1
|
Pogany J, Inaba JI, Liu Y, Nagy PD. Screening bacterial effectors and human virus proteins in yeast to identify host factors driving tombusvirus RNA recombination: a role for autophagy and membrane phospholipid content. J Virol 2025:e0166124. [PMID: 40422074 DOI: 10.1128/jvi.01661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/27/2025] [Indexed: 05/28/2025] Open
Abstract
Recombination in RNA viruses contributes to virus evolution and rapid emergence of new viral variants that helps evade host's antiviral strategies. Host factors play important but poorly characterized roles in viral RNA recombination. The authors expressed Legionella bacterium effector proteins and SARS-CoV-2 and human metapneumovirus (HMPV) proteins in yeast to test their effects on tomato bushy stunt virus (TBSV) RNA recombination. The identified 16 Legionella effectors, six SARS-CoV-2, and two HMPV proteins affecting TBSV recombination likely target shared host factors with TBSV. Among the targets of the effectors/viral proteins was the autophagy pathway. Inhibition of autophagy by expression of RavZ and LegA9 Legionella effectors reduced the production of TBSV recombinants in yeast and plants. Induction of autophagy by rapamycin, via nitrogen starvation of yeast or overexpression of ATG2 lipid transfer protein, led to enhanced viral RNA recombination. Using in vitro TBSV replicase assembly on giant unilamellar vesicles confirmed the critical role of phosphatidylethanolamine in RNA recombination. We suggest that the pro-recombination role of co-opted autophagy is to provide abundant phospholipids for viral replication organelle biogenesis. Overall, this work highlights the critical roles of membrane phospholipids and lipid context in the regulation of viral RNA recombination. We show that SARS-CoV-2 N and HMPV M2-1 proteins enhance TBSV RNA replication and recombination by protecting the viral RNAs from host Xrn1 5´-3´ exoribonuclease in yeast. Altogether, the novel strategy of using TBSV as a cellular system sensor might assist in the identification of novel functional targets of various viral and bacterial effectors in yeast. IMPORTANCE Positive-strand (+)RNA viruses replicate in the cytosol of infected cells by exploiting cellular proteins and resources that frequently lead to diseases. Virus replication results in the generation of viral RNA recombinants that contribute to the emergence of new viral variants and adaptation to new hosts. The authors expressed Legionella bacterium effector proteins, SARS-CoV-2 and human metapneumovirus proteins in yeast to test their effects on tomato bushy stunt virus (TBSV) RNA recombination. This novel approach revealed that Legionella effectors and heterologous viral proteins target shared host factors with TBSV, including the autophagy pathway. In vitro approach revealed that the pro-recombination role of co-opted autophagy is to provide abundant phospholipids for viral replication. SARS-CoV-2 nucleocapsid protein and human metapneumovirus M2-1 protein are shown to enhance TBSV RNA replication and recombination by protecting the viral RNAs from host Xrn1 5´-3´ exoribonuclease in yeast. Thus, the TBSV/yeast system can be used as a cellular system sensor to find new functions of heterologous viral proteins.
Collapse
Affiliation(s)
- Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-Ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Yuyan Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Wang Z, Wen H. A review of the recombination events, mechanisms and consequences of Coxsackievirus A6. INFECTIOUS MEDICINE 2024; 3:100115. [PMID: 38974347 PMCID: PMC11225671 DOI: 10.1016/j.imj.2024.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is one of the most common class C infectious diseases, posing a serious threat to public health worldwide. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) have been regarded as the major pathogenic agents of HFMD; however, since an outbreak caused by coxsackievirus A6 (CV-A6) in France in 2008, CV-A6 has gradually become the predominant pathogen in many regions. CV-A6 infects not only children but also adults, and causes atypical clinical symptoms such as a more generalized rash, eczema herpeticum, high fever, and onychomadesis, which are different from the symptoms associated with EV-A71 and CV-A16. Importantly, the rate of genetic recombination of CV-A6 is high, which can lead to changes in virulence and the rapid evolution of other characteristics, thus posing a serious threat to public health. To date, no specific vaccines or therapeutics have been approved for CV-A6 prevention or treatment, hence it is essential to fully understand the relationship between recombination and evolution of this virus. Here, we systematically review the genetic recombination events of CV-A6 that have occurred worldwide and explore how these events have promoted virus evolution, thus providing important information regarding future HFMD surveillance and prevention.
Collapse
Affiliation(s)
- Zequn Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| |
Collapse
|
3
|
Dexheimer S, Shrestha N, Chapagain BS, Bujarski JJ, Yin Y. Characterization of Variant RNAs Encapsidated during Bromovirus Infection by High-Throughput Sequencing. Pathogens 2024; 13:96. [PMID: 38276169 PMCID: PMC10819421 DOI: 10.3390/pathogens13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Previously, we described the RNA recombinants accumulating in tissues infected with the bromoviruses BMV (Brome mosaic virus) and CCMV (Cowpea chlorotic mottle virus). In this work, we characterize the recombinants encapsidated inside the purified virion particles of BMV and CCMV. By using a tool called the Viral Recombination Mapper (ViReMa) that detects recombination junctions, we analyzed a high number of high-throughput sequencing (HTS) short RNA sequence reads. Over 28% of BMV or CCMV RNA reads did not perfectly map to the viral genomes. ViReMa identified 1.40% and 1.83% of these unmapped reads as the RNA recombinants, respectively, in BMV and CCMV. Intra-segmental crosses were more frequent than the inter-segmental ones. Most intra-segmental junctions carried short insertions/deletions (indels) and caused frameshift mutations. The mutation hotspots clustered mainly within the open reading frames. Substitutions of various lengths were also identified, whereas a small fraction of crosses occurred between viral and their host RNAs. Our data reveal that the virions can package detectable amounts of multivariate recombinant RNAs, contributing to the flexible nature of the viral genomes.
Collapse
Affiliation(s)
- Sarah Dexheimer
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA; (S.D.); (N.S.); (B.S.C.)
| | - Nipin Shrestha
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA; (S.D.); (N.S.); (B.S.C.)
| | - Bandana Sharma Chapagain
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA; (S.D.); (N.S.); (B.S.C.)
| | - Jozef J. Bujarski
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA; (S.D.); (N.S.); (B.S.C.)
| | - Yanbin Yin
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA; (S.D.); (N.S.); (B.S.C.)
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska—Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
4
|
Lin CH, Chen B, Chao DY, Hsieh FC, Lai CC, Wang WC, Kuo CY, Yang CC, Hsu HW, Tam HMH, Wu HY. Biological characterization of coronavirus noncanonical transcripts in vitro and in vivo. Virol J 2023; 20:232. [PMID: 37828527 PMCID: PMC10571414 DOI: 10.1186/s12985-023-02201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND In addition to the well-known coronavirus genomes and subgenomic mRNAs, the existence of other coronavirus RNA species, which are collectively referred to as noncanonical transcripts, has been suggested; however, their biological characteristics have not yet been experimentally validated in vitro and in vivo. METHODS To comprehensively determine the amounts, species and structures of noncanonical transcripts for bovine coronavirus in HRT-18 cells and mouse hepatitis virus A59, a mouse coronavirus, in mouse L cells and mice, nanopore direct RNA sequencing was employed. To experimentally validate the synthesis of noncanonical transcripts under regular infection, Northern blotting was performed. Both Northern blotting and nanopore direct RNA sequencing were also applied to examine the reproducibility of noncanonical transcripts. In addition, Northern blotting was also employed to determine the regulatory features of noncanonical transcripts under different infection conditions, including different cells, multiplicities of infection (MOIs) and coronavirus strains. RESULTS In the current study, we (i) experimentally determined that coronavirus noncanonical transcripts were abundantly synthesized, (ii) classified the noncanonical transcripts into seven populations based on their structures and potential synthesis mechanisms, (iii) showed that the species and amounts of the noncanonical transcripts were reproducible during regular infection but regulated in altered infection environments, (iv) revealed that coronaviruses may employ various mechanisms to synthesize noncanonical transcripts, and (v) found that the biological characteristics of coronavirus noncanonical transcripts were similar between in vitro and in vivo conditions. CONCLUSIONS The biological characteristics of noncanonical coronavirus transcripts were experimentally validated for the first time. The identified features of noncanonical transcripts in terms of abundance, reproducibility and variety extend the current model for coronavirus gene expression. The capability of coronaviruses to regulate the species and amounts of noncanonical transcripts may contribute to the pathogenesis of coronaviruses during infection, posing potential challenges in disease control. Thus, the biology of noncanonical transcripts both in vitro and in vivo revealed here can provide a database for biological research, contributing to the development of antiviral strategies.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - BoJia Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hon-Man-Herman Tam
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
5
|
