Barr virus, herpes simplex virus type 1, and herpes simplex virus type 2. As a countermeasure, the KSHV K5 protein interacts with DR5 and promotes DR5 degradation through the lysosomal and proteasomal degradation pathways; lysine 245 of DR5 is essential for K5-induced DR5 degradation. These findings demonstrate that DR5 is a restriction factor for human herpesviruses.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Chenwu Gui
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Bingbing Su
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Naizhang Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Haojie Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Ke Lan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan University, Wuhan430072, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| |
Collapse
|
3
|
Matsumoto K, Kato H, Tsutsumi K, Otsuka M. Current status of endoscopic ultrasound-guided antitumor treatment for pancreatic cancer. Dig Endosc 2025; 37:18-28. [PMID: 38752622 PMCID: PMC11718125 DOI: 10.1111/den.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 01/11/2025]
Abstract
Endoscopic ultrasound (EUS) was developed in the 1990s and has significantly transformed pancreatic tumor diagnosis. Subsequently, EUS has rapidly shifted from being a purely diagnostic procedure to being used in a wide range of interventional procedures. Recently, new therapeutic techniques, such as EUS-guided fine needle injection (EUS-FNI) or radiofrequency ablation (RFA), have been developed to deliver various antitumor agents. Despite technological advancements, pancreatic cancer (PC) has a poor prognosis and improvements in treatment outcomes are urgently required. One of the reasons for the limited response to antitumor agents in PC is the abundant desmoplasia and hypovascular nature of the tumor, complicating drug delivery into the tumor. Thus, changing the tumor microenvironment may be important to enhance the effectiveness of chemotherapy, and direct injection of antitumor agents into the tumor under EUS guidance can help overcome treatment challenges in PC. Treatment approaches using the EUS-FNI or RFA technique are expected to further improve the prognosis of PC. Therefore, this study reviewed the existing literature on EUS-guided antitumor therapy, specifically highlighting its application in PC to address the current challenges and to identify potential advancements in the field.
Collapse
Affiliation(s)
- Kazuyuki Matsumoto
- Department of Gastroenterology and HepatologyOkayama University HospitalOkayamaJapan
| | - Hironari Kato
- Department of Gastroenterology and HepatologyOkayama University HospitalOkayamaJapan
| | - Koichiro Tsutsumi
- Department of Gastroenterology and HepatologyOkayama University HospitalOkayamaJapan
| | - Motoyuki Otsuka
- Department of Gastroenterology and HepatologyOkayama University HospitalOkayamaJapan
| |
Collapse
|
4
|
Blest HTW, Redmond A, Avissar J, Barker J, Bridgeman A, Fowler G, Chauveau L, Hertzog J, Vendrell I, Fischer R, Iversen MB, Jing L, Koelle DM, Paludan SR, Kessler BM, Crump CM, Rehwinkel J. HSV-1 employs UL56 to antagonize expression and function of cGAMP channels. Cell Rep 2024; 43:114122. [PMID: 38652659 DOI: 10.1016/j.celrep.2024.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/21/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.
Collapse
Affiliation(s)
- Henry T W Blest
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Alexander Redmond
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jed Avissar
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jake Barker
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, UK
| | - Anne Bridgeman
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Gerissa Fowler
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Lise Chauveau
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jonny Hertzog
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus Aarhus C, Denmark
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus Aarhus C, Denmark
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, UK
| | - Jan Rehwinkel
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK.
| |
Collapse
|
5
|
Joo HY, Baek H, Ahn CS, Park ER, Lee Y, Lee S, Han M, Kim B, Jang YH, Kwon H. Development of a novel, high-efficacy oncolytic herpes simplex virus type 1 platform equipped with two distinct retargeting modalities. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200778. [PMID: 38596302 PMCID: PMC10941007 DOI: 10.1016/j.omton.2024.200778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/03/2024] [Accepted: 02/16/2024] [Indexed: 04/11/2024]
Abstract
To retarget oncolytic herpes simplex virus (oHSV) to cancer-specific antigens, we designed a novel, double-retargeted oHSV platform that uses single-chain antibodies (scFvs) incorporated into both glycoprotein H and a bispecific adapter expressed from the viral genome to mediate infection predominantly via tumor-associated antigens. Successful retargeting was achieved using a nectin-1-detargeted HSV that remains capable of interacting with herpesvirus entry mediator (HVEM), the second canonical HSV entry receptor, and is, therefore, recognized by the adapter consisting of the virus-binding N-terminal 82 residues of HVEM fused to the target-specific scFv. We tested both an epithelial cell adhesion molecule (EpCAM)- and a human epidermal growth factor receptor 2-specific scFv separately and together to target cells expressing one, the other, or both receptors. Our results show not only dose-dependent, target receptor-specific infection in vitro, but also enhanced virus spread compared with single-retargeted virus. In addition, we observed effective infection and spreading of the EpCAM double-retargeted virus in vivo. Remarkably, a single intravenous dose of the EpCAM-specific virus eliminated all detectable tumors in a subcutaneous xenograft model, and the same intravenous dose seemed to be harmless in immunocompetent FVB/N mice. Our findings suggest that our double-retargeted oHSV platform can provide a potent, versatile, and systemically deliverable class of anti-cancer therapeutics that specifically target cancer cells while ensuring safety.
Collapse
Affiliation(s)
- Hyun-Yoo Joo
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Hyunjung Baek
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Chun-Seob Ahn
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Eun-Ran Park
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Youngju Lee
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Sujung Lee
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Mihee Han
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Bora Kim
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Yong-Hoon Jang
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Heechung Kwon
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
6
|
Krawczyk E, Kangas C, He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses 2023; 15:226. [PMID: 36680267 PMCID: PMC9864509 DOI: 10.3390/v15010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus (HSV) has persisted within human populations due to its ability to establish both lytic and latent infection. Given this, human hosts have evolved numerous immune responses to protect against HSV infection. Critical in this defense against HSV, the host protein stimulator of interferon genes (STING) functions as a mediator of the antiviral response by inducing interferon (IFN) as well as IFN-stimulated genes. Emerging evidence suggests that during HSV infection, dsDNA derived from either the virus or the host itself ultimately activates STING signaling. While a complex regulatory circuit is in operation, HSV has evolved several mechanisms to neutralize the STING-mediated antiviral response. Within this review, we highlight recent progress involving HSV interactions with the STING pathway, with a focus on how STING influences HSV replication and pathogenesis.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Fukushi N, Badr Y, Fukushi H. The N-terminal glycine of EHV-1 UL11 is essential for the localization of UL11 and EHV-1 replication in cultured cells. J Gen Virol 2023; 104. [PMID: 36748631 DOI: 10.1099/jgv.0.001798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Equine herpesvirus type 1 (EHV-1) UL11 is a 74-amino-acid (aa) protein encoded by ORF51. UL11 is modified by acylation including myristoylation and palmitoylation. Myristoylation of EHV-1 UL11 is assumed to occur on the N-terminal glycine, while palmitoylation is assumed to occur on the seventh and ninth cysteines. ORF51, which encodes the first 24 aa, overlaps ORF50 encoding UL12. We previously demonstrated that UL11 was essential for EHV-1 replication in cultured cells and that UL11 was localized at the Golgi apparatus where herpesviruses obtain their final envelope. It is unclear whether the acylation is related to the localization of EHV-1 UL11 and viral replication. In this study, we investigated the role of UL11 acylation in the intracellular localization and viral growth and replication of EHV-1. We constructed seven UL11 acylation mutant plasmids and seven UL11 acylation mutant BAC DNAs; then, we analysed the localizations of the mutant UL11s and attempted virus rescue. We found that both the N-terminal glycine and the seventh or ninth cysteine, especially N-terminal glycine, were involved in the localization of UL11 and viral replication. Taken together, these results suggest that EHV-1 viral growth requires that UL11 is modified by myristoylation of an N-terminal glycine and by palmitoylation of at least one of the cysteines, and that UL11 is localized at the Golgi apparatus. This study shows that a single amino acid in EHV-1 can determine the fate of viral replication.
