1
|
Masavuli MG, Wijesundara DK, Torresi J, Gowans EJ, Grubor-Bauk B. Preclinical Development and Production of Virus-Like Particles As Vaccine Candidates for Hepatitis C. Front Microbiol 2017; 8:2413. [PMID: 29259601 PMCID: PMC5723323 DOI: 10.3389/fmicb.2017.02413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) infects 2% of the world’s population and is the leading cause of liver disease and liver transplantation. It poses a serious and growing worldwide public health problem that will only be partially addressed with the introduction of new antiviral therapies. However, these treatments will not prevent re-infection particularly in high risk populations. The introduction of a HCV vaccine has been predicted, using simulation models in a high risk population, to have a significant effect on reducing the incidence of HCV. A vaccine with 50 to 80% efficacy targeted to high-risk intravenous drug users could dramatically reduce HCV incidence in this population. Virus like particles (VLPs) are composed of viral structural proteins which self-assemble into non-infectious particles that lack genetic material and resemble native viruses. Thus, VLPs represent a safe and highly immunogenic vaccine delivery platform able to induce potent adaptive immune responses. Currently, many VLP-based vaccines have entered clinical trials, while licensed VLP vaccines for hepatitis B virus (HBV) and human papilloma virus (HPV) have been in use for many years. The HCV core, E1 and E2 proteins can self-assemble into immunogenic VLPs while inclusion of HCV antigens into heterogenous (chimeric) VLPs is also a promising approach. These VLPs are produced using different expression systems such as bacterial, yeast, mammalian, plant, or insect cells. Here, this paper will review HCV VLP-based vaccines and their immunogenicity in animal models as well as the different expression systems used in their production.
Collapse
Affiliation(s)
- Makutiro Ghislain Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Torresi J. The Rationale for a Preventative HCV Virus-Like Particle (VLP) Vaccine. Front Microbiol 2017; 8:2163. [PMID: 29163442 PMCID: PMC5674006 DOI: 10.3389/fmicb.2017.02163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
HCV represents a global health problem with ~200 million individuals currently infected, worldwide. With the high cost of antiviral therapies, the global burden of chronic hepatitis C infection (CHCV) infection will be substantially reduced by the development of an effective vaccine for HCV. The field of HCV vaccines is generally divided into proponents of strategies to induce neutralizing antibodies (NAb) and those who propose to elicit cell mediated immunity (CMI). However, for a hepatitis C virus (HCV) vaccine to be effective in preventing infection, it must be capable of generating cross-reactive CD4+, CD8+ T cell, and NAb responses that will cover the major viral genotypes. Simulation models of hepatitis C have predicted that a vaccine of even modest efficacy and coverage will significantly reduce the incidence of hepatitis C. A HCV virus like particle (VLP) based vaccine would fulfill the requirement of delivering critical conformational neutralizing epitopes in addition to providing HCV specific CD4+ and CD8+ epitopes. Several approaches have been reported including insect cell-derived genotype 1b HCV VLPs; a human liver-derived quadrivalent genotype 1a, 1b, 2, and 3a vaccine; a genotype 1a HCV E1 and E2 glycoprotein/MLV Gag pseudotype VLP vaccine; and chimeric HBs-HCV VLP vaccines. All to result in the production of cross-NAb and/or T cell responses against HCV. This paper summarizes the evidence supporting the development of a HCV VLP based vaccine.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
King B, Tarr AW. How have retrovirus pseudotypes contributed to our understanding of viral entry? Future Virol 2017. [DOI: 10.2217/fvl-2017-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Study of virus entry into host cells is important for understanding viral tropism and pathogenesis. Studying the entry of in vitro cultured viruses is not always practicable. Study of highly pathogenic viruses, viruses that do not grow in culture, and viruses that rapidly change phenotype in vitro can all benefit from alternative models of entry. Retrovirus particles can be engineered to display the envelope proteins of heterologous enveloped viruses. This approach, broadly termed ‘pseudotyping’, is an important technique for interrogating virus entry. In this perspective we consider how retrovirus pseudotypes have addressed these challenges and improved our understanding of the entry pathways of diverse virus species, including Ebolavirus, human immunodeficiency virus and hepatitis C virus.
Collapse
Affiliation(s)
- Barnabas King
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & the University of Nottingham, Nottingham, UK
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & the University of Nottingham, Nottingham, UK
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Vasiliauskaite I, Owsianka A, England P, Khan AG, Cole S, Bankwitz D, Foung SKH, Pietschmann T, Marcotrigiano J, Rey FA, Patel AH, Krey T. Conformational Flexibility in the Immunoglobulin-Like Domain of the Hepatitis C Virus Glycoprotein E2. mBio 2017; 8:e00382-17. [PMID: 28512091 PMCID: PMC5433095 DOI: 10.1128/mbio.00382-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022] Open
Abstract
The hepatitis C virus (HCV) glycoprotein E2 is the major target of neutralizing antibodies and is therefore highly relevant for vaccine design. Its structure features a central immunoglobulin (Ig)-like β-sandwich that contributes to the binding site for the cellular receptor CD81. We show that a synthetic peptide corresponding to a β-strand of this Ig-like domain forms an α-helix in complex with the anti-E2 antibody DAO5, demonstrating an inside-out flip of hydrophobic residues and a secondary structure change in the composite CD81 binding site. A detailed interaction analysis of DAO5 and cross-competing neutralizing antibodies with soluble E2 revealed that the Ig-like domain is trapped by different antibodies in at least two distinct conformations. DAO5 specifically captures retrovirus particles bearing HCV glycoproteins (HCVpp) and infectious cell culture-derived HCV particles (HCVcc). Infection of cells by DAO5-captured HCVpp can be blocked by a cross-competing neutralizing antibody, indicating that a single virus particle simultaneously displays E2 molecules in more than one conformation on its surface. Such conformational plasticity of the HCV E2 receptor binding site has important implications for immunogen design.IMPORTANCE Recent advances in the treatment of hepatitis C virus (HCV) infection with direct-acting antiviral drugs have enabled the control of this major human pathogen. However, due to their high costs and limited accessibility in combination with the lack of awareness of the mostly asymptomatic infection, there is an unchanged urgent need for an effective vaccine. The viral glycoprotein E2 contains regions that are crucial for virus entry into the host cell, and antibodies that bind to these regions can neutralize infection. One of the major targets of neutralizing antibodies is the central immunoglobulin (Ig)-like domain within E2. We show here that this Ig-like domain is conformationally flexible at the surface of infectious HCV particles and pseudoparticles. Our study provides novel insights into the interactions of HCV E2 with the humoral immune system that should aid future vaccine development.
Collapse
Affiliation(s)
- Ieva Vasiliauskaite
- Unité de Virologie Structurale, Department Virologie, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Ania Owsianka
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Patrick England
- Plate-Forme de Biophysique Moléculaire, Institut Pasteur, Paris, France
- CNRS UMR 3528, Paris, France
| | - Abdul Ghafoor Khan
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Sarah Cole
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Dorothea Bankwitz
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Pietschmann
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Site, Germany
| | - Joseph Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Felix A Rey
- Unité de Virologie Structurale, Department Virologie, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas Krey
- Unité de Virologie Structurale, Department Virologie, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Site, Germany
| |
Collapse
|
5
|
Structural flexibility at a major conserved antibody target on hepatitis C virus E2 antigen. Proc Natl Acad Sci U S A 2016; 113:12768-12773. [PMID: 27791120 DOI: 10.1073/pnas.1609780113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease, affecting over 2% of the world's population. The HCV envelope glycoproteins E1 and E2 mediate viral entry, with E2 being the main target of neutralizing antibody responses. Structural investigations of E2 have produced templates for vaccine design, including the conserved CD81 receptor-binding site (CD81bs) that is a key target of broadly neutralizing antibodies (bNAbs). Unfortunately, immunization with recombinant E2 and E1E2 rarely elicits sufficient levels of bNAbs for protection. To understand the challenges for eliciting bNAb responses against the CD81bs, we investigated the E2 CD81bs by electron microscopy (EM), hydrogen-deuterium exchange (HDX), molecular dynamics (MD), and calorimetry. By EM, we observed that HCV1, a bNAb recognizing the N-terminal region of the CD81bs, bound a soluble E2 core construct from multiple angles of approach, suggesting components of the CD81bs are flexible. HDX of multiple E2 constructs consistently indicated the entire CD81bs was flexible relative to the rest of the E2 protein, which was further confirmed by MD simulations. However, E2 has a high melting temperature of 84.8 °C, which is more akin to proteins from thermophilic organisms. Thus, recombinant E2 is a highly stable protein overall, but with an exceptionally flexible CD81bs. Such flexibility may promote induction of nonneutralizing antibodies over bNAbs to E2 CD81bs, underscoring the necessity of rigidifying this antigenic region as a target for rational vaccine design.