Lin CH, Chen B, Chao DY, Hsieh FC, Yang CC, Hsu HW, Tam HMH, Wu HY. Unveiling the biology of defective viral genomes in vitro and in vivo: implications for gene expression and pathogenesis of coronavirus. Virol J 2023; 20:225. [PMID: 37803357 PMCID: PMC10559480 DOI: 10.1186/s12985-023-02189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Defective viral genome (DVG) is a truncated version of the full-length virus genome identified in most RNA viruses during infection. The synthesis of DVGs in coronavirus has been suggested; however, the fundamental characteristics of coronavirus DVGs in gene expression and pathogenesis have not been systematically analyzed. METHODS Nanopore direct RNA sequencing was used to investigate the characteristics of coronavirus DVGs in gene expression including reproducibility, abundance, species and genome structures for bovine coronavirus in cells, and for mouse hepatitis virus (MHV)-A59 (a mouse coronavirus) in cells and in mice. The MHV-A59 full-length genomic cDNAs (~ 31 kilobases) were in vitro constructed to experimentally validate the origin of coronavirus DVG. The synthesis of DVGs was also experimentally identified by RT-PCR followed by sequencing. In addition, the alterations of DVGs in amounts and species under different infection environments and selection pressures including the treatment of antiviral remdesivir and interferon were evaluated based on the banding patterns by RT-PCR. RESULTS The results are as follows: (i) the structures of DVGs are with diversity, (ii) DVGs are overall synthesized with moderate (MHV-A59 in cells) to high (BCoV in cells and MHV-A59 in mice) reproducibility under regular infection with the same virus inoculum, (iii) DVGs can be synthesized from the full-length coronavirus genome, (iv) the sequences flanking the recombination point of DVGs are AU-rich and thus may contribute to the recombination events during gene expression, (v) the species and amounts of DVG are altered under different infection environments, and (vi) the biological nature of DVGs between in vitro and in vivo is similar. CONCLUSIONS The identified biological characteristics of coronavirus DVGs in terms of abundance, reproducibility, and variety extend the current model for coronavirus gene expression. In addition, the biological features of alterations in amounts and species of coronavirus DVGs under different infection environments may assist the coronavirus to adapt to the altered environments for virus fitness and may contribute to the coronavirus pathogenesis. Consequently, the unveiled biological features may assist the community to study the gene expression mechanisms of DVGs and their roles in pathogenesis, contributing to the development of antiviral strategy and public health.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - BoJia Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
| | - Day-Yu Chao
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hon-Man-Herman Tam
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
6
|
Cui X, Xia D, Huang X, Sun Y, Shi M, Zhang J, Li G, Yang Y, Wang H, Cai X, An T. Analysis of Recombinant Characteristics Based on 949 PRRSV-2 Genomic Sequences Obtained from 1991 to 2021 Shows That Viral Multiplication Ability Contributes to Dominant Recombination. Microbiol Spectr 2022; 10:e0293422. [PMID: 36073823 PMCID: PMC9602502 DOI: 10.1128/spectrum.02934-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 01/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases affecting the pig-raising industry. The PRRS virus (PRRSV) has high genetic diversity, partly owing to viral recombination. Some individual recombinant type 2 PRRSV (PRRSV-2) strains have been detected; however, the sequence composition characteristics of recombination hot spots and potential driving forces for recombinant PRRSV-2 are still unreported. Therefore, all available genomic sequences of PRRSV-2 (n = 949, including 29 genomes sequenced in this study) from 11 countries from 1991 to 2021 were collected and analyzed. The results revealed that the dominant major recombinant parent has been converted from lineage 3 (L3) to L1 since 2012. The recombination hot spots were located at nucleotides (nt) 7900 to 8200 (in NSP9, encoding viral RNA-dependent RNA polymerase) and nt 12500 to nt 13300 (in ORF2-ORF4, mean ORF2 to ORF4); no AU-rich characteristics were found in the recombination hot spots. Based on infectious clones of L1 and L8 PRRSV-2, recombinant PRRSVs were generated by switching complete or partial NSP9 (harboring the recombination hot spot). The results showed that recombinant PRRSVs based on the L1 backbone, but not the L8 backbone, acquired a higher replication capacity in pig primary alveolar macrophages. These findings will help to understand the reason behind the dominance of L1-based recombination in PRRSV-2 strains and provide new clues for an in-depth study of the recombination mechanism of PRRSV-2. IMPORTANCE Recombination is an important driver of the genetic shifts that are tightly linked to the evolution of RNA viruses. Viral recombination contributes substantially to the emergence of new variants, alterations in virulence, and pathogenesis. PRRSV is genetically diverse, partly because of extensive recombination. In this study, we analyzed interlineage recombination based on available genomic sequences of PRRSV-2 from 1991 to 2021. The study revealed the temporal and geographical distribution of recombinant PRRSVs and the recombination hot spot's location and showed that artificially constructed recombinant PRRSVs (harboring a high-frequency region) had more viral genomic copies than their parental virus, indicating that dominant recombination was shaped by a tendency to benefit viral replication. This finding will enrich our understanding of PRRSV recombination and provide new clues for an in-depth study of the recombination mechanism.
Collapse
Affiliation(s)
- Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dasong Xia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyi Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yongbo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Kautz TF, Jaworski E, Routh A, Forrester NL. A Low Fidelity Virus Shows Increased Recombination during the Removal of an Alphavirus Reporter Gene. Viruses 2020; 12:E660. [PMID: 32575413 PMCID: PMC7354468 DOI: 10.3390/v12060660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
Reporter genes for RNA viruses are well-known to be unstable due to putative RNA recombination events that excise inserted nucleic acids. RNA recombination has been demonstrated to be co-regulated with replication fidelity in alphaviruses, but it is unknown how recombination events at the minority variant level act, which is important for vaccine and trans-gene delivery design. Therefore, we sought to characterize the removal of a reporter gene by a low-fidelity alphavirus mutant over multiple replication cycles. To examine this, GFP was inserted into TC-83, a live-attenuated vaccine for the alphavirus Venezuelan equine encephalitis virus, as well as a low-fidelity variant of TC-83, and passaged until fluorescence was no longer observed. Short-read RNA sequencing using ClickSeq was performed to determine which regions of the viral genome underwent recombination and how this changed over multiple replication cycles. A rapid removal of the GFP gene was observed, where minority variants in the virus population accumulated small deletions that increased in size over the course of passaging. Eventually, these small deletions merged to fully remove the GFP gene. The removal was significantly enhanced during the passaging of low-fidelity TC-83, suggesting that increased levels of recombination are a defining characteristic of this mutant.
Collapse
Affiliation(s)
- Tiffany F Kautz
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Medical Branch, Galveston, TX 77555-0645, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Medical Branch, Galveston, TX 77555-0645, USA
| | - Naomi L Forrester
- Institute for Human Infections and Immunity, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- School of Life Sciences, University of Keele, Keele ST5 5BG, UK
| |
Collapse
|
8
|
Kovalev N, Pogany J, Nagy PD. Interviral Recombination between Plant, Insect, and Fungal RNA Viruses: Role of the Intracellular Ca 2+/Mn 2+ Pump. J Virol 2019; 94:e01015-19. [PMID: 31597780 PMCID: PMC6912095 DOI: 10.1128/jvi.01015-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Recombination is one of the driving forces of viral evolution. RNA recombination events among similar RNA viruses are frequent, although RNA recombination could also take place among unrelated viruses. In this paper, we have established efficient interviral recombination systems based on yeast and plants. We show that diverse RNA viruses, including the plant viruses tomato bushy stunt virus, carnation Italian ringspot virus, and turnip crinkle virus-associated RNA; the insect plus-strand RNA [(+)RNA] viruses Flock House virus and Nodamura virus; and the double-stranded L-A virus of yeast, are involved in interviral recombination events. Most interviral recombinants are minus-strand recombinant RNAs, and the junction sites are not randomly distributed, but there are certain hot spot regions. Formation of interviral recombinants in yeast and plants is accelerated by depletion of the cellular SERCA-like Pmr1 ATPase-driven Ca2+/Mn2+ pump, regulating intracellular Ca2+ and Mn2+ influx into the Golgi apparatus from the cytosol. The interviral recombinants are generated by a template-switching mechanism during RNA replication by the viral replicase. Replication studies revealed that a group of interviral recombinants is replication competent in cell-free extracts, in yeast, and in the plant Nicotiana benthamiana We propose that there are major differences among the viral replicases to generate and maintain interviral recombinants. Altogether, the obtained data promote the model that host factors greatly contribute to the formation of recombinants among related and unrelated viruses. This is the first time that a host factor's role in affecting interviral recombination is established.IMPORTANCE Viruses with RNA genomes are abundant, and their genomic sequences show astonishing variation. Genetic recombination in RNA viruses is a major force behind their rapid evolution, enhanced pathogenesis, and adaptation to their hosts. We utilized a previously identified intracellular Ca2+/Mn2+ pump-deficient yeast to search for interviral recombinants. Noninfectious viral replication systems were used to avoid generating unwanted infectious interviral recombinants. Altogether, interviral RNA recombinants were observed between plant and insect viruses, and between a fungal double-stranded RNA (dsRNA) virus and an insect virus, in the yeast host. In addition, interviral recombinants between two plant virus replicon RNAs were identified in N. benthamiana plants, in which the intracellular Ca2+/Mn2+ pump was depleted. These findings underline the crucial role of the host in promoting RNA recombination among unrelated viruses.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
10
|
Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol 2018; 99:1345-1356. [PMID: 30156526 DOI: 10.1099/jgv.0.001142] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in positive-strand RNA viruses is a significant evolutionary mechanism that drives the creation of viral diversity by the formation of novel chimaeric genomes. The process and its consequences, for example the generation of viruses with novel phenotypes, has historically been studied by analysis of the end products. More recently, with an appreciation that there are both replicative and non-replicative mechanisms at work, and with new approaches and techniques to analyse intermediate products, the viral and cellular factors that influence the process are becoming understood. The major influence on replicative recombination is the fidelity of viral polymerase, although RNA structures and sequences may also have an impact. In replicative recombination the viral polymerase is necessary and sufficient, although roles for other viral or cellular proteins may exist. In contrast, non-replicative recombination appears to be mediated solely by cellular components. Despite these insights, the relative importance of replicative and non-replicative mechanisms is not clear. Using single-stranded positive-sense RNA viruses as exemplars, we review the current state of understanding of the processes and consequences of recombination.
