1
|
Guerrero JF, Zimdars LL, Bruce JW, Becker JT, Evans EL, Torabi S, Striker R, Berry SM, Sherer NM. Single-cell delineation of strain-specific HIV-1 Vif activities using dual reporter sensor cells and live cell imaging. J Virol 2025; 99:e0157924. [PMID: 39998123 PMCID: PMC11915839 DOI: 10.1128/jvi.01579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) genome diversification is a key determinant of viral evolution and the pathogenesis of HIV/AIDS. Antiretroviral therapy is non-curative, and in the context of monitoring the latent reservoir, precision tools are needed to detect and enumerate HIV-1 genomes as well as to assess their heterogeneity, replication potential, and predict responses to therapy. Current sequencing-based methodologies are often unable to confirm intact genomes and most cell-based reporters provide limited information pertaining to viral fitness. In this study, we describe dual reporter sensor cells (DRSCs), an imaging-based reporter system designed to detect HIV-1 infection and measure several independent attributes of the virus in a single-cell high-content assay. We show that the DRSC assay can be used to measure infection, viral gene activation kinetics, and quantify viral circumvention of host antiviral responses. Using the DRSCs, we confirmed markedly different functional heterogeneity for vif alleles derived from diverse HIV-1 strains and subtypes affecting both rates of APOBEC3G degradation and the cell cycle. Furthermore, the assay allowed for the delineation of virus co-receptor preference (X4- vs R5-tropism) and visualization of virion assembly. Overall, our study illustrates proof-of-principle for a multivariate imaging-based cell-based system capable of detecting HIV-1 and studying viral genetic variability with greater data richness relative to prior available modalities. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) is highly heterogeneous and constantly mutating. These changes drive immune evasion and can cause treatment efforts to fail. Here, we describe the "dual reporter sensor cell" (DRSC) assay; a novel imaging-based approach that allows for the detection of HIV-1 infection coupled with a multivariate definition of several independent phenotypic aspects of viral genome activity in a single integrated assay. We validate the DRSC system by studying lab-adapted and patient isolate-derived versions of the viral Vif accessory protein, confirming marked differences in the capacity of diverse vif alleles to mediate downregulation of antiviral APOBEC3G proteins and dysregulate the cell cycle.
Collapse
Affiliation(s)
- Jorge F. Guerrero
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laraine L. Zimdars
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James W. Bruce
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jordan T. Becker
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward L. Evans
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Soroosh Torabi
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Rob Striker
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott M. Berry
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Moisan A, Tombette F, Vautrin M, Alessandri-Gradt E, Mourez T, Plantier JC. In vitro replicative potential of an HIV-1/MO intergroup recombinant virus compared to HIV-1/M and HIV-1/O parental viruses. Sci Rep 2024; 14:1730. [PMID: 38242913 PMCID: PMC10799055 DOI: 10.1038/s41598-024-51873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Genetic recombination is one of the major evolution processes of HIV-1. Despite their great genetic divergence, HIV-1 groups M and O can generate HIV-1/MO intergroup recombinants. The current description of 20 HIV-1/MO unique recombinant forms suggests a possible benefit of the recombination. The aim of this work was to study in vitro the replicative potential of HIV-1/MO recombinant forms. This analysis was based on a simple recombination pattern, [Ogag/pol-Menv], harboring a breakpoint in Vpr. A chimeric infectious molecular clone, pOM-TB-2016 was synthesized from HIV-1/M subtype B and HIV-1/O subgroup T and recombinant viruses were obtained by transfection/co-culture. To compare the replicative potential of these viruses, two markers were monitored in culture supernatants: Reverse Transcriptase (RT) activity and P24 antigen concentration. The results showed a superiority of the group M parental virus compared to group O for both markers. In contrast, for the recombinant virus, RT activity data did not overlap with the concentration of P24 antigen, suggesting a hybrid behavior of the recombinant, in terms of enzyme activity and P24 production. These results highlighted many hypotheses about the impact of recombination on replicative potential and demonstrated again the significant plasticity of HIV genomes and their infinite possibility of evolution.
Collapse
Affiliation(s)
- Alice Moisan
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, National Reference Center of HIV, 76000, Rouen, France.
| | - Fabienne Tombette
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, National Reference Center of HIV, 76000, Rouen, France
| | - Manon Vautrin
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, 76000, Rouen, France
| | - Elodie Alessandri-Gradt
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, National Reference Center of HIV, 76000, Rouen, France
| | - Thomas Mourez
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, National Reference Center of HIV, 76000, Rouen, France
| | - Jean-Christophe Plantier
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, National Reference Center of HIV, 76000, Rouen, France.
| |
Collapse
|
3
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
4
|
Asia LK, Jansen Van Vuren E, Williams ME. The influence of viral protein R amino acid substitutions on clinical outcomes in people living with HIV: A systematic review. Eur J Clin Invest 2022; 53:e13943. [PMID: 36579370 DOI: 10.1111/eci.13943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The HIV viral protein R (Vpr) is a multifunction protein involved in the pathophysiology of HIV-1. Recent evidence has suggested that Vpr amino acid substitutions influence the pathophysiology of HIV-1 and clinical outcomes in people living with HIV (PLWH). Several studies have linked Vpr amino acid substitutions to clinical outcomes in PLWH; however, there is no clear consensus as to which amino acids or amino acid substitutions are most important in the pathophysiology and clinical outcomes in PLWH. We, therefore, conducted a systematic review of studies investigating Vpr amino acid substitutions and clinical outcomes in PLWH. METHODS PubMed, Scopus and Web of Science databases were searched according to PRISMA guidelines using a search protocol designed specifically for this study. RESULTS A total of 22 studies were included for data extraction, comprising 14 cross-sectional and 8 longitudinal studies. Results indicated that Vpr amino acid substitutions were associated with specific clinical outcomes, including disease progressions, neurological outcomes and treatment status. Studies consistently showed that the Vpr substitution 63T was associated with slower disease progression, whereas 77H and 85P were associated with no significant contribution to disease progression. CONCLUSIONS Vpr-specific amino acid substitutions may be contributors to clinical outcomes in PLWH, and future studies should consider investigating the Vpr amino acid substitutions highlighted in this review.
Collapse
Affiliation(s)
- Levanco K Asia
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Esmé Jansen Van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,South African Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Monray E Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Abisi HK, Otieno LE, Irungu E, Onyambu FG, Chepchirchir A, Anzala O, Wamalwa DC, Nduati RW, McKinnon L, Kimani J, Mulinge MM. Net charge and position 22 of the V3 loop are associated with HIV-1 tropism in recently infected female sex workers in Nairobi, Kenya. Medicine (Baltimore) 2022; 101:e32024. [PMID: 36626483 PMCID: PMC9750520 DOI: 10.1097/md.0000000000032024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 01/11/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection affects around 37 million people worldwide, and in Kenya, key populations especially female sex workers (FSW), are thought to play a substantial role in the wider, mostly heterosexual HIV-1 transmission structure. Notably, HIV tropism has been found to correlate with HIV-1 transmission and disease progression in HIV-infected patients. In this study, recently infected FSWs from Nairobi, Kenya, were assessed for HIV tropism and the factors related to it. We used a cross-sectional study design to analyze 76 HIV-1 positive plasma samples obtained from FSWs enrolled in sex worker outreach program clinics in Nairobi between November 2020 and April 2021. The effects of clinical, demographic, and viral genetic characteristics were determined using multivariable logistic regression. HIV-1 subtype A1 accounted for 89.5% of all cases, with a prevalence of CXCR4-tropic viruses of 26.3%. WebPSSMR5X4 and Geno2Pheno [G2P:10-15% false positive rate] showed high concordance of 88%. Subjects infected with CXCR4-tropic viruses had statistically significant lower baseline CD4+T-cell counts than those infected with CCR5-tropic viruses (P = .044). Using multivariable logistic regression and adjusting for potential confounders, we found that net charge, the amino acid at position 22 of the V3 loop, and the geographic location of the subject were associated with tropism. A unit increase in V3 loop's net-charge increased the odds of a virus being CXCR4-tropic by 2.4 times (OR = 2.40, 95%CI = 1.35-5.00, P = .007). Second, amino acid threonine at position 22 of V3 loop increased the odds of a strain being X4 by 55.7 times compared to the alanine which occurred in CCR5-tropic strains (OR = 55.7, 95%CI = 4.04-84.1, P < .003). The Kawangware sex worker outreach program clinic was associated with CXCR4-tropic strains (P = .034), but there was there was no evidence of a distinct CXCR4-tropic transmission cluster. In conclusion, this study revealed a high concordance of WebPSSMR5X4 and Geno2Pheno in predicting HIV tropism. The most striking finding was that amino acid position 22 of the V3 loop is linked to tropism in HIV-1 subtype A1. Additional studies with a large dataset are warranted to confirm our findings.