Collapse
|
6
|
Kong L, Jackson KN, Wilson IA, Law M. Capitalizing on knowledge of hepatitis C virus neutralizing epitopes for rational vaccine design. Curr Opin Virol 2015; 11:148-57. [PMID: 25932568 PMCID: PMC4507806 DOI: 10.1016/j.coviro.2015.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus infects nearly 3% of the world's population and is often referred as a silent epidemic. It is a leading cause of liver cirrhosis and hepatocellular carcinoma in endemic countries. Although antiviral drugs are now available, they are not readily accessible to marginalized social groups and developing nations that are disproportionally impacted by HCV. To stop the HCV pandemic, a vaccine is needed. Recent advances in HCV research have provided new opportunities for studying HCV neutralizing antibodies and their subsequent use for rational vaccine design. It is now recognized that neutralizing antibodies to conserved antigenic sites of the virus can cross-neutralize diverse HCV genotypes and protect against infection in vivo. Structural characterization of the neutralizing epitopes has provided valuable information for design of candidate immunogens.
Collapse
Affiliation(s)
- Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kelli N Jackson
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Bentham MJ, Marraiki N, McCormick CJ, Rowlands DJ, Griffin S. NS2 is dispensable for efficient assembly of hepatitis C virus-like particles in a bipartite trans-encapsidation system. J Gen Virol 2014; 95:2427-2441. [PMID: 25024280 PMCID: PMC4202265 DOI: 10.1099/vir.0.068932-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infectious hepatitis C virus (HCV) particle production in the genotype 2a JFH-1-based cell culture system involves non-structural proteins in addition to canonical virion components. NS2 has been proposed to act as a protein adaptor, co-ordinating the early stages of virion assembly. However, other studies have identified late-acting roles for this protein, making its precise involvement in infectious particle production unclear. Using a robust, bipartite trans-encapsidation system based upon baculovirus expression of HCV structural proteins, we have generated HCV-like particles (HCV-LP) in the absence of NS2 with overt similarity to wild-type virions. HCV-LP could transduce naive cells with trans-encapsidated subgenomic replicon RNAs and shared similar biochemical and biophysical properties with JFH-1 HCV. Both genotype 1b and JFH-1 intracellular HCV-LP were produced in the absence of NS2, whereas restoring NS2 to the JFH-1 system dramatically enhanced secreted infectivity, consistent with a late-acting role. Our system recapitulated authentic HCV particle assembly via trans-complementation of bicistronic, NS2-deleted, chimeric HCV, which is otherwise deficient in particle production. This closely resembled replicon-mediated NS2 trans-complementation, confirming that baculovirus expression of HCV proteins did not unduly affect particle production. Furthermore, this suggests that separation of structural protein expression from replicating HCV RNAs that are destined to be packaged alleviates an early stage requirement for NS2 during particle formation. This highlights our current lack of understanding of how NS2 mediates assembly, yet comparison of full-length and bipartite systems may provide further insight into this process.
Collapse
Affiliation(s)
- Matthew J Bentham
- Leeds Institute of Cancer & Pathology (LICAP), and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, UK
| | - Najat Marraiki
- School of Molecular & Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Mount Preston Street, Leeds, West Yorkshire LS2 9JT, UK
| | - Christopher J McCormick
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - David J Rowlands
- School of Molecular & Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Mount Preston Street, Leeds, West Yorkshire LS2 9JT, UK
| | - Stephen Griffin
- School of Molecular & Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Mount Preston Street, Leeds, West Yorkshire LS2 9JT, UK.,Leeds Institute of Cancer & Pathology (LICAP), and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, UK
| |
Collapse
|
8
|
Guariniello S, Colonna G, Raucci R, Costantini M, Di Bernardo G, Bergantino F, Castello G, Costantini S. Structure-function relationship and evolutionary history of the human selenoprotein M (SelM) found over-expressed in hepatocellular carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:447-456. [PMID: 24332979 DOI: 10.1016/j.bbapap.2013.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022]
Abstract
In humans we know 25 selenoproteins that play important roles in redox regulation, detoxification, immune-system protection and viral suppression. In particular, selenoprotein M (SelM) may function as thiol disulfide oxidoreductase that participates in the formation of disulfide bonds, and can be implicated in calcium responses. However, it presents a redox motif (CXXU), where U is a selenocysteine, and may also function as redox regulator because its decreased or increased expression regulated by dietary selenium alters redox homeostasis. No data are reported in literature about its involvement in cancer but only in neurodegenerative diseases. In this paper we evaluated the SelM expression in two hepatoma cell lines, HepG2 and Huh7, compared to normal hepatocytes. The results suggested its involvement in hepatocellular carcinoma (HCC) as well as its possible use to follow the progression of this cancer as putative marker. The aim of this study has been to analyze the structure-function relationships of SelM. Hence, firstly we studied the evolutionary history of this protein by phylogenetic analysis and GC content of genes from various species. So, we modeled the three-dimensional structure of the human SelM evaluating its energetic stability by molecular dynamics simulations. Moreover, we modeled some of its mutants to obtain structural information helpful for structure-based drug design.
Collapse
Affiliation(s)
- Stefano Guariniello
- Biochemistry, Biophysics and General Pathology Department and Computational Biology Doctorate, Second University of Naples, Naples, Italy
| | - Giovanni Colonna
- Biochemistry, Biophysics and General Pathology Department and Computational Biology Doctorate, Second University of Naples, Naples, Italy
| | - Raffaele Raucci
- Biochemistry, Biophysics and General Pathology Department and Computational Biology Doctorate, Second University of Naples, Naples, Italy
| | | | - Gianni Di Bernardo
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Faculty of Medicine, Second University of Naples, Naples, Italy
| | - Francesca Bergantino
- Pharmacogenomic Laboratory, Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale", IRCCS, Italy
| | - Giuseppe Castello
- Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale", IRCCS, Italy
| | - Susan Costantini
- Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale", IRCCS, Italy.
| |
Collapse
|
9
|
Guerriero E, Capone F, Rusolo F, Colonna G, Castello G, Costantini S. Dissimilar cytokine patterns in different human liver and colon cancer cell lines. Cytokine 2013; 64:584-9. [PMID: 24064000 DOI: 10.1016/j.cyto.2013.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/20/2013] [Accepted: 09/01/2013] [Indexed: 12/14/2022]
Abstract
An accurate and simultaneous estimate of cellular levels of a large cytokine number is very useful to obtain information about an organ dysfunction leading to cancer because through the understanding of the evolution of cytokine patterns we can recognize and predict the disease progression. Cancer cell lines are commonly used to study the cancer microenvironment, to analyze their chemosensitivity and carcinogenesis as well as to test in vitro the effect of molecules, such as drugs or anti-oxidants, on the inflammation status and its progression. We noted that various cell lines commonly used as a model for studies on liver and colon cancer possess different patterns of cytokines. This aspect may generate data not comparable in laboratories using different cell lines; thus, to investigate the origin of these abnormalities we compared the cell lines HepG2 and Huh7, and HT-29 and HCT-116, for liver and colon cancer, respectively. In this context we have evaluated and compared the levels of cytokines, chemokines and growth factors in the supernatants of these cellular lines. Our aim was to identify what cytokines were significantly different correlating similarities and differences to the specific inflammation status of each cellular model of cancer.
Collapse
Affiliation(s)
- Eliana Guerriero
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Das S, Shetty RK, Kumar A, Shridharan RN, Tatineni R, Chi G, Mukherjee A, Das S, Subbarao SM, Karande AA. Monoclonal antibodies against Hepatitis C genotype 3a virus like particle inhibit virus entry in cell culture system. PLoS One 2013; 8:e53619. [PMID: 23341957 PMCID: PMC3546081 DOI: 10.1371/journal.pone.0053619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/30/2012] [Indexed: 02/05/2023] Open
Abstract
The envelope protein (E1-E2) of Hepatitis C virus (HCV) is a major component of the viral structure. The glycosylated envelope protein is considered to be important for initiation of infection by binding to cellular receptor(s) and also known as one of the major antigenic targets to host immune response. The present study was aimed at identifying mouse monoclonal antibodies which inhibit binding of virus like particles of HCV to target cells. The first step in this direction was to generate recombinant HCV-like particles (HCV-LPs) specific for genotypes 3a of HCV (prevalent in India) using the genes encoding core, E1 and E2 envelop proteins in a baculovirus expression system. The purified HCV-LPs were characterized by ELISA and electron microscopy and were used to generate monoclonal antibodies (mAbs) in mice. Two monoclonal antibodies (E8G9 and H1H10) specific for the E2 region of envelope protein of HCV genotype 3a, were found to reduce the virus binding to Huh7 cells. However, the mAbs generated against HCV genotype 1b (D2H3, G2C7, E1B11) were not so effective. More importantly, mAb E8G9 showed significant inhibition of the virus entry in HCV JFH1 cell culture system. Finally, the epitopic regions on E2 protein which bind to the mAbs have also been identified. Results suggest a new therapeutic strategy and provide the proof of concept that mAb against HCV-LP could be effective in preventing virus entry into liver cells to block HCV replication.