Collapse
Affiliation(s)
- Kirsten Bentley
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| | - David J Evans
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
11
|
Willemsen A, Carrasco JL, Elena SF, Zwart MP. Going, going, gone: predicting the fate of genomic insertions in plant RNA viruses. Heredity (Edinb) 2018; 121:499-509. [PMID: 29743566 DOI: 10.1038/s41437-018-0086-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/09/2022] Open
Abstract
Horizontal gene transfer is common among viruses, while they also have highly compact genomes and tend to lose artificial genomic insertions rapidly. Understanding the stability of genomic insertions in viral genomes is therefore relevant for explaining and predicting their evolutionary patterns. Here, we revisit a large body of experimental research on a plant RNA virus, tobacco etch potyvirus (TEV), to identify the patterns underlying the stability of a range of homologous and heterologous insertions in the viral genome. We obtained a wide range of estimates for the recombination rate-the rate at which deletions removing the insertion occur-and these appeared to be independent of the type of insertion and its location. Of the factors we considered, recombination rate was the best predictor of insertion stability, although we could not identify the specific sequence characteristics that would help predict insertion instability. We also considered experimentally the possibility that functional insertions lead to higher mutational robustness through increased redundancy. However, our observations suggest that both functional and non-functional increases in genome size decreased the mutational robustness. Our results therefore demonstrate the importance of recombination rates for predicting the long-term stability and evolution of viral RNA genomes and suggest that there are unexpected drawbacks to increases in genome size for mutational robustness.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), Montpellier, France
| | - José L Carrasco
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain.,Instituto de Biología Integrativa de Sistemas (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Spain.,The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Mark P Zwart
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands. .,Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Ding XS, Mannas SW, Bishop BA, Rao X, Lecoultre M, Kwon S, Nelson RS. An Improved Brome mosaic virus Silencing Vector: Greater Insert Stability and More Extensive VIGS. PLANT PHYSIOLOGY 2018; 176:496-510. [PMID: 29127260 PMCID: PMC5761774 DOI: 10.1104/pp.17.00905] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/09/2017] [Indexed: 05/07/2023]
Abstract
Virus-induced gene silencing (VIGS) is used extensively for gene function studies in plants. VIGS is inexpensive and rapid compared with silencing conducted through stable transformation, but many virus-silencing vectors, especially in grasses, induce only transient silencing phenotypes. A major reason for transient phenotypes is the instability of the foreign gene fragment (insert) in the vector during VIGS. Here, we report the development of a Brome mosaic virus (BMV)-based vector that better maintains inserts through modification of the original BMV vector RNA sequence. Modification of the BMV RNA3 sequence yielded a vector, BMVCP5, that better maintained phytoene desaturase and heat shock protein70-1 (HSP70-1) inserts in Nicotiana benthamiana and maize (Zea mays). Longer maintenance of inserts was correlated with greater target gene silencing and more extensive visible silencing phenotypes displaying greater tissue penetration and involving more leaves. The modified vector accumulated similarly to the original vector in N. benthamiana after agroinfiltration, thus maintaining a high titer of virus in this intermediate host used to produce virus inoculum for grass hosts. For HSP70, silencing one family member led to a large increase in the expression of another family member, an increase likely related to the target gene knockdown and not a general effect of virus infection. The cause of the increased insert stability in the modified vector is discussed in relationship to its recombination and accumulation potential. The modified vector will improve functional genomic studies in grasses, and the conceptual methods used to improve the vector may be applied to other VIGS vectors.
Collapse
Affiliation(s)
- Xin Shun Ding
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401
| | | | | | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | | | - Soonil Kwon
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401
| | | |
Collapse
|
13
|
Xia J, He X, Yao KC, Du LJ, Liu P, Yan QG, Wen YP, Cao SJ, Han XF, Huang Y. Phylogenetic and antigenic analysis of avian infectious bronchitis virus in southwestern China, 2012-2016. INFECTION GENETICS AND EVOLUTION 2016; 45:11-19. [PMID: 27530216 PMCID: PMC7106097 DOI: 10.1016/j.meegid.2016.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/30/2022]
Abstract
The aim of this study was to decipher the molecular epidemiological and antigenic characteristics of infectious bronchitis virus strains (IBVs) isolated in recent years in southwestern China. A total of 24 field strains were isolated from diseased chickens between 2012 and 2016. Phylogenetic analysis based on S1 nucleotide sequences showed that 16 of the 24 isolates were clustered into four distinct genotypes: QX (37.5%), TW (16.7%, TWI and TWII), Mass (8.3%), and J2 (4.2%). The QX genotype was still the prevalent genotype in southwestern China. Recombination analysis of the S1 subunit gene showed that eight of the 24 field strains were recombinant variants that originated from field strains and vaccine strains. A new potential recombination hotspot [ATTTT(T/A)] was identified, implying that recombination events may become more and more common. The antigenicity of ten IBVs, including seven field strains and commonly used vaccine strains, were assayed with a viral cross-neutralization assay in chicken embryonated kidney cells (CEK). The results showed that the ten IBVs could be divided into four serotypes (Massachusetts, 793B, Sczy3, and SCYB). Sczy3 and 793B were the predominant serotypes. Six of the seven field isolates (all except for cK/CH/SCYB/140913) cross-reacted well with anti-sera against other field strains. In conclusion, the genetic and antigenic features of IBVs from southwestern China in recent years have changed when compared to the previous reports. The results could provide a reference for vaccine development and the prevention of infectious bronchitis in southwestern China. The QX genotype was still the prevalent genotype in southwestern China, 2012–2016. The Sczy3 and 793B were the predominant serotypes in analyzed IBVs. A new potential recombination hotspot [ATTTT(T/A)] in S1 gene was identified.
Collapse
Affiliation(s)
- Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Xiao He
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Ke-Chang Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Li-Jing Du
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Ping Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Yi-Ping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Xin-Feng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
14
|
Muslin C, Joffret ML, Pelletier I, Blondel B, Delpeyroux F. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5' Untranslated Region. PLoS Pathog 2015; 11:e1005266. [PMID: 26562151 PMCID: PMC4643034 DOI: 10.1371/journal.ppat.1005266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species’ C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5’ untranslated region (5’ UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5’ UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5’ UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5’ UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5’ UTR. By contrast to the recombination of the cVDPV with the 5’ UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5’ UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages. Recombination shapes viral genomes, including those of the pathogenic circulating vaccine-derived polioviruses (cVDPVs), responsible for poliomyelitis outbreaks. The genomes of cVDPVs consist of sequences from vaccine poliovirus (PV) and other enteroviruses (EVs). We investigated the plasticity of cVDPV genomes and the effects of recombination in the 5’ untranslated region (5’ UTR), which is involved in replication, translation and virulence. We rescued a 5’ UTR-defective recombinant cVDPV genome by cotransfecting cells with 5’ UTR RNAs from human EV species EV-A to -D. Hundreds of recombinants were isolated, revealing striking plasticity in this region, with homologous and nonhomologous recombination sites mostly clustered in three hotspots. Recombination with EV-A and -B affected replication and virulence, whereas recombination with EV-C and -D was either neutral or improved viral fitness. This study illustrates how RNA viruses can acquire mosaic genomes through intra- or inter-species recombination, favoring the emergence of new recombinant strains.
Collapse
Affiliation(s)
- Claire Muslin
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Isabelle Pelletier
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Eusebio-Cope A, Suzuki N. Mycoreovirus genome rearrangements associated with RNA silencing deficiency. Nucleic Acids Res 2015; 43:3802-13. [PMID: 25800742 PMCID: PMC4402544 DOI: 10.1093/nar/gkv239] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/06/2015] [Indexed: 01/31/2023] Open
Abstract
Mycoreovirus 1 (MyRV1) has 11 double-stranded RNA genome segments (S1 to S11) and confers hypovirulence to the chestnut blight fungus, Cryphonectria parasitica. MyRV1 genome rearrangements are frequently generated by a multifunctional protein, p29, encoded by a positive-strand RNA virus, Cryphonectria hypovirus 1. One of its functional roles is RNA silencing suppression. Here, we explored a possible link between MyRV1 genome rearrangements and the host RNA silencing pathway using wild-type (WT) and mutant strains of both MyRV1 and the host fungus. Host strains included deletion mutants of RNA silencing components such as dicer-like (dcl) and argonaute-like (agl) genes, while virus strains included an S4 internal deletion mutant MyRV1/S4ss. Consequently, intragenic rearrangements with nearly complete duplication of the three largest segments, i.e. S1, S2 and S3, were observed even more frequently in the RNA silencing-deficient strains Δdcl2 and Δagl2 infected with MyRV1/S4ss, but not with any other viral/host strain combinations. An interesting difference was noted between genome rearrangement events in the two host strains, i.e. generation of the rearrangement required prolonged culture for Δagl2 in comparison with Δdcl2. These results suggest a role for RNA silencing that suppresses genome rearrangements of a dsRNA virus.
Collapse
Affiliation(s)
- Ana Eusebio-Cope
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
16
|
The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex. J Virol 2014; 89:2750-63. [PMID: 25540361 DOI: 10.1128/jvi.02620-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. IMPORTANCE RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination.
Collapse
|
17
|
Galli A, Bukh J. Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus. Trends Microbiol 2014; 22:354-64. [DOI: 10.1016/j.tim.2014.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 12/17/2022]
|
18
|
Genome rearrangement of a mycovirus Rosellinia necatrix megabirnavirus 1 affecting its ability to attenuate virulence of the host fungus. Virology 2014; 450-451:308-15. [PMID: 24503094 DOI: 10.1016/j.virol.2013.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/01/2013] [Accepted: 12/04/2013] [Indexed: 02/02/2023]
Abstract
Rosellinia necatrix megabirnavirus 1 (RnMBV1) is a bi-segmented double-stranded RNA mycovirus that reduces the virulence of the fungal plant pathogen R. necatrix. We isolated strains of RnMBV1 with genome rearrangements (RnMBV1-RS1) that retained dsRNA1, encoding capsid protein (ORF1) and RNA-dependent RNA polymerase (ORF2), and had a newly emerged segment named dsRNAS1, but with loss of dsRNA2, which contains two ORFs of unknown function. Analyses of two variants of dsRNAS1 revealed that they both originated from dsRNA1 by deletion of ORF1 and partial tandem duplication of ORF2, retaining a much shorter 5' untranslated region (UTR). R. necatrix transfected with RnMBV-RS1 virions showed maintenance of virulence on host plants compared with infection with RnMBV1. This suggests that dsRNAS1 is able to be transcribed and packaged, as well as suggesting that dsRNA2, while dispensable for virus replication, is required to reduce the virulence of R. necatrix.
