1
|
Risalvato J, Zengel J, Phillips M, Beavis A, Luo M, He B. A region of mumps virus nucleoprotein affects defective interfering particle production. J Gen Virol 2025; 106:002085. [PMID: 40214656 PMCID: PMC11992363 DOI: 10.1099/jgv.0.002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/12/2025] [Indexed: 04/14/2025] Open
Abstract
Mumps virus (MuV) is a negative-sense, single-stranded RNA virus belonging to the family Paramyxoviridae. MuV causes acute infection of the parotid glands, and the infection can result in severe cases of encephalitis, meningitis and deafness in humans. The non-segmented RNA genome of MuV is encapsidated by the nucleocapsid protein (NP), which forms the ribonucleoprotein (RNP) complex that serves as a template for viral RNA synthesis. To make viral genomic RNA accessible to the viral polymerase, a conformational change within NP occurs. Recently, an atomic model of the NP of MuV was developed with cryogenic-electron microscopy (cryo-EM) using PIV5 NP crystal structure as a homology template. To examine NP's structure and function, we performed mutational analysis of MuV NP at region(s) proposed to play a role in accessing viral RNA. The MuV NP mutants containing G185P, A197Q, Q200R and groups denoted as Top (N63G, P139D, A197Q), Tip (P109E, N121G, A124R) and Bottom (G21S, E29T, P43N, R93Q, R304Q) were first tested in a minigenome system. All mutations resulted in reduced reporter gene activities with Q200R and Bottom having the most severe negative effects. Rescuing of recombinant viruses with these mutations was attempted, and only MuV mutants '185 (G185P)', '197 (A197Q)' and 'Top (N63G, P139D, A197A)' were obtained. The 'Top' MuV mutant exhibited normal growth kinetics at low multiplicities of infection (MOIs); however, at high MOIs, the virus had reduced peak litres than low MOIs. Further analysis indicates that production of defective interfering particles (DI particles or DIPs) was enhanced by the mutant virus, indicating that this region, a known alpha-helix hinge region, is important for full-length genome replication, suggesting that it plays a role in maintaining stability of viral RNA-dependent RNA-polymerase on RNP template during MuV viral RNA synthesis. Understanding the production of DI particles will lead to a better understanding of MuV pathogenesis, as well as its replication/transcription process.
Collapse
Affiliation(s)
- Jacquline Risalvato
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30601, USA
| | - James Zengel
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30601, USA
| | - Mark Phillips
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30601, USA
| | - Ashley Beavis
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30601, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30601, USA
| |
Collapse
|
2
|
Pajkos M, Clerc I, Zanon C, Bernadó P, Cortés J. AFflecto: A web server to generate conformational ensembles of flexible proteins from AlphaFold models. J Mol Biol 2025:169003. [PMID: 40133775 DOI: 10.1016/j.jmb.2025.169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 03/27/2025]
Abstract
Intrinsically disordered proteins and regions (IDPs/IDRs) leverage their structural flexibility to fulfill essential cellular functions, with dysfunctions often linked to severe diseases. However, the relationships between their sequences, structural dynamics and functional roles remain poorly understood. Understanding these complex relationships is crucial for therapeutic development, highlighting the need for methods to generate plausible IDP/IDR conformational ensembles. While AlphaFold (AF) excels at modeling structured domains, it fails to accurately represent disordered regions, leaving a significant portion of proteomes inaccurately modeled. We present AFflecto, a user-friendly web server for generating large conformational ensembles of proteins that include both structured domains and IDRs from AF structural models. AFflecto identifies IDRs as tails, linkers or loops by analyzing their structural context. Additionally, it incorporates a method to identify conditionally folded IDRs that AF may incorrectly predict as natively folded elements. The conformational space is globally explored using efficient stochastic sampling algorithms. AFflecto's web interface allows users to customize the modeling, by modifying boundaries between ordered and disordered regions, and selecting among several sampling strategies. The web server is freely available at https://moma.laas.fr/applications/AFflecto/.
Collapse
Affiliation(s)
- Mátyás Pajkos
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Ilinka Clerc
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
3
|
Katoh H, Kimura R, Sekizuka T, Matsuoka K, Hosogi M, Kitai Y, Akahori Y, Kato F, Kataoka M, Kobayashi H, Nagata N, Suzuki T, Ohkawa Y, Oki S, Takeda M. Structural and molecular properties of mumps virus inclusion bodies. SCIENCE ADVANCES 2024; 10:eadr0359. [PMID: 39642233 PMCID: PMC11623304 DOI: 10.1126/sciadv.adr0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024]
Abstract
Viral RNA synthesis of mononegaviruses occurs in cytoplasmic membraneless organelles called inclusion bodies (IBs). Here, we report that IBs of mumps virus (MuV), which is the causative agent of mumps and belongs to the family Paramyxoviridae, displayed liquid organelle properties formed by liquid-liquid phase separation. Super-resolution microscopic analysis of MuV IBs demonstrated that nucleocapsid and phospho (P)-proteins formed a cage-like structure and that the viral polymerase adopted a reticular pattern and colocalized with viral RNAs. In addition, we characterized host RNAs localized in MuV IBs by a spatial transcriptome analysis, and found that RNAs containing G-quadruplex motif sequences (G4-RNAs) were concentrated. An in vitro phase separation assay showed that the G4-RNAs interacted with the P protein and enhanced condensation in P droplets. Together, our data show that MuV generates IBs with a characteristic cage-like structure and host G4-RNAs play an important role in forming MuV IBs.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryuichi Kimura
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kohei Matsuoka
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mika Hosogi
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Kitai
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Akahori
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Fumihiro Kato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hirotaka Kobayashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-0054, Japan
| | - Shinya Oki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Hara K, Nantachit N, Watanabe H. Antiviral peptide targeting P protein oligomerization: proof of concept for mononegaviruses. J Gen Virol 2024; 105. [PMID: 39688901 DOI: 10.1099/jgv.0.002062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
In Mononegavirales, phosphoproteins (P) are essential polymerase cofactors, forming oligomers and interacting with viral components to facilitate replication. Previous studies have demonstrated that a P-derived peptide (PFr) from the respiratory syncytial virus (RSV), containing the oligomerization domain (OD) and C-terminal domain (CTD), effectively inhibits RSV replication. Here, we extend this approach to paramyxoviruses, including HPIV3, MeV and MuV. Customized PFrs exhibited potent inhibitory effects against their respective viruses, with IC50 values below 100 nM, while showing minimal cytotoxicity. These findings highlight the potential of targeting P oligomerization as a broad-spectrum antiviral strategy for paramyxoviruses and other mononegaviruses.
Collapse
Affiliation(s)
- Koyu Hara
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Nattika Nantachit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| |
Collapse
|
5
|
Shaikh S, Carpenter M, Lin L, Frost JR, McLachlan E, Stein D, Van Caeseele P, Severini A. Serologic Cross-Reactivity between the Mumps Virus Vaccine Genotype A Strain and the Circulating Genotype G Strain. Viruses 2024; 16:1434. [PMID: 39339910 PMCID: PMC11437446 DOI: 10.3390/v16091434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Recent mumps outbreaks have been observed in vaccinated young adults due to the mumps virus (MuV) of genotype G, whereas the current vaccine is a mixture of two genotype A strains. These outbreaks could be attributed to waning vaccine immunity or the antigenic differences between the HN and F glycoproteins in the vaccine and circulating MuV. These glycoproteins are essential targets for the immune system, and antigenic variations may reduce the recognition of mumps antibodies, rendering the population susceptible to the MuV. We established stable cell lines expressing the MuV glycoproteins to study cross-reactivity between genotype A and genotype G. Cross-reactivity between the genotypes was evaluated via immunofluorescence using patient sera from vaccinated individuals, infected individuals, and vaccinated individuals infected with genotype G. Titer ratios showed that the vaccinated individuals exhibited a titer 3.68 times higher for the HN protein and 2.3 times higher for the F protein when comparing genotype A with genotype G. In contrast, the infected individuals showed a lower titer for genotype A compared with genotype G, at 0.43 and 0.33 for the HN and F proteins, respectively. No difference in titer ratio was observed for individuals vaccinated and subsequently infected with mumps. These findings suggest that antigenic variations between the two genotypes may potentially result in immune escape of the circulating strain, resulting in individuals susceptible to the MuV.