Collapse
Affiliation(s)
- Soma Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Rohini K. Shetty
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore, India
| | - Anuj Kumar
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore, India
| | | | - Ranjitha Tatineni
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore, India
| | - Giriprakash Chi
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore, India
| | - Anirban Mukherjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
11
|
Abstract
Due to the obligatory intracellular lifestyle of viruses, cell culture systems for efficient viral propagation are crucial to obtain a detailed understanding of the virus-host cell interaction. For hepatitis C virus (HCV) the development of permissive and authentic culture models continues to be a challenging task. The first efforts to culture HCV had limited success and range back to before the virus was molecularly cloned in 1989. Since then several major breakthroughs have gradually overcome limitations in culturing the virus and sequentially permitted analysis of viral RNA replication, cell entry, and ultimately the complete replication cycle in cultured cells in 2005. Until today, basic and applied HCV research greatly benefit from these tremendous efforts which spurred multiple complementary cell-based model systems for distinct steps of the HCV replication cycle. When used in combination they now permit deep insights into the fascinating biology of HCV and its interplay with the host cell. In fact, drug development has been much facilitated and our understanding of the molecular determinants of HCV replication has grown in parallel to these advances. Building on this groundwork and further refining our cellular models to better mimic the architecture, polarization and differentiation of natural hepatocytes should reveal novel unique aspects of HCV replication. Ultimately, models to culture primary HCV isolates across all genotypes may teach us important new lessons about viral functional adaptations that have evolved in exchange with its human host and that may explain the variable natural course of hepatitis C.
Collapse
Affiliation(s)
- Eike Steinmann
- Helmholtz Centre for Infection Research, Hannover, Germany
| | | |
Collapse
|
12
|
Bailey J. An Assessment of the Use of Chimpanzees in Hepatitis C Research Past, Present and Future: 2. Alternative Replacement Methods. Altern Lab Anim 2010; 38:471-94. [DOI: 10.1177/026119291003800602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of chimpanzees in hepatitis C virus (HCV) research was examined in the report associated with this paper ( 1: Validity of the Chimpanzee Model), in which it was concluded that claims of past necessity of chimpanzee use were exaggerated, and that claims of current and future indispensability were unjustifiable. Furthermore, given the serious scientific and ethical issues surrounding chimpanzee experimentation, it was proposed that it must now be considered redundant — particularly in light of the demonstrable contribution of alternative methods to past and current scientific progress, and the future promise that these methods hold. This paper builds on this evidence, by examining the development of alternative approaches to the investigation of HCV, and by reviewing examples of how these methods have contributed, and are continuing to contribute substantially, to progress in this field. It augments the argument against chimpanzee use by demonstrating the comprehensive nature of these methods and the valuable data they deliver. The entire life-cycle of HCV can now be investigated in a human (and much more relevant) context, without recourse to chimpanzee use. This also includes the testing of new therapies and vaccines. Consequently, there is no sound argument against the changes in public policy that propose a move away from chimpanzee use in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA, USA
| |
Collapse
|
13
|
Replication of subgenomic hepatitis C virus replicons in mouse fibroblasts is facilitated by deletion of interferon regulatory factor 3 and expression of liver-specific microRNA 122. J Virol 2010; 84:9170-80. [PMID: 20592082 DOI: 10.1128/jvi.00559-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hepatitis C virus (HCV) infection causes significant morbidity, and efficient mouse models would greatly facilitate virus studies and the development of effective vaccines and new therapeutic agents. Entry factors, innate immunity, and host factors needed for viral replication represent the initial barriers that restrict HCV infection of mouse cells. Experiments in this paper consider early postentry steps of viral infection and investigate the roles of interferon regulatory factors (IRF-3 and IRF-9) and microRNA (miR-122) in promoting HCV replication in mouse embryo fibroblasts (MEFs) that contain viral subgenomic replicons. While wild-type murine fibroblasts are restricted for HCV RNA replication, deletion of IRF-3 alone can facilitate replicon activity in these cells. This effect is thought to be related to the inactivation of the type I interferon synthesis mediated by IRF-3. Additional deletion of IRF-9 to yield IRF-3(-/-) IRF-9(-/-) MEFs, which have blocked type I interferon signaling, did not increase HCV replication. Expression of liver-specific miR-122 in MEFs further stimulated the synthesis of HCV replicons in the rodent fibroblasts. The combined effects of miR-122 expression and deletion of IRF-3 produced a cooperative stimulation of HCV subgenome replication. miR-122 and IRF-3 are independent host factors that are capable of influencing HCV replication, and our findings could help to establish mouse models and other cell systems that support HCV growth and particle formation.
Collapse
|
14
|
Ndongo N, Rechoum Y, De Sequeira S, Zoulim F, Trépo C, Drouet E, Petit MA. Inhibition of the binding of HCV serum particles to human hepatocytes by E1E2-specific D32.10 monoclonal antibody. J Med Virol 2009; 81:1726-33. [DOI: 10.1002/jmv.21562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
MATSUMURA TAKUYA, HU ZONGYI, KATO TAKANOBU, DREUX MARLENE, ZHANG YONG, IMAMURA MICHIO, HIRAGA NOBUHIKO, JUTEAU JEAN, COSSET FRANCOIS, CHAYAMA KAZUAKI, VAILLANT ANDREW, LIANG TJAKE. Amphipathic DNA polymers inhibit hepatitis C virus infection by blocking viral entry. Gastroenterology 2009; 137:673-81. [PMID: 19394333 PMCID: PMC2803092 DOI: 10.1053/j.gastro.2009.04.048] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 03/26/2009] [Accepted: 04/16/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) gains entry into susceptible cells by interacting with cell surface receptor(s). Viral entry is an attractive target for antiviral development because of the highly conserved mechanism. METHODS HCV culture systems were used to study the effects of phosphorothioate oligonucleotides (PS-ONs), as amphipathic DNA polymers (APs), on HCV infection. The in vivo effects of APs were tested in urokinase plasminogen activator (uPA)/severe combined immunodeficient (SCID) mice engrafted with human hepatocytes. RESULTS We show the sequence-independent inhibitory effects of APs on HCV infection. APs were shown to potently inhibit HCV infection at submicromolar concentrations. APs exhibited a size-dependent antiviral activity and were equally active against HCV pseudoparticles of various genotypes. Control phosphodiester oligonucleotide (PO-ON) polymer without the amphipathic structure was inactive. APs had no effect on viral replication in the HCV replicon system or binding of HCV to cells but inhibited viral internalization, indicating that the target of inhibition is at the postbinding, cell entry step. In uPA/SCID mice engrafted with human hepatocytes, APs efficiently blocked de novo HCV infection. CONCLUSIONS Our results demonstrate that APs are a novel class of antiviral compounds that hold promise as a drug to inhibit HCV entry.
Collapse
Affiliation(s)
- TAKUYA MATSUMURA
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - ZONGYI HU
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - TAKANOBU KATO
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - MARLENE DREUX
- Universite de Lyon, INSERM U758, and Ecole Normale Superieure de Lyon, Lyon, France
| | - YONG–YUAN ZHANG
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - MICHIO IMAMURA
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - NOBUHIKO HIRAGA
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | - FRANCOIS–LOIC COSSET
- Universite de Lyon, INSERM U758, and Ecole Normale Superieure de Lyon, Lyon, France
| | - KAZUAKI CHAYAMA
- Department of Medicine and Molecular Science, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | - T. JAKE LIANG
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Park IW, Ndjomou J, Fan Y, Henao-Mejia J, He JJ. Hepatitis C virus is restricted at both entry and replication in mouse hepatocytes. Biochem Biophys Res Commun 2009; 387:489-93. [PMID: 19619513 DOI: 10.1016/j.bbrc.2009.07.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/13/2009] [Indexed: 11/19/2022]
Abstract
Human hepatitis C virus (HCV) does not replicate in mouse hepatocytes. The underlying mechanisms are largely unknown. In this study, we took advantage of a series of direct and unique molecular strategies and dissected the HCV life cycle in human hepatoma Huh7.5 cells and mouse hepatoma Hepa1-6 cells. We showed that HCV entry was restricted in Hepa1-6 cells and was not rescued by expression of human HCV receptors. We also showed that HCV RNA replication was impaired in Hepa1-6 cells. In contrast, we showed that the HCV IRES translation activity and HCV production in Hepa1-6 cells were either comparable to, or even slightly higher than those in Huh7.5 cells. Thus, we conclude that entry and RNA replication are the two major HCV restrictions in mouse cells. These studies provide new insights into HCV interaction with mouse cells and new clues for formulating strategies for development of HCV mouse models.