Collapse
|
19
|
Ren L, Xiao Y, Li J, Chen L, Zhang J, Vernet G, Wang J. Multiple genomic recombination events in the evolution of saffold cardiovirus. PLoS One 2013; 8:e74947. [PMID: 24086404 PMCID: PMC3781130 DOI: 10.1371/journal.pone.0074947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/07/2013] [Indexed: 02/07/2023] Open
Abstract
Background Saffold cardiovirus (SAFV) is a new human cardiovirus with 11 identified genotypes. Little is known about the natural history and pathogenicity of SAFVs. Methodology/Principal Findings We sequenced the genome of five SAFV-1 strains which were identified from fecal samples taken from children with viral diarrhea in Beijing, China between March 2006 and November 2007, and analyzed the phylogenetic and phylodynamic properties of SAFVs using the genome sequences of every known SAFV genotypes. We identified multiple recombination events in our SAFV-1 strains, specifically recombination between SAFV-2, -3, -4, -9, -10 and the prototype SAFV-1 strain in the VP4 region and recombination between SAFV-4, -6, -8, -10, -11 and prototype SAFV-1 in the VP1/2A region. Notably, recombination in the structural gene VP4 is a rare event in Cardiovirus. The ratio of nonsynonymous substitutions to synonymous substitutions indicates a purifying selection of the SAFV genome. Phylogenetic and molecular clock analysis indicates the existence of at least two subclades of SAFV-1 with different origins. Subclade 1 includes two strains isolated from Pakistan, whereas subclade 2 includes the prototype strain and strains isolated in China, Pakistan, and Afghanistan. The most recent common ancestor of all SAFV genotypes dates to the 1710s, and SAFV-1, -2, and -3 to the 1940s, 1950s, and 1960s, respectively. No obvious relationship between variation and pathogenicity exists in the critical domains of the CD and EF loops of viral capsid proteins or the multi-functional proteins L based on animo acid sequence identity comparison between SAFV genotypes. Conclusions/Significance Our findings suggest that intertypic recombination plays an important role in the diversity of SAFVs, highlighting the diversity of the five strains with the previously described SAFV-1 strains.
Collapse
Affiliation(s)
- Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
| | - Jianguo Li
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
| | - Lan Chen
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
| | - Jing Zhang
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
| | | | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
20
|
Cong Y, Zarlenga DS, Richt JA, Wang X, Wang Y, Suo S, Wang J, Ren Y, Ren X. Evolution and homologous recombination of the hemagglutinin-esterase gene sequences from porcine torovirus. Virus Genes 2013; 47:66-74. [PMID: 23749172 PMCID: PMC7088831 DOI: 10.1007/s11262-013-0926-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/25/2013] [Indexed: 11/20/2022]
Abstract
The objective of the present study was to gain new insights into the evolution, homologous recombination, and selection pressures imposed on the porcine torovirus (PToV), by examining the changes in the hemagglutinin-esterase (HE) gene. The most recent common ancestor of PToV was estimated to have emerged 62 years ago based upon HE gene sequence data obtained from PToV isolates originating from Spain, South Korea, Netherlands, Hungary, and Italy and using the HE gene of Bovine torovirus isolates Niigata1 (AB661456) and Niigata3 (AB661458) as outgroups. The HE gene sequence data segregated all the PToV isolates into two well-supported monophyletic groups; however, various isolates from Spain, Italy, and South Korea did not segregate geographically suggesting very recent translocation of the viruses to these localities. Evidence of recombination was observed between two South Korean isolates that partitioned into two distinct subclades. Data further suggest that most of the nucleotides in the HE gene are under negative selection; however, changes within codon 237 showed an evidence of positive selection.
Collapse
Affiliation(s)
- Yingying Cong
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030 China
| | - Dante S. Zarlenga
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, Beltsville, MD USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030 China
| | - Yang Wang
- College of Life Science, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030 China
| | - Siqingaowa Suo
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030 China
| | - Jingfei Wang
- Centre for Animal Infectious Disease Diagnosis and Technical Services and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150030 China
| | - Yudong Ren
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030 China
| | - Xiaofeng Ren
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030 China
| |
Collapse
|
21
|
Ramanna H, Ding XS, Nelson RS. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing. Methods Mol Biol 2013; 975:15-32. [PMID: 23386292 DOI: 10.1007/978-1-62703-278-0_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The exploding availability of genome and EST-based sequences from grasses requires a technology that allows rapid functional analysis of the multitude of genes that these resources provide. There are several techniques available to determine a gene's function. For gene knockdown studies, silencing through RNAi is a powerful tool. Gene silencing can be accomplished through stable transformation or transient expression of a fragment of a target gene sequence. Stable transformation in rice, maize, and a few other species, although routine, remains a relatively low-throughput process. Transformation in other grass species is difficult and labor-intensive. Therefore, transient gene silencing methods including Agrobacterium-mediated and virus-induced gene silencing (VIGS) have great potential for researchers studying gene function in grasses. VIGS in grasses already has been used to determine the function of genes during pathogen challenge and plant development. It also can be used in moderate-throughput reverse genetics screens to determine gene function. However, the number of viruses modified to serve as silencing vectors in grasses is limited, and the silencing phenotype induced by these vectors is not optimal: the phenotype being transient and with moderate penetration throughout the tissue. Here, we review the most recent information available for VIGS in grasses and summarize the strengths and weaknesses in current virus-grass host systems. We describe ways to improve current virus vectors and the potential of other grass-infecting viruses for VIGS studies. This work is necessary because VIGS for the foreseeable future remains a higher throughput and more rapid system to evaluate gene function than stable transformation.
Collapse
Affiliation(s)
- Hema Ramanna
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., Ardmore, OK, USA
| | | | | |
Collapse
|
22
|
Harper SJ. Citrus tristeza virus: Evolution of Complex and Varied Genotypic Groups. Front Microbiol 2013; 4:93. [PMID: 23630519 PMCID: PMC3632782 DOI: 10.3389/fmicb.2013.00093] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
Amongst the Closteroviridae, Citrus tristeza virus (CTV) is almost unique in possessing a number of distinct and characterized strains, isolates of which produce a wide range of phenotype combinations among its different hosts. There is little understanding to connect genotypes to phenotypes, and to complicate matters more, these genotypes are found throughout the world as members of mixed populations within a single host plant. There is essentially no understanding of how combinations of genotypes affect symptom expression and disease severity. We know little about the evolution of the genotypes that have been characterized to date, little about the biological role of their diversity and particularly, about the effects of recombination. Additionally, genotype grouping has not been standardized. In this study we utilized an extensive array of CTV genomic information to classify the major genotypes, and to determine the major evolutionary processes that led to their formation and subsequent retention. Our analyses suggest that three major processes act on these genotypes: (1) ancestral diversification of the major CTV lineages, followed by (2) conservation and co-evolution of the major functional domains within, though not between CTV genotypes, and (3) extensive recombination between lineages that have given rise to new genotypes that have subsequently been retained within the global population. The effects of genotype diversity and host-interaction are discussed, as is a proposal for standardizing the classification of existing and novel CTV genotypes.
Collapse
Affiliation(s)
- S J Harper
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida Lake Alfred, FL, USA
| |
Collapse
|
23
|
Pathak KB, Jiang Z, Ochanine V, Sharma M, Pogany J, Nagy PD. Characterization of dominant-negative and temperature-sensitive mutants of tombusvirus replication proteins affecting replicase assembly. Virology 2013; 437:48-61. [PMID: 23332599 DOI: 10.1016/j.virol.2012.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/21/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022]
Abstract
The assembly of the viral replicase complex (VRC) on subcellular membranes is a key step in the replication process of plus-stranded RNA viruses. In this work, we have identified lethal and temperature sensitive (ts) point mutations within the essential p33:p33/p92 interaction domain of p33 and p92 replication proteins of Cucumber necrosis virus, a tombusvirus. Mutations within the p33:p33/p92 interaction domain also affected viral RNA recombination in yeast model host. An in vitro approach based on yeast cell free extract demonstrated that several p33 and p92 mutants behaved as dominant-negative during VRC assembly, and they showed reduced binding to the viral (+)RNA and affected activation of the p92 RdRp protein, while they did not directly influence (-) or (+)-strand synthesis. Overall, the presented data provide direct evidence that the p33:p33/p92 interaction domains in p33 and p92 are needed for the early stage of virus replication and also influence viral recombination.