Collapse
Affiliation(s)
- Sabaparvin Shaikh
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Michael Carpenter
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Lisa Lin
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Jasmine Rae Frost
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Elizabeth McLachlan
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Derek Stein
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Cadham Provincial Laboratory, Winnipeg, MB R3E 3J7, Canada
| | - Paul Van Caeseele
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Cadham Provincial Laboratory, Winnipeg, MB R3E 3J7, Canada
| | - Alberto Severini
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
6
|
Siering O, Langbein M, Herrmann M, Wittwer K, von Messling V, Sawatsky B, Pfaller CK. Genetic diversity accelerates canine distemper virus adaptation to ferrets. J Virol 2024; 98:e0065724. [PMID: 39007615 PMCID: PMC11334482 DOI: 10.1128/jvi.00657-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called "quasispecies." Minor genetic variants promote their rapid adaptation, allowing for the emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assessing the risk of cross-species transmission and the safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation. To test this, we investigated the adaptation of the Morbillivirus canine distemper virus to ferrets and compared an attenuated, Vero cell-adapted virus isolate with its recombinant derivative over consecutive ferret passages. Although both viruses adapted to the new host, the reduced initial genetic diversity of the recombinant virus resulted in delayed disease onset. The non-recombinant virus gradually increased the frequencies of beneficial mutations already present at very low frequencies in the input virus. In contrast, the recombinant virus first evolved de novo mutations to compensate for the initial fitness impairments. Importantly, while both viruses evolved different sets of mutations, most mutations found in the adapted non-recombinant virus were identical to those found in a previous ferret adaptation experiment with the same isolate, indicating that mutations present at low frequency in the original virus stock serve as genetic memory. An arginine residue at position 519 in the carboxy terminus of the nucleoprotein shared by all adapted viruses was found to contribute to pathogenesis in ferrets. Our work illustrates the importance of genetic diversity for adaptation to new environments and identifies regions with functional relevance.IMPORTANCEWhen viruses encounter a new host, they can rapidly adapt to this host and cause disease. How these adaptation processes occur remains understudied. Morbilliviruses have high clinical and veterinary relevance and are attractive model systems to study these adaptation processes. The canine distemper virus is of particular interest, as it exhibits a broader host range than other morbilliviruses and frequently crosses species barriers. Here, we compared the adaptation of an attenuated virus and its recombinant derivative to that of ferrets. Pre-existing mutations present at low frequency allowed faster adaptation of the non-recombinant virus compared to the recombinant virus. We identified a common point mutation in the nucleoprotein that affected the pathogenesis of both viruses. Our study shows that genetic memory facilitates environmental adaptation and that erasing this genetic memory by genetic engineering results in delayed and different adaptation to new environments, providing an important safety aspect for the generation of live-attenuated vaccines.
Collapse
Affiliation(s)
- Oliver Siering
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Mareike Langbein
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Maike Herrmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Kevin Wittwer
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Bevan Sawatsky
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Otteson L, Nagy G, Kunkel J, Kodis G, Zheng W, Bignon C, Longhi S, Grubmüller H, Vaiana AC, Vaiana SM. Transient Non-local Interactions Dominate the Dynamics of Measles Virus N TAIL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604679. [PMID: 39091801 PMCID: PMC11291014 DOI: 10.1101/2024.07.22.604679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The RNA genome of measles virus is encapsidated by the nucleoprotein within a helical nucleocapsid that serves as template for both transcription and replication. The intrinsically disordered domain of the nucleoprotein (NTAIL), partly protruding outward from the nucleocapsid, is essential for binding the polymerase complex responsible for viral transcription and replication. As for many IDPs, binding of NTAIL occurs through a short molecular recognition element (MoRE) that folds upon binding, with the majority of NTAIL remaining disordered. Though NTAIL regions far from the MoRE influence the binding affinity, interactions between them and the MoRE have not been investigated in depth. Using an integrated approach, relying on photo-induced electron transfer (PET) experiments between tryptophan and cysteine pairs placed at different positions in the protein under varying salt and pH conditions, combined with simulations and analytical models, we identified transient interactions between two disordered regions distant in sequence, which dominate NTAIL dynamics, and regulate the conformational preferences of both the MoRE and the entire NTAIL domain. Co-evolutionary analysis corroborates our findings, and suggests an important functional role for the same intramolecular interactions. We propose mechanisms by which these non-local interactions may regulate binding to the phosphoprotein, polymerase recruitment, and ultimately viral transcription and replication. Our findings may be extended to other IDPs, where non-local intra-protein interactions affect the conformational preferences of intermolecular binding sites.
Collapse
Affiliation(s)
- Lillian Otteson
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Gabor Nagy
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - John Kunkel
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Gerdenis Kodis
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
| | | | - Sonia Longhi
- Aix Marseille Univ, CNRS, AFMB, UMR 7257, Marseille, France
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrea C Vaiana
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Present address: Nature's Toolbox, Inc. (NTx), Rio Rancho, NM 87144, USA
| | - Sara M Vaiana
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
8
|
Li T, Liu M, Gu Z, Su X, Liu Y, Lin J, Zhang Y, Shen QT. Structures of the mumps virus polymerase complex via cryo-electron microscopy. Nat Commun 2024; 15:4189. [PMID: 38760379 PMCID: PMC11101452 DOI: 10.1038/s41467-024-48389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The viral polymerase complex, comprising the large protein (L) and phosphoprotein (P), is crucial for both genome replication and transcription in non-segmented negative-strand RNA viruses (nsNSVs), while structures corresponding to these activities remain obscure. Here, we resolved two L-P complex conformations from the mumps virus (MuV), a typical member of nsNSVs, via cryogenic-electron microscopy. One conformation presents all five domains of L forming a continuous RNA tunnel to the methyltransferase domain (MTase), preferably as a transcription state. The other conformation has the appendage averaged out, which is inaccessible to MTase. In both conformations, parallel P tetramers are revealed around MuV L, which, together with structures of other nsNSVs, demonstrates the diverse origins of the L-binding X domain of P. Our study links varying structures of nsNSV polymerase complexes with genome replication and transcription and points to a sliding model for polymerase complexes to advance along the RNA templates.
Collapse
Affiliation(s)
- Tianhao Li
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Mingdong Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhanxi Gu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Su
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yunhui Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qing-Tao Shen
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
9
|
Free ISG15 Inhibits the Replication of Peste des Petits Ruminants Virus by Breaking the Interaction of Nucleoprotein and Phosphoprotein. Microbiol Spectr 2022; 10:e0103122. [PMID: 36036587 PMCID: PMC9603952 DOI: 10.1128/spectrum.01031-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes a highly contagious disease in small ruminants and severe economic losses in developing countries. PPRV infection can stimulate high levels of interferon (IFN) and many IFN-stimulated genes (ISGs), such as ISG15, which may play a key role in the process of viral infection. However, the role of ISG15 in PPRV infection and replication has not yet been reported. In this study, we found ISG15 expression to be significantly upregulated after PPRV infection of caprine endometrial epithelial cells (EECs), and ISG15 inhibits the proliferation of PPRV. Further analysis showed that free ISG15 could inhibit PPRV proliferation. Moreover, ISG15 does not affect the binding, entry, and transcription but does suppress the replication of PPRV. A detailed analysis revealed that ISG15 interacts and colocalizes with both viral N and P proteins and that its interactive regions are all located in the N-terminal domain. Further studies showed that ISG15 can competitively interact with N and P proteins and significantly interfere with their binding. Finally, through the construction of the C-terminal mutants of ISG15 with different lengths, it was found that amino acids (aa) 77 to 101 play a key role in inhibiting the binding of N and P proteins and that interaction with the P protein disappears after the deletion of 77 to 101 aa. The present study revealed a novel mechanism of ISG15 in disrupting the activity of the N0-P complex to inhibit viral replication. IMPORTANCE PPRV, a widespread and fatal disease of small ruminants, is one of the most devastating animal diseases in Africa, the Middle East, and Asia, causing severe economic losses. IFNs play an important role as a component of natural immunity against pathogens, yet the role of ISG15, an IFN-stimulated gene, in protecting against PPRV infection is currently unknown. We demonstrated, for the first time, that free ISG15 inhibits PPRV proliferation by disrupting the activity of the N0-P complex, a finding that has not been reported in other viruses. Our results provide important insights that can further understand the pathogenesis and innate immune mechanisms of PPRV.
Collapse
|
10
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
11
|
Abstract
We have developed a flexible platform for delivery of proteins to target cell interiors using paramyxovirus-like particles. The key enabling feature is an appendage, 15-30 amino acid residues in length, that is added to cargo proteins and that induces them to bind to the viral matrix (M) protein during virus-like particle (VLP) assembly. The cargo is then incorporated within the VLPs as they bud, using the same interactions that normally direct viral genome packaging. The appendage can also serve as an epitope tag for cargo detection using a nucleocapsid (NP) protein-specific monoclonal antibody. Using this approach, we generated Renilla luciferase-loaded VLPs, GFP-loaded VLPs, superoxide dismutase-loaded VLPs, and Cre recombinase-loaded VLPs. In each case, the VLPs could efficiently deliver their functional cargos to target cells, and in the case of Cre recombinase, to target cell nuclei. The strategy was employed using two different VLP production platforms, one based on parainfluenza virus 5 (PIV5) and the other based on Nipah virus, and in both cases efficient cargo packaging and delivery could be achieved. These findings provide a foundation for development of paramyxovirus-like particles as tools for safe and efficient delivery of therapeutic proteins to cells and tissues. IMPORTANCE Therapeutic proteins including transcription factors and genome editors have enormous clinical potential but are currently limited in part due to the challenges of safely and efficiently delivering these proteins to the interiors of target cells. Here, we have developed a new strategy for protein delivery based on manipulation of paramyxovirus genome packaging interactions.