Collapse
Affiliation(s)
- Noriko Fukushi
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yassien Badr
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Animal Medicine (Branch of Infectious Disease), Faculty of Veterinary Medicine, Damanhour University, El-Beheira 2251, Egypt
| | - Hideto Fukushi
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
8
|
Kaur J, Jaruvongvanich V, Chandrasekhara V. Endoscopic ultrasound-guided injectable therapy for pancreatic cancer: A systematic review. World J Gastroenterol 2022; 28:2383-2395. [PMID: 35800184 PMCID: PMC9185216 DOI: 10.3748/wjg.v28.i21.2383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Given the low survival rate in pancreatic cancer, new therapeutic techniques have been explored, especially for unresectable or borderline resectable disease. Endoscopic ultrasound (EUS) provides real-time imaging and minimally invasive access for local and targeted injection of anti-tumor agents directly into the pancreatic tumor. Limited studies have been reported using this technique for the treatment of pancreatic ductal adenocarcinoma (PDAC). AIM To evaluate the progress made with EUS-guided injectable therapies in the treatment of PDAC. METHODS All original articles published in English until July 15, 2021, were retrieved via a library-assisted literature search from Ovid Evidence-Based Medicine Reviews and Scopus databases. Reference lists were reviewed to identify additional relevant articles. Prospective clinical studies evaluating the use of EUS-guided injectable therapies in PDAC were included. Studies primarily directed at non-EUS injectable therapies and other malignancies were excluded. Retrieved manuscripts were reviewed descriptively with on critical appraisal of published studies based on their methods and outcome measures such as safety, feasibility, and effectiveness in terms of tumor response and survival. Heterogeneity in data outcomes and therapeutic techniques limited the ability to perform comparative statistical analysis. RESULTS A total of thirteen articles (503 patients) were found eligible for inclusion. The EUS-injectable therapies used were heterogeneous among the studies consisting of immunotherapy (n = 5) in 59 patients, chemotherapy (n = 1) in 36 patients, and viral and other biological therapies (n = 7) in 408 patients. Eleven of the studies reviewed were single armed while two were double armed with one randomized trial and one non-randomized comparative study. Overall, the included studies demonstrated EUS-guided injectable therapies to be safe and feasible with different agents as monotherapy or in conjunction with other modalities. Promising results were also observed regarding their efficacy and survival parameters in patients with PDAC. CONCLUSION EUS-guided injectable therapies, including immunotherapy, chemotherapy, and viral or other biological therapies have shown minimal adverse events and potential efficacy in the treatment of PDAC. Comparative studies, including controlled trials, are required to confirm these results in order to offer novel EUS-based treatment options for patients with PDAC.
Collapse
Affiliation(s)
- Jyotroop Kaur
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| | | | - Vinay Chandrasekhara
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
9
|
Zheng ZQ, Fu YZ, Wang SY, Xu ZS, Zou HM, Wang YY. Herpes simplex virus protein UL56 inhibits cGAS-Mediated DNA sensing to evade antiviral immunity. CELL INSIGHT 2022; 1:100014. [PMID: 37193132 PMCID: PMC10120305 DOI: 10.1016/j.cellin.2022.100014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 05/18/2023]
Abstract
After herpes simplex virus type 1 (HSV-1) infection, the cytosolic sensor cyclic GMP-AMP synthase (cGAS) recognizes DNA and catalyzes synthesis of the second messenger 2'3'-cGAMP. cGAMP binds to the ER-localized adaptor protein MITA (also known as STING) to activate downstream antiviral responses. Conversely, HSV-1-encoded proteins evade antiviral immune responses via a wide variety of delicate mechanisms, promoting viral replication and pathogenesis. Here, we identified HSV-1 envelop protein UL56 as a negative regulator of cGAS-mediated innate immune responses. Overexpression of UL56 inhibited double-stranded DNA-triggered antiviral responses, whereas UL56-deficiency increased HSV-1-triggered induction of downstream antiviral genes. UL56-deficiency inhibited HSV-1 replication in wild-type but not MITA-deficient cells. UL56-deficient HSV-1 showed reduced replication in the brain of infected mice and was less lethal to infected mice. Mechanistically, UL56 interacted with cGAS and inhibited its DNA binding and enzymatic activity. Furthermore, we found that UL56 homologous proteins from different herpesviruses had similar roles in antagonizing cGAS-mediated innate immune responses. Our findings suggest that UL56 is a component of HSV-1 evasion of host innate immune responses by antagonizing the DNA sensor cGAS, which contributes to our understanding of the comprehensive mechanisms of immune evasion by herpesviruses.
Collapse
Affiliation(s)
- Zhou-Qin Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Zhi Fu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Su-Yun Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhi-Sheng Xu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hong-Mei Zou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Identification of Marek's disease virus pUL56 homologue and analysis of critical amino acid stretches indispensable for its intracellular localization. Virus Res 2022; 313:198741. [PMID: 35271885 DOI: 10.1016/j.virusres.2022.198741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
Marek's disease virus (MDV) is considered a unique member of the Alphaherpesvirinae subfamily that induces rapid onset of T cell lymphoma in chickens. Compared with other conserved UL56 gene homologues of herpesviruses, little is known about the roles of MDV UL56 gene, while recent studies of mammalian herpesvirus pUL56 proteins have revealed their involvement in promoting ubiquitination of the Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4) -like E3 ubiquitin ligases for proteasomal degradation and in modulating host immune responses. To determine the expression kinetics of UL56 gene products, chicken embryo fibroblasts were infected with very virulent or attenuated MDV strain and analyzed by quantitative PCR and Western blotting. During the time course of infection, the levels of UL56 mRNA transcripts increased consistently. At the translational level, the pUL56 protein encoded by UL56 gene was expressed in the size of 32 kDa, which emerged as early as 12 h post-infection (hpi) but otherwise began to wane at 72 hpi thereafter. With the treatment of viral DNA synthesis inhibitors, the pUL56 expression was significantly reduced, featuring the dynamics of a late (γ)-gene product. By confocal imaging, pUL56 was found to reside in the Golgi compartment. Both the L-domain motifs and the C-terminal tail-anchored transmembrane were essential for its intracellular localization. Noticeably, pUL56 co-localized with a truncated mutant of the chicken Nedd4-like family protein harboring only the WW domains; however, co-immunoprecipitation assay established no direct interaction between them, and the ectopic expression of pUL56 did not alter the abundance of endogenous Nedd4-like protein. Overall, the present study provides a caveat that the pUL56 homologues of different herpesviruses with structural similarities might vary in expression patterns and probably in functional consequences. For this reason, further investigation should be encouraged to focus on the potential association between UL56 gene and MDV pathogenesis in the context of engineered viral mutants.
Collapse
|
11
|
Yang L, Wang M, Cheng A, Yang Q, Wu Y, Huang J, Tian B, Jia R, Liu M, Zhu D, Chen S, Zhao X, Zhang S, Ou X, Mao S, Gao Q, Sun D, Yu Y, Zhang L. UL11 Protein Is a Key Participant of the Duck Plague Virus in Its Life Cycle. Front Microbiol 2022; 12:792361. [PMID: 35058907 PMCID: PMC8764364 DOI: 10.3389/fmicb.2021.792361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Tegument protein UL11 plays a critical role in the life cycle of herpesviruses. The UL11 protein of herpesviruses is important for viral particle entry, release, assembly, and secondary envelopment. Lipid raft is cholesterol-rich functional microdomains in cell membranes, which plays an important role in signal transduction and substance transport. Flotillin and prohibition, which are considered to be specific markers of lipid raft. However, little is known about the function of duck plague virus (DPV) UL11 in the life cycle of the viruses and the relationship between the lipid raft and UL11. In this study, an interference plasmid shRNA126 for UL11 was used. Results showed that UL11 is involved in the replication, cell to cell spread, viral particle assembly, and release processes. Furthermore, UL11 was verified that it could interact with the lipid raft through sucrose density gradient centrifugation and that function correlates with the second glycine of the UL11. When the lipid raft was depleted using the methyl-β-cyclodextrin, the release of the DPV was decreased. Moreover, UL11 can decrease several relative viral genes mRNA levels by qRT-PCR and Western blot test. Altogether, these results highlight an important role for UL11 protein in the viral replication cycle.
Collapse
Affiliation(s)
- Linjiang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yanlin Yu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
12
|
The Structures and Functions of VZV Glycoproteins. Curr Top Microbiol Immunol 2021; 438:25-58. [PMID: 34731265 DOI: 10.1007/82_2021_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The virions of all enveloped viruses, including those of the Herpesviridae, must bind to the cell surface then undergo a process of membrane fusion between the cell plasma membrane and the virus particle envelope. As for all herpesviruses, glycoproteins in the virion envelope are the modus operandi of these events.
Collapse
|
13
|
Miyajima N, Ragab Eissa I, Abdelmoneim M, Naoe Y, Ichinose T, Matsumura S, Bustos-Villalobos I, Mukoyama N, Morimoto D, Shibata M, Takeuchi D, Tsunoda N, Kikumori T, Tanaka M, Kodera Y, Kasuya H. S-1 facilitates canerpaturev (C-REV)-induced antitumor efficacy in a triple-negative breast cancer model. NAGOYA JOURNAL OF MEDICAL SCIENCE 2021; 83:683-696. [PMID: 34916713 PMCID: PMC8648537 DOI: 10.18999/nagjms.83.4.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 11/11/2022]
Abstract
Canerpaturev (C-REV) is a highly attenuated, replication-competent, mutant strain of oncolytic herpes simplex virus type 1 that may be an effective new cancer treatment option. S-1, an oral formulation containing the 5-fluorouracil (5-FU) prodrug tegafur and the two enzyme modulators gimeracil and oteracil, is used as a key chemotherapeutic agent for metastatic recurrent breast cancer. Although the antitumor effects of oncolytic viruses combined with 5-FU in vivo have been reported, the detailed mechanisms are unknown. Here, we investigated the antitumor mechanism of the combination of C-REV and S-1 in triple-negative breast cancer (TNBC) in the context of tumor immunity. The combined effect of C-REV and S-1 was evaluated in a bilateral tumor model of murine TNBC 4T1 in vivo. S-1 enhanced the TNBC growth inhibitory effects of C-REV, and decreased the number of tumor-infiltrating, myeloid-derived suppressor cells (MDSCs), which suppress both innate and adaptive immune responses. Moreover, C-REV alone and in combination with S-1 significantly increased the number of CD8+ T cells in the tumor and the production of interferon γ (IFNγ) from these cells. Our findings indicate that C-REV suppresses TNBC tumor growth by inducing the expansion of effector CD8+ T cell subsets in tumors in which S-1 can inhibit MDSC function. Our study suggests that MDSCs may be an important cellular target for breast cancer treatment. The combination of C-REV and S-1 is a new approach that might be directly translated into future clinical trials against TNBC.