Collapse
Affiliation(s)
- Kunj B Pathak
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sztuba-Solińska J, Fanning SW, Horn JR, Bujarski JJ. Mutations in the coat protein-binding cis-acting RNA motifs debilitate RNA recombination of Brome mosaic virus. Virus Res 2012; 170:138-49. [PMID: 23079110 PMCID: PMC7114393 DOI: 10.1016/j.virusres.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/14/2022]
Abstract
We have previously described the efficient homologous recombination system between 5' subgenomic RNA3a (sgRNA3a) and genomic RNA3 of Brome mosaic virus (BMV) in barley protoplasts (Sztuba-Solińska et al., 2011a). Here, we demonstrated that sequence alterations in the coat protein (CP)-binding cis-acting RNA motifs, the Bbox region (in the intercistronic RNA3 sequence) and the RNA3 packaging element (PE, in the movement protein ORF), reduced crossover frequencies in protoplasts. Additionally, the modification of Bbox-like element in the 5' UTR region strongly debilitated crossovers. Along the lines of these observations, RNA3 mutants not expressing CP or expressing mutated CPs also reduced recombination. A series of reciprocal transfections demonstrated a functional crosstalk between the Bbox and PE elements. Altogether, our data imply the role of CP in sgRNA3a-directed recombination by either facilitating the interaction of the RNA substrates and/or by creating roadblocks for the viral replicase.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | |
Collapse
|
25
|
RNA structural elements determine frequency and sites of nonhomologous recombination in an animal plus-strand RNA virus. J Virol 2012; 86:7393-402. [PMID: 22532677 DOI: 10.1128/jvi.00864-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For highly variable RNA viruses, RNA recombination significantly contributes to genetic variations which may lead to changes of virulence, adaptation to new hosts, escape from the host immune response, and emergence of new infectious agents. Using a system based on transfection of cells with synthetic nonreplicable subgenomic transcripts derived from bovine viral diarrhea virus (family Flaviviridae), the existence of a replication-independent mechanism of RNA recombination, in addition to the commonly accepted replicative copy-choice recombination, has been previously proven (A. Gallei et al., J. Virol. 78:6271-6281, 2004). To identify RNA signals involved in efficient joining of RNA molecules, RNA recombination in living cells was targeted to the 3' nontranslated region. Molecular characterization of 40 independently emerged recombinant viruses revealed that the majority of recombination sites are located in single-stranded regions of the RNA molecules. Furthermore, the results of this study showed that the frequency of RNA recombination directly correlated with the RNA amounts of both recombination partners. The frequency can be strongly increased by modification of the 5' triphosphates and 3' hydroxyls of the recombining RNA molecules to 5' hydroxyl and 3' monophosphoryl ends, respectively. Analysis of recombinants that emerged after transfection with such modified RNA molecules revealed a complete integration and efficient end-to-end joining of the recombination partner(s) in at least 80% of recombinants, while unmodified RNA molecules recombined exclusively at internal positions. These results are in line with the hypothesis that endoribonucleolytic cleavage and a subsequent ligation reaction can cause RNA recombination.
Collapse
|
26
|
Hasiów-Jaroszewska B, Borodynko N, Figlerowicz M, Pospieszny H. Two types of defective RNAs arising from the tomato black ring virus genome. Arch Virol 2011; 157:569-72. [DOI: 10.1007/s00705-011-1200-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/18/2011] [Indexed: 11/29/2022]
|
27
|
Carney J, Daly JM, Nisalak A, Solomon T. Recombination and positive selection identified in complete genome sequences of Japanese encephalitis virus. Arch Virol 2011; 157:75-83. [PMID: 22033595 PMCID: PMC3249550 DOI: 10.1007/s00705-011-1143-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/06/2011] [Indexed: 11/26/2022]
Abstract
The mosquito-borne Japanese encephalitis virus (JEV) causes encephalitis in man but not in pigs. Complete genomes of a human, mosquito and pig isolate from outbreaks in 1982 and 1985 in Thailand were sequenced with the aim of identifying determinants of virulence that may explain the differences in outcomes of JEV infection between pigs and man. Phylogenetic analysis revealed that five of these isolates belonged to genotype I, but the 1982 mosquito isolate belonged to genotype III. There was no evidence of recombination among the Thai isolates, but there were phylogenetic signals suggestive of recombination in a 1994 Korean isolate (K94P05). Two sites of the genome under positive selection were identified: codons 996 and 2296 (amino acids 175 of the non-structural protein NS1 and 24 of NS4B, respectively). A structurally significant substitution was seen at NS4B position 24 of the human isolate compared with the mosquito and pig isolates from the 1985 outbreak in Thailand. The potential importance of the two sites in the evolution and ecology of JEV merits further investigation.
Collapse
Affiliation(s)
- Jennifer Carney
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 3GA UK
| | - Janet M. Daly
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 3GA UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD UK
| | - Ananda Nisalak
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Tom Solomon
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 3GA UK
| |
Collapse
|
28
|
Sztuba-Solińska J, Urbanowicz A, Figlerowicz M, Bujarski JJ. RNA-RNA recombination in plant virus replication and evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:415-43. [PMID: 21529157 DOI: 10.1146/annurev-phyto-072910-095351] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA-RNA recombination is one of the strongest forces shaping the genomes of plant RNA viruses. The detection of recombination is a challenging task that prompted the development of both in vitro and in vivo experimental systems. In the divided genome of Brome mosaic virus system, both inter- and intrasegmental crossovers are described. Other systems utilize satellite or defective interfering RNAs (DI-RNAs) of Turnip crinkle virus, Tomato bushy stunt virus, Cucumber necrosis virus, and Potato virus X. These assays identified the mechanistic details of the recombination process, revealing the role of RNA structure and proteins in the replicase-mediated copy-choice mechanism. In copy choice, the polymerase and the nascent RNA chain from which it is synthesized switch from one RNA template to another. RNA recombination was found to mediate the rearrangement of viral genes, the repair of deleterious mutations, and the acquisition of nonself sequences influencing the phylogenetics of viral taxa. The evidence for recombination, not only between related viruses but also among distantly related viruses, and even with host RNAs, suggests that plant viruses unabashedly test recombination with any genetic material at hand.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | | | |
Collapse
|
29
|
Recombination of 5' subgenomic RNA3a with genomic RNA3 of Brome mosaic bromovirus in vitro and in vivo. Virology 2010; 410:129-41. [PMID: 21111438 PMCID: PMC7111948 DOI: 10.1016/j.virol.2010.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/28/2010] [Accepted: 10/29/2010] [Indexed: 01/03/2023]
Abstract
RNA-RNA recombination salvages viral RNAs and contributes to their genomic variability. A recombinationally-active subgenomic promoter (sgp) has been mapped in Brome mosaic bromovirus (BMV) RNA3 (Wierzchoslawski et al., 2004. J. Virol.78, 8552-8864) and mRNA-like 5' sgRNA3a was characterized (Wierzchoslawski et al., 2006. J. Virol. 80, 12357-12366). In this paper we describe sgRNA3a-mediated recombination in both in vitro and in vivo experiments. BMV replicase-directed co-copying of (-) RNA3 with wt sgRNA3a generated RNA3 recombinants in vitro, but it failed to when 3'-truncated sgRNA3a was substituted, demonstrating a role for the 3' polyA tail. Barley protoplast co-transfections revealed that (i) wt sgRNA3a recombines at the 3' and the internal sites; (ii) 3'-truncated sgRNA3as recombine more upstream; and (iii) 5'-truncated sgRNA3 recombine at a low rate. In planta co-inoculations confirmed the RNA3-sgRNA3a crossovers. In summary, the non-replicating sgRNA3a recombines with replicating RNA3, most likely via primer extension and/or internal template switching.
Collapse
|
30
|
Jiang Y, Cheng CP, Serviene E, Shapka N, Nagy PD. Repair of lost 5' terminal sequences in tombusviruses: Rapid recovery of promoter- and enhancer-like sequences in recombinant RNAs. Virology 2010; 404:96-105. [PMID: 20537671 DOI: 10.1016/j.virol.2010.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 04/16/2010] [Accepted: 04/23/2010] [Indexed: 11/29/2022]
Abstract
Maintenance of genome integrity is of major importance for plus-stranded RNA viruses that are vulnerable to degradation by host ribonucleases or to replicase errors. We demonstrate that short truncations at the 5' end of a model Tomato bushy stunt virus (TBSV) RNA could be repaired during replication in yeast and plant cells. Although the truncations led to the loss of important cis-regulatory elements, the genome repair mechanisms led to the recovery of promoter and enhancer-like sequences in 92% of TBSV progeny. Using in vitro approaches, we demonstrate that the repaired TBSV RNAs are replication-competent. We propose three different mechanisms for genome repair: initiation of RNA synthesis from internal sequences and addition of nonviral nucleotides by the tombusvirus replicase; and via RNA recombination. The ability to repair cis-sequences makes the tombusvirus genome more flexible, which could be beneficial to increase the virus fitness and adaptation to new hosts.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
31
|
Draghici HK, Varrelmann M. Evidence for similarity-assisted recombination and predicted stem-loop structure determinant in potato virus X RNA recombination. J Gen Virol 2010; 91:552-62. [PMID: 19864501 DOI: 10.1099/vir.0.014712-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Virus RNA recombination, one of the main factors for genetic variability and evolution, is thought to be based on different mechanisms. Here, the recently described in vivo potato virus X (PVX) recombination assay [Draghici, H.-K. & Varrelmann, M. (2009). J Virol 83, 7761-7769] was applied to characterize structural parameters of recombination. The assay uses an Agrobacterium-mediated expression system incorporating a PVX green fluorescent protein (GFP)-labelled full-length clone. The clone contains a partial coat protein (CP) deletion that causes defectiveness in cell-to-cell movement, together with a functional CP+3' non-translated region (ntr) transcript, in Nicotiana benthamiana leaf tissue. The structural parameters assessed were the length of sequence overlap, the distance between mutations and the degree of sequence similarity. The effects on the observed frequency of reconstitution and the composition of the recombination products were characterized. Application of four different type X intact PVX CP genes with variable composition allowed the estimation of the junction sites of precise homologous recombination. Although one template switch would have been sufficient for functional reconstitution, between one and seven template switches were observed. Use of PVX-GFP mutants with CP deletions of variable length resulted in a linear decrease of the reconstitution frequency. The critical length observed for homologous recombination was 20-50 nt. Reduction of the reconstitution frequency was obtained when a phylogenetically distant PVX type Bi CP gene was used. Finally, the prediction of CP and 3'-ntr RNA secondary structure demonstrated that recombination-junction sites were located mainly in regions of stem-loop structures, allowing the recombination observed to be categorized as similarity-assisted.