Collapse
|
12
|
Roy R, Mishra A, Poddar S, Nayak D, Kar P. Investigating the mechanism of recognition and structural dynamics of nucleoprotein-RNA complex from Peste des petits ruminants virus via Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn 2020; 40:2302-2315. [DOI: 10.1080/07391102.2020.1838327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rajarshi Roy
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Anurag Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sayan Poddar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Debasis Nayak
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
13
|
Almansour I. Mumps Vaccines: Current Challenges and Future Prospects. Front Microbiol 2020; 11:1999. [PMID: 32973721 PMCID: PMC7468195 DOI: 10.3389/fmicb.2020.01999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Five decades have passed since the first mumps vaccine was licensed. Over this period, a resurgence of mumps infections has been recorded worldwide. Although global mumps infections have been controlled through vaccination, outbreaks are still on the rise, including in populations with high vaccination coverage. Several epidemiological studies suggest that this infectious virus continues to be a worldwide public health threat. The development and deployment of an improved, prophylactic mumps vaccine that provides long-lasting protection is indeed a priority. The purpose of this review is to provide an immuno-biological perspective on mumps vaccines. Here, we review the virology of mumps, licensed mumps vaccines, and the typical immune responses elicited following mumps vaccination. Furthermore, we discuss the limitations and challenges of the currently licensed mumps vaccines and provide strategies for the development of an improved mumps vaccine.
Collapse
Affiliation(s)
- Iman Almansour
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
14
|
Luo M, Terrell JR, Mcmanus SA. Nucleocapsid Structure of Negative Strand RNA Virus. Viruses 2020; 12:E835. [PMID: 32751700 PMCID: PMC7472042 DOI: 10.3390/v12080835] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Negative strand RNA viruses (NSVs) include many important human pathogens, such as influenza virus, Ebola virus, and rabies virus. One of the unique characteristics that NSVs share is the assembly of the nucleocapsid and its role in viral RNA synthesis. In NSVs, the single strand RNA genome is encapsidated in the linear nucleocapsid throughout the viral replication cycle. Subunits of the nucleocapsid protein are parallelly aligned along the RNA genome that is sandwiched between two domains composed of conserved helix motifs. The viral RNA-dependent-RNA polymerase (vRdRp) must recognize the protein-RNA complex of the nucleocapsid and unveil the protected genomic RNA in order to initiate viral RNA synthesis. In addition, vRdRp must continuously translocate along the protein-RNA complex during elongation in viral RNA synthesis. This unique mechanism of viral RNA synthesis suggests that the nucleocapsid may play a regulatory role during NSV replication.
Collapse
Affiliation(s)
- Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; (J.R.T.); (S.A.M.)
| | | | | |
Collapse
|
15
|
Marques RF, Gimenez AM, Aliprandini E, Novais JT, Cury DP, Watanabe IS, Dominguez MR, Silveira ELV, Amino R, Soares IS. Protective Malaria Vaccine in Mice Based on the Plasmodium vivax Circumsporozoite Protein Fused with the Mumps Nucleocapsid Protein. Vaccines (Basel) 2020; 8:vaccines8020190. [PMID: 32325874 PMCID: PMC7348950 DOI: 10.3390/vaccines8020190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022] Open
Abstract
Plasmodium vivax is the most common species of human malaria parasite found outside Africa, with high endemicity in Asia, Central and South America, and Oceania. Although Plasmodium falciparum causes the majority of deaths, P. vivax can lead to severe malaria and result in significant morbidity and mortality. The development of a protective vaccine will be a major step toward malaria elimination. Recently, a formulation containing the three allelic variants of the P. vivax circumsporozoite protein (PvCSP—All epitopes) showed partial protection in mice after a challenge with the hybrid Plasmodium berghei (Pb) sporozoite, in which the PbCSP central repeats were replaced by the VK210 PvCSP repeats (Pb/Pv sporozoite). In the present study, the chimeric PvCSP allelic variants (VK210, VK247, and P. vivax-like) were fused with the mumps virus nucleocapsid protein in the absence (NLP-CSPR) or presence of the conserved C-terminal (CT) domain of PvCSP (NLP-CSPCT). To elicit stronger humoral and cellular responses, Pichia pastoris yeast was used to assemble them as nucleocapsid-like particles (NLPs). Mice were immunized with each recombinant protein adjuvanted with Poly (I:C) and presented a high frequency of antigen-specific antibody-secreting cells (ASCs) on days 5 and 30, respectively, in the spleen and bone marrow. Moreover, high IgG titers against all PvCSP variants were detected in the sera. Later, these immunized mice with NLP-CSPCT were challenged with Pb/Pv sporozoites. Sterile protection was observed in 30% of the challenged mice. Therefore, this vaccine formulation use has the potential to be a good candidate for the development of a universal vaccine against P. vivax malaria.
Collapse
Affiliation(s)
- Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
- Center of Cellular and Molecular Therapy, Federal University of São Paulo, São Paulo 04044-010 SP, Brazil
| | - Eduardo Aliprandini
- Unit of Malaria Infection & Immunity, Institut Pasteur, 75015 Paris, France; (E.A.); (R.A.)
| | - Janaina T. Novais
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Diego P. Cury
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (D.P.C.); (I.-S.W.)
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (D.P.C.); (I.-S.W.)
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Rogerio Amino
- Unit of Malaria Infection & Immunity, Institut Pasteur, 75015 Paris, France; (E.A.); (R.A.)
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
- Correspondence:
| |
Collapse
|
16
|
Sourimant J, Thakkar VD, Cox RM, Plemper RK. Viral evolution identifies a regulatory interface between paramyxovirus polymerase complex and nucleocapsid that controls replication dynamics. SCIENCE ADVANCES 2020; 6:eaaz1590. [PMID: 32181359 PMCID: PMC7056317 DOI: 10.1126/sciadv.aaz1590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/11/2019] [Indexed: 05/02/2023]
Abstract
Paramyxoviruses are negative-polarity RNA viruses of major clinical importance. The dynamic interaction of the RNA-dependent RNA polymerase (RdRP) complex with the encapsidated RNA genome is mechanistically and structurally poorly understood. Having generated recombinant measles (MeV) and canine distemper (CDV) viruses with truncated nucleocapsid (N) protein showing defects in replication kinetics, we have applied a viral evolution approach to the problem. Passaging of recombinants resulted in long-range compensatory mutations that restored RdRP bioactivity in minigenome assays and efficient replication of engineered viruses. Compensatory mutations clustered at an electronically compatible acidic loop in N-core and a basic face of the phosphoprotein X domain (P-XD). Co-affinity precipitations, biolayer interferometry, and molecular docking revealed an electrostatic-driven transiently forming interface between these domains. The compensatory mutations reduced electrostatic compatibility of these microdomains and lowered coprecipitation efficiency, consistent with a molecular checkpoint function that regulates paramyxovirus polymerase mobility through modulation of conformational stability of the P-XD assembly.
Collapse
Affiliation(s)
- Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Vidhi D. Thakkar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
17
|
Influence of mutation in nucleoprotein of Peste-des-petits-ruminants virus (PPRV) isolated from 2016 Indian outbreak. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Dong D, Zhu S, Miao Q, Zhu J, Tang A, Qi R, Liu T, Yin D, Liu G. Nucleolin (NCL) inhibits the growth of peste des petits ruminants virus. J Gen Virol 2020; 101:33-43. [PMID: 31794379 PMCID: PMC7414435 DOI: 10.1099/jgv.0.001358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants that is caused by peste des petits ruminants virus (PPRV). To date, the molecular mechanism of PPRV infection is still unclear. It is well known that host proteins might be involved in the pathogenesis process for many viruses. In this study, we first proved that nucleolin (NCL), a highly conserved host factor, interacts with the core domain of PPRV N protein through its C terminus and co-locates with the N protein in the nucleus of cells. To investigate the role of NCL in PPRV infection, the expression level of NCL was inhibited with small interfering RNAs of NCL, and the results showed that PPRV growth was improved. However, the proliferation of PPRV was inhibited when the expression level of NCL was improved. Further analysis indicated that the inhibitory effect of NCL on the PPRV was caused by stimulating the interferon (IFN) pathways in host cells. In summary, our results will help us to understand the mechanism of PPRV infection.