Collapse
Affiliation(s)
- Noriyuki Miyajima
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya Japan
,Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Ibrahim Ragab Eissa
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya Japan
,Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Mohamed Abdelmoneim
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya Japan
,Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya Japan
| | - Toru Ichinose
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya Japan
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya Japan
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya Japan
| | - Nobuaki Mukoyama
- Department of Otolaryngology Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Daishi Morimoto
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Masahiro Shibata
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Dai Takeuchi
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Nobuyuki Tsunoda
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toyone Kikumori
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya Japan
| |
Collapse
|
14
|
Wilson DW. Motor Skills: Recruitment of Kinesins, Myosins and Dynein during Assembly and Egress of Alphaherpesviruses. Viruses 2021; 13:v13081622. [PMID: 34452486 PMCID: PMC8402756 DOI: 10.3390/v13081622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The alphaherpesviruses are pathogens of the mammalian nervous system. Initial infection is commonly at mucosal epithelia, followed by spread to, and establishment of latency in, the peripheral nervous system. During productive infection, viral gene expression, replication of the dsDNA genome, capsid assembly and genome packaging take place in the infected cell nucleus, after which mature nucleocapsids emerge into the cytoplasm. Capsids must then travel to their site of envelopment at cytoplasmic organelles, and enveloped virions need to reach the cell surface for release and spread. Transport at each of these steps requires movement of alphaherpesvirus particles through a crowded and viscous cytoplasm, and for distances ranging from several microns in epithelial cells, to millimeters or even meters during egress from neurons. To solve this challenging problem alphaherpesviruses, and their assembly intermediates, exploit microtubule- and actin-dependent cellular motors. This review focuses upon the mechanisms used by alphaherpesviruses to recruit kinesin, myosin and dynein motors during assembly and egress.
Collapse
Affiliation(s)
- Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; ; Tel.: +1-718-430-2305
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
15
|
Soh TK, Davies CTR, Muenzner J, Hunter LM, Barrow HG, Connor V, Bouton CR, Smith C, Emmott E, Antrobus R, Graham SC, Weekes MP, Crump CM. Temporal Proteomic Analysis of Herpes Simplex Virus 1 Infection Reveals Cell-Surface Remodeling via pUL56-Mediated GOPC Degradation. Cell Rep 2020; 33:108235. [PMID: 33027661 PMCID: PMC7539533 DOI: 10.1016/j.celrep.2020.108235] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Herpesviruses are ubiquitous in the human population and they extensively remodel the cellular environment during infection. Multiplexed quantitative proteomic analysis over the time course of herpes simplex virus 1 (HSV-1) infection was used to characterize changes in the host-cell proteome and the kinetics of viral protein production. Several host-cell proteins are targeted for rapid degradation by HSV-1, including the cellular trafficking factor Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). We show that the poorly characterized HSV-1 pUL56 directly binds GOPC, stimulating its ubiquitination and proteasomal degradation. Plasma membrane profiling reveals that pUL56 mediates specific changes to the cell-surface proteome of infected cells, including loss of interleukin-18 (IL18) receptor and Toll-like receptor 2 (TLR2), and that cell-surface expression of TLR2 is GOPC dependent. Our study provides significant resources for future investigation of HSV-host interactions and highlights an efficient mechanism whereby a single virus protein targets a cellular trafficking factor to modify the surface of infected cells. Multiplexed proteomic screens reveal regulation of host protein abundance by HSV-1 HSV-1 pUL56 targets host proteins such as GOPC for proteasomal degradation HSV-1-mediated degradation of GOPC remodels the plasma membrane of infected cells GOPC is important for cell-surface expression of immune receptor TLR2 in keratinocytes
Collapse
Affiliation(s)
- Timothy K Soh
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Colin T R Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Julia Muenzner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Leah M Hunter
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Henry G Barrow
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Clément R Bouton
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Cameron Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Edward Emmott
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
16
|
Activation of c-Jun by human cytomegalovirus UL42 through JNK activation. PLoS One 2020; 15:e0232635. [PMID: 32369499 PMCID: PMC7199950 DOI: 10.1371/journal.pone.0232635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
c-Jun is a major component of the AP-1 transactivator complex. In this report, we demonstrated that AP-1 was activated by the expression of UL42, a human cytomegalovirus-encoded membrane protein that has two PPXY (PY) motifs and a C-terminal transmembrane domain (TMD). Although UL42 interacts with Itch, an ubiquitin E3 ligase, through the PY motifs, UL42 phosphorylated c-Jun and c-Jun N-terminal kinase (JNK) in the absence of any interaction with Itch. Experiments using mutated versions of UL42 suggest the importance of the carboxyl half (a.a. 52–124) of UL42 for the activation of the JNK signaling, while C-terminal TMD alone is not sufficient. Thus, we hypothesize that UL42 plays a role in the activation of JNK signaling in HCMV-infected cells. (118 words).
Collapse
|
17
|
Lyu C, Li WD, Wang SW, Peng JM, Yang YB, Tian ZJ, Cai XH. Host BAG3 Is Degraded by Pseudorabies Virus pUL56 C-Terminal 181L- 185L and Plays a Negative Regulation Role during Viral Lytic Infection. Int J Mol Sci 2020; 21:ijms21093148. [PMID: 32365661 PMCID: PMC7247713 DOI: 10.3390/ijms21093148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022] Open
Abstract
Bcl2-associated athanogene (BAG) 3, which is a chaperone-mediated selective autophagy protein, plays a pivotal role in modulating the life cycle of a wide variety of viruses. Both positive and negative modulations of viruses by BAG3 were reported. However, the effects of BAG3 on pseudorabies virus (PRV) remain unknown. To investigate whether BAG3 could modulate the PRV life cycle during a lytic infection, we first identified PRV protein UL56 (pUL56) as a novel BAG3 interactor by co-immunoprecipitation and co-localization analyses. The overexpression of pUL56 induced a significant degradation of BAG3 at protein level via the lysosome pathway. The C-terminal mutations of 181L/A, 185L/A, or 181L/A-185L/A in pUL56 resulted in a deficiency in pUL56-induced BAG3 degradation. In addition, the pUL56 C-terminal mutants that lost Golgi retention abrogated pUL56-induced BAG3 degradation, which indicates a Golgi retention-dependent manner. Strikingly, BAG3 was not observed to be degraded in either wild-type or UL56-deleted PRV infected cells as compared to mock infected ones, whereas the additional two adjacent BAG3 cleaved products were found in the infected cells in a species-specific manner. Overexpression of BAG3 significantly suppressed PRV proliferation, while knockdown of BAG3 resulted in increased viral yields in HEK293T cells. Thus, these data indicated a negative regulation role of BAG3 during PRV lytic infection. Collectively, our findings revealed a novel molecular mechanism on host protein degradation induced by PRV pUL56. Moreover, we identified BAG3 as a host restricted protein during PRV lytic infection in cells.
Collapse
|
18
|
Lyu C, Cai X. A GFP-tagged version of the pseudorabies virus protein UL56 localizes to the Golgi and trans-Golgi network through a predicted C-terminal leucine-rich helix in transfected cells. Virol J 2019; 16:81. [PMID: 31221185 PMCID: PMC6585060 DOI: 10.1186/s12985-019-1191-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) protein UL56 (pUL56) has been implicated in viral dissemination and virulence in vivo. However, the properties of PRV pUL56 remain largely unknown. In the present study, we aim to investigate the subcellular localization of pUL56 and the underlying molecular basis in transfected cells. METHODS Constructs of N-terminal green fluorescent protein (GFP) fused pUL56 and its truncations were employed for investigating subcellular localization and further identifying amino acids crucial for pUL56 localization in transfected Vero cells. Finally, the identified amino acids were replaced with alanine for confirming if these mutations could impair the specific localization of pUL56. RESULTS The pUL56 predominantly localized at the Golgi and trans-Golgi network (TGN) through its predicted C-terminal transmembrane helix in transfected Vero cells. A Golgi-associated protein Rab6a, independent of interaction with pUL56, was significantly downregulated by pUL56. Further, we found three truncated pUL56 C-terminal fragments (174-184, 175-185 and 191-195) could restrict GFP in the perinuclear region, respectively. Within these truncations, the 174proline (P), 181leucine (L), 185L and 191L were essential for maintaining perinuclear accumulation, thus suggesting an important role of leucine. Alanine (A) mutagenesis assays were employed to generate a series of pUL56 C-terminal mutants on the basis of leucine. Finally, a pUL56 mutant M10 (174P/A-177L/A-181L/A-185L/A-191L/A-194L/A-195I/A-196-197L/A-200L/A) lost Golgi-TGN localization. Thus, our data revealed that the leucine-rich transmembrane helix was responsible for pUL56 Golgi-TGN localization and retention, probably through specific intracellular membrane insertion. CONCLUSION Our data indicated that the C-terminal transmembrane helix was responsible for the Golgi-TGN localization of pUL56. In addition, the leucines within C-terminal transmembrane helix were essential for maintaining pUL56 Golgi-TGN retention in cells. Further, the pUL56 can induce downregulation of Golgi-associated protein Rab6a.