Collapse
Affiliation(s)
- Hellen K Abisi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Leon E Otieno
- Molecular Medicine and Infectious Diseases Laboratory, University of Nairobi, Nairobi, Kenya
| | - Erastus Irungu
- Partners for Health and Development in Africa (PHDA), Nairobi, Kenya
| | - Frank G Onyambu
- School of Health Sciences, Meru University of Science and Technology, Meru, Kenya
| | | | - Omu Anzala
- Kenya AIDS Vaccine Initiative - Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Dalton C Wamalwa
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Ruth W Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Lyle McKinnon
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Manitoba, MB, Canada
| | - Joshua Kimani
- Partners for Health and Development in Africa (PHDA), Nairobi, Kenya
| | - Martin M Mulinge
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
- Kenya AIDS Vaccine Initiative - Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
6
|
Rindler AE, Kusejko K, Kuster H, Neumann K, Leemann C, Zeeb M, Chaudron SE, Braun DL, Kouyos RD, Metzner KJ, Günthard HF. The interplay between replication capacity of HIV-1 and surrogate markers of disease. J Infect Dis 2022; 226:1057-1068. [PMID: 35299248 DOI: 10.1093/infdis/jiac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/16/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND HIV-1 replication capacity (RC) of transmitted/founder viruses may influence the further course of HIV-1 infection. METHODS Replication capacities (RCs) of 355 whole genome primary HIV-1 isolates derived from samples acquired during acute and recent primary HIV-1 infection (PHI) were determined using a novel high throughput infection assay in primary cells. The RCs were used to elucidate potential factors that could be associated with RC during PHI. RESULTS Increased RC was found to be associated with increased set point viral load (VL), and significant differences in RCs among 13 different HIV-1 subtypes were discerned. Notably, we observed an increase in RCs for primary HIV-1 isolates of HIV-1 subtype B over a 17-year period. Associations were not observed between RC and CD4 count at sample date of RC measurement, CD4 recovery after initiation of antiretroviral treatment (ART), CD4 decline in untreated individuals, and acute retroviral syndrome severity scores. DISCUSSION These findings highlight that RCs of primary HIV-1 isolates acquired during the acute and recent phase of infection are more associated with viral factors, i.e., set point VL, than with host factors. Furthermore, we observed a temporal increase in RC for HIV-1 subtype B viruses over a period of 17 years.
Collapse
Affiliation(s)
- Audrey E Rindler
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Herbert Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Kathrin Neumann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Marius Zeeb
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Sandra E Chaudron
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
7
|
Wang H, Li Y, Li Y, Li B, Zhu X, Yan D, Li M, Wu W, Sun M, Yang R. Variations in Env at amino acids 328 and 330 affect HIV-1 replicative fitness and entry inhibitor sensitivity. Virus Res 2021; 299:198424. [PMID: 33862046 DOI: 10.1016/j.virusres.2021.198424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
While the variations in the HIV-1 Env V3 loop have been the focus of much research to explore its functional effect, how specific mutations of certain amino acids in the V3 loop affect viral fitness remains unclear. In this study, we evaluated a series of natural polymorphisms at positions 328 and 330 with different combinations of adjacent glycosylation sites in the HIV-1 subtype B backbone to address their role in replicative fitness and sensitivity to entry inhibitors based on analysis of env sequence frequency at the population level. Pairwise growth competition experiment showed that wild-type virus with major consensus amino acids obviously had higher replicative fitness (P < 0.001). A change at position 328 to a less frequently occurring amino acid, K, together with a mutated N332 glycosylation site harbored lower fitness and became more sensitive to coreceptor antagonists (AMD3100), fusion inhibitors (T20) and sCD4. A change at position 330 to a less frequently occurring amino acid, Y, together with a mutated N332 glycosylation site resulted in higher fitness and less sensitivity to entry inhibitors (T20, AMD3100, and sCD4), and viruses containing both changes showed intermediate activity. It seems that the H330Y mutation compensated for the reduced replicative capacity caused by the Q328 K mutation. Moreover, viruses that showed lower replicative fitness also exhibited slower entry kinetics, lower levels of replication intermediates and protein packaging, and a lower ability to replicate in primary peripheral blood mononuclear cells (PBMCs). The findings highlight the functional effect of variations at 328 and 330 in the V3 loop on replicative fitness and may benefit HIV-1 treatment by helping predict the sensitivity to entry inhibitors.
Collapse
Affiliation(s)
- Hongye Wang
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Yang Li
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ya Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bingxiang Li
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Xiaoyong Zhu
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Dongshan Yan
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Mingyu Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Wenying Wu
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Sun
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China.
| | - Rongge Yang
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
8
|
Umviligihozo G, Cobarrubias KD, Chandrarathna S, Jin SW, Reddy N, Byakwaga H, Muzoora C, Bwana MB, Lee GQ, Hunt PW, Martin JN, Brumme CJ, Bangsberg DR, Karita E, Allen S, Hunter E, Ndung'u T, Brumme ZL, Brockman MA. Differential Vpu-Mediated CD4 and Tetherin Downregulation Functions among Major HIV-1 Group M Subtypes. J Virol 2020; 94:e00293-20. [PMID: 32376625 PMCID: PMC7343213 DOI: 10.1128/jvi.00293-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Downregulation of BST-2/tetherin and CD4 by HIV-1 viral protein U (Vpu) promotes viral egress and allows infected cells to evade host immunity. Little is known however about the natural variability in these Vpu functions among the genetically diverse viral subtypes that contribute to the HIV-1 pandemic. We collected Vpu isolates from 332 treatment-naive individuals living with chronic HIV-1 infection in Uganda, Rwanda, South Africa, and Canada. Together, these Vpu isolates represent four major HIV-1 group M subtypes (A [n = 63], B [n = 84], C [n = 94], and D [n = 59]) plus intersubtype recombinants and uncommon strains (n = 32). The ability of each Vpu clone to downregulate endogenous CD4 and tetherin was quantified using flow cytometry following transfection into an immortalized T-cell line and compared to that of a reference Vpu clone derived from HIV-1 subtype B NL4.3. Overall, the median CD4 downregulation function of natural Vpu isolates was similar to that of NL4.3 (1.01 [interquartile range {IQR}, 0.86 to 1.18]), while the median tetherin downregulation function was moderately lower than that of NL4.3 (0.90 [0.79 to 0.97]). Both Vpu functions varied significantly among HIV-1 subtypes (Kruskal-Wallis P < 0.0001). Specifically, subtype C clones exhibited the lowest CD4 and tetherin downregulation activities, while subtype D and B clones were most functional for both activities. We also identified Vpu polymorphisms associated with CD4 or tetherin downregulation function and validated six of these using site-directed mutagenesis. Our results highlight the marked extent to which Vpu function varies among global HIV-1 strains, raising the possibility that natural variation in this accessory protein may contribute to viral pathogenesis and/or spread.IMPORTANCE The HIV-1 accessory protein Vpu enhances viral spread by downregulating CD4 and BST-2/tetherin on the surface of infected cells. Natural variability in these Vpu functions may contribute to HIV-1 pathogenesis, but this has not been investigated among the diverse viral subtypes that contribute to the HIV-1 pandemic. In this study, we found that Vpu function differs significantly among HIV-1 subtypes A, B, C, and D. On average, subtype C clones displayed the lowest ability to downregulate both CD4 and tetherin, while subtype B and D clones were more functional. We also identified Vpu polymorphisms that associate with functional differences among HIV-1 isolates and subtypes. Our study suggests that genetic diversity in Vpu may play an important role in the differential pathogenesis and/or spread of HIV-1.