Collapse
Affiliation(s)
- Dandan Dong
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Shiqiang Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Qiuhong Miao
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Jie Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Aoxing Tang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Ruibin Qi
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Teng Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Dongdong Yin
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Guangqing Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| |
Collapse
|
19
|
Tian X, Chen D, Wang H, Xu S, Zhu L, Wu X, Wu Z. The induction and characterization of monoclonal antibodies specific to GP of Ebola virus. J Med Virol 2019; 92:996-1006. [PMID: 31663613 DOI: 10.1002/jmv.25615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023]
Abstract
The Ebola virus is highly infectious and characterized by hemorrhagic fever, headache, and so on with a high mortality rate. Currently, there are neither therapeutic drugs or vaccines against the Ebola virus nor fast diagnostic methods for the detection of Ebola virus infection. This study reported the induction and isolation of two monoclonal antibodies that specifically recognized the glycoprotein (GP) and secreted glycoprotein (sGP) of the Ebola virus. Plasmids encoding either GP or sGP were constructed and immunized BALB/c mice, accordingly purified sGP was boosted. The antisera were analyzed for binding activity against sGP protein in enzyme-linked immunosorbent assay (ELISA) and neutralization activity in a pseudotyped virus neutralization assay. A number of reactive clones were isolated and two monoclonal antibodies T231 and T242 were identified to react with both GP and sGP. Western blot and ELISA assays showed that the monoclonal antibodies could react with GP and sGP, respectively. Moreover, they could recognize Ebola pseudovirus by cellular immunochemistry assay. We labeled the monoclonal antibody T231 with biotin and analyzed the competitiveness of the two antibodies by the ELISA test. The results showed that the binding epitopes of the two monoclonal antibodies to sGP were partially overlapped. In summary, two GP-specific mAbs were identified, which will be used to detect the Ebola virus or investigate GP.
Collapse
Affiliation(s)
- Xiaoyan Tian
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China.,Center for Public Health Research, Nanjing University, Nanjing, China
| | - Deyan Chen
- Center for Public Health Research, Nanjing University, Nanjing, China
| | - Huanru Wang
- Center for Public Health Research, Nanjing University, Nanjing, China
| | - Shijie Xu
- Center for Public Health Research, Nanjing University, Nanjing, China
| | - Linjing Zhu
- Y-Clone Medical Science Co Ltd, Nanjing, China
| | - Xilin Wu
- Center for Public Health Research, Nanjing University, Nanjing, China.,Y-Clone Medical Science Co Ltd, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Guseva S, Milles S, Blackledge M, Ruigrok RWH. The Nucleoprotein and Phosphoprotein of Measles Virus. Front Microbiol 2019; 10:1832. [PMID: 31496998 PMCID: PMC6713020 DOI: 10.3389/fmicb.2019.01832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/25/2019] [Indexed: 01/04/2023] Open
Abstract
Measles virus is a negative strand virus and the genomic and antigenomic RNA binds to the nucleoprotein (N), assembling into a helical nucleocapsid. The polymerase complex comprises two proteins, the Large protein (L), that both polymerizes RNA and caps the mRNA, and the phosphoprotein (P) that co-localizes with L on the nucleocapsid. This review presents recent results about N and P, in particular concerning their intrinsically disordered domains. N is a protein of 525 residues with a 120 amino acid disordered C-terminal domain, Ntail. The first 50 residues of Ntail extricate the disordered chain from the nucleocapsid, thereby loosening the otherwise rigid structure, and the C-terminus contains a linear motif that binds P. Recent results show how the 5′ end of the viral RNA binds to N within the nucleocapsid and also show that the bases at the 3′ end of the RNA are rather accessible to the viral polymerase. P is a tetramer and most of the protein is disordered; comprising 507 residues of which around 380 are disordered. The first 37 residues of P bind N, chaperoning against non-specific interaction with cellular RNA, while a second interaction site, around residue 200 also binds N. In addition, there is another interaction between C-terminal domain of P (XD) and Ntail. These results allow us to propose a new model of how the polymerase binds to the nucleocapsid and suggests a mechanism for initiation of transcription.
Collapse
Affiliation(s)
- Serafima Guseva
- Université Grenoble Alpes, Le Centre National de la Recherche Scientifique, Commissariatá l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Grenoble, France
| | - Sigrid Milles
- Université Grenoble Alpes, Le Centre National de la Recherche Scientifique, Commissariatá l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Grenoble, France
| | - Martin Blackledge
- Université Grenoble Alpes, Le Centre National de la Recherche Scientifique, Commissariatá l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Grenoble, France
| | - Rob W H Ruigrok
- Université Grenoble Alpes, Le Centre National de la Recherche Scientifique, Commissariatá l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
21
|
Song X, Shan H, Zhu Y, Hu S, Xue L, Chen Y, Ding W, Niu T, Gu J, Ouyang S, Shen QT, Liu ZJ. Self-capping of nucleoprotein filaments protects the Newcastle disease virus genome. eLife 2019; 8:45057. [PMID: 31290740 PMCID: PMC6675542 DOI: 10.7554/elife.45057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/09/2019] [Indexed: 12/02/2022] Open
Abstract
Non-segmented negative-strand RNA viruses, such as measles, ebola and Newcastle disease viruses (NDV), encapsidate viral genomic RNAs into helical nucleocapsids, which serve as the template for viral replication and transcription. Here, the clam-shaped nucleocapsid structure, where the NDV viral genome is sequestered, was determined at 4.8 Å resolution by cryo-electron microscopy. The clam-shaped structure is composed of two single-turn spirals packed in a back-to-back mode. This tightly packed structure functions as a seed for the assembly of a nucleocapsid from both directions, facilitating the growth of double-headed filaments with two separate RNA strings inside. Disruption of this structure by mutations in its loop interface yielded a single-headed unfunctional filament.
Collapse
Affiliation(s)
- Xiyong Song
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Shan
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yanping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ling Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yong Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Ding
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tongxin Niu
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jian Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qing-Tao Shen
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Zhi-Jie Liu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,iHuman Institute, ShanghaiTech University, Shanghai, China
| |
Collapse
|
22
|
Li P, Zhu Z, Zhang X, Dang W, Li L, Du X, Zhang M, Wu C, Xue Q, Liu X, Zheng H, Nan Y. The Nucleoprotein and Phosphoprotein of Peste des Petits Ruminants Virus Inhibit Interferons Signaling by Blocking the JAK-STAT Pathway. Viruses 2019; 11:v11070629. [PMID: 31288481 PMCID: PMC6669484 DOI: 10.3390/v11070629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 12/24/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is associated with global peste des petits ruminants resulting in severe economic loss. Peste des petits ruminants virus dampens host interferon-based signaling pathways through multiple mechanisms. Previous studies deciphered the role of V and C in abrogating IFN-β production. Moreover, V protein directly interacted with signal transducers and activators of transcription 1 (STAT1) and STAT2 resulting in the impairment of host IFN responses. In our present study, PPRV infection inhibited both IFN-β- and IFN-γ-induced activation of IFN-stimulated response element (ISRE) and IFN-γ-activated site (GAS) element, respectively. Both N and P proteins, functioning as novel IFN response antagonists, markedly suppressed IFN-β-induced ISRE and IFN-γ-induced GAS promoter activation to impair downstream upregulation of various interferon-stimulated genes (ISGs) and prevent STAT1 nuclear translocation. Specifically, P protein interacted with STAT1 and subsequently inhibited STAT1 phosphorylation, whereas N protein neither interacted with STAT1 nor inhibited STAT1 phosphorylation as well as dimerization, suggesting that the N and P protein antagonistic effects were different. Though they differed in their relationship to STAT1, both proteins blocked JAK-STAT signaling, severely negating the host antiviral immune response. Our study revealed a new mechanism employed by PPRV to evade host innate immune response, providing a platform to study the interaction of paramyxoviruses and host response.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Linlin Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiaoli Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Miaotao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing100081, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
23
|
Hong J, Kim D, Won Y, Yoon J, Park KJ, Oh J, Kim CW. Correlation between the results of two analytical methods for measuring measles virus neutralizing antibodies in source plasma and therapeutic immunoglobulin products. Biologicals 2019; 59:20-28. [PMID: 30992162 DOI: 10.1016/j.biologicals.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/31/2019] [Indexed: 12/18/2022] Open
Abstract
Patients with primary immunodeficiency disorders are vulnerable to infectious diseases. Intravenous immunoglobulin (IVIG) therapeutic products manufactured from human plasma are employed widely to protect patients from pathogens such as measles virus, which causes a potentially fatal and contagious disease. Therefore, health authorities stipulate a minimum titer of measles neutralizing antibodies (mnAbs) in IVIG products to ensure efficient protection. In general, mnAb titers are measured in a cell-based neutralization assay; however, this assay is labor intensive and time consuming, and the results are variable. Here, we compared a cell-based neutralizing assay with several ELISA tests to evaluate whether ELISAs can overcome the limitations of cell-based assays. The mnAb concentrations measured by the ELISAs showed a strong and significant positive correlation with those measured in a cell-based assay. Also, strong positive correlations were identified for measurement of individual source plasmas, which are used as raw materials for manufacturing IVIG products. Measurement by ELISA revealed that about 80% of 198 source plasmas had mnAb concentrations of <500 mIU/mL. These results suggest that quantitative ELISAs based on relevant antigens allow reliable and comprehensive measurement of mnAb concentrations in source plasmas and drug product; these ELISAs are also faster and more accurate than cell-based assay.