Collapse
Affiliation(s)
- Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No.678, Xiang Fang District, Harbin, 150069, Heilongjiang, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No.678, Xiang Fang District, Harbin, 150069, Heilongjiang, China.
| |
Collapse
|
19
|
Hirooka Y, Kasuya H, Ishikawa T, Kawashima H, Ohno E, Villalobos IB, Naoe Y, Ichinose T, Koyama N, Tanaka M, Kodera Y, Goto H. A Phase I clinical trial of EUS-guided intratumoral injection of the oncolytic virus, HF10 for unresectable locally advanced pancreatic cancer. BMC Cancer 2018; 18:596. [PMID: 29801474 PMCID: PMC5970460 DOI: 10.1186/s12885-018-4453-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Prognosis of pancreatic cancer is poor with a 5-year survival rate of only 7%. Although several new chemotherapy treatments have shown promising results, all patients will eventually progress, and we need to develop newer chemotherapy treatments to improve response rates and overall survival (OS). HF10 is a spontaneously mutated oncolytic virus derived from a herpes simplex virus-1, and it has potential to show strong antitumor effect against malignancies without damaging normal tissue. We aimed to evaluate the safety and anti-tumor effectiveness in phase I dose-escalation trial of direct injection of HF10 into unresectable locally advanced pancreatic cancer under endoscopic ultrasound (EUS)-guidance in combination with erlotinib and gemcitabine administration. The mid-term results have been previously reported and here we report the final results of our study. METHODS This was a single arm, open-label Phase I trial. HF10 was injected once every 2 weeks and continued up to four times in total unless dose-limiting toxicity (DLT) appears. A total of nine subjects in three Cohorts with dose-escalation were planned to be enrolled in this trial. The primary endpoint was the safety assessment and the secondary endpoint was the efficacy assessment. RESULTS Twelve patients enrolled in this clinical trial, and ten subjects received this therapy. Five patients showed Grade III myelosuppression and two patients developed serious adverse events (AEs) (perforation of duodenum, hepatic dysfunction). However, all of these events were judged as AEs unrelated to HF10. Tumor responses were three partial responses (PR), four stable diseases (SD), and two progressive diseases (PD) out of nine subjects who completed the treatment. Target lesion responses were three PRs and six SDs. The median progression free survival (PFS) was 6.3 months, whereas the median OS was 15.5 months. Two subjects from Cohort 1 and 2 showed downstaging and finally achieved surgical complete response (CR). CONCLUSIONS HF10 direct injection under EUS-guidance in combination with erlotinib and gemcitabine was a safe treatment for locally advanced pancreatic cancer. Combination therapy of HF10 and chemotherapy should be explored further in large prospective studies. TRIAL REGISTRATION This study was prospectively registered in UMIN-CTR (UMIN000010150) on March 4th, 2013.
Collapse
Affiliation(s)
- Yoshiki Hirooka
- Department of Endoscopy, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itzel B. Villalobos
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toru Ichinose
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Yasuhiro Kodera
- Department of Surgery II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidemi Goto
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
20
|
Abstract
Nedd4 is a family of ubiquitin E3 ligases that regulate numerous cellular processes. In this report, we showed that alpha- and beta-herpesviruses have membrane proteins that regulate the function of the Nedd4 family members. Although the homology search score was quite low, UL56 of herpes simplex virus type 1 and 2, ORF0 of varicella-zoster virus, UL42 of human cytomegalovirus, and U24 of human herpesvirus 6A, 6B, and 7 all possess at least one PPxY (PY) motif in their cytoplasmic domain, and are able to bind with Itch, a member of the Nedd4 family. These viral proteins altered the localization of Itch and decreased Itch expression in co-expressing cells. In addition, these viral proteins reduced the production of retrovirus vectors through the regulation of the Nedd4 family of proteins. U24, but not the other proteins, effectively reduced CD3ε expression on the T cell surface. These viral molecules are thought to contribute to the specific function of each virus through the regulation of Nedd4 family activity.
Collapse
|
21
|
Eissa IR, Naoe Y, Bustos-Villalobos I, Ichinose T, Tanaka M, Zhiwen W, Mukoyama N, Morimoto T, Miyajima N, Hitoki H, Sumigama S, Aleksic B, Kodera Y, Kasuya H. Genomic Signature of the Natural Oncolytic Herpes Simplex Virus HF10 and Its Therapeutic Role in Preclinical and Clinical Trials. Front Oncol 2017; 7:149. [PMID: 28770166 PMCID: PMC5509757 DOI: 10.3389/fonc.2017.00149] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Oncolytic viruses (OVs) are opening new possibilities in cancer therapy with their unique mechanism of selective replication within tumor cells and triggering of antitumor immune responses. HF10 is an oncolytic herpes simplex virus-1 with a unique genomic structure that has non-engineered deletions and insertions accompanied by frame-shift mutations, in contrast to the majority of engineered OVs. At the genetic level, HF10 naturally lacks the expression of UL43, UL49.5, UL55, UL56, and latency-associated transcripts, and overexpresses UL53 and UL54. In preclinical studies, HF10 replicated efficiently within tumor cells with extensive cytolytic effects and induced increased numbers of activated CD4+ and CD8+ T cells and natural killer cells within the tumor, leading to a significant reduction in tumor growth and prolonged survival rates. Investigator-initiated clinical studies of HF10 have been completed in recurrent breast carcinoma, head and neck cancer, and unresectable pancreatic cancer in Japan. Phase I trials were subsequently completed in refractory superficial cancers and melanoma in the United States. HF10 has been demonstrated to have a high safety margin with low frequency of adverse effects in all treated patients. Interestingly, HF10 antigens were detected in pancreatic carcinoma over 300 days after treatment with infiltration of CD4+ and CD8+ T cells, which enhanced the immune response. To date, preliminary results from a Phase II trial have indicated that HF10 in combination with ipilimumab (anti-CTLA-4) is safe and well tolerated, with high antitumor efficacy. Improvement of the effect of ipilimumab was observed in patients with stage IIIb, IIIc, or IV unresectable or metastatic melanoma. This review provides a concise description of the genomic functional organization of HF10 compared with talimogene laherparepvec. Furthermore, this review focuses on HF10 in cancer treatment as monotherapy as well as in combination therapy through a concise description of all preclinical and clinical data. In addition, we will address approaches for future directions in HF10 studies as cancer therapy.
Collapse
Affiliation(s)
- Ibrahim Ragab Eissa
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Faculty of Science, Tanta University, Tanta, Egypt
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toru Ichinose
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | - Wu Zhiwen
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Nobuaki Mukoyama
- Department of Otolaryngology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Taishi Morimoto
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Noriyuki Miyajima
- Department of Transplantation and Endocrine Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hasegawa Hitoki
- Office of International Affairs, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Seiji Sumigama
- Office of International Affairs, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Branko Aleksic
- Office of International Affairs, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Kolb AW, Lee K, Larsen I, Craven M, Brandt CR. Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence. PLoS Pathog 2016; 12:e1005499. [PMID: 26962864 PMCID: PMC4786273 DOI: 10.1371/journal.ppat.1005499] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/18/2016] [Indexed: 12/23/2022] Open
Abstract
Herpes simplex virus type 1 causes mucocutaneous lesions, and is the leading cause of infectious blindness in the United States. Animal studies have shown that the severity of HSV-1 ocular disease is influenced by three main factors; innate immunity, host immune response and viral strain. We previously showed that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) resulted in recombinants that exhibit a range of disease phenotypes from severe to avirulent, suggesting epistatic interactions were involved. The goal of this study was to develop a quantitative trait locus (QTL) analysis of HSV-1 ocular virulence determinants and to identify virulence associated SNPs. Blepharitis and stromal keratitis quantitative scores were characterized for 40 OD4:CJ994 recombinants. Viral titers in the eye were also measured. Virulence quantitative trait locus mapping (vQTLmap) was performed using the Lasso, Random Forest, and Ridge regression methods to identify significant phenotypically meaningful regions for each ocular disease parameter. The most predictive Ridge regression model identified several phenotypically meaningful SNPs for blepharitis and stromal keratitis. Notably, phenotypically meaningful nonsynonymous variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Network analysis revealed that many of these variations were in HSV-1 regulatory networks and viral genes that affect innate immunity. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. Several novel polymorphisms were also identified in these genes. This approach provides a framework that will be useful for identifying virulence genes in other pathogenic viruses, as well as epistatic effects that affect HSV-1 ocular virulence. In addition to causing recurrent labial lesions, herpes simplex virus type 1 (HSV-1) is also the primary source of infectious blindness in the United States. Animal studies have shown that the severity of infection is influenced by several factors, including viral strain. Conventional studies investigating the genetics of viral virulence have focused on characterizing a naturally occurring strain, and engineering mutations into viruses. The purpose of this study was to develop a quantitative trait locus (QTL) computational analysis of HSV-1 genome to identify ocular virulence determinants and associated viral SNPs. Notably, phenotypically meaningful variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. This is the first time a QTL based approach has been applied to a herpesvirus and it will also be valuable in future virulence, epistasis, and protein-protein interaction studies.