Collapse
Affiliation(s)
- Gisele Umviligihozo
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Kyle D Cobarrubias
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Sandali Chandrarathna
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Nicole Reddy
- University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
| | - Helen Byakwaga
- Mbarara University of Science and Technology, Mbarara, Uganda
- University of California, San Francisco, California, USA
| | - Conrad Muzoora
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Mwebesa B Bwana
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Guinevere Q Lee
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Peter W Hunt
- University of California, San Francisco, California, USA
| | - Jeff N Martin
- University of California, San Francisco, California, USA
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - David R Bangsberg
- Oregon Health and Science University-Portland State University School of Public Health, Portland, Oregon, USA
| | - Etienne Karita
- Rwanda Zambia HIV Research Group-Projet San Francisco, Kigali, Rwanda
| | - Susan Allen
- Rwanda Zambia HIV Research Group-Projet San Francisco, Kigali, Rwanda
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Eric Hunter
- Rwanda Zambia HIV Research Group-Projet San Francisco, Kigali, Rwanda
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thumbi Ndung'u
- University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Roy A, Basak S. HIV long-term non-progressors share similar features with simian immunodeficiency virus infection of chimpanzees. J Biomol Struct Dyn 2020; 39:2447-2454. [PMID: 32223527 DOI: 10.1080/07391102.2020.1749129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV-1 infection in human beings has been an outcome of cross-species transmission event of simian immunodeficiency virus from chimpanzees (SIVcpz). Present study reveals differential features of envelope genes representing different categories of HIV-1 disease progression in human beings, namely, rapid progressors (RP), slow progressors (SP) and long-term non-progressors (LTNP) with respect to SIVcpz, based on their amino acid usage patterns. It was evident that SP, LTNP and SIVcpz envelope genes displayed similar patterns of amino acid usage which strongly contrasted with the features exhibited by the envelope genes representing RP category. Robust analysis revealed that selection constraint of human host on SP and LTNP associated envelope genes and chimpanzee host on SIVcpz envelope genes were more severe compared to selection pressure operational on RP associated envelope genes. Evolutionary forces of selection appeared to be comparatively more relaxed on the RP envelope genes in contrast to SP, LTNP and SIVcpz types. Better binding of RP envelope glycoprotein 120 (gp120) compared to envelope gp120 representing SP, LTNP and SIVcpz with host cellular receptor CD4, as inferred employing molecular docking approaches, promises to confer meaningful insights into the event of speedy progression of HIV in rapid progressors. It was interesting to note that envelope glycoprotein exhibited a tendency of hindering proper interaction of host (human/chimpanzee) CD4 and major histocompatibility complex II (MHC II), with a better efficacy in rapid progressors, thus, facilitating highest degrees of immune suppression. Proper identification of the contrasting features might confer a scope to modulate rapid progression of HIV to a long-term non-progressive controlled case, as observed in LTNP and SIVcpz infection, simultaneously aiding therapeutic research against AIDS targeted at drug and vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayan Roy
- Department of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Surajit Basak
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
10
|
Gartner MJ, Roche M, Churchill MJ, Gorry PR, Flynn JK. Understanding the mechanisms driving the spread of subtype C HIV-1. EBioMedicine 2020; 53:102682. [PMID: 32114391 PMCID: PMC7047180 DOI: 10.1016/j.ebiom.2020.102682] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C (C-HIV) is the most prevalent form of HIV-1 globally, accounting for approximately 50% of infections worldwide. C-HIV is the predominant and near-exclusive subtype in the low resource regions of India and Southern Africa. Given the vast diversity of HIV-1 subtypes, it is curious as to why C-HIV constitutes such a large proportion of global infections. This enriched prevalence may be due to phenotypic differences between C-HIV isolates and other viral strains that permit enhanced transmission efficiency or, pathogenicity, or might due to the socio-demographics of the regions where C-HIV is endemic. Here, we compare the mechanisms of C-HIV pathogenesis to less prominent HIV-1 subtypes, including viral genetic and phenotypic characteristics, and host genetic variability, to understand whether evolutionary factors drove C-HIV to predominance.
Collapse
Affiliation(s)
- Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Melissa J Churchill
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Department of Microbiology, Monash University, Melbourne, Australia
| | - Paul R Gorry
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Jacqueline K Flynn
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia.
| |
Collapse
|
11
|
Grant HE, Hodcroft EB, Ssemwanga D, Kitayimbwa JM, Yebra G, Esquivel Gomez LR, Frampton D, Gall A, Kellam P, de Oliveira T, Bbosa N, Nsubuga RN, Kibengo F, Kwan TH, Lycett S, Kao R, Robertson DL, Ratmann O, Fraser C, Pillay D, Kaleebu P, Leigh Brown AJ. Pervasive and non-random recombination in near full-length HIV genomes from Uganda. Virus Evol 2020; 6:veaa004. [PMID: 32395255 PMCID: PMC7204518 DOI: 10.1093/ve/veaa004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recombination is an important feature of HIV evolution, occurring both within and between the major branches of diversity (subtypes). The Ugandan epidemic is primarily composed of two subtypes, A1 and D, that have been co-circulating for 50 years, frequently recombining in dually infected patients. Here, we investigate the frequency of recombinants in this population and the location of breakpoints along the genome. As part of the PANGEA-HIV consortium, 1,472 consensus genome sequences over 5 kb have been obtained from 1,857 samples collected by the MRC/UVRI & LSHTM Research unit in Uganda, 465 (31.6 per cent) of which were near full-length sequences (>8 kb). Using the subtyping tool SCUEAL, we find that of the near full-length dataset, 233 (50.1 per cent) genomes contained only one subtype, 30.8 per cent A1 (n = 143), 17.6 per cent D (n = 82), and 1.7 per cent C (n = 8), while 49.9 per cent (n = 232) contained more than one subtype (including A1/D (n = 164), A1/C (n = 13), C/D (n = 9); A1/C/D (n = 13), and 33 complex types). K-means clustering of the recombinant A1/D genomes revealed a section of envelope (C2gp120-TMgp41) is often inherited intact, whilst a generalized linear model was used to demonstrate significantly fewer breakpoints in the gag-pol and envelope C2-TM regions compared with accessory gene regions. Despite similar recombination patterns in many recombinants, no clearly supported circulating recombinant form (CRF) was found, there was limited evidence of the transmission of breakpoints, and the vast majority (153/164; 93 per cent) of the A1/D recombinants appear to be unique recombinant forms. Thus, recombination is pervasive with clear biases in breakpoint location, but CRFs are not a significant feature, characteristic of a complex, and diverse epidemic.
Collapse
Affiliation(s)
- Heather E Grant
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Emma B Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Deogratius Ssemwanga
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
- Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Gonzalo Yebra
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Dan Frampton
- Division of Infection and Immunity, University College London, London, UK
| | - Astrid Gall
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Paul Kellam
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Tulio de Oliveira
- Nelson R. Mandela School of Medicine, Africa Health Research Institute, Durban, South Africa
| | - Nicholas Bbosa
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Rebecca N Nsubuga
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Freddie Kibengo
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Tsz Ho Kwan
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Rowland Kao
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, UK
| | - Christophe Fraser
- Nuffield Department of Medicine, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Deenan Pillay
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Nelson R. Mandela School of Medicine, Africa Health Research Institute, Durban, South Africa
| | - Pontiano Kaleebu
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
- Uganda Virus Research Institute, Entebbe, Uganda
| | | |
Collapse
|
12
|
Williams ME, Zulu SS, Stein DJ, Joska JA, Naudé PJW. Signatures of HIV-1 subtype B and C Tat proteins and their effects in the neuropathogenesis of HIV-associated neurocognitive impairments. Neurobiol Dis 2019; 136:104701. [PMID: 31837421 DOI: 10.1016/j.nbd.2019.104701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022] Open
Abstract
HIV-associated neurocognitive impairments (HANI) are a spectrum of neurological disorders due to the effects of HIV-1 on the central nervous system (CNS). The HIV-1 subtypes; HIV-1 subtype B (HIV-1B) and HIV-1 subtype C (HIV-1C) are responsible for the highest prevalence of HANI and HIV infections respectively. The HIV transactivator of transcription (Tat) protein is a major contributor to the neuropathogenesis of HIV. The effects of the Tat protein on cells of the CNS is determined by the subtype-associated amino acid sequence variations. The extent to which the sequence variation between Tat-subtypes contribute to underlying mechanisms and neurological outcomes are not clear. In this review of the literature, we discuss how amino acid variations between HIV-1B Tat (TatB) and HIV-1C Tat (TatC) proteins contribute to the potential underlying neurobiological mechanisms of HANI. Tat-C is considered to be a more effective transactivator, whereas Tat-B may exert increased neurovirulence, including neuronal apoptosis, monocyte infiltration into the brain, (neuro)inflammation, oxidative stress and blood-brain barrier damage. These findings support the premise that Tat variants from different HIV-1 subtypes may direct neurovirulence and neurological outcomes in HANI.