Collapse
Affiliation(s)
- Jeungwoon Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841, Anam-dong, Seoungbuk-gu, Seoul, Republic of Korea; GC Pharma., Ihyeon-ro 30 Beon-gil 107, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, Republic of Korea.
| | - Daegeun Kim
- GC Pharma., Ihyeon-ro 30 Beon-gil 107, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, Republic of Korea.
| | - Younhee Won
- GC Pharma., Ihyeon-ro 30 Beon-gil 107, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, Republic of Korea.
| | - Jungsoon Yoon
- GC Pharma., Ihyeon-ro 30 Beon-gil 107, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, Republic of Korea.
| | - Kuk Jin Park
- GC Pharma., Ihyeon-ro 30 Beon-gil 107, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, Republic of Korea.
| | - Jaetaek Oh
- GC Pharma., Ihyeon-ro 30 Beon-gil 107, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, Republic of Korea.
| | - Chan-Wha Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841, Anam-dong, Seoungbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Webby MN, Sullivan MP, Yegambaram KM, Radjainia M, Keown JR, Kingston RL. A method for analyzing the composition of viral nucleoprotein complexes, produced by heterologous expression in bacteria. Virology 2018; 527:159-168. [PMID: 30529564 DOI: 10.1016/j.virol.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 12/27/2022]
Abstract
Viral genomes are protected and organized by virally encoded packaging proteins. Heterologous production of these proteins often results in formation of particles resembling the authentic viral capsid or nucleocapsid, with cellular nucleic acids packaged in place of the viral genome. Quantifying the total protein and nucleic acid content of particle preparations is a recurrent biochemical problem. We describe a method for resolving this problem, developed when characterizing particles resembling the Menangle Virus nucleocapsid. The protein content was quantified using the biuret assay, which is largely independent of amino acid composition. Bound nucleic acids were quantified by determining the phosphorus content, using inductively coupled plasma mass spectrometry. Estimates for the amount of RNA packaged within the particles were consistent with the structurally-characterized packaging mechanism. For a bacterially-produced nucleoprotein complex, phosphorus usually provides a unique elemental marker of bound nucleic acids, hence this method of analysis should be routinely applicable.
Collapse
Affiliation(s)
- Melissa N Webby
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Mazdak Radjainia
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jeremy R Keown
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
25
|
Sviben D, Forcic D, Halassy B, Allmaier G, Marchetti-Deschmann M, Brgles M. Mass spectrometry-based investigation of measles and mumps virus proteome. Virol J 2018; 15:160. [PMID: 30326905 PMCID: PMC6192076 DOI: 10.1186/s12985-018-1073-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Background Measles (MEV) and mumps virus (MUV) are enveloped, non-segmented, negative single stranded RNA viruses of the family Paramyxoviridae, and are the cause of measles and mumps, respectively, both preventable by vaccination. Aside from proteins coded by the viral genome, viruses are considered to contain host cell proteins (HCPs). The presence of extracellular vesicles (ECVs), which are often co-purified with viruses due to their similarity in size, density and composition, also contributes to HCPs detected in virus preparations, and this has often been neglected. The aim was to identify which virus-coded proteins are present in MEV and MUV virions, and to try to detect which HCPs, if any, are incorporated inside the virions or adsorbed on their outer surface, and which are more likely to be a contamination from co-purified ECVs. Methods MUV, MEV and ECVs were purified by ultracentrifugation, hydrophobic interaction chromatography and immunoaffinity chromatography, proteins in the samples were resolved by SDS-PAGE and subjected to identification by MALDI-TOF/TOF-MS. A comparative analysis of HCPs present in all samples was carried out. Results By proteomics approach, it was verified that almost all virus-coded proteins are present in MEV and MUV particles. Protein C in MEV which was until now considered to be non-structural viral protein, was found to be present inside the MeV virions. Results on the presence of HCPs in differently purified virus preparations imply that actin, annexins, cyclophilin A, moesin and integrin β1 are part of the virions. Conclusions All HCPs detected in the viruses are present in ECVs as well, indicating their possible function in vesicle formation, or that most of them are only present in ECVs. Only five HCPs were constantly present in purified virus preparations, regardless of the purification method used, implying they are likely the integral part of the virions. The approach described here is helpful for further investigation of HCPs in other virus preparations. Electronic supplementary material The online version of this article (10.1186/s12985-018-1073-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dora Sviben
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10 000, Zagreb, Croatia. .,Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia.
| | - Dubravko Forcic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10 000, Zagreb, Croatia.,Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10 000, Zagreb, Croatia.,Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, AT-1060, Vienna, Austria
| | | | - Marija Brgles
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10 000, Zagreb, Croatia.,Centre of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| |
Collapse
|
26
|
Li S, Yi L, Cao Z, Cheng Y, Tong M, Wang J, Lin P, Cheng S. Identification of linear B-cell epitopes on the phosphoprotein of canine distemper virus using four monoclonal antibodies. Virus Res 2018; 257:52-56. [DOI: 10.1016/j.virusres.2018.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/31/2023]
|
27
|
The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity. J Virol 2018; 92:JVI.02064-17. [PMID: 29437959 DOI: 10.1128/jvi.02064-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/28/2018] [Indexed: 02/07/2023] Open
Abstract
The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design.IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral pathogenesis. We show that internal deletions in this Ntail region of up to 55 amino acids in length are compatible with efficient replication of recombinant viruses in cell culture but result in gradual viral attenuation in a lethal canine distemper virus (CDV)/ferret model. Mechanistically, we demonstrate a role of the intact Ntail region in the regulation of viral transcriptase activity. Recombinant viruses with Ntail truncations induce protective immunity against lethal challenge of ferrets with pathogenic CDV. This identification of the unstructured central Ntail domain as a nonessential paramyxovirus pathogenesis factor establishes a foundation for harnessing Ntail truncations for vaccine engineering against emerging and reemerging members of the paramyxovirus family.
Collapse
|
28
|
Troilo F, Bignon C, Gianni S, Fuxreiter M, Longhi S. Experimental Characterization of Fuzzy Protein Assemblies: Interactions of Paramyxoviral NTAIL Domains With Their Functional Partners. Methods Enzymol 2018; 611:137-192. [DOI: 10.1016/bs.mie.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Yu X, Cheng J, He Z, Li C, Song Y, Xue J, Yang H, Zhang R, Zhang G. The glutamic residue at position 402 in the C-terminus of Newcastle disease virus nucleoprotein is critical for the virus. Sci Rep 2017; 7:17471. [PMID: 29234115 PMCID: PMC5727133 DOI: 10.1038/s41598-017-17803-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2017] [Indexed: 11/09/2022] Open
Abstract
The nucleocapsid proteins (NPs) of Newcastle disease virus (NDV) and other paramyxoviruses play an important functional role during genomic RNA replication. Our previous study showed that the NP-encoding gene significantly influenced viral replication. Here, we investigated the roles of certain amino acid residues in the NP C-terminus in viral replication and virulence. Results showed that the glutamic acid residue at position 402 (E402) in the C-terminus of the NP is critical for RNA synthesis in the NDV mini-genome system. Mutation of E402 resulted in larger viral plaques that appeared more quickly, and increased the virulence of NDV. Further study indicated that the mutant virus had increased RNA levels during the early stages of virus infection, but that RNA replication was inhibited at later time points. These findings increase our knowledge of viral replication and contribute to a more comprehensive understanding of the virulence factors associated with NDV.