Collapse
Affiliation(s)
- In-Woo Park
- Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, 950 W. Walnut St., Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
17
|
Zeisel MB, Baumert TF. HCV entry and neutralizing antibodies: lessons from viral variants. Future Microbiol 2009; 4:511-7. [PMID: 19492962 PMCID: PMC2898794 DOI: 10.2217/fmb.09.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Evaluation of: Grove J, Nielsen S, Zhong J et al.: Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. J. Virol. 82 (24), 12020-12029 (2008). Recent data suggest that a strong, early, broad neutralizing antibody response may contribute to the control of HCV in the acute phase of infection. However, the majority of individuals fail to clear HCV during the first months following infection and develop chronic infection despite the presence of anti-HCV antibodies. A prerequisite of the understanding behind the mechanisms of viral escape from antibody-mediated neutralization is the identification of various host-entry factors mediating the first steps of viral infection - binding and entry of HCV is believed to be a multistep process involving HCV envelope glycoproteins E1 and E2 as well as several host-cell surface molecules such as CD81, scavenger receptor class B type I, members of the claudin family and occludin. In this article, Grove et al. describe a single mutation in the HCV envelope glycoprotein E2 that alters glycoprotein structure thereby modulating viral interaction with scavenger receptor class B type I and CD81, and increasing sensitivity to neutralizing antibodies. The results of this study highlight the importance of the characterization of the interplay between HCV particles and host-cell factors for the understanding of virus neutralization by host-immune responses and pathogenesis of HCV infection.
Collapse
|
18
|
Stoll-Keller F, Barth H, Fafi-Kremer S, Zeisel MB, Baumert TF. Development of hepatitis C virus vaccines: challenges and progress. Expert Rev Vaccines 2009; 8:333-45. [PMID: 19249975 DOI: 10.1586/14760584.8.3.333] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of an effective vaccine against the hepatitis C virus (HCV) has long been defined as a difficult challenge due to the considerable variability of this RNA virus and the observation that convalescent humans and chimpanzees could be re-infected after re-exposure. On the other hand, progress in the understanding of antiviral immune responses in patients with viral clearance has elucidated key mechanisms playing a role in the control of viral infection. Studies investigating prophylactic vaccine approaches in chimpanzees have confirmed that the induction and maintenance of strong helper and cytotoxic T-cell immune responses against multiple viral epitopes is necessary for protection against viral clearance and chronic infection. A multispecific B-cell response, resulting in rapid induction of cross-neutralizing antibodies may assist cellular responses. Therapeutic vaccine formulations currently being evaluated in clinical trials are facing the fact that the immune system of chronic carriers is impaired and needs the restoration of T-cell functions to enhance their efficacy.
Collapse
Affiliation(s)
- Françoise Stoll-Keller
- Inserm, U748 et Laboratoire de Virologie des Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|
19
|
Gondois-Rey F, Dental C, Halfon P, Baumert TF, Olive D, Hirsch I. Hepatitis C virus is a weak inducer of interferon alpha in plasmacytoid dendritic cells in comparison with influenza and human herpesvirus type-1. PLoS One 2009; 4:e4319. [PMID: 19183807 PMCID: PMC2629532 DOI: 10.1371/journal.pone.0004319] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/15/2008] [Indexed: 01/27/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are responsible for the production of type I IFN during viral infection. Viral elimination by IFN-α-based therapy in more than 50% of patients chronically infected with hepatitis C virus (HCV) suggests a possible impairment of production of endogenous IFN-α by pDCs in infected individuals. In this study, we investigated the impact of HCV on pDC function. We show that exposure of pDCs to patient serum- and cell culture-derived HCV resulted in production of IFN-α by pDCs isolated from some donors, although this production was significantly lower than that induced by influenza and human herpesvirus type 1 (HHV-1). Using specific inhibitors we demonstrate that endocytosis and endosomal acidification were required for IFN-α production by pDCs in response to cell culture-derived HCV. HCV and noninfectious HCV-like particles inhibited pDC-associated production of IFN-α stimulated with Toll-like receptor 9 (TLR9) agonists (CpG-A or HHV-1) but not that of IFN-α stimulated with TLR7 agonists (resiquimod or influenza virus). The blockade of TLR9-mediated production of IFN-α, effective only when pDCs were exposed to virus prior to or shortly after CpG-A stimulation, was already detectable at the IFN-α transcription level 2 h after stimulation with CpG-A and correlated with down-regulation of the transcription factor IRF7 expression and of TLR9 expression. In conclusion, rapidly and early occurring particle–host cell protein interaction during particle internalization and endocytosis followed by blockade of TLR9 function could result in less efficient sensing of HCV RNA by TLR7, with impaired production of IFN-α. This finding is important for our understanding of HCV-DC interaction and immunopathogenesis of HCV infection.
Collapse
Affiliation(s)
- Françoise Gondois-Rey
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Méditerranée, Marseille, France
| | - Clélia Dental
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Méditerranée, Marseille, France
| | - Philippe Halfon
- Department of Virology, Alphabio Laboratory, Marseille, France
| | | | - Daniel Olive
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Méditerranée, Marseille, France
| | - Ivan Hirsch
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
20
|
Zeisel MB, Barth H, Schuster C, Baumert TF. Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Front Biosci (Landmark Ed) 2009; 14:3274-85. [PMID: 19273272 DOI: 10.2741/3450] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With an estimated 170 million infected individuals, hepatitis C virus (HCV) has a major impact on public health. The liver is the primary target organ of HCV, and the hepatocyte is its primary target cell. Attachment of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between the virus and the target cell that is required for successful entry into the cell and initiation of infection. Using recombinant HCV envelope glycoproteins and HCV pseudotype particles, several cell surface molecules have been identified interacting with HCV during viral binding and entry. These include CD81, highly sulfated heparan sulfate, the low-density lipoprotein receptor, scavenger receptor class B type I and claudin-1. Treatment options for chronic HCV infection are limited and a vaccine to prevent HCV infection is not available. Interfering with HCV entry holds promise for drug design and discovery as the understanding of molecular mechanisms underlying HCV interaction with the host cell is advancing. The complexity of the virus entry process offers several therapeutic targets.
Collapse
|
21
|
Rodríguez-Rodríguez M, Tello D, Yélamos B, Gómez-Gutiérrez J, Pacheco B, Ortega S, Serrano AG, Peterson DL, Gavilanes F. Structural properties of the ectodomain of hepatitis C virus E2 envelope protein. Virus Res 2009; 139:91-9. [DOI: 10.1016/j.virusres.2008.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/16/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
22
|
Haberstroh A, Schnober EK, Zeisel MB, Carolla P, Barth H, Blum HE, Cosset FL, Koutsoudakis G, Bartenschlager R, Union A, Depla E, Owsianka A, Patel AH, Schuster C, Stoll-Keller F, Doffoël M, Dreux M, Baumert TF. Neutralizing host responses in hepatitis C virus infection target viral entry at postbinding steps and membrane fusion. Gastroenterology 2008; 135:1719-1728.e1. [PMID: 18718838 DOI: 10.1053/j.gastro.2008.07.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 06/02/2008] [Accepted: 07/17/2008] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is a leading cause of chronic hepatitis worldwide. Viral attachment and entry, representing the first steps of virus-host cell interactions, are major targets of adaptive host cell defenses. The mechanisms of antibody-mediated neutralization by host neutralizing responses in HCV infection are only poorly understood. Retroviral HCV pseudotypes (HCVpp) and recombinant cell culture-derived HCV (HCVcc) have been successfully used to study viral entry and antibody-mediated neutralization. METHODS In this study, we used these model systems to investigate the mechanism of antibody-mediated neutralization by monoclonal antienvelope antibodies and polyclonal anti-HCV immunoglobulins purified from HCV-infected patients. RESULTS Using a panel of monoclonal antienvelope antibodies, we identified an epitope within the E1 glycoprotein targeted by human neutralizing antibodies during postbinding events. Interestingly, we observed that host neutralizing responses in the majority of HCV-infected individuals include antibodies targeting HCV entry after binding of the virus to the target cell membrane. Using a kinetic assay based on HCVpp and HCVcc entry, we demonstrate that purified antiviral immunoglobulins derived from individual HCV-infected patients appear to inhibit HCV infection at an entry step closely linked to CD81 and scavenger receptor BI (SR-BI). CONCLUSIONS Our results indicate that host neutralizing responses in HCV-infected patients target viral entry after HCV binding most likely related to HCV-CD81, and HCV-SR-BI interactions, as well as membrane fusion. These findings have implications not only for the understanding of the pathogenesis of HCV infection but also for the design of novel immunotherapeutic and preventive strategies.
Collapse
Affiliation(s)
- Anita Haberstroh
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gottwein JM, Bukh J. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 2008; 71:51-133. [PMID: 18585527 DOI: 10.1016/s0065-3527(08)00002-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (cDNA) clones into chimpanzees. However, such full-length clones were not infectious in vitro. The development of the replicon system and HCV pseudo-particles allowed in vitro studies of certain aspects of the viral life cycle, RNA replication, and viral entry, respectively. Identification of the genotype 2 isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes and identification of other susceptible cell lines.