Collapse
Affiliation(s)
- Monray E Williams
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| | - Simo S Zulu
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders and Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - John A Joska
- Division of Neuropsychiatry, Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Broad-Spectrum Antiviral Activity of an Ankyrin Repeat Protein on Viral Assembly against Chimeric NL4-3 Viruses Carrying Gag/PR Derived from Circulating Strains among Northern Thai Patients. Viruses 2018; 10:v10110625. [PMID: 30428529 PMCID: PMC6265948 DOI: 10.3390/v10110625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
Certain proteins have demonstrated proficient human immunodeficiency virus (HIV-1) life cycle disturbance. Recently, the ankyrin repeat protein targeting the HIV-1 capsid, AnkGAG1D4, showed a negative effect on the viral assembly of the HIV-1NL4-3 laboratory strain. To extend its potential for future clinical application, the activity of AnkGAG1D4 in the inhibition of other HIV-1 circulating strains was evaluated. Chimeric NL4-3 viruses carrying patient-derived Gag/PR-coding regions were generated from 131 antiretroviral drug-naïve HIV-1 infected individuals in northern Thailand during 2001–2012. SupT1, a stable T-cell line expressing AnkGAG1D4 and ankyrin non-binding control (AnkA32D3), were challenged with these chimeric viruses. The p24CA sequences were analysed and classified using the K-means clustering method. Among all the classes of virus classified using the p24CA sequences, SupT1/AnkGAG1D4 demonstrated significantly lower levels of p24CA than SupT1/AnkA32D3, which was found to correlate with the syncytia formation. This result suggests that AnkGAG1D4 can significantly interfere with the chimeric viruses derived from patients with different sequences of the p24CA domain. It supports the possibility of ankyrin-based therapy as a broad alternative therapeutic molecule for HIV-1 gene therapy in the future.
Collapse
|
14
|
Casado C, Marrero-Hernández S, Márquez-Arce D, Pernas M, Marfil S, Borràs-Grañana F, Olivares I, Cabrera-Rodríguez R, Valera MS, de Armas-Rillo L, Lemey P, Blanco J, Valenzuela-Fernández A, Lopez-Galíndez C. Viral Characteristics Associated with the Clinical Nonprogressor Phenotype Are Inherited by Viruses from a Cluster of HIV-1 Elite Controllers. mBio 2018; 9:e02338-17. [PMID: 29636433 PMCID: PMC5893881 DOI: 10.1128/mbio.02338-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
Abstract
A small group of HIV-1-infected individuals, called long-term nonprogressors (LTNPs), and in particular a subgroup of LTNPs, elite controllers (LTNP-ECs), display permanent control of viral replication and lack of clinical progression. This control is the result of a complex interaction of host, immune, and viral factors. We identified, by phylogenetic analysis, a cluster of LTNP-ECs infected with very similar low-replication HIV-1 viruses, suggesting the contribution of common viral features to the clinical LTNP-EC phenotype. HIV-1 envelope (Env) glycoprotein mediates signaling and promotes HIV-1 fusion, entry, and infection, being a key factor of viral fitness in vitro, cytopathicity, and infection progression in vivo Therefore, we isolated full-length env genes from viruses of these patients and from chronically infected control individuals. Functional characterization of the initial events of the viral infection showed that Envs from the LTNP-ECs were ineffective in the binding to CD4 and in the key triggering of actin/tubulin-cytoskeleton modifications compared to Envs from chronic patients. The viral properties of the cluster viruses result in a defective viral fusion, entry, and infection, and these properties were inherited by every virus of the cluster. Therefore, inefficient HIV-1 Env functions and signaling defects may contribute to the low viral replication capacity and transmissibility of the cluster viruses, suggesting a direct role in the LTNP-EC phenotype of these individuals. These results highlight the important role of viral characteristics in the LTNP-EC clinical phenotype. These Env viral properties were common to all the cluster viruses and thus support the heritability of the viral characteristics.IMPORTANCE HIV-1 long-term nonprogressor elite controller patients, due to their permanent control of viral replication, have been the object of numerous studies to identify the factors responsible for this clinical phenotype. In this work, we analyzed the viral characteristics of the envelopes of viruses from a phylogenetic cluster of LTNP-EC patients. These envelopes showed ineffective binding to CD4 and the subsequent signaling activity to modify actin/tubulin cytoskeletons, which result in low fusion and deficient entry and infection capacities. These Env viral characteristics could explain the nonprogressor clinical phenotype of these patients. In addition, these inefficient env viral properties were present in all viruses of the cluster, supporting the heritability of the viral phenotype.
Collapse
Affiliation(s)
- Concepción Casado
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| | - Sara Marrero-Hernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - María Pernas
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| | - Sílvia Marfil
- Institut de Recerca de la Sida IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Ferran Borràs-Grañana
- Institut de Recerca de la Sida IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Isabel Olivares
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - María-Soledad Valera
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, University of Leuven, Leuven, Belgium
| | - Julià Blanco
- Institut de Recerca de la Sida IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat de Vic, Universitat Central de Catalunya, UVIC, Vic, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Cecilio Lopez-Galíndez
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| |
Collapse
|
15
|
Tongo M, de Oliveira T, Martin DP. Patterns of genomic site inheritance in HIV-1M inter-subtype recombinants delineate the most likely genomic sites of subtype-specific adaptation. Virus Evol 2018; 4:vey015. [PMID: 29942655 PMCID: PMC6007327 DOI: 10.1093/ve/vey015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recombination between different HIV-1 group M (HIV-1M) subtypes is a major contributor to the ongoing genetic diversification of HIV-1M. However, it remains unclear whether the different genome regions of recombinants are randomly inherited from the different subtypes. To elucidate this, we analysed the distribution within 82 circulating and 201 unique recombinant forms (CRFs/URFs), of genome fragments derived from HIV-1M Subtypes A, B, C, D, F, and G and CRF01_AE. We found that viruses belonging to the analysed HIV-1M subtypes and CRF01_AE contributed certain genome fragments more frequently during recombination than other fragments. Furthermore, we identified statistically significant hot-spots of Subtype A sequence inheritance in genomic regions encoding portions of Gag and Nef, Subtype B in Pol, Tat and Env, Subtype C in Vif, Subtype D in Pol and Env, Subtype F in Gag, Subtype G in Vpu-Env and Nef, and CRF01_AE inheritance in Vpu and Env. The apparent non-randomness in the frequencies with which different subtypes have contributed specific genome regions to known HIV-1M recombinants is consistent with selection strongly impacting the survival of inter-subtype recombinants. We propose that hotspots of genomic region inheritance are likely to demarcate the locations of subtype-specific adaptive genetic variations.
Collapse
Affiliation(s)
- Marcel Tongo
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal (UKZN), 719 Umbilo Road, Durban 4001, South Africa
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal (UKZN), 719 Umbilo Road, Durban 4001, South Africa
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
16
|
Subtype-Specific Differences in Gag-Protease-Driven Replication Capacity Are Consistent with Intersubtype Differences in HIV-1 Disease Progression. J Virol 2017; 91:JVI.00253-17. [PMID: 28424286 DOI: 10.1128/jvi.00253-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates (r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases (P < 0.0001); this observation remained consistent when representative Gag-protease sequences were engineered into an HIV-1 subtype C backbone. We identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C < D < intersubtype recombinants (P < 0.0029), which is consistent with reported intersubtype differences in disease progression. We thus hypothesize that the lower Gag-protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes.IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that HIV-1 Gag-protease-driven replication capacity correlates with the replication capacity of whole virus isolates. We further show that subtype B displays a significantly higher Gag-protease-mediated replication capacity than does subtype C, and we identify a major genetic determinant of these differences. Moreover, in two independent East African cohorts we demonstrate a reproducible hierarchy of Gag-protease-driven replicative capacity, whereby recombinants exhibit the greatest replication, followed by subtype D, followed by subtypes A and C. Our data identify Gag-protease as a major determinant of subtype differences in disease progression among HIV-1 subtypes; furthermore, we propose that the poorer viral replicative capacity of subtypes A and C may paradoxically contribute to their more efficient spread in sub-Saharan Africa.
Collapse
|
17
|
Replication Capacity of Viruses from Acute Infection Drives HIV-1 Disease Progression. J Virol 2017; 91:JVI.01806-16. [PMID: 28148791 DOI: 10.1128/jvi.01806-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/19/2017] [Indexed: 01/09/2023] Open
Abstract
The viral genotype has been shown to play an important role in HIV pathogenesis following transmission. However, the viral phenotypic properties that contribute to disease progression remain unclear. Most studies have been limited to the evaluation of Gag function in the context of a recombinant virus backbone. Using this approach, important biological information may be lost, making the evaluation of viruses obtained during acute infection, representing the transmitted virus, a more biologically relevant model. Here, we evaluate the roles of viral infectivity and the replication capacity of viruses from acute infection in disease progression in women who seroconverted in the CAPRISA 004 tenofovir microbicide trial. We show that viral replication capacity, but not viral infectivity, correlates with the set point viral load (Spearman r = 0.346; P = 0.045) and that replication capacity (hazard ratio [HR] = 4.52; P = 0.01) can predict CD4 decline independently of the viral load (HR = 2.9; P = 0.004) or protective HLA alleles (HR = 0.61; P = 0.36). We further demonstrate that Gag-Pro is not the main driver of this association, suggesting that additional properties of the transmitted virus play a role in disease progression. Finally, we find that although viruses from the tenofovir arm were 2-fold less infectious, they replicated at rates similar to those of viruses from the placebo arm. This indicates that the use of tenofovir gel did not select for viral variants with higher replication capacity. Overall, this study supports a strong influence of the replication capacity in acute infection on disease progression, potentially driven by interaction of multiple genes rather than a dominant role of the major structural gene gagIMPORTANCE HIV disease progression is known to differ between individuals, and defining which fraction of this variation can be attributed to the virus is important both clinically and epidemiologically. In this study, we show that the replication capacity of viruses isolated during acute infection predicts subsequent disease progression and drives CD4 decline independently of the viral load. This provides further support for the hypothesis that the replication capacity of the transmitted virus determines the initial damage to the immune system, setting the pace for later disease progression. However, we did not find evidence that the major structural gene gag drives this correlation, highlighting the importance of other genes in determining disease progression.