Collapse
Affiliation(s)
- Xiaohui Yu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jinlong Cheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zirong He
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chuang Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jia Xue
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Huiming Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Rui Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Hausrath AC, Kingston RL. Conditionally disordered proteins: bringing the environment back into the fold. Cell Mol Life Sci 2017; 74:3149-3162. [PMID: 28597298 PMCID: PMC11107710 DOI: 10.1007/s00018-017-2558-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
For many proteins, biological function requires the folding of the polypeptide chain into a unique and persistent tertiary structure. This review concerns proteins that adopt a specific tertiary structure to function, but are otherwise partially or completely disordered. The biological cue for protein folding is environmental perturbation or minor post-translational modification. Hence, we term these proteins conditionally disordered. Many of these proteins recognize and bind other molecules, and conditional disorder has been hypothesized to allow for more nuanced control and regulation of binding processes. However, this remains largely unproven. The sequences of conditionally disordered proteins suggest their propensity to fold; yet, under the standard laboratory conditions, they do not do so, which may appear surprising. We argue that the surprise results from the failure to consider the role of the environment in protein structure formation and that conditional disorder arises as a natural consequence of the marginal stability of the folded state.
Collapse
Affiliation(s)
- Andrew C Hausrath
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand.
| |
Collapse
|
31
|
Longhi S, Bloyet LM, Gianni S, Gerlier D. How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cell Mol Life Sci 2017; 74:3091-3118. [PMID: 28600653 PMCID: PMC11107670 DOI: 10.1007/s00018-017-2556-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023]
Abstract
In this review, we summarize computational and experimental data gathered so far showing that structural disorder is abundant within paramyxoviral nucleoproteins (N) and phosphoproteins (P). In particular, we focus on measles, Nipah, and Hendra viruses and highlight both commonalities and differences with respect to the closely related Sendai virus. The molecular mechanisms that control the disorder-to-order transition undergone by the intrinsically disordered C-terminal domain (NTAIL) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins are described in detail. By having a significant residual disorder, NTAIL-XD complexes are illustrative examples of "fuzziness", whose possible functional significance is discussed. Finally, the relevance of N-P interactions as promising targets for innovative antiviral approaches is underscored, and the functional advantages of structural disorder for paramyxoviruses are pinpointed.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Univ, AFMB UMR 7257, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
- CNRS, AFMB UMR 7257, 13288, Marseille, France.
| | - Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
32
|
Heat Shock Protein 90 Ensures Efficient Mumps Virus Replication by Assisting with Viral Polymerase Complex Formation. J Virol 2017; 91:JVI.02220-16. [PMID: 28053100 DOI: 10.1128/jvi.02220-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
Paramyxoviral RNAs are synthesized by a viral RNA-dependent RNA polymerase (RdRp) consisting of the large (L) protein and its cofactor phosphoprotein (P protein). The L protein is a multifunctional protein that catalyzes RNA synthesis, mRNA capping, and mRNA polyadenylation. Growing evidence shows that the stability of several paramyxovirus L proteins is regulated by heat shock protein 90 (Hsp90). In this study, we demonstrated that Hsp90 activity was important for mumps virus (MuV) replication. The Hsp90 activity was required for L-protein stability and activity because an Hsp90-specific inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), destabilized the MuV L protein and suppressed viral RNA synthesis. However, once the L protein formed a mature polymerase complex with the P protein, Hsp90 activity was no longer required for the stability and activity of the L protein. When the Hsp90 activity was inhibited, the MuV L protein was degraded through the CHIP (C terminus of Hsp70-interacting protein)-mediated proteasomal pathway. High concentrations of 17-AAG showed strong cytotoxicity to certain cell types, but combined use of an Hsp70 inhibitor, VER155008, potentiated degradation of the L protein, allowing a sufficient reduction of 17-AAG concentration to block MuV replication with minimum cytotoxicity. Regulation of the L protein by Hsp90 and Hsp70 chaperones was also demonstrated for another paramyxovirus, the measles virus. Collectively, our data show that the Hsp90/Hsp70 chaperone machinery assists in the maturation of the paramyxovirus L protein and thereby in the formation of a mature RdRp complex and efficient viral replication.IMPORTANCE Heat shock protein 90 (Hsp90) is nearly universally required for viral protein homeostasis. Here, we report that Hsp90 activity is required for efficient propagation of mumps virus (MuV). Hsp90 functions in the maintenance of the catalytic subunit of viral polymerase, the large (L) protein, prior to formation of a mature polymerase complex with the polymerase cofactor of L, phosphoprotein. Hsp70 collaborates with Hsp90 to regulate biogenesis of the MuV L protein. The functions of these chaperones on the viral polymerase may be common among paramyxoviruses because the L protein of measles virus is also similarly regulated. Our data provide important insights into the molecular mechanisms of paramyxovirus polymerase maturation as well as a basis for the development of novel antiviral drugs.
Collapse
|
33
|
Cox RM, Krumm SA, Thakkar VD, Sohn M, Plemper RK. The structurally disordered paramyxovirus nucleocapsid protein tail domain is a regulator of the mRNA transcription gradient. SCIENCE ADVANCES 2017; 3:e1602350. [PMID: 28168220 PMCID: PMC5291697 DOI: 10.1126/sciadv.1602350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
The paramyxovirus RNA-dependent RNA-polymerase (RdRp) complex loads onto the nucleocapsid protein (N)-encapsidated viral N:RNA genome for RNA synthesis. Binding of the RdRp of measles virus (MeV), a paramyxovirus archetype, is mediated through interaction with a molecular recognition element (MoRE) located near the end of the carboxyl-terminal Ntail domain. The structurally disordered central Ntail section is thought to add positional flexibility to MoRE, but the functional importance of this Ntail region for RNA polymerization is unclear. To address this question, we dissected functional elements of Ntail by relocating MoRE into the RNA-encapsidating Ncore domain. Linker-scanning mutagenesis identified a microdomain in Ncore that tolerates insertions. MoRE relocated to Ncore supported efficient interaction with N, MoRE-deficient Ntails had a dominant-negative effect on bioactivity that was alleviated by insertion of MoRE into Ncore, and recombinant MeV encoding N with relocated MoRE grew efficiently and remained capable of mRNA editing. MoRE in Ncore also restored viability of a recombinant lacking the disordered central Ntail section, but this recombinant was temperature-sensitive, with reduced RdRp loading efficiency and a flattened transcription gradient. These results demonstrate that virus replication requires high-affinity RdRp binding sites in N:RNA, but productive RdRp binding is independent of positional flexibility of MoRE and cis-acting elements in Ntail. Rather, the disordered central Ntail section independent of the presence of MoRE in Ntail steepens the paramyxovirus transcription gradient by promoting RdRp loading and preventing the formation of nonproductive polycistronic viral mRNAs. Disordered Ntails may have evolved as a regulatory element to adjust paramyxovirus gene expression.
Collapse
Affiliation(s)
- Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Stefanie A. Krumm
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Vidhi D. Thakkar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Maximilian Sohn
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Corresponding author.
| |
Collapse
|
34
|
Bloyet LM, Brunel J, Dosnon M, Hamon V, Erales J, Gruet A, Lazert C, Bignon C, Roche P, Longhi S, Gerlier D. Modulation of Re-initiation of Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength. PLoS Pathog 2016; 12:e1006058. [PMID: 27936158 PMCID: PMC5148173 DOI: 10.1371/journal.ppat.1006058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/12/2016] [Indexed: 12/22/2022] Open
Abstract
Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.
Collapse
Affiliation(s)
- Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Joanna Brunel
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Marion Dosnon
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Véronique Hamon
- Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
- CNRS, CRCM UMR 7258, Marseille, France
- INSERM, CRCM U1068, Marseille, France
| | - Jenny Erales
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Antoine Gruet
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Carine Lazert
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Christophe Bignon
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Philippe Roche
- Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
- CNRS, CRCM UMR 7258, Marseille, France
- INSERM, CRCM U1068, Marseille, France
| | - Sonia Longhi
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
35
|
Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein. Arch Virol 2016; 161:2103-16. [PMID: 27160999 DOI: 10.1007/s00705-016-2884-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Newcastle disease virus (NDV) encodes a highly phosphorylated P protein; however, the phosphorylation sites have not been identified, and the relationship between phosphorylation and protein function is still unclear. In this study, we bioinformatically predicted 26 amino acid residues in the P protein as potential phosphorylation sites. Furthermore, we treated infected cells with kinase inhibitors to investigate NDV propagation and found that protein kinase C (PKC) is involved in the NDV life cycle and that PKC-activated phosphorylation functions in NDV replication. Using an NDV minigenome assay, we found that expression of a reporter protein decreased when the minigenome system contained P mutants lacking T44, S48, T271, S373 and especially T111. The phosphorylation status of S48, T111, S125 and T271 was determined by Phos-tag SDS-PAGE analysis. Coimmunoprecipitation assays showed that the binding activity of NP and the P-T111A mutant was stronger than that of NP and the wild-type P, suggesting that P-T111 is involved in NP-P interaction. This study sheds light on the mechanism by which P protein phosphorylation affects NDV replication and transcription.