Collapse
Affiliation(s)
- Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
24
|
Virus-host interactions during hepatitis C virus entry — implications for pathogenesis and novel treatment approaches. Virol Sin 2008. [DOI: 10.1007/s12250-008-2943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Fafi-Kremer S, Zeisel MB, Schvoerer E, Soulier E, Habersetzer F, Wolf P, Doffoel M, Baumert TF, Stoll-Keller F. [Neutralizing antibodies in hepatitis C virus infection]. ACTA ACUST UNITED AC 2008; 32:491-8. [PMID: 18467058 DOI: 10.1016/j.gcb.2008.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/29/2008] [Accepted: 02/29/2008] [Indexed: 01/12/2023]
Abstract
Hepatitis C virus (HCV) results in persistent infection in more than 70% of infected individuals despite the development of humoral and cellular immune responses. Following infection, although antibodies targeting epitopes of both structural and non structural proteins are elicited, the virus evades antibody-mediated neutralization. Studies of host neutralizing responses against HCV have been limited by the lack of a convenient tissue culture system for HCV infection. In the past five years in vitro models have been developed to characterize interaction of HCV glycoproteins with host cell entry factors and detect antibodies interfering with HCV entry and infection. These models have been used to characterize targets of neutralizing responses and better understand their impact on the pathogenesis of infection.
Collapse
Affiliation(s)
- S Fafi-Kremer
- Laboratoire de virologie, Inserm U748, 3, rue Koeberlé, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Scavenger receptor class B is required for hepatitis C virus uptake and cross-presentation by human dendritic cells. J Virol 2008; 82:3466-79. [PMID: 18216094 DOI: 10.1128/jvi.02478-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Class B scavenger receptors (SR-Bs) bind lipoproteins and play an important role in lipid metabolism. Most recently, SR-B type I (SR-BI) and its splicing variant SR-BII have been found to mediate bacterial adhesion and cytosolic bacterial invasion in mammalian cells. In this study, we demonstrate that SR-BI is a key host factor required for hepatitis C virus (HCV) uptake and cross-presentation by human dendritic cells (DCs). Whereas monocytes and T and B cells were characterized by very low or undetectable SR-BI expression levels, human DCs demonstrated a high level of cell surface expression of SR-BI similar to that of primary human hepatocytes. Antibodies targeting the extracellular loop of SR-BI efficiently inhibited HCV-like particle binding, uptake, and cross-presentation by human DCs. Moreover, human high-density lipoprotein specifically modulated HCV-like particle binding to DCs, indicating an interplay of HCV with the lipid transfer function of SR-BI in DCs. Finally, we demonstrate that anti-SR-BI antibodies inhibit the uptake of cell culture-derived HCV (HCVcc) in DCs. In conclusion, these findings identify a novel function of SR-BI for viral antigen uptake and recognition and may have an important impact on the design of HCV vaccines and immunotherapeutic approaches aiming at the induction of efficient antiviral immune responses.
Collapse
|
27
|
Zeisel MB, Koutsoudakis G, Schnober EK, Haberstroh A, Blum HE, Cosset FL, Wakita T, Jaeck D, Doffoel M, Royer C, Soulier E, Schvoerer E, Schuster C, Stoll-Keller F, Bartenschlager R, Pietschmann T, Barth H, Baumert TF. Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology 2007; 46:1722-31. [PMID: 18000990 DOI: 10.1002/hep.21994] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide. Scavenger receptor class B type I (SR-BI) has been shown to bind HCV envelope glycoprotein E2, participate in entry of HCV pseudotype particles, and modulate HCV infection. However, the functional role of SR-BI for productive HCV infection remains unclear. In this study, we investigated the role of SR-BI as an entry factor for infection of human hepatoma cells using cell culture-derived HCV (HCVcc). Anti-SR-BI antibodies directed against epitopes of the human SR-BI extracellular loop specifically inhibited HCVcc infection in a dose-dependent manner. Down-regulation of SR-BI expression by SR-BI-specific short interfering RNAs (siRNAs) markedly reduced the susceptibility of human hepatoma cells to HCVcc infection. Kinetic studies demonstrated that SR-BI acts predominately after binding of HCV at an entry step occurring at a similar time point as CD81-HCV interaction. Although the addition of high-density lipoprotein (HDL) enhanced the efficiency of HCVcc infection, anti-SR-BI antibodies and SR-BI-specific siRNA efficiently inhibited HCV infection independent of lipoprotein. CONCLUSION Our data suggest that SR-BI (i) represents a key host factor for HCV entry, (ii) is implicated in the same HCV entry pathway as CD81, and (iii) targets an entry step closely linked to HCV-CD81 interaction.
Collapse
Affiliation(s)
- Mirjam B Zeisel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U748, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Major advances in the understanding of the molecular biology of hepatitis C virus (HCV) have been made recently. While the chimpanzee is the only established animal model of HCV infection, several in vivo and in vitro models have been established that allow us to study various aspects of the viral life cycle. In particular, the replicon system and the production of recombinant infectious virions revolutionized the investigation of HCV-RNA replication and rendered all steps of the viral life cycle, including entry and release of viral particles, amenable to systematic analysis. In the following we will review the different in vivo and in vitro models of HCV infection.
Collapse
Affiliation(s)
- V Brass
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
29
|
Zeisel MB, Fafi-Kremer S, Fofana I, Barth H, Stoll-Keller F, Doffoel M, Baumert TF. Neutralizing antibodies in hepatitis C virus infection. World J Gastroenterol 2007; 13:4824-30. [PMID: 17828813 PMCID: PMC4611760 DOI: 10.3748/wjg.v13.i36.4824] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of hepatitis world-wide. The majority of infected individuals develop chronic hepatitis which can then progress to liver cirrhosis and hepatocellular carcinoma. Spontaneous viral clearance occurs in about 20%-30% of acutely infected individuals and results in resolution of infection without sequaelae. Both viral and host factors appear to play an important role for resolution of acute infection. A large body of evidence suggests that a strong, multispecific and long-lasting cellular immune response appears to be important for control of viral infection in acute hepatitis C. Due too the lack of convenient neutralization assays, the impact of neutralizing responses for control of viral infection had been less defined. In recent years, the development of robust tissue culture model systems for HCV entry and infection has finally allowed study of antibody-mediated neutralization and to gain further insights into viral targets of host neutralizing responses. In addition, detailed analysis of antibody-mediated neutralization in individual patients as well as cohorts with well defined viral isolates has enabled the study of neutralizing responses in the course of HCV infection and characterization of the impact of neutralizing antibodies for control of viral infection. This review will summarize recent progress in the understanding of the molecular mechanisms of antibody-mediated neutralization and its impact for HCV pathogenesis.
Collapse
Affiliation(s)
- Mirjam-B Zeisel
- Inserm Unite 748, Universite Louis Pasteur, 3 Rue Koeberle, Strasbourg F-67000, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Pan QW, Henry SD, Scholte BJ, Tilanus HW, Janssen HLA, van der Laan LJW. New therapeutic opportunities for Hepatitis C based on small RNA. World J Gastroenterol 2007; 13:4431-6. [PMID: 17724797 PMCID: PMC4611574 DOI: 10.3748/wjg.v13.i33.4431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is one of the major causes of chronic liver disease, including cirrhosis and liver cancer and is therefore, the most common indication for liver transplantation. Conventional antiviral drugs such as pegylated interferon-alpha, taken in combination with ribavirin, represent a milestone in the therapy of this disease. However, due to different viral and host factors, clinical success can be achieved only in approximately half of patients, making urgent the requirement of exploiting alternative approaches for HCV therapy. Fortunately, recent advances in the understanding of HCV viral replication and host cell interactions have opened new possibilities for therapeutic intervention. The most recent technologies, such as small interference RNA mediated gene-silencing, anti-sense oligonucleotides (ASO), or viral vector based gene delivery systems, have paved the way to develop novel therapeutic modalities for HCV. In this review, we outline the application of these technologies in the context of HCV therapy. In particular, we will focus on the newly defined role of cellular microRNA (miR-122) in viral replication and discuss its potential for HCV molecular therapy.
Collapse
Affiliation(s)
- Qiu-Wei Pan
- Erasmus MC-University Medical Centre, Department of Gastroenterology, Room L458, sGravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Morikawa K, Zhao Z, Date T, Miyamoto M, Murayama A, Akazawa D, Tanabe J, Sone S, Wakita T. The roles of CD81 and glycosaminoglycans in the adsorption and uptake of infectious HCV particles. J Med Virol 2007; 79:714-23. [PMID: 17457918 DOI: 10.1002/jmv.20842] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Because appropriate cell-culture systems or small-animal models have been lacking, the early steps in the HCV life cycle have been difficult to study. A cell culture system was developed recently that allows production of infectious HCV. In this study, infectious HCV particles produced in cultured cells were used. To clarify the role of CD81 in HCV attachment and entry, the effect of anti-CD81 antibody was examined. The antibody blocked HCV virion entry but not particle attachment. Only the fraction bound to a heparin affinity column and eluted with 0.3 M NaCl productively infected Huh7 cells, indicating that infectious HCV particles bind to heparin. Both heparin treatment of the virus particles and heparinase treatment of the Huh7 cells reduced virus-cell binding without substantially inhibiting HCV infectivity. Finally, to confirm the role of both heparin sulfate proteoglycan (HSPG) and CD81 in HCV entry, the effects of heparinase I and anti-CD81 antibody were analyzed. No productive RNA replication was detected in the Huh7 cells in the presence of both heparinase I and anti-CD81 antibody. In conclusion, these data suggested that both HSPG and CD81 are important for HCV entry. HSPG may play a role in the initial cell surface binding of infectious HCV particles and CD81 is conceivably correlated with HCV entry after viral attachment.