Collapse
|
18
|
Infection of rhesus macaques with a pool of simian immunodeficiency virus with the envelope genes from acute HIV-1 infections. AIDS Res Ther 2016; 13:41. [PMID: 27906032 PMCID: PMC5124249 DOI: 10.1186/s12981-016-0125-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/16/2016] [Indexed: 01/29/2023] Open
Abstract
Background New simian–human immunodeficiency chimeric viruses with an HIV-1 env (SHIVenv) are critical for studies on HIV pathogenesis, vaccine development, and microbicide testing. Macaques are typically exposed to single CCR5-using SHIVenv which in most instances does not reflect the conditions during acute/early HIV infection (AHI) in humans. Instead of individual and serial testing new SHIV constructs, a pool of SHIVenv_B derived from 16 acute HIV-1 infections were constructed using a novel yeast-based SHIV cloning approach and then used to infect macaques. Results Even though none of the 16 SHIVenvs contained the recently reported mutations in env genes that could significantly enhance their binding affinity to RhCD4, one SHIVenv (i.e. SHIVenv_B3-PRB926) established infection in macaques exposed to this pool. AHI SHIVenv_B viruses as well as their HIVenv_B counterparts were analyzed for viral protein content, function, and fitness to identify possible difference between SHIVenv_B3-PRB926 and the other 15 SHIVenvs in the pool. All of the constructs produced SHIV or HIV chimeric with wild type levels of capsid (p27 and p24) content, reverse transcriptase (RT) activity, and expressed envelope glycoproteins that could bind to cell receptors CD4/CCR5 and mediate virus entry. HIV-1env_B chimeric viruses were propagated in susceptible cell lines but the 16 SHIVenv_B variants showed only limited replication in macaque peripheral blood mononuclear cells (PBMCs) and 174×CEM.CCR5 cell line. AHI chimeric viruses including HIVenv_B3 showed only minor variations in cell entry efficiency and kinetics as well as replicative fitness in human PBMCs. Reduced number of N-link glycosylation sites and slightly greater CCR5 affinity/avidity was the only distinguishing feature of env_B3 versus other AHI env’s in the pool, a feature also observed in the HIV establishing new infections in humans. Conclusion Despite the inability to propagate in primary cells and cell lines, a pool of 16 SHIVenv viruses could establish infection but only one virus, SHIVenv_B3 was isolated in the macaque and then shown to repeatedly infected macaques. This SHIVenv_B3 virus did not show any distinct phenotypic property from the other 15 SHIVenv viruses but did have the fewest N-linked glycosylation sites. Electronic supplementary material The online version of this article (doi:10.1186/s12981-016-0125-8) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
In vitro functional assessment of natural HIV-1 group M Vpu sequences using a universal priming approach. J Virol Methods 2016; 240:32-41. [PMID: 27865749 DOI: 10.1016/j.jviromet.2016.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023]
Abstract
The HIV-1 accessory protein Vpu exhibits high inter- and intra- subtype genetic diversity that may influence Vpu function and possibly contribute to HIV-1 pathogenesis. However, scalable methods to evaluate genotype/phenotype relationships in natural Vpu sequences are limited, particularly those expressing the protein in CD4+ T-cells, the natural target of HIV-1 infection. A major impediment to assay scalability is the extensive genetic diversity within, and immediately upstream of, Vpu's initial 5' coding region, which has necessitated the design of oligonucleotide primers specific for each individual HIV-1 isolate (or subtype). To address this, we developed two universal forward primers, located in relatively conserved regions 38 and 90 bases upstream of Vpu, and a single universal reverse primer downstream of Vpu, which are predicted to cover the vast majority of global HIV-1 group M sequence diversity. We show that inclusion of up to 90 upstream bases of HIV-1 genomic sequence does not significantly influence in vitro Vpu expression or function when a Rev/Rev Response Element (RRE)-dependent expression system is used. We further assess the function of four diverse HIV-1 Vpu sequences, revealing reproducible and significant differences between them. Our approach represents a scalable option to measure the in vitro function of genetically diverse natural Vpu isolates in a CD4+ T-cell line.
Collapse
|
20
|
Venner CM, Nankya I, Kyeyune F, Demers K, Kwok C, Chen PL, Rwambuya S, Munjoma M, Chipato T, Byamugisha J, Van Der Pol B, Mugyenyi P, Salata RA, Morrison CS, Arts EJ. Infecting HIV-1 Subtype Predicts Disease Progression in Women of Sub-Saharan Africa. EBioMedicine 2016; 13:305-314. [PMID: 27751765 PMCID: PMC5264310 DOI: 10.1016/j.ebiom.2016.10.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Long-term natural history cohorts of HIV-1 in the absence of treatment provide the best measure of virulence by different viral subtypes. METHODS Newly HIV infected Ugandan and Zimbabwean women (N=303) were recruited and monitored for clinical, social, behavioral, immunological and viral parameters for 3 to 9.5years. RESULTS Ugandan and Zimbabwean women infected with HIV-1 subtype C had 2.5-fold slower rates of CD4 T-cell declines and higher frequencies of long-term non-progression than those infected with subtype A or D (GEE model, P<0.001), a difference not associated with any other clinical parameters. Relative replicative fitness and entry efficiency of HIV-1 variants directly correlated with virulence in the patients, subtype D>A>C (P<0.001, ANOVA). DISCUSSION HIV-1 subtype C was less virulent than either A or D in humans; the latter being the most virulent. Longer periods of asymptomatic HIV-1 subtype C could explain the continued expansion and dominance of subtype C in the global epidemic.