Collapse
|
36
|
Cox R, Plemper RK. Structure-guided design of small-molecule therapeutics against RSV disease. Expert Opin Drug Discov 2016; 11:543-556. [PMID: 27046051 PMCID: PMC5074927 DOI: 10.1517/17460441.2016.1174212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the United States, respiratory syncytial virus (RSV) is responsible for the majority of infant hospitalizations resulting from viral infections, as well as a leading source of pneumonia and bronchiolitis in young children and the elderly. In the absence of vaccine prophylaxis or an effective antiviral for improved disease management, the development of novel anti-RSV therapeutics is critical. Several advanced drug development campaigns of the past decade have focused on blocking viral infection. These efforts have returned a chemically distinct panel of small-molecule RSV entry inhibitors, but binding sites and molecular mechanism of action appeared to share a common mechanism, resulting in comprehensive cross-resistance and calling for alternative druggable targets such as viral RNA-dependent RNA-polymerase complex. Areas Covered: In this review, the authors discuss the current status of the mechanism of action of RSV entry inhibitors. They also provide the recent structural insight into the organization of the polymerase complex that have revealed novel drug targets sites, and outline a path towards the discovery of next-generation RSV therapeutics. Expert opinion: Considering the tremendous progress experienced in our structural understanding of RSV biology in recent years and encouraging early results of a nucleoside analog inhibitor in clinical trials, there is high prospect that new generations of much needed effective anti-RSV therapeutics will become available for clinical use in the foreseeable future.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| |
Collapse
|
37
|
Ray G, Schmitt PT, Schmitt AP. C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles. J Virol 2016; 90:3650-60. [PMID: 26792745 PMCID: PMC4794684 DOI: 10.1128/jvi.02673-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/14/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. IMPORTANCE Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein interactions which enable efficient packaging of encapsidated viral RNA genomes into budding virions. In this study, we have defined regions near the C-terminal ends of paramyxovirus nucleocapsid proteins that are important for matrix protein interaction and that are sufficient to direct a foreign protein into budding particles. These results advance our basic understanding of paramyxovirus genome packaging interactions and also have implications for the potential use of virus-like particles as protein delivery tools.
Collapse
Affiliation(s)
- Greeshma Ray
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Phuong Tieu Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anthony P Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
38
|
Brgles M, Bonta M, Šantak M, Jagušić M, Forčić D, Halassy B, Allmaier G, Marchetti-Deschmann M. Identification of mumps virus protein and lipid composition by mass spectrometry. Virol J 2016; 13:9. [PMID: 26768080 PMCID: PMC4712546 DOI: 10.1186/s12985-016-0463-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/05/2016] [Indexed: 01/19/2023] Open
Abstract
Background Mumps virus is a negative-sense, single stranded RNA virus consisting of a ribonucleocapsid core enveloped by a lipid membrane derived from host cell, which causes mumps disease preventable by vaccination. Since virus lipid envelope and glycosylation pattern are not encoded by the virus but dependent on the host cell at least to some extent, the aim of this work was to analyse L-Zagreb (L-Zg) mumps virus lipids and proteins derived from two cell types; Vero and chicken embryo fibroblasts (CEF). Jeryl Lynn 5 (JL5) mumps strain lipids were also analysed. Methods Virus lipids were isolated by organic phase extraction and subjected to 2D-high performance thin layer chromatography followed by lipid extraction and identification by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Virus samples were also subjected to gel electrophoresis under denaturating conditions and protein bands were excised, in-gel trypsinized and identified by MS as well as tandem MS. Results Results showed that lipids of both mumps virus strains derived from Vero cells contained complex glycolipids with up to five monosaccharide units whereas the lipid pattern of mumps virus derived from CEF was less complex. Mumps virus was found to contain expected structural proteins with exception of fusion (F) protein which was not detected but on the other hand, V protein was detected. Most interesting finding related to the mumps proteins is the detection of several forms of nucleoprotein (NP), some of which appear to be C-terminally truncated. Conclusions Differences found in lipid and protein content of mumps virus demonstrated the importance of detailed biochemical characterization of mumps virus and the methodology described here could provide a means for a more comprehensive quality control in vaccine production. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0463-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marija Brgles
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Maximilian Bonta
- Vienna University of Technology, Institute of Chemical Technologies and Analytics, A-1060, Vienna, Austria.
| | - Maja Šantak
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Maja Jagušić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Dubravko Forčić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Günter Allmaier
- Vienna University of Technology, Institute of Chemical Technologies and Analytics, A-1060, Vienna, Austria.
| | | |
Collapse
|
39
|
Oligomerization of Mumps Virus Phosphoprotein. J Virol 2015; 89:11002-10. [PMID: 26311887 DOI: 10.1128/jvi.01719-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The mumps virus (MuV) genome encodes a phosphoprotein (P) that is important for viral RNA synthesis. P forms the viral RNA-dependent RNA polymerase with the large protein (L). P also interacts with the viral nucleoprotein (NP) and self-associates to form a homotetramer. The P protein consists of three domains, the N-terminal domain (P(N)), the oligomerization domain (P(O)), and the C-terminal domain (P(C)). While P(N) is known to relax the NP-bound RNA genome, the roles of P(O) and P(C) are not clear. In this study, we investigated the roles of P(O) and P(C) in viral RNA synthesis using mutational analysis and a minigenome system. We found that P(N) and P(C) functions can be trans-complemented. However, this complementation requires P(O), indicating that P(O) is essential for P function. Using this trans-complementation system, we found that P forms parallel dimers (P(N) to P(N) and P(C) to P(C)). Furthermore, we found that residues R231, K238, K253, and K260 in P(O) are critical for P's functions. We identified P(C) to be the domain that interacts with L. These results provide structure-function insights into the role of MuV P. IMPORTANCE MuV, a paramyxovirus, is an important human pathogen. The P protein of MuV is critical for viral RNA synthesis. In this work, we established a novel minigenome system that allows the domains of P to be complemented in trans. Using this system, we confirmed that MuV P forms parallel dimers. An understanding of viral RNA synthesis will allow the design of better vaccines and the development of antivirals.
Collapse
|
40
|
Habchi J, Longhi S. Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment. Int J Mol Sci 2015; 16:15688-726. [PMID: 26184170 PMCID: PMC4519920 DOI: 10.3390/ijms160715688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed molecular description of the mechanisms governing the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (PXD) of the homologous P proteins. We also show that NTAIL-PXD complexes are "fuzzy", i.e., they possess a significant residual disorder, and discuss the possible functional significance of this fuzziness. Finally, we emphasize the relevance of N-P interactions involving intrinsically disordered proteins as promising targets for new antiviral approaches, and end up summarizing the general functional advantages of disorder for viruses.
Collapse
Affiliation(s)
- Johnny Habchi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| | - Sonia Longhi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
41
|
Longhi S. Structural disorder within paramyxoviral nucleoproteins. FEBS Lett 2015; 589:2649-59. [PMID: 26071376 DOI: 10.1016/j.febslet.2015.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
Abstract
In this review I summarize available data pointing to the abundance of structural disorder within the nucleoprotein (N) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. I provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous phosphoproteins. I also show that a significant flexibility persists within NTAIL-XD complexes, which makes them illustrative examples of "fuzziness". Finally, I discuss the functional implications of structural disorder for viral transcription and replication in light of the promiscuity of disordered regions and of the considerable reach they confer to the components of the replicative machinery.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
42
|
Cox R, Plemper RK. The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics. Front Microbiol 2015; 6:459. [PMID: 26029193 PMCID: PMC4428208 DOI: 10.3389/fmicb.2015.00459] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 12/04/2022] Open
Abstract
The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV), as well as the emerging zoonotic Hendra and Nipah viruses. In the U.S., RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp) complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path toward the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| |
Collapse
|
43
|
Roles of Phosphorylation of the Nucleocapsid Protein of Mumps Virus in Regulating Viral RNA Transcription and Replication. J Virol 2015; 89:7338-47. [PMID: 25948749 DOI: 10.1128/jvi.00686-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mumps virus (MuV) is a paramyxovirus with a negative-sense nonsegmented RNA genome. The viral RNA genome is encapsidated by the nucleocapsid protein (NP) to form the ribonucleoprotein (RNP), which serves as a template for transcription and replication. In this study, we investigated the roles of phosphorylation sites of NP in MuV RNA synthesis. Using radioactive labeling, we first demonstrated that NP was phosphorylated in MuV-infected cells. Using both liquid chromatography-mass spectrometry (LC-MS) and in silico modeling, we identified nine putative phosphorylated residues within NP. We mutated these nine residues to alanine. Mutation of the serine residue at position 439 to alanine (S439A) was found to reduce the phosphorylation of NP in transfected cells by over 90%. The effects of these mutations on the MuV minigenome system were examined. The S439A mutant was found to have higher activity, four mutants had lower activity, and four mutants had similar activity compared to wild-type NP. MuV containing the S439A mutation had 90% reduced phosphorylation of NP and enhanced viral RNA synthesis and viral protein expression at early time points after infection, indicating that S439 is the major phosphorylation site of NP and its phosphorylation plays an important role in downregulating viral RNA synthesis. IMPORTANCE Mumps virus (MuV), a paramyxovirus, is an important human pathogen that is reemerging in human populations. Nucleocapsid protein (NP) of MuV is essential for viral RNA synthesis. We have identified the major phosphorylation site of NP. We have found that phosphorylation of NP plays a critical role in regulating viral RNA synthesis. The work will lead to a better understanding of viral RNA synthesis and possible novel targets for antiviral drug development.