Collapse
Affiliation(s)
- Aaron W. Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyubin Lee
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Inna Larsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark Craven
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Curtis R. Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
23
|
Vaz PK, Mahony TJ, Hartley CA, Fowler EV, Ficorilli N, Lee SW, Gilkerson JR, Browning GF, Devlin JM. The first genome sequence of a metatherian herpesvirus: Macropodid herpesvirus 1. BMC Genomics 2016; 17:70. [PMID: 26800886 PMCID: PMC4724163 DOI: 10.1186/s12864-016-2390-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 11/28/2022] Open
Abstract
Background While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1). Results The MaHV-1 viral genome was sequenced using an Illumina MiSeq sequencer, de novo assembly was performed and the genome was annotated. The MaHV-1 genome was 140 kbp in length and clustered phylogenetically with the primate simplexviruses, sharing 67 % nucleotide sequence identity with Human herpesviruses 1 and 2. The MaHV-1 genome contained 66 predicted open reading frames (ORFs) homologous to those in other herpesvirus genomes, but lacked homologues of UL3, UL4, UL56 and glycoprotein J. This is the first alphaherpesvirus genome that has been found to lack the UL3 and UL4 homologues. We identified six novel ORFs and confirmed their transcription by RT-PCR. Conclusions This is the first genome sequence of a herpesvirus that infects metatherians, a taxonomically unique mammalian clade. Members of the Simplexvirus genus are remarkably conserved, so the absence of ORFs otherwise retained in eutherian and avian alphaherpesviruses contributes to our understanding of the Alphaherpesvirinae. Further study of metatherian herpesvirus genetics and pathogenesis provides a unique approach to understanding herpesvirus-mammalian interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2390-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola K Vaz
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Ritchie Building (64A), St Lucia, 4072, QLD, Australia.
| | - Carol A Hartley
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| | - Elizabeth V Fowler
- Department of Agriculture and Fisheries, Animal Science, St Lucia, 4072, QLD, Australia.
| | - Nino Ficorilli
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| | - Sang W Lee
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia. .,College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea.
| | - James R Gilkerson
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| | - Glenn F Browning
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| | - Joanne M Devlin
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Building 400, Parkville, 3010, VIC, Australia.
| |
Collapse
|
24
|
Koshizuka T, Tanaka K, Suzutani T. Degradation of host ubiquitin E3 ligase Itch by human cytomegalovirus UL42. J Gen Virol 2016; 97:196-208. [DOI: 10.1099/jgv.0.000336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tetsuo Koshizuka
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Keiichiro Tanaka
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|
25
|
The pseudorabies virus protein, pUL56, enhances virus dissemination and virulence but is dispensable for axonal transport. Virology 2015; 488:179-86. [PMID: 26655235 DOI: 10.1016/j.virol.2015.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/11/2015] [Accepted: 11/15/2015] [Indexed: 11/23/2022]
Abstract
Neurotropic herpesviruses exit the peripheral nervous system and return to exposed body surfaces following reactivation from latency. The pUS9 protein is a critical viral effector of the anterograde axonal transport that underlies this process. We recently reported that while pUS9 increases the frequency of sorting of newly assembled pseudorabies virus particles to axons from the neural soma during egress, subsequent axonal transport of individual virus particles occurs with wild-type kinetics in the absence of the protein. Here, we examine the role of a related pseudorabies virus protein, pUL56, during neuronal infection. The findings indicate that pUL56 is a virulence factor that supports virus dissemination in vivo, yet along with pUS9, is dispensable for axonal transport.
Collapse
|
26
|
Equid herpesvirus 1 (EHV1) infection of equine mesenchymal stem cells induces a pUL56-dependent downregulation of select cell surface markers. Vet Microbiol 2014; 176:32-9. [PMID: 25582614 DOI: 10.1016/j.vetmic.2014.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/09/2023]
Abstract
Equid herpesvirus 1 (EHV1) is an ubiquitous alphaherpesvirus that can cause respiratory disease, abortion and central nervous disorders. EHV1 is known to infect a variety of different cell types in vitro, but its tropism for cultured primary equine mesenchymal stem cells (MSC) has never been explored. We report that equine MSC were highly permissive for EHV1 and supported lytic replication of the virus in vitro. Interestingly, we observed that an infection of MSC with EHV1 resulted in a consistent downregulation of cell surface molecules CD29 (β1-integrin), CD105 (endoglin), major histocompatibility complex type I (MHCI) and a variable downregulation of CD172a. In contrast, expression of CD44 and CD90 remained unchanged upon wild type infection. In addition, we found that this selective EHV1-mediated downregulation of cell surface proteins was dependent on the viral protein UL56 (pUL56). So far, pUL56-dependent downregulation during EHV1 infection of equine cells has only been described for MHCI, but our present data indicate that pUL56 may have a broader function in downregulating cell surface proteins. Taken together, our results are the first to show that equine MSC are susceptible for EHV1 and that pUL56 induces downregulation of several cell surface molecules on infected cells. These findings provide a basis for future studies to evaluate the mechanisms underlying for this selective pUL56-induced downregulation and to evaluate the potential role of MSC during EHV1 pathogenesis.
Collapse
|
27
|
Soboll Hussey G, Ashton LV, Quintana AM, Van de Walle GR, Osterrieder N, Lunn DP. Equine herpesvirus type 1 pUL56 modulates innate responses of airway epithelial cells. Virology 2014; 464-465:76-86. [PMID: 25046270 DOI: 10.1016/j.virol.2014.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/24/2014] [Accepted: 05/12/2014] [Indexed: 12/22/2022]
Abstract
Recently, the product of equine herpesvirus type 1 (EHV-1) ORF1, a homolog to HSV-1 pUL56, was shown to modulate MHC-I expression and innate immunity. Here, we investigated modulation of respiratory epithelial immunity by EHV-1 pUL56 and compared responses to those of PBMCs, which are important target cells that allow cell-associated EHV-1 viremia. The salient observations are as follows: (i) EHV-1 significantly down-modulated MHC-I and MHC-II expression in equine respiratory epithelial cells (ERECs). MHC-I expression remained unaffected in PBMCs and MHC-II expression was increased. (ii) Infection with an EHV-1 ORF1 deletion mutant partially restored MHC-I and MHC-II expression and altered IFN-alpha and IL-10 mRNA expression. (iii) Deletion of EHV-1 ORF1 also significantly increased chemokine expression and chemotaxis of monocytes and neutrophils in ERECs. Collectively, these results suggest a role for EHV-1 pUL56 in modulation of antigen presentation, cytokine expression and chemotaxis at the respiratory epithelium, but not in PBMC.
Collapse
Affiliation(s)
- Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, East Lansing, MI, USA.
| | - Laura V Ashton
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ayshea M Quintana
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - David P Lunn
- North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
28
|
Xiang Z, He Y. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinformatics 2013; 14 Suppl 4:S2. [PMID: 23514126 PMCID: PMC3599071 DOI: 10.1186/1471-2105-14-s4-s2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Herpes simplex virus (HSV) types 1 and 2 (HSV-1 and HSV-2) are the most common infectious agents of humans. No safe and effective HSV vaccines have been licensed. Reverse vaccinology is an emerging and revolutionary vaccine development strategy that starts with the prediction of vaccine targets by informatics analysis of genome sequences. Vaxign (http://www.violinet.org/vaxign) is the first web-based vaccine design program based on reverse vaccinology. In this study, we used Vaxign to analyze 52 herpesvirus genomes, including 3 HSV-1 genomes, one HSV-2 genome, 8 other human herpesvirus genomes, and 40 non-human herpesvirus genomes. The HSV-1 strain 17 genome that contains 77 proteins was used as the seed genome. These 77 proteins are conserved in two other HSV-1 strains (strain F and strain H129). Two envelope glycoproteins gJ and gG do not have orthologs in HSV-2 or 8 other human herpesviruses. Seven HSV-1 proteins (including gJ and gG) do not have orthologs in all 40 non-human herpesviruses. Nineteen proteins are conserved in all human herpesviruses, including capsid scaffold protein UL26.5 (NP_044628.1). As the only HSV-1 protein predicted to be an adhesin, UL26.5 is a promising vaccine target. The MHC Class I and II epitopes were predicted by the Vaxign Vaxitop prediction program and IEDB prediction programs recently installed and incorporated in Vaxign. Our comparative analysis found that the two programs identified largely the same top epitopes but also some positive results predicted from one program might not be positive from another program. Overall, our Vaxign computational prediction provides many promising candidates for rational HSV vaccine development. The method is generic and can also be used to predict other viral vaccine targets.