Collapse
Affiliation(s)
- Heidrun-Katharina Draghici
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
| | | |
Collapse
|
32
|
Defective Interfering RNAs: Foes of Viruses and Friends of Virologists. Viruses 2009; 1:895-919. [PMID: 21994575 PMCID: PMC3185524 DOI: 10.3390/v1030895] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 12/25/2022] Open
Abstract
Defective interfering (DI) RNAs are subviral RNAs produced during multiplication of RNA viruses by the error-prone viral replicase. DI-RNAs are parasitic RNAs that are derived from and associated with the parent virus, taking advantage of viral-coded protein factors for their multiplication. Recent advances in the field of DI RNA biology has led to a greater understanding about generation and evolution of DI-RNAs as well as the mechanism of symptom attenuation. Moreover, DI-RNAs are versatile tools in the hands of virologists and are used as less complex surrogate templates to understand the biology of their helper viruses. The ease of their genetic manipulation has resulted in rapid discoveries on cis-acting RNA replication elements required for replication and recombination. DI-RNAs have been further exploited to discover host factors that modulate Tomato bushy stunt virus replication, as well as viral RNA recombination. This review discusses the current models on generation and evolution of DI-RNAs, the roles of viral and host factors in DI-RNA replication, and the mechanisms of disease attenuation.
Collapse
|
33
|
Kumar P, Uratsu S, Dandekar A, Falk BW. Tomato bushy stunt virus recombination guided by introduced microRNA target sequences. J Virol 2009; 83:10472-9. [PMID: 19640975 PMCID: PMC2753150 DOI: 10.1128/jvi.00665-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/24/2009] [Indexed: 01/24/2023] Open
Abstract
Previously we described Tomato bushy stunt virus (TBSV) vectors, which retained their capsid protein gene and were engineered with magnesium chelatase (ChlH) and phytoene desaturase (PDS) gene sequences from Nicotiana benthamiana. Upon plant infection, these vectors eventually lost the inserted sequences, presumably as a result of recombination. Here, we modified the same vectors to also contain the plant miR171 or miR159 target sequences immediately 3' of the silencing inserts. We inoculated N. benthamiana plants and sequenced recombinant RNAs recovered from noninoculated upper leaves. We found that while some of the recombinant RNAs retained the microRNA (miRNA) target sites, most retained only the 3' 10 and 13 nucleotides of the two original plant miRNA target sequences, indicating in planta miRNA-guided RNA-induced silencing complex cleavage of the recombinant TBSV RNAs. In addition, recovered RNAs also contained various fragments of the original sequence (ChlH and PDS) upstream of the miRNA cleavage site, suggesting that the 3' portion of the miRNA-cleaved TBSV RNAs served as a template for negative-strand RNA synthesis by the TBSV RNA-dependent RNA polymerase (RdRp), followed by template switching by the RdRp and continued RNA synthesis resulting in loss of nonessential nucleotides.
Collapse
Affiliation(s)
- Pavan Kumar
- Plant Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
34
|
Chuang CK, Chen WJ. Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus. Virology 2009; 394:286-97. [PMID: 19766282 DOI: 10.1016/j.virol.2009.08.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/16/2009] [Accepted: 08/17/2009] [Indexed: 11/26/2022]
Abstract
Due to the lack of a proofreading function and error-repairing ability of genomic RNA, accumulated mutations are known to be a force driving viral evolution in the genus Flavivirus, including the Japanese encephalitis (JE) virus. Based on sequencing data, RNA recombination was recently postulated to be another factor associated with genomic variations in these viruses. We herein provide experimental evidence to demonstrate the occurrence of RNA recombination in the JE virus using two local pure clones (T1P1-S1 and CJN-S1) respectively derived from the local strains, T1P1 and CJN. Based on results from a restriction fragment length polymorphism (RFLP) assay on the C/preM junction comprising a fragment of 868 nucleotides (nt 10-877), the recombinant progeny virus was primarily formed in BHK-21 cells that had been co-infected with the two clones used in this study. Nine of 20 recombinant forms of the JE virus had a crossover in the nt 123-323 region. Sequencing data derived from these recombinants revealed that no nucleotide deletion or insertion occurred in this region favoring crossovers, indicating that precisely, not aberrantly, homologous recombination was involved. With site-directed mutagenesis, three stem-loop secondary structures were destabilized and re-stabilized in sequence, leading to changes in the frequency of recombination. This suggests that the conformation, not the free energy, of the secondary structure is important in modulating RNA recombination of the virus. It was concluded that because RNA recombination generates genetic diversity in the JE virus, this must be considered particularly in studies of viral evolution, epidemiology, and possible vaccine safety.
Collapse
Affiliation(s)
- Ching-Kai Chuang
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | | |
Collapse
|
35
|
Hu X, Karasev AV, Brown CJ, Lorenzen JH. Sequence characteristics of potato virus Y recombinants. J Gen Virol 2009; 90:3033-3041. [PMID: 19692546 DOI: 10.1099/vir.0.014142-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato virus Y (PVY) is one of the most economically important plant pathogens. The PVY genome has a high degree of genetic variability and is also subject to recombination. New recombinants have been reported in many countries since the 1980s, but the origin of these recombinant strains and the physical and evolutionary mechanisms driving their emergence are not clear at the moment. The replicase-mediated template-switching model is considered the most likely mechanism for forming new RNA virus recombinants. Two factors, RNA secondary structure (especially stem-loop structures) and AU-rich regions, have been reported to affect recombination in this model. In this study, we investigated the influence of these two factors on PVY recombination from two perspectives: their distribution along the whole genome and differences between regions flanking the recombination junctions (RJs). Based on their distributions, only a few identified RJs in PVY genomes were located in lower negative FORS-D, i.e. having greater secondary-structure potential and higher AU-content regions, but most RJs had more negative FORS-D values upstream and/or higher AU content downstream. Our whole-genome analyses showed that RNA secondary structures and/or AU-rich regions at some sites may have affected PVY recombination, but in general they were not the main forces driving PVY recombination.
Collapse
Affiliation(s)
- Xiaojun Hu
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Alexander V Karasev
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
| | - Jim H Lorenzen
- International Institute of Tropical Agriculture, Kampala, Uganda
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
36
|
Draghici HK, Varrelmann M. Evidence that the linker between the methyltransferase and helicase domains of potato virus X replicase is involved in homologous RNA recombination. J Virol 2009; 83:7761-9. [PMID: 19439477 PMCID: PMC2708637 DOI: 10.1128/jvi.00179-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/07/2009] [Indexed: 12/29/2022] Open
Abstract
Recombination in RNA viruses, one of the main factors contributing to their genetic variability and evolution, is a widespread phenomenon. In this study, an in vivo assay to characterize RNA recombination in potato virus X (PVX), under high selection pressure, was established. Agrobacterium tumefaciens was used to express in Nicotiana benthamiana leaf tissue both a PVX isolate labeled with green fluorescent protein (GFP) containing a coat protein deletion mutation (DeltaCP) and a transcript encoding a functional coat protein +3'-ntr. Coexpression of the constructs led to virus movement and systemic infection; reconstituted recombinants were observed in 92% of inoculated plants. Similar results were obtained using particle bombardment, demonstrating that recombination mediated by A. tumefaciens was not responsible for the occurrence of PXC recombinants. The speed of recombination could be estimated by agroinfection of two PVX mutants lacking the 3' and 5' halves of the genome, respectively, with an overlap in the triple gene block 1 gene, allowing GFP expression only in the case of recombination. Ten different pentapeptide insertion scanning replicase mutants with replication abilities comparable to wild-type virus were applied in the different recombination assays. Two neighboring mutants affecting the linker between the methyltransferase and helicase domains were shown to be strongly debilitated in their ability to recombine. The possible functional separation of replication and recombination in the replicase molecule supports the model that RNA recombination represents a distinct function of this protein, although the underlying mechanism still needs to be investigated.
Collapse
Affiliation(s)
- Heidrun-Katharina Draghici
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
| | | |
Collapse
|
37
|
Wijegoonawardane PK, Sittidilokratna N, Petchampai N, Cowley JA, Gudkovs N, Walker PJ. Homologous genetic recombination in the yellow head complex of nidoviruses infecting Penaeus monodon shrimp. Virology 2009; 390:79-88. [PMID: 19487006 PMCID: PMC7127526 DOI: 10.1016/j.virol.2009.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/15/2009] [Accepted: 04/20/2009] [Indexed: 11/28/2022]
Abstract
Yellow head virus (YHV) is a highly virulent pathogen of Penaeus monodon shrimp. It is one of six known genotypes in the yellow head complex of nidoviruses which also includes mildly pathogenic gill-associated virus (GAV, genotype 2) and four other genotypes (genotypes 3-6) that have been detected only in healthy shrimp. In this study, comparative phylogenetic analyses conducted on replicase- (ORF1b) and glycoprotein- (ORF3) gene amplicons identified 10 putative natural recombinants amongst 28 viruses representing all six genotypes from across the Indo-Pacific region. The approximately 4.6 kb genomic region spanning the two amplicons was sequenced for three putative recombinant viruses from Vietnam (genotype 3/5), the Philippines (genotype 5/2) and Indonesia (genotype 3/2). SimPlot analysis using these and representative parental virus sequences confirmed that each was a recombinant genotype and identified a recombination hotspot in a region just upstream of the ORF1b C-terminus. Maximum-likelihood breakpoint analysis predicted identical crossover positions in the Vietnamese and Indonesian recombinants, and a crossover position 12 nt upstream in the Philippine recombinant. Homologous genetic recombination in the same genome region was also demonstrated in recombinants generated experimentally in shrimp co-infected with YHV and GAV. The high frequency with which natural recombinants were identified indicates that genetic exchange amongst genotypes is occurring commonly in Asia and playing a significant role in expanding the genetic diversity in the yellow head complex. This is the first evidence of genetic recombination in viruses infecting crustaceans and has significant implications for the pathogenesis of infection and diagnosis of these newly emerging invertebrate pathogens.