Collapse
Affiliation(s)
- Colin M Venner
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Immaculate Nankya
- Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Korey Demers
- Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cynthia Kwok
- Family Health International 360, Durham, NC, USA
| | | | - Sandra Rwambuya
- Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Marshall Munjoma
- Department of Obstetrics and Gynaecology, University of Zimbabwe, Harare, Zimbabwe
| | - Tsungai Chipato
- Department of Obstetrics and Gynaecology, University of Zimbabwe, Harare, Zimbabwe
| | | | - Barbara Van Der Pol
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, USA
| | | | - Robert A Salata
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Eric J Arts
- Department of Microbiology and Immunology, Western University, London, ON, Canada; Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
21
|
Asmal M, Lane S, Tian M, Nickel G, Venner C, Dirk B, Dikeakos J, Luedemann C, Mach L, Balachandran H, Buzby A, Rao S, Letvin N, Gao Y, Arts EJ. Pathogenic infection of Rhesus macaques by an evolving SIV-HIV derived from CCR5-using envelope genes of acute HIV-1 infections. Virology 2016; 499:298-312. [PMID: 27723488 DOI: 10.1016/j.virol.2016.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/31/2022]
Abstract
For studies on vaccines and therapies for HIV disease, SIV-HIV chimeric viruses harboring the HIV-1 env gene (SHIVenv) remain the best virus in non-human primate models. However, there are still very few SHIVenv viruses that can cause AIDS in non-CD8-depleted animals. In the present study, a recently created CCR5-using SHIVenv_B3 virus with env gene derived from acute/early HIV-1 infections (AHI) successfully established pathogenic infection in macaques. Through a series of investigations on the evolution, mutational profile, and phenotype of the virus and the resultant humoral immune response in infected rhesus macaques, we found that the E32K mutation in the Env C1 domain was associated with macaque pathogenesis, and that the electrostatic interactions in Env may favor E32K at the gp120 N terminus and "lock" the binding to heptad repeat 1 of gp41 in the trimer and produce a SHIVenv with increased fitness and pathogenesis during macaque infections.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/immunology
- Disease Models, Animal
- Evolution, Molecular
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/immunology
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/classification
- HIV-1/genetics
- HIV-1/immunology
- HIV-1/pathogenicity
- Humans
- Immunity, Humoral
- Macaca mulatta
- Molecular Sequence Data
- Mutation, Missense
- Phylogeny
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Sequence Alignment
- Simian Immunodeficiency Virus/classification
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/pathogenicity
- Virulence
Collapse
Affiliation(s)
- Mohammed Asmal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sophie Lane
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Meijuan Tian
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Gabrielle Nickel
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Colin Venner
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Brennan Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jimmy Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Corinne Luedemann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linh Mach
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harikrishnan Balachandran
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Adam Buzby
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Srinivas Rao
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Norman Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yong Gao
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Eric J Arts
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
| |
Collapse
|
22
|
Benureau Y, Colin P, Staropoli I, Gonzalez N, Garcia-Perez J, Alcami J, Arenzana-Seisdedos F, Lagane B. Guidelines for cloning, expression, purification and functional characterization of primary HIV-1 envelope glycoproteins. J Virol Methods 2016; 236:184-195. [PMID: 27451265 DOI: 10.1016/j.jviromet.2016.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/14/2022]
Abstract
The trimeric HIV-1 envelope (Env) glycoproteins gp120 and gp41 mediate virus entry into target cells by engaging CD4 and the coreceptors CCR5 or CXCR4 at the cell surface and driving membrane fusion. Receptor/gp120 interactions regulate the virus life cycle, HIV infection transmission and pathogenesis. Env is also the target of neutralizing antibodies. Efforts have thus been made to produce soluble HIV-1 glycoproteins to develop vaccines and study the role and mechanisms of HIV/receptor interactions. However, production and purification of Env glycoproteins and their functional assessment has to cope with multiple obstacles. These include difficulties in amplifying and cloning env sequences and setting up receptor binding assays that are suitable for studies on large collections of glycoproteins, flexible enough to adapt to Env and receptor structural heterogeneities, and allow recapitulating the receptor binding properties of virion-associated Env trimers. Here we identify these difficulties and present protocols to produce primary gp120 and determination of their binding properties to receptors. The receptor binding assays confirmed that the produced glycoproteins are competent for binding CD4 and undergo proper CD4-induced conformational changes required for interaction with CCR5. These assays may help elucidate the role of gp120/receptor interactions in the pathophysiology of HIV infection and develop HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Yann Benureau
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Philippe Colin
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Isabelle Staropoli
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Nuria Gonzalez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Javier Garcia-Perez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Fernando Arenzana-Seisdedos
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Bernard Lagane
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
23
|
Gordon K, Omar S, Nofemela A, Bandawe G, Williamson C, Woodman Z. Short Communication: A Recombinant Variant with Increased Envelope Entry Efficiency Emerged During Early Infection of an HIV-1 Subtype C Dual Infected Rapid Progressor. AIDS Res Hum Retroviruses 2016; 32:303-10. [PMID: 25905681 DOI: 10.1089/aid.2014.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in functionally constrained sites of the HIV envelope (Env) can affect entry efficiency and are potential targets for vaccine and drug design. We investigated Du151, a dual-infected individual with rapid disease progression. At her death 19 months postinfection (mpi), she was infected with a recombinant variant, which outgrew both parental viruses. We aimed to determine whether the recombinant virus had enhanced Env entry efficiency compared to the parental viruses and to identify the functional determinant. We generated 15 env clones at 1, 2, 8, and 19 mpi. Pseudovirus carrying a recombinant Env clone (PSV clone), C18 (19 mpi), had significantly higher entry efficiency compared to the parents, suggesting that the recombinant virus had enhanced fitness. To identify the functional determinant, we compared two recombinant PSV clones (C18 and C63)-differing in entry efficiency (2-fold) and by four and three amino acids in gp120 and gp41, respectively. The increased entry efficiency of a C18-gp41 PSV chimera indicated that the three amino acids in the C18 gp41 region were involved (K658, G671, and F717). Site-directed mutagenesis of the three amino acids of C63 showed that a single amino acid mutation, R658K, increased pseudovirion entry efficiency. The introduction of R658 into two PSV clones (C1 and C18) decreased their entry efficiency, suggesting that R658 carries a fitness cost. Thus, our data suggest that a recombinant virus emerged at 19 mpi with enhanced Env entry efficiency. Therefore, K658 in gp41 could in part be a contributing factor to the increased viral load and rapid disease progression of Du151.
Collapse
Affiliation(s)
- Kerry Gordon
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Shatha Omar
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Andile Nofemela
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gama Bandawe
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
| | - Zenda Woodman
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Nankya IL, Tebit DM, Abraha A, Kyeyune F, Gibson R, Jegede O, Nickel G, Arts EJ. Defining the fitness of HIV-1 isolates with dual/mixed co-receptor usage. AIDS Res Ther 2015; 12:34. [PMID: 26435727 PMCID: PMC4592561 DOI: 10.1186/s12981-015-0066-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/28/2015] [Indexed: 02/08/2023] Open
Abstract
Background CCR5-using (r5) HIV-1 predominates during asymptomatic disease followed by occasional emergence of CXCR4-using (x4) or dual tropic (r5x4) virus. We examined the contribution of the x4 and r5 components to replicative fitness of HIV-1 isolates. Methods Dual tropic r5x4 viruses were predicted from average HIV-1 env sequences of two primary subtype C HIV-1 isolates (C19 and C27) and from two patient plasma samples (B12 and B19). Chimeric Env viruses with an NL4-3 backbone were constructed from the B12 and B19 env sequences. To determine replicative fitness, these primary and chimeric dual tropic HIV-1 were then competed against HIV-1 reference isolates in U87.CD4 cells expressing CXCR4 or CCR5 or in PBMCs ± entry inhibitors. Contribution of the x4 and r5 clones within the quasispecies of these chimeric or primary HIV-1 isolates were then compared to the frequency of x4, r5, and dual tropic clones within the quasispecies as predicted by phenotypic assays, clonal sequencing, and 454 deep sequencing. Results In the primary HIV-1 isolates (C19 and C27), subtype C dual tropic clones dominated over x4 clones while pure r5 clones were absent. In two subtype B chimeric viruses (B12 and B19), r5 clones were >100-fold more abundant than x4 or r5/x4 clones. The dual tropic C19 and C27 HIV-1 isolates outcompeted r5 primary HIV-1 isolates, B2 and C3 in PBMCs. When AMD3100 was added or when only U87.CD4.CCR5 cells were used, the B2 and C3 reference viruses now out-competed the r5 component of the dual tropic C19 and C27. In contrast, the same replicative fitness was observed with dualtropic B12 and B19 HIV-1 isolates relative to x4 HIV-1 A8 and E6 or the r5 B2 and C3 viruses, even when the r5 or x4 component was inhibited by maraviroc (or AMD3100) or in U87.CD4.CXCR4 (or CCR5) cells. Conclusions In the dual tropic HIV-1 isolates, the x4 replicative fitness is higher than r5 clones but the x4 or x4/r5 clones are typically at low frequency in the intrapatient virus population. Ex vivo HIV propagation promotes outgrowth of the x4 clones and provides an over-estimate of x4 dominance in replicative fitness within dual tropic viruses. Electronic supplementary material The online version of this article (doi:10.1186/s12981-015-0066-7) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Garcia-Perez J, Staropoli I, Azoulay S, Heinrich JT, Cascajero A, Colin P, Lortat-Jacob H, Arenzana-Seisdedos F, Alcami J, Kellenberger E, Lagane B. A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity. Retrovirology 2015; 12:50. [PMID: 26081316 PMCID: PMC4470041 DOI: 10.1186/s12977-015-0177-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
Background Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited. Results Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3. Conclusion These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their fusion and replication efficiencies. This study thus sheds light on unsuspected mechanisms whereby MVC-resistant HIV-1 could emerge and grow in treated patients. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Garcia-Perez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Isabelle Staropoli
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | | | | | - Almudena Cascajero
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Philippe Colin
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France. .,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, 75015, Paris, France.
| | - Hugues Lortat-Jacob
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), 38027, Grenoble, France. .,CNRS, IBS, 38027, Grenoble, France. .,CEA, DSV, IBS, 38027, Grenoble, France.