Collapse
Affiliation(s)
- Kenichi Morikawa
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tsitoura P, Georgopoulou U, Pêtres S, Varaklioti A, Karafoulidou A, Vagena D, Politis C, Mavromara P. Evidence for cellular uptake of recombinant hepatitis C virus non-enveloped capsid-like particles. FEBS Lett 2007; 581:4049-57. [PMID: 17678898 DOI: 10.1016/j.febslet.2007.07.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 07/16/2007] [Indexed: 12/17/2022]
Abstract
Although the hepatitis C virus (HCV) is an enveloped virus, naked nucleocapsids have been reported in the serum of infected patients, and most recently novel HCV subgenomes with deletions of the envelope proteins have been identified. However the significance of these findings remains unclear. In this study, we used the baculovirus expression system to generate recombinant HCV capsid-like particles, and investigated their possible interactions with cells. We show that expression of HCV core in insect cells can sufficiently direct the formation of capsid-like particles in the absence of the HCV envelope glycoproteins and of the 5' untranslated region. By confocal microscopy analysis, we provide evidence that the naked capsid-like particles could be uptaken by human hepatoma cells. Moreover, our findings suggest that they have the potential to produce cell-signaling effects.
Collapse
Affiliation(s)
- Panagiota Tsitoura
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127, Vas. Sofias Ave, Athens 11521, Greece
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tellinghuisen TL, Evans MJ, von Hahn T, You S, Rice CM. Studying hepatitis C virus: making the best of a bad virus. J Virol 2007; 81:8853-67. [PMID: 17522203 PMCID: PMC1951464 DOI: 10.1128/jvi.00753-07] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Pestka JM, Zeisel MB, Bläser E, Schürmann P, Bartosch B, Cosset FL, Patel AH, Meisel H, Baumert J, Viazov S, Rispeter K, Blum HE, Roggendorf M, Baumert TF. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proc Natl Acad Sci U S A 2007; 104:6025-30. [PMID: 17392433 PMCID: PMC1851610 DOI: 10.1073/pnas.0607026104] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In contrast to a detailed understanding of antiviral cellular immune responses, the impact of neutralizing antibodies for the resolution of acute hepatitis C is poorly defined. The analysis of neutralizing responses has been hampered by the fact that patient cohorts as well as hepatitis C virus (HCV) strains are usually heterogeneous, and that clinical data from acute-phase and long-term follow-up after infection are not readily available. Using an infectious retroviral HCV pseudoparticle model system, we studied a cohort of women accidentally exposed to the same HCV strain of known sequence. In this single-source outbreak of hepatitis C, viral clearance was associated with a rapid induction of neutralizing antibodies in the early phase of infection. Neutralizing antibodies decreased or disappeared after recovery from HCV infection. In contrast, chronic HCV infection was characterized by absent or low-titer neutralizing antibodies in the early phase of infection and the persistence of infection despite the induction of cross-neutralizing antibodies in the late phase of infection. These data suggest that rapid induction of neutralizing antibodies during the early phase of infection may contribute to control of HCV infection. This finding may have important implications for understanding the pathogenesis of HCV infection and for the development of novel preventive and therapeutic antiviral strategies.
Collapse
Affiliation(s)
- Jan M. Pestka
- *Department of Medicine II, University of Freiburg, 79106 Freiburg, Germany
| | - Mirjam B. Zeisel
- *Department of Medicine II, University of Freiburg, 79106 Freiburg, Germany
| | - Edith Bläser
- *Department of Medicine II, University of Freiburg, 79106 Freiburg, Germany
| | - Peter Schürmann
- *Department of Medicine II, University of Freiburg, 79106 Freiburg, Germany
| | - Birke Bartosch
- Institut National de la Santé et de la Recherche Médicale, U758, 69364 Lyon, France
- Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | - Francois-Loïc Cosset
- Institut National de la Santé et de la Recherche Médicale, U758, 69364 Lyon, France
- Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | - Arvind H. Patel
- Medical Research Council Virology Unit, Institute of Virology, University of Glasgow, Glasgow G11 5JR, United Kingdom
| | - Helga Meisel
- Institute of Virology, Humboldt University (Charité), 10117 Berlin, Germany
| | - Jens Baumert
- Institute of Epidemiology, GSF/National Research Center for Environment and Health, 85764 Neuherberg, Germany
| | - Sergei Viazov
- **Institute of Virology, University of Essen, 45122 Essen, Germany
| | - Kay Rispeter
- **Institute of Virology, University of Essen, 45122 Essen, Germany
| | - Hubert E. Blum
- *Department of Medicine II, University of Freiburg, 79106 Freiburg, Germany
| | | | - Thomas F. Baumert
- *Department of Medicine II, University of Freiburg, 79106 Freiburg, Germany
- Institut National de la Santé et de la Recherche Médicale, U748, 67000 Strasbourg, France
- Université Louis Pasteur, 67000 Strasbourg, France; and
- Service d'Hépatogastroentérologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Martyn JC, Dong X, Holmes-Brown S, Pribul P, Li S, Drummer HE, Gowans EJ. Transient and stable expression of the HCV envelope glycoproteins in cell lines and primary hepatocytes transduced with a recombinant baculovirus. Arch Virol 2006; 152:329-43. [PMID: 17019531 DOI: 10.1007/s00705-006-0845-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 08/07/2006] [Indexed: 11/29/2022]
Abstract
A recombinant baculovirus, RecBV-E, encoding the hepatitis C virus (HCV) envelope proteins, E1 and E2, controlled by the cytomegalovirus promoter was constructed. RecBVs can infect mammalian cells, but fail to express proteins or replicate because the viral DNA promoters are not recognised. The RecBV-E transduced 86% of Huh7 cells and 22% of primary marmoset hepatocytes compared with 35% and 0.4%, respectively, after DNA transfection. Several stable cell lines were generated that constitutively expressed E1/E2 in every cell. No evidence of E1/E2-related apoptosis was noted, and the doubling times of cells were similar to that of the parental cells. A proportion of the E1/E2 was expressed on the surface of the stable cells as determined by flow cytometry and was detected by a conformation-dependent monoclonal antibody. It is likely that the continued expression of E1/E2 in the stable cells resulted from integration of the RecBV DNA. Infection of Huh7 cells, in the absence of G418 selection, failed to result in expression of the foreign gene (in this case, eGFP) beyond 14-18 days. RecBVs that express HCV genes from a CMV promoter represent an effective means by which to transduce primary hepatocytes for expression and replication studies.
Collapse
Affiliation(s)
- J C Martyn
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kouvatsis V, Argnani R, Tsitoura E, Arsenakis M, Georgopoulou U, Mavromara P, Manservigi R. Characterization of herpes simplex virus type 1 recombinants that express and incorporate high levels of HCV E2-gC chimeric proteins. Virus Res 2006; 123:40-9. [PMID: 16989918 DOI: 10.1016/j.virusres.2006.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/21/2006] [Accepted: 07/27/2006] [Indexed: 12/18/2022]
Abstract
We report the construction of two HSV-1 recombinants encoding chimeric forms of the E2 glycoprotein of HCV-1a composed of the ectodomain of E2 (aa384-611 or 384-711) fused to different parts of the transmembrane and cytoplasmic domain of the HSV-1 gC glycoprotein (gC). The parental HSV-1, known as KgBpK(-)gC(-), is deleted for gC and the main heparan sulphate (HS) binding domain of gB, and it exhibits impaired binding (ca. 80%) to HS compared to the wild type virus KOS [Laquerre, S., Argnani, R., Anderson, D.B., Zucchini, S., Manservigi, R., Glorioso, J.C., 1998. Heparan sulphate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J. Virol. 72, 6119-6130]. We show that gC:E2 proteins are efficiently expressed and transported to the cell surface. We also demonstrate that HSV-1 can incorporate both gC:E2 chimeric proteins into particles and show that incorporation of both chimeric molecules in the viral envelope partially restored binding (ca. 20%) of the HSV-1 recombinants to heparan sulphate. Finally, we showed that the gC:E2ScaI chimeric glycoprotein was able to bind a recombinant form of hCD81 and virion-expressed gC:E2ScaI permitted the binding of the HSV-1 recombinant virus to the hCD81 molecule.