Collapse
Affiliation(s)
| | - Nusra Sittidilokratna
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Victoria 3220, Australia
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phathumthani 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Phyathai, Bangkok 10400, Thailand
| | - Natthida Petchampai
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Phyathai, Bangkok 10400, Thailand
| | - Jeff A. Cowley
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Nicholas Gudkovs
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Victoria 3220, Australia
| | - Peter J. Walker
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Victoria 3220, Australia
| |
Collapse
|
38
|
Jaag HM, Nagy PD. Silencing of Nicotiana benthamiana Xrn4p exoribonuclease promotes tombusvirus RNA accumulation and recombination. Virology 2009; 386:344-52. [PMID: 19232421 DOI: 10.1016/j.virol.2009.01.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 11/08/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
The cytosolic 5'-to-3' exoribonuclease Xrn1p plays a major role in recombination and degradation of Tomato bushy stunt tombusvirus (TBSV) replicon (rep)RNA in yeast, a model host (Serviene, E., Shapka, N., Cheng, C.P., Panavas, T., Phuangrat, B., Baker, J., and Nagy, P.D., 2005. Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10545-10550.). To test if the plant cytosolic 5'-to-3' exoribonuclease Xrn4p, similar to the yeast Xrn1p, could also affect TBSV recombination, in this paper, we silenced XRN4 in Nicotiana benthamiana, an experimental host. The accumulation of tombusvirus genomic RNA and repRNA increased by 50% and 220%, respectively, in XRN4-silenced N. benthamiana. We also observed up to 125-fold increase in the emergence of new recombinants and partly degraded viral RNAs in the silenced plants. Using a cell-free assay based on a yeast extract, which supports authentic replication and recombination of TBSV, we demonstrate that the purified recombinant Xrn1p efficiently inhibited the accumulation of recombinants and partly degraded viral RNAs. Altogether, the data from a plant host and cell-free system confirm a central role for the plant cytosolic 5'-to-3' exoribonuclease in TBSV replication, recombination and viral RNA degradation.
Collapse
Affiliation(s)
- Hannah M Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY40546, USA
| | | |
Collapse
|
39
|
Sztuba-Solinska J, Bujarski JJ. Insights into the single-cell reproduction cycle of members of the family Bromoviridae: lessons from the use of protoplast systems. J Virol 2008; 82:10330-40. [PMID: 18684833 PMCID: PMC2573203 DOI: 10.1128/jvi.00746-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Joanna Sztuba-Solinska
- Department of Biological Sciences, Plant Molecular Biology Center, Montgomery Hall, Northern Illinois University, De Kalb, IL 60115, USA
| | | |
Collapse
|
40
|
Vigne E, Marmonier A, Fuchs M. Multiple interspecies recombination events within RNA2 of Grapevine fanleaf virus and Arabis mosaic virus. Arch Virol 2008; 153:1771-6. [DOI: 10.1007/s00705-008-0182-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
|
41
|
Cdc34p ubiquitin-conjugating enzyme is a component of the tombusvirus replicase complex and ubiquitinates p33 replication protein. J Virol 2008; 82:6911-26. [PMID: 18463149 DOI: 10.1128/jvi.00702-08] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To identify host proteins interacting with Tomato bushy stunt virus (TBSV) replication proteins in a genome-wide scale, we have used a yeast (Saccharomyces cerevisiae) proteome microarray carrying 4,088 purified proteins. This approach led to the identification of 58 yeast proteins that interacted with p33 replication protein. The identified host proteins included protein chaperones, ubiquitin-associated proteins, translation factors, RNA-modifying enzymes, and other proteins with yet-unknown functions. We confirmed that 19 of the identified host proteins bound to p33 in vitro or in a split-ubiquitin-based two-hybrid assay. Further analysis of Cdc34p E2 ubiquitin-conjugating enzyme, which is one of the host proteins interacting with p33, revealed that Cdc34p is a novel component of the purified viral replicase. Downregulation of Cdc34p expression in yeast, which supports replication of a TBSV replicon RNA (repRNA), reduced repRNA accumulation and the activity of the tombusvirus replicase by up to fivefold. Overexpression of wild-type Cdc34p, but not that of an E2-defective mutant of Cdc34p, increased repRNA accumulation, suggesting a significant role for the ubiquitin-conjugating enzyme function of Cdc34p in TBSV replication. Also, Cdc34p was able to ubiquitinate p33 in vitro. In addition, we have shown that p33 becomes ubiquitinated in vivo. We propose that ubiquitination of p33 likely alters its function or affects the recruitment of host factors during TBSV replication.
Collapse
|
42
|
Authentic replication and recombination of Tomato bushy stunt virus RNA in a cell-free extract from yeast. J Virol 2008; 82:5967-80. [PMID: 18417594 DOI: 10.1128/jvi.02737-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the replication of Tomato bushy stunt virus (TBSV), a small tombusvirus of plants, we have developed a cell-free system based on a Saccharomyces cerevisiae extract. The cell-free system was capable of performing a complete replication cycle on added plus-stranded TBSV replicon RNA (repRNA) that led to the production of approximately 30-fold-more plus-stranded progeny RNAs than the minus-stranded replication intermediate. The cell-free system also replicated the full-length TBSV genomic RNA, which resulted in production of subgenomic RNAs as well. The cell-free system showed high template specificity, since a mutated repRNA, minus-stranded repRNA, or a heterologous viral RNA could not be used as templates by the tombusvirus replicase. Similar to the in vivo situation, replication of the TBSV replicon RNA took place in a membraneous fraction, in which the viral replicase-RNA complex was RNase and protease resistant but sensitive to detergents. In addition to faithfully replicating the TBSV replicon RNA, the cell-free system was also capable of generating TBSV RNA recombinants with high efficiency. Altogether, tombusvirus replicase in the cell-free system showed features remarkably similar to those of the in vivo replicase, including carrying out a complete cycle of replication, high template specificity, and the ability to recombine efficiently.
Collapse
|
43
|
Lefeuvre P, Lett JM, Reynaud B, Martin DP. Avoidance of protein fold disruption in natural virus recombinants. PLoS Pathog 2008; 3:e181. [PMID: 18052529 PMCID: PMC2092379 DOI: 10.1371/journal.ppat.0030181] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/12/2007] [Indexed: 12/04/2022] Open
Abstract
With the development of reliable recombination detection tools and an increasing number of available genome sequences, many studies have reported evidence of recombination in a wide range of virus genera. Recombination is apparently a major mechanism in virus evolution, allowing viruses to evolve more quickly by providing immediate direct access to many more areas of a sequence space than are accessible by mutation alone. Recombination has been widely described amongst the insect-transmitted plant viruses in the genus Begomovirus (family Geminiviridae), with potential recombination hot- and cold-spots also having been identified. Nevertheless, because very little is understood about either the biochemical predispositions of different genomic regions to recombine or what makes some recombinants more viable than others, the sources of the evolutionary and biochemical forces shaping distinctive recombination patterns observed in nature remain obscure. Here we present a detailed analysis of unique recombination events detectable in the DNA-A and DNA-A-like genome components of bipartite and monopartite begomoviruses. We demonstrate both that recombination breakpoint hot- and cold-spots are conserved between the two groups of viruses, and that patterns of sequence exchange amongst the genomes are obviously non-random. Using a computational technique designed to predict structural perturbations in chimaeric proteins, we demonstrate that observed recombination events tend to be less disruptive than sets of simulated ones. Purifying selection acting against natural recombinants expressing improperly folded chimaeric proteins is therefore a major determinant of natural recombination patterns in begomoviruses. The exchange of genetic material between different virus species, called inter-species recombination, has the potential to generate, within a single genome replication cycle, an almost unimaginable number of genetically distinct virus strains, including many that might cause deadly new human, animal, or plant diseases. Many fear that inter-species recombination could provide viruses with quick access to evolutionary innovations such as broader host ranges, altered tissue tropisms, or increased severities. However, mounting evidence suggests that recombination is not an unconstrained process and that most inter-species recombinants that occur in nature are probably defective. It is suspected that networks of coevolved interactions between different parts of virus genomes and their encoded proteins must be kept intact for newly formed inter-species recombinants to have any chance of out-competing their parents. One category of coevolved interaction is that between contacting amino acids within the 3-D structures of folded proteins. Here we examine the distributions of recombination events across the genomes of a group of rampantly recombining plant viruses and find very good evidence that this class of interaction tends to be preserved amongst recombinant sequences sampled from nature. This indicates that selection against misfolded proteins strongly influences the survival of natural recombinants.