Collapse
|
44
|
Insights into the structure and dynamics of measles virus nucleocapsids by 1H-detected solid-state NMR. Biophys J 2015; 107:941-6. [PMID: 25140429 DOI: 10.1016/j.bpj.2014.05.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022] Open
Abstract
(1)H-detected solid-state nuclear magnetic resonance (NMR) experiments are recorded on both intact and trypsin-cleaved sedimented measles virus (MeV) nucleocapsids under ultra-fast magic-angle spinning. High-resolution (1)H,(15)N-fingerprints allow probing the degree of molecular order and flexibility of individual capsid proteins, providing an exciting atomic-scale complement to electro microscopy (EM) studies of the same systems.
Collapse
|
45
|
Gutsche I, Desfosses A, Effantin G, Ling WL, Haupt M, Ruigrok RWH, Sachse C, Schoehn G. Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science 2015; 348:704-7. [PMID: 25883315 DOI: 10.1126/science.aaa5137] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/06/2015] [Indexed: 01/25/2023]
Abstract
Measles is a highly contagious human disease. We used cryo-electron microscopy and single particle-based helical image analysis to determine the structure of the helical nucleocapsid formed by the folded domain of the measles virus nucleoprotein encapsidating an RNA at a resolution of 4.3 angstroms. The resulting pseudoatomic model of the measles virus nucleocapsid offers important insights into the mechanism of the helical polymerization of nucleocapsids of negative-strand RNA viruses, in particular via the exchange subdomains of the nucleoprotein. The structure reveals the mode of the nucleoprotein-RNA interaction and explains why each nucleoprotein of measles virus binds six nucleotides, whereas the respiratory syncytial virus nucleoprotein binds seven. It provides a rational basis for further analysis of measles virus replication and transcription, and reveals potential targets for drug design.
Collapse
Affiliation(s)
- Irina Gutsche
- CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Université Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France.
| | - Ambroise Desfosses
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69917 Heidelberg, Germany
| | - Grégory Effantin
- CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Université Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France
| | - Wai Li Ling
- Université Grenoble Alpes, IBS, 38044 Grenoble, France. CNRS, IBS, 38044 Grenoble, France. CEA, IBS, 38044 Grenoble, France
| | | | - Rob W H Ruigrok
- CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Université Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France
| | - Carsten Sachse
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69917 Heidelberg, Germany
| | - Guy Schoehn
- CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Université Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Université Grenoble Alpes, IBS, 38044 Grenoble, France. CNRS, IBS, 38044 Grenoble, France. CEA, IBS, 38044 Grenoble, France
| |
Collapse
|
46
|
Order and Disorder in the Replicative Complex of Paramyxoviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:351-81. [PMID: 26387109 DOI: 10.1007/978-3-319-20164-1_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we summarize available data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within NTAIL-XD complexes, which therefore provide illustrative examples of "fuzziness". The functional implications of structural disorder for viral transcription and replication are discussed in light of the ability of disordered regions to establish a complex molecular partnership and to confer a considerable reach to the elements of the replicative machinery.
Collapse
|
47
|
Ono YI, Miyashita M, Ono Y, Okazaki H, Watanabe S, Tochio N, Kigawa T, Nishimura C. Comparison of residual alpha- and beta-structures between two intrinsically disordered proteins by using NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:229-38. [PMID: 25523747 DOI: 10.1016/j.bbapap.2014.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/24/2022]
Abstract
Intrinsically disordered proteins contain some residual structures, which may fold further upon binding to the partner protein for function. The residual structures observed in two intrinsically disordered proteins, including the C-terminal segment of peripherin-2 (63 residues) and measles virus nucleocapsid protein Ntail (125 residues), were compared using NMR. Differences in the chemical shifts of alpha-, beta- and carbonyl carbons between the observed structure and calculated random coil revealed the existence of a helix and some possible beta-structures in both proteins. The intensity of signals in the C-terminal segment of peripherin-2 in NMR spectra was informative and locally low, particularly in the middle and N-terminal parts: this suggested the broadening of the signals caused by the formation of residual structures in those areas. Furthermore, the protection of exchange of amide protons was significantly observed at the N-terminus. Conversely, the intensities of signals for Ntail were random beyond the overall areas of protein, and indicated no characteristic pattern. Only a faint protection of amide-proton exchange in Ntail was observed in the C-terminus. It was concluded that Ntail was more intrinsically disordered than the C-terminal segment of peripherin-2. The combination of chemical shifts with the amide-proton exchanges and signal intensities was useful for the analyses of the remaining secondary structures. The beta-structure might be more detectable by the protection of amide-proton exchange than the helical structure, although the changes in chemical shifts were sensitive for the detection of elements of both secondary structures.
Collapse
Affiliation(s)
- Yu-ichi Ono
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Manami Miyashita
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Yumi Ono
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Honoka Okazaki
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Satoru Watanabe
- NMR Pipeline Methodology Team, RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan
| | - Naoya Tochio
- NMR Pipeline Methodology Team, RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan
| | - Takanori Kigawa
- NMR Pipeline Methodology Team, RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan
| | - Chiaki Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan.
| |
Collapse
|
48
|
Bordeaux JM, Lorenz WW, Johnson D, Badgett MJ, Glushka J, Orlando R, Dean JFD. Noctilisin, a Venom Glycopeptide of Sirex noctilio (Hymenoptera: Siricidae), Causes Needle Wilt and Defense Gene Responses in Pines. JOURNAL OF ECONOMIC ENTOMOLOGY 2014; 107:1931-45. [PMID: 26309284 PMCID: PMC5746048 DOI: 10.1603/ec14151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During oviposition, female Sirex noctilio (F.) (Siricidae) woodwasps inject their conifer hosts with a venom gland secretion. The secretion induces a variety of host physiological changes that facilitate subsequent lethal infection by a symbiotic fungus. A heat-stable factor that can migrate from the site of oviposition in the trunk through the xylem to needles in the crown of attacked pines was purified by size-fractionation and reversed-phase-high-performance liquid chromatography using activity assays based on defense gene induction as well as the needle wilt response in pine shoot explants. An 11-amino acid, posttranslationally modified peptide (SEGPROGTKRP) encoded by the most abundant transcript recovered from S. noctilio venom gland tissue comprised the backbone of the 1,850 Da active factor. Posttranslational modifications included hydroxylation of a Pro residue at position 6 as well as O-glycosylation of Ser and Thr residues at positions 1 and 8, respectively. The O-linked sugars were identical α-linked N-acetylgalactosamine residues modified at the C6 position by addition of phosphoethanolamine. In contrast to the native peptide, a synthetic version of the hydroxylated peptide backbone lacking the glycosyl side chains failed to induce pine defense genes or cause needle wilt in excised shoots. This peptide, hereafter called noctilisin, is related to the O-glycosylated short-chain proline-rich antimicrobial peptides exemplified by drosocin. The noctilisin structure contains motifs which may explain how it avoids detection by pine defense systems.
Collapse
Affiliation(s)
- J Michael Bordeaux
- From the Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602
| | - W Walter Lorenz
- From the Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602
| | - Darryl Johnson
- The Department of Chemistry, University of Georgia, Athens,GA 30602
| | - Majors J Badgett
- The Department of Chemistry, University of Georgia, Athens,GA 30602
| | - John Glushka
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Ronald Orlando
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. The Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Jeffrey F D Dean
- From the Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602. The Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602.
| |
Collapse
|
49
|
Construction of a Minigenome Rescue System for Measles Virus, AIK-c Strain. IRANIAN JOURNAL OF BIOTECHNOLOGY 2014. [DOI: 10.5812/ijb.18002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Yegambaram K, Bulloch EMM, Kingston RL. Protein domain definition should allow for conditional disorder. Protein Sci 2013; 22:1502-18. [PMID: 23963781 DOI: 10.1002/pro.2336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/04/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.
Collapse
Affiliation(s)
- Kavestri Yegambaram
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | | | | |
Collapse
|