Collapse
Affiliation(s)
- Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
29
|
The attenuated genotype of varicella-zoster virus includes an ORF0 transitional stop codon mutation. J Virol 2012; 86:10695-703. [PMID: 22837206 DOI: 10.1128/jvi.01067-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Varicella-zoster virus (VZV) is the first of the human herpesviruses to be attenuated and subsequently approved as a live vaccine to prevent varicella and herpes zoster. Both the attenuated VZV vaccine, called vaccine Oka or vOka, and the parental strain pOka have been completely sequenced. Yet the specific determinants of attenuation are uncertain. The open reading frame (ORF) with the most single nucleotide polymorphisms (SNPs), ORF62, encodes the regulatory protein IE62, but IE62 studies have failed to define a specific SNP associated with attenuation. We have completed next-generation sequencing of the VZV Ellen genome, a strain known to be highly attenuated by its very limited replication in human skin xenografts in the SCID mouse model of VZV pathogenesis. A comparative analysis of the Ellen sequence with all other complete VZV sequences was extremely informative. In particular, an unexpected finding was a stop codon mutation in Ellen ORF0 (herpes simplex virus UL56 homolog) identical to one found in vOka, combined with the absence of polymorphisms in most Ellen ORFs that were known to be mutated in vOka. The mutated ORF0 protein was also imaged in both two dimensions and three dimensions by confocal microscopy. The probability of two VZV strains not connected by a recent common ancestor having an identical ORF0 SNP by chance would be 1 × 10(-8), in other words, extremely unlikely. Taken together, these bioinformatics analyses strongly suggest that the stop codon ORF0 SNP is one of the determinants of the attenuation genotype of live VZV vaccines.
Collapse
|
30
|
Equine herpesvirus type 4 UL56 and UL49.5 proteins downregulate cell surface major histocompatibility complex class I expression independently of each other. J Virol 2012; 86:8059-71. [PMID: 22623773 DOI: 10.1128/jvi.00891-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to a significant downregulation of MHC-I expression at the cell surface through the product of ORF1, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.5 interferes with MHC-I antigen presentation by blocking peptide transport in the ER.
Collapse
|
31
|
Luo C, Goshima F, Kamakura M, Mutoh Y, Iwata S, Kimura H, Nishiyama Y. Immunization with a highly attenuated replication-competent herpes simplex virus type 1 mutant, HF10, protects mice from genital disease caused by herpes simplex virus type 2. Front Microbiol 2012; 3:158. [PMID: 22557998 PMCID: PMC3339446 DOI: 10.3389/fmicb.2012.00158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/09/2012] [Indexed: 01/15/2023] Open
Abstract
Genital herpes is an intractable disease caused mainly by herpes simplex virus (HSV) type 2 (HSV-2), and is a major concern in public health. A previous infection with HSV type 1 (HSV-1) enhances protection against primary HSV-2 infection to some extent. In this study, we evaluated the ability of HF10, a naturally occurring replication-competent HSV-1 mutant, to protect against genital infection in mice caused by HSV-2. Subcutaneous inoculation of HF10-immunized mice against lethal infection by HSV-2, and attenuated the development of genital ulcer diseases. Immunization with HF10 inhibited HSV-2 replication in the mouse vagina, reduced local inflammation, controlled emergence of neurological dysfunctions of HSV-2 infection, and increased survival. In HF10-immunized mice, we observed rapid and increased production of interferon-γ in the vagina in response to HSV-2 infection, and numerous CD4+ and a few CD8+ T cells localized to the infective focus. CD4+ T cells invaded the mucosal subepithelial lamina propria. Thus, the protective effect of HF10 was related to induction of cellular immunity, mediated primarily by Th1 CD4+ cells. These data indicate that the live attenuated HSV-1 mutant strain HF10 is a promising candidate antigen for a vaccine against genital herpes caused by HSV-2.
Collapse
Affiliation(s)
- Chenhong Luo
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Identification and characterization of equine herpesvirus type 1 pUL56 and its role in virus-induced downregulation of major histocompatibility complex class I. J Virol 2012; 86:3554-63. [PMID: 22278226 DOI: 10.1128/jvi.06994-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules play an important role in host immunity to infection by presenting antigenic peptides to cytotoxic T lymphocytes (CTLs), which recognize and destroy virus-infected cells. Members of the Herpesviridae have developed multiple mechanisms to avoid CTL recognition by virtue of downregulation of MHC-I on the cell surface. We report here on an immunomodulatory protein involved in this process, pUL56, which is encoded by ORF1 of equine herpesvirus type 1 (EHV-1), an alphaherpesvirus. We show that EHV-1 pUL56 is a phosphorylated early protein which is expressed as different forms and predominantly localizes to Golgi membranes. In addition, the transmembrane (TM) domain of the type II membrane protein was shown to be indispensable for correct subcellular localization and a proper function. pUL56 by itself is not functional with respect to interference with MHC-I and likely needs another unidentified viral protein(s) to perform this action. Surprisingly, pUL49.5, an inhibitor of the transporter associated with antigen processing (TAP) and encoded by EHV-1 and related viruses, appeared not to be required for pUL56-induced early MHC-I downmodulation in infected cells. In conclusion, our data identify a new immunomodulatory protein, pUL56, involved in MHC-I downregulation which is unable to perform its function outside the context of viral infection.
Collapse
|
33
|
Zaichick SV, Bohannon KP, Smith GA. Alphaherpesviruses and the cytoskeleton in neuronal infections. Viruses 2011; 3:941-81. [PMID: 21994765 PMCID: PMC3185784 DOI: 10.3390/v3070941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 12/13/2022] Open
Abstract
Following infection of exposed peripheral tissues, neurotropic alphaherpesviruses invade nerve endings and deposit their DNA genomes into the nuclei of neurons resident in ganglia of the peripheral nervous system. The end result of these events is the establishment of a life-long latent infection. Neuroinvasion typically requires efficient viral transmission through a polarized epithelium followed by long-distance transport through the viscous axoplasm. These events are mediated by the recruitment of the cellular microtubule motor proteins to the intracellular viral particle and by alterations to the cytoskeletal architecture. The focus of this review is the interplay between neurotropic herpesviruses and the cytoskeleton.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
34
|
Gaston DC, Whitley RJ, Parker JN. Engineered herpes simplex virus vectors for antitumor therapy and vaccine delivery. Future Virol 2011. [DOI: 10.2217/fvl.11.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetically modified herpes simplex viruses (HSVs) have been exploited for both antitumor therapy and vaccine delivery. These mutant viruses retain their ability to replicate and lyse permissive cells, including many tumor types, and are referred to as oncolytic HSVs. In addition, deletion of nonessential genes permits the introduction of foreign genes to augment the antitumor effect by either immune stimulation, targeting for select tumors, or expression of tumor or vaccine antigens. This article reviews the development of oncolytic HSVs as an anticancer therapy, as well as the application of HSV-1 vectors for delivery of targeted antigens or as vaccine adjuvants. The impact of these novel vectors with respect to enhanced antitumor activity and development of antitumor vaccination strategies is discussed.
Collapse
Affiliation(s)
- David C Gaston
- Medical Scientist Training Program, Department of Cell Biology, CHB 130, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Richard J Whitley
- Departments of Pediatrics, Microbiology, Medicine & Neurosurgery, CHB 303, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jacqueline N Parker
- Departments of Pediatrics & Cell Biology, CHB 118B, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
35
|
Tyler S, Severini A, Black D, Walker M, Eberle R. Structure and sequence of the saimiriine herpesvirus 1 genome. Virology 2011; 410:181-91. [PMID: 21130483 PMCID: PMC3017652 DOI: 10.1016/j.virol.2010.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/25/2010] [Accepted: 11/03/2010] [Indexed: 01/24/2023]
Abstract
We report here the complete genome sequence of the squirrel monkey α-herpesvirus saimiriine herpesvirus 1 (HVS1). Unlike the simplexviruses of other primate species, only the unique short region of the HVS1 genome is bounded by inverted repeats. While all Old World simian simplexviruses characterized to date lack the herpes simplex virus RL1 (γ34.5) gene, HVS1 has an RL1 gene. HVS1 lacks several genes that are present in other primate simplexviruses (US8.5, US10-12, UL43/43.5 and UL49A). Although the overall genome structure appears more like that of varicelloviruses, the encoded HVS1 proteins are most closely related to homologous proteins of the primate simplexviruses. Phylogenetic analyses confirm that HVS1 is a simplexvirus. Limited comparison of two HVS1 strains revealed a very low degree of sequence variation more typical of varicelloviruses. HVS1 is thus unique among the primate α-herpesviruses in that its genome has properties of both simplexviruses and varicelloviruses.