| | - Fernando Arenzana-Seisdedos
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | | | - Bernard Lagane
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
26
|
Viral envelope is a major determinant of enhanced fitness of a multidrug-resistant HIV-1 variant. J Acquir Immune Defic Syndr 2015; 68:487-94. [PMID: 25622054 DOI: 10.1097/qai.0000000000000524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multidrug-resistant (MDR) HIV-1 viruses are thought to be less pathogenic than wild-type viruses because of the fitness costs of drug-resistance mutations. However, we identified an individual infected with MDR virus associated with rapid disease progression referred to as MDR-1. To study the contribution of virologic factors to rapid disease progression, we constructed molecular clones that demonstrated high replication fitness and cytopathicity. To dissect determinants of enhanced fitness of a cytopathic clone, pMDR-1c, we divided its genome into 2 parts: the envelope (gp160) and the remaining backbone genome, and constructed mutual chimeric viruses with a reference, wild-type virus clone, pNL4-3. The growth competition assay indicated that pMDR-1c has high fitness (1.62), although its envelope confers remarkably enhanced fitness (2.29) and its backbone confers reduced fitness (0.56) as compared with pNL4-3. We also performed a similar study with a less cytopathic pMDR-5a, a molecular clone derived from another subject MDR-5, infected with MDR HIV-1, and associated with slower clinical progression. The results indicated that pMDR-5a has reduced fitness (0.82), although its envelope confers enhanced fitness (1.64) and its backbone confers reduced fitness (0.49), a fitness pattern compatible with envelope-mediated fitness compensation. These results suggest that the viral envelope may be a major determinant of the enhanced fitness of the MDR HIV-1 variant isolated from a patient with rapid disease progression. Furthermore, we speculate that compensation conferred by envelope may be a mechanism by which MDR HIV-1 maintains overall fitness despite the presence of changes in pol, which reduce replication capacity.
Collapse
|
27
|
Sciaranghella G, Wang C, Hu H, Anastos K, Merhi Z, Nowicki M, Stanczyk FZ, Greenblatt RM, Cohen M, Golub ET, Watts DH, Alter G, Young MA, Tsibris AMN. CCR5 Expression Levels in HIV-Uninfected Women Receiving Hormonal Contraception. J Infect Dis 2015; 212:1397-401. [PMID: 25895986 DOI: 10.1093/infdis/jiv233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/19/2015] [Indexed: 11/12/2022] Open
Abstract
Human immunodeficiency virus (HIV) infectivity increases as receptor/coreceptor expression levels increase. We determined peripheral CD4, CCR5, and CXCR4 expression levels in HIV-uninfected women who used depot medroxyprogesterone acetate (DMPA; n = 32), the levonorgestrel-releasing intrauterine device (LNG-IUD; n = 27), oral contraceptive pills (n = 32), or no hormonal contraception (n = 33). The use of LNG-IUD increased the proportion of CD4(+) and CD8(+) T cells that expressed CCR5; increases in the magnitude of T-cell subset CCR5 expression were observed with DMPA and LNG-IUD use (P < .01 for all comparisons). LNG-IUD and, to a lesser extent, DMPA use were associated with increased peripheral T-cell CCR5 expression.
Collapse
Affiliation(s)
| | - Cuiwei Wang
- Georgetown University Medical Center, Washington D.C
| | - Haihong Hu
- Georgetown University Medical Center, Washington D.C
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Zaher Merhi
- Department of Obstetrics and Gynecology, Division of Reproductive Biology, New York University School of Medicine, New York
| | - Marek Nowicki
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Frank Z Stanczyk
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Ruth M Greenblatt
- Department of Clinical Pharmacy, University of California, San Francisco Department of Medicine, University of California, San Francisco Department of Biostatistics, University of California, San Francisco Department of Epidemiology, University of California, San Francisco
| | - Mardge Cohen
- Department of Medicine, Stroger Hospital Department of Medicine, Rush University CORE Center, Chicago, Illinois
| | - Elizabeth T Golub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - D Heather Watts
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts
| | - Mary A Young
- Georgetown University Medical Center, Washington D.C
| | - Athe M N Tsibris
- Brigham and Women's Hospital, Boston, Massachusetts Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
HIV-1 subtype B/B' and baseline drug resistance mutation are associated with virologic failure: a multicenter cohort study in China. J Acquir Immune Defic Syndr 2015; 68:289-97. [PMID: 25501612 DOI: 10.1097/qai.0000000000000473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Distribution of HIV-1 subtypes, transmitted drug resistance (TDR)/drug resistance mutation (DRM), and their impact on response to combination antiretroviral therapy remain poorly understood in China. METHODS We analyzed data from our multicenter cohort study with 444 antiretroviral-naive participants recruited between 2008 and 2010. HIV-1 subtype and tropism were determined by V3 sequencing, and TDR/DRM was determined by Pol sequencing. Virologic and immunologic responses were monitored over 96 weeks of follow-up. The initial combination antiretroviral therapy regimen for all patients was nevirapine + lamivudine + zidovudine or stavudine. Analysis 1 included patients who finished 96 weeks of follow-up (n = 379), and analysis 2 included all 444 patients. RESULTS Subtype B/B' was associated with higher prevalence of TDR/DRM to nucleoside reverse transcriptase inhibitors and nonnucleoside reverse transcriptase inhibitors. Median time to HIV-1 suppression was 18 weeks in all 3 subtype groups. In Cox proportional models for viral suppression, neither viral tropism nor HIV-1 subtypes had any impact on viral suppression; however, subtypes CRF01_AE and C/CRF07_BC/CRF08_BC were associated with lower risk of virologic failure compared with subtype B/B', with adjusted hazard ratio of 0.11 (P = 0.032) and 0.06 (P = 0.036), respectively in analysis 1, 0.42 (P = 0.047) and 0.22 (P = 0.008), respectively in analysis 2. This association was attenuated by adding DRM profiles to multivariate regression models. Neither subtype nor HIV-1 tropism affected immunologic response. CONCLUSIONS HIV-1 subtype tended to be associated with virologic but not immunologic response; this effect could be ascribed to baseline DRM.
Collapse
|
29
|
Chikere K, Webb NE, Chou T, Borm K, Sterjovski J, Gorry PR, Lee B. Distinct HIV-1 entry phenotypes are associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies. Retrovirology 2014; 11:48. [PMID: 24957778 PMCID: PMC4230403 DOI: 10.1186/1742-4690-11-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The efficiency of CD4/CCR5 mediated HIV-1 entry has important implications for pathogenesis and transmission. The HIV-1 receptor affinity profiling (Affinofile) system analyzes and quantifies the infectivity of HIV-1 envelopes (Envs) across a spectrum of CD4/CCR5 expression levels and distills these data into a set of Affinofile metrics. The Affinofile system has shed light on how differential CD4/CCR5 usage efficiencies contributes to an array of Env phenotypes associated with cellular tropism, viral pathogenesis, and CCR5 inhibitor resistance. To facilitate more rapid, convenient, and robust analysis of HIV-1 entry phenotypes, we engineered a reporter Affinofile system containing a Tat- and Rev-dependent Gaussia luciferase-eGFP-Reporter (GGR) that is compatible with the use of pseudotyped or replication competent viruses with or without a virally encoded reporter gene. This GGR Affinofile system enabled a higher throughput characterization of CD4/CCR5 usage efficiencies associated with differential Env phenotypes. RESULTS We first validated our GGR Affinofile system on isogenic JR-CSF Env mutants that differ in their affinity for CD4 and/or CCR5. We established that their GGR Affinofile metrics reflected their differential entry phenotypes on primary PBMCs and CD4+ T-cell subsets. We then applied GGR Affinofile profiling to reveal distinct entry phenotypes associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies (BNAbs). First, we profiled a panel of reference subtype B transmitted/founder (T/F) and chronic Envs (n = 12) by analyzing the infectivity of each Env across 25 distinct combinations of CD4/CCR5 expression levels. Affinofile metrics revealed that at low CCR5 levels, our panel of subtype B T/F Envs was more dependent on high levels of CD4 for HIV-1 entry compared to chronic Envs. Next, we analyzed a reference panel of 28 acute/early subtype A-D Envs, and noted that subtype C Envs could be distinguished from the other subtypes based on their infectivity profiles and relevant Affinofile metrics. Lastly, mutations known to confer resistance to VRC01 or PG6/PG19 BNAbs, when engineered into subtypes A-D Envs, resulted in significantly decreased CD4/CCR5 usage efficiency. CONCLUSIONS GGR Affinofile profiling reveals pathophysiological phenotypes associated with varying HIV-1 entry efficiencies, and highlight the fitness costs associated with resistance to some broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Kelechi Chikere
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
| | - Nicholas E Webb
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
| | - Tom Chou
- Department of Biomathematics, University of California at Los Angeles, Los Angeles, CA, USA
| | - Katharina Borm
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Jasminka Sterjovski
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Paul R Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Benhur Lee
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, #1124, New York, NY 10029, USA
| |
Collapse
|
30
|
Abstract
The notoriously low fidelity of HIV-1 replication is largely responsible for the virus's rapid mutation rate, facilitating escape from immune or drug control. The error-prone activity of the viral reverse transcriptase (RT) is predicted to be the most influential mechanism for generating mutations. The low fidelity of RT has been successfully exploited by nucleoside and nucleotide analogue reverse transcriptase inhibitors (NRTIs) that halt viral replication upon incorporation. Consequently, drug-resistant strains have arisen in which the viral RT has an increased fidelity of replication, thus reducing analogue incorporation. Higher fidelity, however, impacts on viral fitness. The appearance of compensatory mutations in combination with higher fidelity NRTI resistance mutations and the subsequent reversion of NRTI-resistant mutations upon cessation of antiretroviral treatment lend support to the notion that higher fidelity exacts a fitness cost. Potential mechanisms for reduced viral fitness are a smaller pool of mutant strains available to respond to immune or drug pressure, slower rates of replication, and a limitation to the dNTP tropism of the virus. Unraveling the relationship between replication fidelity and fitness should lead to a greater understanding of the evolution and control of HIV.