Collapse
Affiliation(s)
- V Kouvatsis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | | | | | | | | | | | | |
Collapse
|
37
|
Zahn A, Jennings N, Ouwehand WH, Allain JP. Hepatitis C virus interacts with human platelet glycoprotein VI. J Gen Virol 2006; 87:2243-2251. [PMID: 16847120 DOI: 10.1099/vir.0.81826-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hepatitis C virus (HCV) interacts with human platelets in vivo as a potential transport of infectious virions to the target liver. The binding of native viral particles with the platelet membrane glycoprotein VI (GPVI) was analysed. A consistent interaction between HCV from plasma or after purification by two different methods and the recombinant extracellular immunoglobulin (Ig)-like domains of human GPVI (hD1D2) was observed with two independent experimental approaches: pull-down and ELISA assays. Between 2 and 7 % of HCV particles were specifically bound to hD1D2. The binding was inhibited by an anti-hD1D2 in a dose-dependent manner. Human D1D2 interaction with HCV was significantly higher than the murine D1D2, supporting the specificity of the interaction and to the single human domains (D1 and D2), suggesting that both Ig-like domains of the molecule are required for efficient binding. GPVI may be a platelet surface ligand for HCV playing a role in viral transport and persistence.
Collapse
Affiliation(s)
- Astrid Zahn
- National Blood Service, Long Road, Cambridge CB2 2PT, UK
- Division of Transfusion Medicine, Department of Haematology, University of Cambridge, Cambridge CB2 2PT, UK
| | - Nicola Jennings
- Division of Transfusion Medicine, Department of Haematology, University of Cambridge, Cambridge CB2 2PT, UK
| | - Willem H Ouwehand
- National Blood Service, Long Road, Cambridge CB2 2PT, UK
- Division of Transfusion Medicine, Department of Haematology, University of Cambridge, Cambridge CB2 2PT, UK
| | - Jean-Pierre Allain
- Division of Transfusion Medicine, Department of Haematology, University of Cambridge, Cambridge CB2 2PT, UK
| |
Collapse
|
38
|
Abstract
With an estimated 170 million infected individuals, hepatitis C virus (HCV) has a major impact on public health. A vaccine protecting against HCV infection is not available, and current antiviral therapies are characterized by limited efficacy, high costs, and substantial side effects. Binding of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between virus and the target cell that is required for the initiation of infection. Because this step represents a critical determinant of tissue tropism and pathogenesis, it is a major target for host cell responses such as antibody-mediated virus-neutralization-and a promising target for new antiviral therapy. The recent development of novel tissue culture model systems for the study of the first steps of HCV infection has allowed rapid progress in the understanding of the molecular mechanisms of HCV binding and entry. This review summarizes the impact of recently identified viral and host cell factors for HCV attachment and entry. Clinical implications of this important process for the pathogenesis of HCV infection and novel therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Heidi Barth
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
39
|
Barth H, Schnober EK, Zhang F, Linhardt RJ, Depla E, Boson B, Cosset FL, Patel AH, Blum HE, Baumert TF. Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction. J Virol 2006; 80:10579-90. [PMID: 16928753 PMCID: PMC1641783 DOI: 10.1128/jvi.00941-06] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular binding and entry of hepatitis C virus (HCV) are the first steps of viral infection and represent a major target for antiviral antibodies and novel therapeutic strategies. We have recently demonstrated that heparan sulfate (HS) plays a key role in the binding of HCV envelope glycoprotein E2 to target cells (Barth et al., J. Biol. Chem. 278:41003-41012, 2003). In this study, we characterized the HCV-HS interaction and analyzed its inhibition by antiviral host immune responses. Using recombinant envelope glycoproteins, virus-like particles, and HCV pseudoparticles as model systems for the early steps of viral infection, we mapped viral and cellular determinants of HCV-HS interaction. HCV-HS binding required a specific HS structure that included N-sulfo groups and a minimum of 10 to 14 saccharide subunits. HCV envelope binding to HS was mediated by four viral epitopes overlapping the E2 hypervariable region 1 and E2-CD81 binding domains. In functional studies using HCV pseudoparticles, we demonstrate that HCV binding and entry are specifically inhibited by highly sulfated HS. Finally, HCV-HS binding was markedly inhibited by antiviral antibodies derived from HCV-infected individuals. In conclusion, our results demonstrate that binding of the viral envelope to a specific HS configuration represents an important step for the initiation of viral infection and is a target of antiviral host immune responses in vivo. Mapping of viral and cellular determinants of HCV-HS interaction sets the stage for the development of novel HS-based antiviral strategies targeting viral attachment and entry.
Collapse
Affiliation(s)
- Heidi Barth
- Department of Medicine II, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fang X, Zeisel MB, Wilpert J, Gissler B, Thimme R, Kreutz C, Maiwald T, Timmer J, Kern WV, Donauer J, Geyer M, Walz G, Depla E, von Weizsäcker F, Blum HE, Baumert TF. Host cell responses induced by hepatitis C virus binding. Hepatology 2006; 43:1326-36. [PMID: 16729312 DOI: 10.1002/hep.21191] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Initiation of hepatitis C virus (HCV) infection is mediated by docking of the viral envelope to the hepatocyte cell surface membrane followed by entry of the virus into the host cell. Aiming to elucidate the impact of this interaction on host cell biology, we performed a genomic analysis of the host cell response following binding of HCV to cell surface proteins. As ligands for HCV-host cell surface interaction, we used recombinant envelope glycoproteins and HCV-like particles (HCV-LPs) recently shown to bind or enter hepatocytes and human hepatoma cells. Gene expression profiling of HepG2 hepatoma cells following binding of E1/E2, HCV-LPs, and liver tissue samples from HCV-infected individuals was performed using a 7.5-kd human cDNA microarray. Cellular binding of HCV-LPs to hepatoma cells resulted in differential expression of 565 out of 7,419 host cell genes. Examination of transcriptional changes revealed a broad and complex transcriptional program induced by ligand binding to target cells. Expression of several genes important for innate immune responses and lipid metabolism was significantly modulated by ligand-cell surface interaction. To assess the functional relevance and biological significance of these findings for viral infection in vivo, transcriptional changes were compared with gene expression profiles in liver tissue samples from HCV-infected patients or controls. Side-by-side analysis revealed that the expression of 27 genes was similarly altered following HCV-LP binding in hepatoma cells and viral infection in vivo. In conclusion, HCV binding results in a cascade of intracellular signals modulating target gene expression and contributing to host cell responses in vivo. Reprogramming of cellular gene expression induced by HCV-cell surface interaction may be part of the viral strategy to condition viral entry and replication and escape from innate host cell responses.
Collapse
Affiliation(s)
- Xinhua Fang
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Eren R, Landstein D, Terkieltaub D, Nussbaum O, Zauberman A, Ben-Porath J, Gopher J, Buchnick R, Kovjazin R, Rosenthal-Galili Z, Aviel S, Ilan E, Shoshany Y, Neville L, Waisman T, Ben-Moshe O, Kischitsky A, Foung SKH, Keck ZY, Pappo O, Eid A, Jurim O, Zamir G, Galun E, Dagan S. Preclinical evaluation of two neutralizing human monoclonal antibodies against hepatitis C virus (HCV): a potential treatment to prevent HCV reinfection in liver transplant patients. J Virol 2006; 80:2654-64. [PMID: 16501075 PMCID: PMC1395448 DOI: 10.1128/jvi.80.6.2654-2664.2006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Passive immunotherapy is potentially effective in preventing reinfection of liver grafts in hepatitis C virus (HCV)-associated liver transplant patients. A combination of monoclonal antibodies directed against different epitopes may be advantageous against a highly mutating virus such as HCV. Two human monoclonal antibodies (HumAbs) against the E2 envelope protein of HCV were developed and tested for the ability to neutralize the virus and prevent human liver infection. These antibodies, designated HCV-AB 68 and HCV-AB 65, recognize different conformational epitopes on E2. They were characterized in vitro biochemically and functionally. Both HumAbs are immunoglobulin G1 and have affinity constants to recombinant E2 constructs in the range of 10(-10) M. They are able to immunoprecipitate HCV particles from infected patients' sera from diverse genotypes and to stain HCV-infected human liver tissue. Both antibodies can fix complement and form immune complexes, but they do not activate complement-dependent or antibody-dependent cytotoxicity. Upon complement fixation, the monoclonal antibodies induce phagocytosis of the immune complexes by neutrophils, suggesting that the mechanism of viral clearance includes endocytosis. In vivo, in the HCV-Trimera model, both HumAbs were capable of inhibiting HCV infection of human liver fragments and of reducing the mean viral load in HCV-positive animals. The demonstrated neutralizing activities of HCV-AB 68 and HCV-AB 65 suggest that they have the potential to prevent reinfection in liver transplant patients and to serve as prophylactic treatment in postexposure events.