Collapse
Affiliation(s)
- Shaun Tyler
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alberto Severini
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Dept. of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Darla Black
- Dept. of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew Walker
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - R. Eberle
- Dept. of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
36
|
Xing J, Wang S, Li Y, Guo H, Zhao L, Pan W, Lin F, Zhu H, Wang L, Li M, Wang L, Zheng C. Characterization of the subcellular localization of herpes simplex virus type 1 proteins in living cells. Med Microbiol Immunol 2010; 200:61-8. [PMID: 20949280 DOI: 10.1007/s00430-010-0175-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Indexed: 12/16/2022]
Abstract
In this study, we presented the construction of a library of expression clones for the herpes simplex virus type 1 (HSV-1) proteome and subcellular localization map of HSV-1 proteins in living cells using yellow fluorescent protein (YFP) fusion proteins. As a result, 21 proteins showed cytoplasmic or subcytoplasmic localization, 16 proteins showed nuclear or subnuclear localization, and others were present both in the nucleus and cytoplasm. Interestingly, most capsid proteins showed enriched or exclusive localization in the nucleus, and most of the envelope proteins showed cytoplasmic localization, suggesting that subcellular localization of the proteins correlated with their functions during virus replication. These results present a subcellular localization map of HSV-1 proteins in living cells, which provide useful information to further characterize the functions of these proteins.
Collapse
Affiliation(s)
- Junji Xing
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The varicella-zoster virus ORFS/L (ORF0) gene is required for efficient viral replication and contains an element involved in DNA cleavage. J Virol 2010; 84:11661-9. [PMID: 20844039 DOI: 10.1128/jvi.00878-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genome of varicella-zoster virus (VZV), a human alphaherpesvirus, consists of two unique regions, unique long (U(L)) and unique short (U(S)), each of which is flanked by inverted repeats. During replication, four isomers of the viral DNA are generated which are distinguished by the relative orientations of U(L) and U(S). VZV virions predominantly package two isomeric forms of the genome that have a fixed orientation of U(L). An open reading frame (ORF) of unknown function, ORFS/L, also referred to as ORF0, is located at the extreme terminus of U(L), directly adjacent to the a-like sequences, which are known to be involved in cleavage and packaging of viral DNA. We demonstrate here that the ORFS/L protein localizes to the Golgi network in infected and transfected cells. Furthermore, we were able to demonstrate that deletion of the predicted ORFS/L gene is lethal, while retention of the N-terminal 28 amino acid residues resulted in viable yet replication-impaired virus. The growth defect was only partially attributable to the expression of the ORFS/L product, suggesting that the 5' region of ORFS/L contains a sequence element crucial for cleavage/packaging of viral DNA. Consequently, mutations introduced into the extreme 5' terminus of ORFS/L resulted in a defect in DNA cleavage, indicating that the region is indeed involved in the processing of viral DNA. Since the sequence element has no counterpart at the other end of U(L), we concluded that our results can provide an explanation for the almost exclusive orientation of the U(L) seen in packaged VZV DNA.
Collapse
|
38
|
Ushijima Y, Luo C, Kamakura M, Goshima F, Kimura H, Nishiyama Y. Herpes simplex virus UL56 interacts with and regulates the Nedd4-family ubiquitin ligase Itch. Virol J 2010; 7:179. [PMID: 20682038 PMCID: PMC2922189 DOI: 10.1186/1743-422x-7-179] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/03/2010] [Indexed: 12/04/2022] Open
Abstract
Background Herpes simplex virus type 2 (HSV-2) is one of many viruses that exploits and modifies the cellular ubiquitin system. HSV-2 expresses the tegument protein UL56 that has been implicated in cytoplasmic transport and/or release of virions, and is a putative regulatory protein of Nedd4 ubiquitin ligase. In order to elucidate the biological function of UL56, this study examined the interaction of UL56 with the Nedd4-family ubiquitin ligase Itch and its role in the regulation of Itch. Additionally, we assessed the similarity between UL56 and regulatory proteins of Itch and Nedd4, Nedd4-family-interactins proteins (Ndfip). Results UL56 interacted with Itch, independent of additional viral proteins, and mediated more striking degradation of Itch, compared to Nedd4. Moreover, it was suggested that the lysosome pathway as well as the proteasome pathway was involved in the degradation of Itch. Other HSV-2 proteins with PY motifs, such as VP5 and VP16, did not mediate the degradation of endogenous Itch. Ndfip1 and Ndfip2 were similar in subcellular distribution patterns to UL56 and colocalized with UL56 in co-transfected cells. Conclusions We believe that this is the first report demonstrating the interaction of a HSV-specific protein and Itch. Thus, UL56 could function as a regulatory protein of Itch. The mechanism, function and significance of regulating Itch in HSV-2 infection remain unclear and warrant further investigation.
Collapse
Affiliation(s)
- Yoko Ushijima
- Department of Virology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Koshizuka T, Ota M, Yamanishi K, Mori Y. Characterization of varicella-zoster virus-encoded ORF0 gene--comparison of parental and vaccine strains. Virology 2010; 405:280-8. [PMID: 20598727 DOI: 10.1016/j.virol.2010.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 05/15/2010] [Accepted: 06/05/2010] [Indexed: 11/29/2022]
Abstract
The varicella-zoster virus (VZV) Oka vaccine strain (vOka) differs from the parental strain (pOka) at several amino acid positions, but the mutations responsible for the attenuation of vOka have not been clearly defined. The ORF0 of vOka carries some of the mutations. Although we found that the ORF0 of both strains was incorporated into virus particles, the C-terminal region of vOka ORF0 was presented on the virion surface and was N-glycosylated, suggesting that the mutation in vOka ORF0 changes it into a novel envelope glycoprotein. In a mutant virus in which pOka ORF0 was replaced by vOka ORF0, the molecular weight of ORF0 was altered, but the plaque size was not. In addition, a pOka recombinant virus lacking the hydrophobic domain of ORF0 grew equally well as the wild-type virus, indicating that the mutation in ORF0 is not by itself sufficient for the attenuation of the vOka virus.
Collapse
Affiliation(s)
- Tetsuo Koshizuka
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | | | | | | |
Collapse
|
40
|
Abstract
This paper is about the taxonomy and genomics of herpesviruses. Each theme is presented as a digest of current information flanked by commentaries on past activities and future directions. The International Committee on Taxonomy of Viruses recently instituted a major update of herpesvirus classification. The former family Herpesviridae was elevated to a new order, the Herpesvirales, which now accommodates 3 families, 3 subfamilies, 17 genera and 90 species. Future developments will include revisiting the herpesvirus species definition and the criteria used for taxonomic assignment, particularly in regard to the possibilities of classifying the large number of herpesviruses detected only as DNA sequences by polymerase chain reaction. Nucleotide sequence accessions in primary databases, such as GenBank, consist of the sequences plus annotations of the genetic features. The quality of these accessions is important because they provide a knowledge base that is used widely by the research community. However, updating the accessions to take account of improved knowledge is essentially reserved to the original depositors, and this activity is rarely undertaken. Thus, the primary databases are likely to become antiquated. In contrast, secondary databases are open to curation by experts other than the original depositors, thus increasing the likelihood that they will remain up to date. One of the most promising secondary databases is RefSeq, which aims to furnish the best available annotations for complete genome sequences. Progress in regard to improving the RefSeq herpesvirus accessions is discussed, and insights into particular aspects of herpesvirus genomics arising from this work are reported.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK.
| |
Collapse
|
41
|
Abstract
Two major structural elements of a cell are the cytoskeleton and the lipid membranes. Actin and cholesterol are key components of the cytoskeleton and membranes, respectively, and are involved in a plethora of different cellular processes. This review summarizes and discusses the interaction of alphaherpesviruses with actin and cholesterol during different stages of the replication cycle: virus entry, replication and assembly in the nucleus, and virus egress. Elucidating these interactions not only yields novel insights into the biology of these important pathogens, but may also shed new light on cell biological aspects of actin and cholesterol, and lead to novel avenues in the design of antiviral strategies.