Collapse
Affiliation(s)
- Pierre Lefeuvre
- CIRAD, UMR 53 PVBMT CIRAD-Université de la Réunion, Pô le de Protection des Plantes, Ligne Paradis, Saint Pierre, La Réunion, France
| | | | | | | |
Collapse
|
44
|
Abstract
The yeast Saccharomyces cerevisiae is invaluable for understanding fundamental cellular processes and disease states of relevance to higher eukaryotes. Plant viruses are intracellular parasites that take advantage of resources of the host cell, and a simple eukaryotic cell, such as yeast, can provide all or most of the functions for successful plant virus replication. Thus, yeast has been used as a model to unravel the interactions of plant viruses with their hosts. Indeed, genome-wide and proteomics studies using yeast as a model host with bromoviruses and tombusviruses have facilitated the identification of replication-associated factors that affect host-virus interactions, virus pathology, virus evolution, and host range. Many of the host genes that affect the replication of the two viruses, which belong to two dissimilar virus families, are distinct, suggesting that plant viruses have developed different ways to utilize the resources of host cells. In addition, a surprisingly large number of yeast genes have been shown to affect RNA-RNA recombination in tombusviruses; this opens an opportunity to study the role of the host in virus evolution. The knowledge gained about host-virus interactions likely will lead to the development of new antiviral methods and applications in biotechnology and nanotechnology, as well as new insights into cellular functions of individual genes and the basic biology of the host cell.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA.
| |
Collapse
|
45
|
Cheng CP, Jaag HM, Jonczyk M, Serviene E, Nagy PD. Expression of the Arabidopsis Xrn4p 5'-3' exoribonuclease facilitates degradation of tombusvirus RNA and promotes rapid emergence of viral variants in plants. Virology 2007; 368:238-48. [PMID: 17688902 DOI: 10.1016/j.virol.2007.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 02/05/2023]
Abstract
Rapid RNA virus evolution is a major problem due to the devastating diseases caused by human, animal and plant-pathogenic RNA viruses. A previous genome-wide screen for host factors affecting recombination in Tomato bushy stunt tombusvirus (TBSV), a small monopartite plant virus, identified Xrn1p 5'-3' exoribonuclease of yeast, a model host, whose absence led to increased appearance of recombinants [Serviene, E., Shapka, N., Cheng, C.P., Panavas, T., Phuangrat, B., Baker, J., Nagy, P.D., (2005). Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. U. S. A. 102 (30), 10545-10550]. In this paper, we tested if over-expression of Xrn1p in yeast or expression of the analogous Xrn4p cytoplasmic 5'-3' exoribonuclease, which has similar function in RNA degradation in Arabidopsis as Xrn1p in yeast, in Nicotiana benthamiana could affect the accumulation of tombusvirus RNA. We show that over-expression of Xrn1p led to almost complete degradation of TBSV RNA replicons in yeast, suggesting that Xrn1p is involved in TBSV degradation. Infection of N. benthamiana expressing AtXrn4p with Cucumber necrosis tombusvirus (CNV) led to enhanced viral RNA degradation, suggesting that the yeast and the plant cytoplasmic 5'-3' exoribonuclease play similar roles. We also observed rapid emergence of novel CNV genomic RNA variants formed via deletions of 5' terminal sequences in N. benthamiana expressing AtXrn4p. Three of the newly emerging 5' truncated CNV variants were infectious in N. benthamiana protoplasts, whereas one CNV variant caused novel symptoms and moved systemically in N. benthamiana plants. Altogether, this paper establishes that a single plant gene can contribute to the emergence of novel viral variants.
Collapse
Affiliation(s)
- Chi-Ping Cheng
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
46
|
Weng Z, Barthelson R, Gowda S, Hilf ME, Dawson WO, Galbraith DW, Xiong Z. Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity. PLoS One 2007; 2:e917. [PMID: 17878952 PMCID: PMC1975466 DOI: 10.1371/journal.pone.0000917] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/20/2007] [Indexed: 11/19/2022] Open
Abstract
Recombination and reassortment of viral genomes are major processes contributing to the creation of new, emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may possess novel host-colonizing and pathogenicity traits. In some plants, successive vegetative propagation of infected tissues and introduction of new genotypes of a virus by vector transmission allows for viral populations to increase in complexity for hundreds of years allowing co-replication and subsequent recombination of the multiple viral genotypes. Using a resequencing microarray, we examined a persistent infection by a Citrus tristeza virus (CTV) complex in citrus, a vegetatively propagated, globally important fruit crop, and found that the complex comprised three major and a number of minor genotypes. Subsequent deep sequencing analysis of the viral population confirmed the presence of the three major CTV genotypes and, in addition, revealed that the minor genotypes consisted of an extraordinarily large number of genetic variants generated by promiscuous recombination between the major genotypes. Further analysis provided evidence that some of the recombinants underwent subsequent divergence, further increasing the genotypic complexity. These data demonstrate that persistent infection of multiple viral genotypes within a host organism is sufficient to drive the large-scale production of viral genetic variants that may evolve into new and emerging viruses.
Collapse
Affiliation(s)
- Ziming Weng
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Roger Barthelson
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Siddarame Gowda
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Mark E. Hilf
- United States Department of Agriculture-Agricultural Research Service-United States Horticulture Research Laboratory, Fort Pierce, Florida, United States of America
| | - William O. Dawson
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - David W. Galbraith
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Zhongguo Xiong
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Jaag HM, Stork J, Nagy PD. Host transcription factor Rpb11p affects tombusvirus replication and recombination via regulating the accumulation of viral replication proteins. Virology 2007; 368:388-404. [PMID: 17689583 DOI: 10.1016/j.virol.2007.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/07/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
Previous genome-wide screens identified over 100 host genes whose deletion/down-regulation affected tombusvirus replication and 32 host genes that affected tombusvirus RNA recombination in yeast, a model host for replication of Tomato bushy stunt virus (TBSV). Down-regulation of several of the identified host genes affected the accumulation levels of p33 and p92(pol) replication proteins, raising the possibility that these host factors could be involved in the regulation of the amount of viral replication proteins and, thus, they are indirectly involved in TBSV replication and recombination. To test this model, we developed a tightly regulated expression system for recombinant p33 and p92(pol) replication proteins in yeast. We demonstrate that high accumulation level of p33 facilitated efficient viral RNA replication, while the effect of p33 level on RNA recombination was less pronounced. On the other hand, high level of p92(pol) accumulation promoted TBSV RNA recombination more efficiently than RNA replication. As predicted, Rpb11p, which is part of the polII complex, affected the accumulation levels of p33 and p92(pol) as well as altered RNA replication and recombination. An in vitro assay with the tombusvirus replicase further supported that Rpb11p affects TBSV replication and recombination only indirectly, via regulating p33 and p92(pol) levels. In contrast, the mechanism by which Rpt4p endopeptidase/ATPase and Mps1p threonine/tyrosine kinase affect TBSV recombination is different from that proposed for Rpb11p. We propose a model that the concentration (molecular crowding) of replication proteins within the viral replicase is a factor affecting viral replication and recombination.
Collapse
Affiliation(s)
- Hannah M Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | | | | |
Collapse
|
48
|
Jonczyk M, Pathak KB, Sharma M, Nagy PD. Exploiting alternative subcellular location for replication: Tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes. Virology 2007; 362:320-30. [PMID: 17292435 DOI: 10.1016/j.virol.2007.01.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/02/2006] [Accepted: 01/03/2007] [Indexed: 11/16/2022]
Abstract
Plus-strand RNA virus replication takes place on distinct membranous surfaces in infected cells via the assembly of viral replicase complexes involving multiple viral and host proteins. One group of tombusviruses, such as Tomato bushy stunt virus (TBSV), replicate on the surfaces of peroxisomal membranes in plant and yeast cells. Surprisingly, previous genome-wide screen performed in yeast demonstrated that a TBSV replicon RNA replicated as efficiently in yeast defective in peroxisome biogenesis as in the wt yeast (Panavas et al., Proc Natl Acad Sci U S A, 2005). To further test how the lack of peroxisomes could affect tombusvirus replication, we used yeast cells missing either PEX3 or PEX19 genes, which are absolutely essential for peroxisome biogenesis. Confocal microscopy-based approach revealed that the wild-type tombusvirus p33 replication protein accumulated in the endoplasmic reticulum (ER) in pex3Delta or pex19Delta yeast, suggesting that tombusvirus replication could take place on the surface of ER membrane. The activities of the isolated tombusvirus replicase preparations from wt, pex3Delta or pex19Delta yeasts were comparable, demonstrating that the assembly of the replicase was as efficient in the ER as in the authentic subcellular environments. The generation/accumulation of tombusvirus recombinants was similar in wt, pex3Delta and pex19Delta yeasts, suggesting that the rate of mistakes occurring during tombusvirus replication is comparable in the presence or absence of peroxisomes. Overall, this work demonstrates that a tombusvirus, relying on the wt replication proteins, can efficiently replicate on an alternative intracellular membrane. This suggests that RNA viruses might have remarkable flexibility for using various host membranes for their replication.
Collapse
Affiliation(s)
- Magdalena Jonczyk
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, KY 40546-0312, USA
| | | | | | | |
Collapse
|
49
|
Avesani L, Marconi G, Morandini F, Albertini E, Bruschetta M, Bortesi L, Pezzotti M, Porceddu A. Stability of Potato virus X expression vectors is related to insert size: implications for replication models and risk assessment. Transgenic Res 2007; 16:587-97. [PMID: 17216546 DOI: 10.1007/s11248-006-9051-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 10/17/2006] [Indexed: 12/28/2022]
Abstract
We investigated the stability of expression constructs based on Potato virus X (PVX) as a function of insert length. Five different inserts ranging in length from 261 to 1,758 bp (human proinsulin, murine interleukin-10, HIV-1 nef, petunia expansin-1 and human gad65) were expressed using a PVX vector in Nicotiana benthamiana plants for three sequential passages. Using a competitive RT-PCR approach we demonstrated that insert-deletion could occur in the first infection cycle for all inserts, but that this was much more likely to be the case for longer ones. This suggested a negative correlation between insert length and vector stability. Sequence analysis of the deleted constructs suggested that recombination usually occurred at sites close to the duplicated sub-genomic promoter, but in a smaller number of cases the foreign gene itself was probably involved, resulting in partially deleted constructs containing transgene fragments. The implications of these results in the context of recombinant protein expression and its risks are discussed.
Collapse
Affiliation(s)
- Linda Avesani
- Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Moury B, Desbiez C, Jacquemond M, Lecoq H. Genetic diversity of plant virus populations: towards hypothesis testing in molecular epidemiology. Adv Virus Res 2006; 67:49-87. [PMID: 17027677 DOI: 10.1016/s0065-3527(06)67002-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B Moury
- INRA Avignon, Station de Pathologie Végétale, Domaine St Maurice BP94 84143 Montfavet cedex, France
| | | | | | | |
Collapse
|