Collapse
Affiliation(s)
- Rachel Eren
- XTL Biopharmaceuticals Ltd., Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chapel C, Zitzmann N, Zoulim F, Durantel D. Virus morphogenesis and viral entry as alternative targets for novel hepatitis C antivirals. Future Virol 2006. [DOI: 10.2217/17460794.1.2.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatitis C virus (HCV) infection is a major public health concern. New antiviral drugs are required urgently to complement and improve the efficacy of current chemotherapies. Molecules specifically targeting viral enzymes are the most attractive in terms of drug development and are, therefore, the most studied. However, an antiviral strategy based uniquely on the utilization of this type of target is expected to encounter problems caused by the emergence of viral escape mutants as has already been widely described for HIV and hepatitis B virus. HCV morphogenesis and viral entry represent interesting, and yet unexploited, novel molecular targets. Inhibitors of morphogenesis have recently been identified and studied in different virus–cell systems. Some of these are currently being evaluated in clinical trials against HCV. This review focuses on HCV morphogenesis, viral entry and inhibition and presents clinical development perspectives of this new generation of antivirals.
Collapse
|
43
|
Bartosch B, Cosset FL. Cell entry of hepatitis C virus. Virology 2006; 348:1-12. [PMID: 16455127 DOI: 10.1016/j.virol.2005.12.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/30/2005] [Accepted: 12/15/2005] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV), an important human pathogen, is an enveloped, positive-stranded RNA virus classified in the hepacivirus genus of the Flaviviridae family. Cell attachment of flaviviruses generally leads to endocytosis of bound virions. Systems that support HCV replication and particle formation in vitro are emerging only now, 16 years after the discovery of the virus. Albeit this limitation, the route of HCV cell entry as well as 'capture' molecules involved in low-affinity interactions for the initial contact of HCV with target cells and potential high-affinity receptor candidates that may mediate HCV trafficking and fusion has been described. The objective of this review is to summarize the contribution of different HCV model systems to our current knowledge about structure of the HCV GPs E1 and E2 and their roles in cell entry comprising cell attachment, interactions with cellular receptors, endocytosis, and fusion.
Collapse
|
44
|
Zeisel MB, Baumert TF. Production of infectious hepatitis C virus in tissue culture: a breakthrough for basic and applied research. J Hepatol 2006; 44:436-9. [PMID: 16360233 DOI: 10.1016/j.jhep.2005.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mirjam B Zeisel
- Department of Medicine II, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany
| | | |
Collapse
|
45
|
Matsuo E, Tani H, Lim CK, Komoda Y, Okamoto T, Miyamoto H, Moriishi K, Yagi S, Patel AH, Miyamura T, Matsuura Y. Characterization of HCV-like particles produced in a human hepatoma cell line by a recombinant baculovirus. Biochem Biophys Res Commun 2006; 340:200-8. [PMID: 16360642 DOI: 10.1016/j.bbrc.2005.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
Although processing of the hepatitis C virus (HCV) polyprotein and characterization of each of its viral proteins have been described in detail, analysis of the structure and assembly of HCV particles has been hampered by the lack of a robust cell culture system to support efficient replication of HCV. In this study, we generated HCV-like particles (HCV-LP) using a recombinant baculovirus encoding structural and a part of non-structural proteins in a human hepatoma cell line. The HCV-LP exhibited a buoyant density of 1.17 g/ml in CsCl equilibrium gradient and particles of 40 to 50 nm in diameter. Binding of the HCV-LP to human hepatoma cells was partially inhibited by the treatment with anti-hCD81 antibody, in contrast to the hCD81-independent binding of HCV-LP produced in insect cells. These results indicate that HCV-LP generated in different types of cells exhibit different cellular tropism for binding to target cells.
Collapse
Affiliation(s)
- Eiko Matsuo
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Berke JM, Moradpour D. Hepatitis C virus comes full circle: production of recombinant infectious virus in tissue culture. Hepatology 2005; 42:1264-9. [PMID: 16317703 DOI: 10.1002/hep.20980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jan Martin Berke
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland
| | | |
Collapse
|
47
|
Petit MA, Lièvre M, Peyrol S, De Sequeira S, Berthillon P, Ruigrok RWH, Trépo C. Enveloped particles in the serum of chronic hepatitis C patients. Virology 2005; 336:144-53. [PMID: 15892956 DOI: 10.1016/j.virol.2005.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 03/17/2005] [Accepted: 03/19/2005] [Indexed: 01/08/2023]
Abstract
HCV particles were isolated from the plasma of chronically infected patients. The virus was analysed by sucrose density gradient centrifugation. The fractions were tested for viral RNA, core antigen and envelope proteins by using a monoclonal antibody directed against the natural E1E2 complex (D32.10). Two populations of particles containing RNA plus core antigen were separated: the first with a density of 1.06-1.08 g/ml did not contain the envelope proteins; the second with a density between 1.17 and 1.21 g/ml expressed both E1 and E2 glycoproteins. Electron microscopy of the enveloped population after immunoprecipitation with D32.10 showed spherical particles with a rather featureless surface and with a diameter around 40 nm. Immuno-gold staining gave evidence that the E1E2 complex was indeed positioned at the surface of these particles.
Collapse
Affiliation(s)
- Marie-Anne Petit
- INSERM U271, 151 Cours Albert Thomas, 69424 Lyon Cedex 03, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Barth H, Cerino R, Arcuri M, Hoffmann M, Schürmann P, Adah MI, Gissler B, Zhao X, Ghisetti V, Lavezzo B, Blum HE, von Weizsäcker F, Vitelli A, Scarselli E, Baumert TF. Scavenger receptor class B type I and hepatitis C virus infection of primary tupaia hepatocytes. J Virol 2005; 79:5774-85. [PMID: 15827192 PMCID: PMC1082724 DOI: 10.1128/jvi.79.9.5774-5785.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 12/02/2004] [Indexed: 01/28/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide. The study of early steps during HCV infection has been hampered by the lack of suitable in vitro or in vivo models. Primary Tupaia hepatocytes (PTH) have been shown to be susceptible to HCV infection in vitro and in vivo. Human scavenger receptor class B type I (SR-BI) represents an HCV receptor candidate mediating the cellular binding of E2 glycoprotein to HepG2 hepatoma cells. However, the function of SR-BI for viral infection of hepatocytes is unknown. In this study, we used PTH to assess the functional role of SR-BI as a putative HCV receptor. Sequence analysis of cloned tupaia SR-BI revealed a high homology between tupaia and human SR-BI. Transfection of CHO cells with human or tupaia SR-BI but not mouse SR-BI cDNA resulted in cellular E2 binding, suggesting that E2-binding domains between human and tupaia SR-BI are highly conserved. Preincubation of PTH with anti-SR-BI antibodies resulted in marked inhibition of E2 or HCV-like particle binding. However, anti-SR-BI antibodies were not able to block HCV infection of PTH. In conclusion, our results demonstrate that SR-BI represents an important cell surface molecule for the binding of the HCV envelope to hepatocytes and suggest that other or additional cell surface molecules are required for the initiation of HCV infection. Furthermore, the structural and functional similarities between human and tupaia SR-BI indicate that PTH represent a useful model system to characterize the molecular interaction of the HCV envelope and SR-BI on primary hepatocytes.
Collapse
Affiliation(s)
- Heidi Barth
- Dept. of Medicine II, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Favre D, Muellhaupt B. Potential cellular receptors involved in hepatitis C virus entry into cells. Lipids Health Dis 2005; 4:9. [PMID: 15836798 PMCID: PMC1087871 DOI: 10.1186/1476-511x-4-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 04/19/2005] [Indexed: 01/28/2023] Open
Abstract
Hepatitis C virus (HCV) infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s) responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.
Collapse
Affiliation(s)
- Daniel Favre
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Beat Muellhaupt
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
50
|
Hu Y, Hirshfield I. Rapid approach to identify an unrecognized viral agent. J Virol Methods 2005; 127:80-6. [PMID: 15893569 PMCID: PMC7112820 DOI: 10.1016/j.jviromet.2005.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 02/17/2005] [Accepted: 02/22/2005] [Indexed: 11/21/2022]
Abstract
For epidemic control, rapid identification and characterization of the responsible unknown agent are crucial. To address this critical question, a method was developed for virus discovery based on a flexible nested-PCR subtraction hybridization. As a positive control, we used hepatitis C virus as a hypothetical unrecognized virus and “discover” it in the sample. Using template-switching universal long-PCR to produce large quantities of cDNA, our nested-PCR-based subtractive hybridization coupled with a single-strand deletion technology removed most of the common cDNA. Following subtraction hybridization, a cDNA library was constructed and displayed by differential reverse dot blot hybridization. This new genomic subtraction hybridization method will be ideally suited to identify rapidly any previously unrecognized viral agent.
Collapse
Affiliation(s)
- Yuan Hu
- U.S. Food and Drug Administration, Northeast Regional Laboratory, Microbiological Sciences Branch, 158-15 Liberty Avenue, Jamaica, NY 11433, USA.
| | | |
Collapse
|