Collapse
|
42
|
Ushijima Y, Goshima F, Kimura H, Nishiyama Y. Herpes simplex virus type 2 tegument protein UL56 relocalizes ubiquitin ligase Nedd4 and has a role in transport and/or release of virions. Virol J 2009; 6:168. [PMID: 19835589 PMCID: PMC2770495 DOI: 10.1186/1743-422x-6-168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 10/16/2009] [Indexed: 12/26/2022] Open
Abstract
Background The ubiquitin system functions in a variety of cellular processes including protein turnover, protein sorting and trafficking. Many viruses exploit the cellular ubiquitin system to facilitate viral replication. In fact, herpes simplex virus (HSV) encodes a ubiquitin ligase (E3) and a de-ubiquitinating enzyme to modify the host's ubiquitin system. We have previously reported HSV type 2 (HSV-2) tegument protein UL56 as a putative adaptor protein of neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) E3 ligase, which has been shown to be involved in protein sorting and trafficking. Results In this study, we visualized and characterized the dynamic intracellular localization of UL56 and Nedd4 using live-cell imaging and immunofluorescence analysis. UL56 was distributed to cytoplasmic vesicles, primarily to the trans-Golgi network (TGN), and trafficked actively throughout the cytoplasm. Moreover, UL56 relocalized Nedd4 to the vesicles in cells transiently expressing UL56 and in cells infected with HSV-2. We also investigated whether UL56 influenced the efficiency of viral replication, and found that extracellular infectious viruses were reduced in the absence of UL56. Conclusion These data suggest that UL56 regulates Nedd4 and functions to facilitate the cytoplasmic transport of virions from TGN to the plasma membrane and/or release of virions from the cell surface.
Collapse
Affiliation(s)
- Yoko Ushijima
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | |
Collapse
|
43
|
Molecular characterization of the genome of duck enteritis virus. Virology 2009; 391:151-61. [DOI: 10.1016/j.virol.2009.06.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 05/28/2009] [Accepted: 06/09/2009] [Indexed: 11/21/2022]
|
44
|
Kawabata A, Tang H, Huang H, Yamanishi K, Mori Y. y Human herpesvirus 6 envelope components enriched in lipid rafts: evidence for virion-associated lipid rafts. Virol J 2009; 6:127. [PMID: 19689819 PMCID: PMC2743664 DOI: 10.1186/1743-422x-6-127] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/19/2009] [Indexed: 12/30/2022] Open
Abstract
In general, enveloped viruses are highly dependent on their lipid envelope for entry into host cells. Here, we demonstrated that during the course of virus maturation, a significant proportion of human herpesvirus 6 (HHV-6) envelope proteins were selectively concentrated in the detergent-resistant glycosphingolipid- and cholesterol-rich membranes (rafts) in HHV-6-infected cells. In addition, the ganglioside GM1, which is known to partition preferentially into lipid rafts, was detected in purified virions, along with viral envelope glycoproteins, gH, gL, gB, gQ1, gQ2 and gO indicating that at least one raft component was included in the viral particle during the assembly process.
Collapse
Affiliation(s)
- Akiko Kawabata
- Division of Biomedical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan.
| | | | | | | | | |
Collapse
|
45
|
Koshizuka T, Sadaoka T, Yoshii H, Yamanishi K, Mori Y. Varicella-zoster virus ORF1 gene product is a tail-anchored membrane protein localized to plasma membrane and trans-Golgi network in infected cells. Virology 2008; 377:289-95. [DOI: 10.1016/j.virol.2008.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/08/2008] [Accepted: 04/24/2008] [Indexed: 11/29/2022]
|
46
|
Lyman MG, Curanovic D, Enquist LW. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathog 2008; 4:e1000065. [PMID: 18483549 PMCID: PMC2361720 DOI: 10.1371/journal.ppat.1000065] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/10/2008] [Indexed: 12/15/2022] Open
Abstract
The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system.
Collapse
Affiliation(s)
- Mathew G. Lyman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Dusica Curanovic
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
47
|
Herpes simplex virus type 2 UL56 interacts with the ubiquitin ligase Nedd4 and increases its ubiquitination. J Virol 2008; 82:5220-33. [PMID: 18353951 DOI: 10.1128/jvi.02515-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The herpes simplex virus UL56 gene is conserved among most members of the Alphaherpesvirinae family and plays a critical role in viral pathogenicity in vivo. The HSV-2 UL56 protein (UL56) is a C-terminally anchored type II membrane protein that is predicted to be inserted into the virion envelope, leaving its N-terminal domain in the tegument. UL56 interacts with KIF1A and UL11. Here we report that UL56 also interacts with the ubiquitin ligase Nedd4 and increases its ubiquitination. Nedd4 was identified as a UL56-interacting protein by a yeast two-hybrid screen. UL56 bound to Nedd4 via its PY motifs. Nedd4 was phosphorylated and degraded in wild-type HSV-2-infected cells but not in cells infected with a UL56-deficient mutant. Ubiquitination assays revealed that UL56 increased ubiquitinated Nedd4, which was actively degraded in infected cells. UL56 also caused a decrease in Nedd4 protein levels and the increased ubiquitination in cotransfected cells. However, UL56 itself was not ubiquitinated, despite its interaction with Nedd4. Based on these findings, we propose that UL56 regulates Nedd4 in HSV-2-infected cells, although deletion of UL56 had no apparent effect on viral growth in vitro.
Collapse
|
48
|
Koshizuka T, Kawaguchi Y, Nozawa N, Mori I, Nishiyama Y. Herpes simplex virus protein UL11 but not UL51 is associated with lipid rafts. Virus Genes 2007; 35:571-5. [PMID: 17694428 DOI: 10.1007/s11262-007-0156-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 07/26/2007] [Indexed: 11/29/2022]
Abstract
The UL11 and UL51 gene products of herpes simplex virus (HSV) are membrane-associated tegument proteins that are incorporated into the HSV virion. UL11 and UL51 are conserved throughout the herpesvirus family. Both UL11 and UL51, either singly or in combination, are involved in virion envelopment and/or egress. Both proteins are fatty acylated: UL11 is both acylated by myristoic and palmitoic acids and UL51 is monoacylated by palmitoic acid. Using confocal microscopy and sucrose gradient fractionations in transfected or HSV-infected cells, we found that HSV-2 UL11 but not UL51 was associated with lipid rafts. The dual acylation of UL11 was necessary for lipid raft association, as mutations in the myristoylation or palmitoylation sites prevented lipid raft association. These differences in lipid raft association may contribute to the functional differences between UL11 and UL51.
Collapse
Affiliation(s)
- Tetsuo Koshizuka
- Department of Virology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
49
|
Kohno SI, Luo C, Nawa A, Fujimoto Y, Watanabe D, Goshima F, Tsurumi T, Nishiyama Y. Oncolytic virotherapy with an HSV amplicon vector expressing granulocyte–macrophage colony-stimulating factor using the replication-competent HSV type 1 mutant HF10 as a helper virus. Cancer Gene Ther 2007; 14:918-26. [PMID: 17693992 DOI: 10.1038/sj.cgt.7701070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Direct viral infection of solid tumors can cause tumor cell death, but these techniques offer the opportunity to express exogenous factors to enhance the antitumor response. We investigated the antitumor effects of a herpes simplex virus (HSV) amplicon expressing mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) using the replication-competent HSV type 1 mutant HF10 as a helper virus. HF10-packaged mGM-CSF-expressing amplicon (mGM-CSF amplicon) was used to infect subcutaneously inoculated murine colorectal tumor cells (CT26 cells) and the antitumor effects were compared to tumors treated with only HF10. The mGM-CSF amplicon efficiently replicated in CT26 cells with similar oncolytic activity to HF10 in vitro. However, when mice subcutaneously inoculated with CT26 cells were intratumorally injected with HF10 or mGM-CSF amplicon, greater tumor regression was seen in mGM-CSF amplicon-treated animals. Furthermore, mGM-CSF amplicon treatment prolonged mouse survival. Immunohistochemical analysis revealed increased inflammatory cell infiltration in the solid tumor in the mGM-CSF amplicon-treated animals. These results suggest that expression of GM-CSF enhances the antitumor effects of HF10, and HF10-packaged GM-CSF-expressing amplicon is a promising agent for the treatment of subcutaneous tumors.
Collapse
Affiliation(s)
- S-I Kohno
- Department of Virology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Desplanques AS, Nauwynck HJ, Tilleman K, Deforce D, Favoreel HW. Tyrosine phosphorylation and lipid raft association of pseudorabies virus glycoprotein E during antibody-mediated capping. Virology 2007; 362:60-6. [PMID: 17240415 DOI: 10.1016/j.virol.2006.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/04/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
In specific cell types infected with the alphaherpesviruses herpes simplex virus and pseudorabies virus (PRV), addition of virus-specific antibodies results in redistribution of cell-surface-anchored viral proteins. This redistribution is triggered by the viral protein gE and consists of the directional movement of the antibody-antigen complexes to one pole of the cell. This viral capping process has been associated with increased antibody-resistant virus spread and strongly resembles immunoreceptor capping, a process that is crucial in activation of different immune cells (e.g. capping of Fcgamma-receptors, B and T cell receptors). Here, we report that the PRV gE-mediated viral capping process results in increased Src kinase-mediated tyrosine phosphorylation of the cytoplasmic domain of gE and that a fraction of gE associates with lipid rafts, all very reminiscent of immunoreceptor capping. These results provide evidence that gE-mediated capping is a viral mimicry of immunoreceptor capping.
Collapse
Affiliation(s)
- Ann S Desplanques
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|