Collapse
Affiliation(s)
- Sarah B. Lloyd
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Wendy R. Winnall
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
31
|
Willett BJ, Hosie MJ. The virus-receptor interaction in the replication of feline immunodeficiency virus (FIV). Curr Opin Virol 2013; 3:670-5. [PMID: 23992667 PMCID: PMC3857596 DOI: 10.1016/j.coviro.2013.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 01/21/2023]
Abstract
The feline and human immunodeficiency viruses (FIV and HIV) target helper T cells selectively, and in doing so they induce a profound immune dysfunction. The primary determinant of HIV cell tropism is the expression pattern of the primary viral receptor CD4 and co-receptor(s), such as CXCR4 and CCR5. FIV employs a distinct strategy to target helper T cells; a high affinity interaction with CD134 (OX40) is followed by binding of the virus to its sole co-receptor, CXCR4. Recent studies have demonstrated that the way in which FIV interacts with its primary receptor, CD134, alters as infection progresses, changing the cell tropism of the virus. This review examines the contribution of the virus-receptor interaction to replication in vivo as well as the significance of these findings to the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.
| | | |
Collapse
|
32
|
Smith SA, Wood C, West JT. HIV-1 Env C2-V4 diversification in a slow-progressor infant reveals a flat but rugged fitness landscape. PLoS One 2013; 8:e63094. [PMID: 23638182 PMCID: PMC3639246 DOI: 10.1371/journal.pone.0063094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) fitness has been associated with virus entry, a process mediated by the envelope glycoprotein (Env). We previously described Env genetic diversification in a Zambian, subtype C infected, slow-progressor child (1157i) in parallel with an evolving neutralizing antibody response. Because of the role the Variable-3 loop (V3) plays in transmission, cell tropism, neutralization sensitivity, and fitness, longitudinally isolated 1157i C2-V4 alleles were cloned into HIV-1NL4-3-eGFP and -DsRed2 infectious molecular clones. The fluorescent reporters allowed for dual-infection competitions between all patient-derived C2-V4 chimeras to quantify the effect of V3 diversification and selection on fitness. 'Winners' and 'losers' were readily discriminated among the C2-V4 alleles. Exceptional sensitivity for detection of subtle fitness differences was revealed through analysis of two alleles differing in a single synonymous amino acid. However, when the outcomes of N = 33 competitions were averaged for each chimera, the aggregate analysis showed that despite increasing diversification and divergence with time, natural selection of C2-V4 sequences in this individual did not appear to be producing a 'survival of the fittest' evolutionary pattern. Rather, we detected a relatively flat fitness landscape consistent with mutational robustness. Fitness outcomes were then correlated with individual components of the entry process. Env incorporation into particles correlated best with fitness, suggesting a role for Env avidity, as opposed to receptor/coreceptor affinity, in defining fitness. Nevertheless, biochemical analyses did not identify any step in HIV-1 entry as a dominant determinant of fitness. Our results lead us to conclude that multiple aspects of entry contribute to maintaining adequate HIV-1 fitness, and there is no surrogate analysis for determining fitness. The capacity for subtle polymorphisms in Env to nevertheless significantly impact viral fitness suggests fitness is best defined by head-to-head competition.
Collapse
Affiliation(s)
- S. Abigail Smith
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Charles Wood
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - John T. West
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
33
|
Abstract
The most significant advance in the medical management of HIV-1 infection has been the treatment of patients with antiviral drugs, which can suppress HIV-1 replication to undetectable levels. The discovery of HIV-1 as the causative agent of AIDS together with an ever-increasing understanding of the virus replication cycle have been instrumental in this effort by providing researchers with the knowledge and tools required to prosecute drug discovery efforts focused on targeted inhibition with specific pharmacological agents. To date, an arsenal of 24 Food and Drug Administration (FDA)-approved drugs are available for treatment of HIV-1 infections. These drugs are distributed into six distinct classes based on their molecular mechanism and resistance profiles: (1) nucleoside-analog reverse transcriptase inhibitors (NNRTIs), (2) non-nucleoside reverse transcriptase inhibitors (NNRTIs), (3) integrase inhibitors, (4) protease inhibitors (PIs), (5) fusion inhibitors, and (6) coreceptor antagonists. In this article, we will review the basic principles of antiretroviral drug therapy, the mode of drug action, and the factors leading to treatment failure (i.e., drug resistance).
Collapse
Affiliation(s)
- Eric J Arts
- Ugandan CFAR Laboratories, Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
34
|
Multifaceted mechanisms of HIV inhibition and resistance to CCR5 inhibitors PSC-RANTES and Maraviroc. Antimicrob Agents Chemother 2013; 57:2640-50. [PMID: 23529732 DOI: 10.1128/aac.02511-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small-molecule CCR5 antagonists, such as maraviroc (MVC), likely block HIV-1 through an allosteric, noncompetitive inhibition mechanism, whereas inhibition by agonists such as PSC-RANTES is less defined and may involve receptor removal by cell surface downregulation, competitive inhibition by occluding the HIV-1 envelope binding, and/or allosteric effects by altering CCR5 conformation. We explored the inhibitory mechanisms of maraviroc and PSC-RANTES by employing pairs of virus clones with differential sensitivities to these inhibitors. Intrinsic PSC-RANTES-resistant virus (YA versus RT) or those selected in PSC-RANTES treated macaques (M584 versus P3-4) only displayed resistance in multiple-cycle assays or with a CCR5 mutant that cannot be downregulated. In single-cycle assays, these HIV-1 clones displayed equal sensitivity to PSC-RANTES inhibition, suggesting effective receptor downregulation. Prolonged PSC-RANTES exposure resulted in desensitization of the receptor to internalization such that increasing virus concentration (substrate) could saturate the receptors and overcome PSC-RANTES inhibition. In contrast, resistance to MVC was observed with the MVC-resistant HIV-1 (R3 versus S2) in both multiple- and single-cycle assays and with altered virus concentrations, which is indicative of allosteric inhibition. MVC could also mediate inhibition and possibly resistance through competitive mechanisms.
Collapse
|
35
|
Chikere K, Chou T, Gorry PR, Lee B. Affinofile profiling: how efficiency of CD4/CCR5 usage impacts the biological and pathogenic phenotype of HIV. Virology 2013; 435:81-91. [PMID: 23217618 DOI: 10.1016/j.virol.2012.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 09/28/2012] [Indexed: 11/25/2022]
Abstract
HIV-1 envelope (Env) uses CD4 and a coreceptor (CCR5 and/or CXCR4) for viral entry. The efficiency of receptor/coreceptor mediated entry has important implications for HIV pathogenesis and transmission. The advent of CCR5 inhibitors in clinical use also underscores the need for quantitative and predictive tools that can guide therapeutic management. Historically, measuring the efficiency of CD4/CCR5 mediated HIV entry has relied on surrogate and relatively slow throughput assays that cannot adequately capture the full spectrum of Env phenotypes. In this review, we discuss the details of the Affinofile receptor affinity profiling system that has provided a quantitative and higher throughput method to characterize viral entry efficiency as a function of CD4 and CCR5 expression levels. We will then review how the Affinofile system has been used to reveal the distinct pathophysiological properties associated with Env entry phenotypes and discuss potential shortcomings of the current system.
Collapse
Affiliation(s)
- Kelechi Chikere
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, United States
| | | | | | | |
Collapse
|
36
|
Willett BJ, Kraase M, Logan N, McMonagle E, Varela M, Hosie MJ. Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies. PLoS One 2013; 8:e54871. [PMID: 23372784 PMCID: PMC3553009 DOI: 10.1371/journal.pone.0054871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022] Open
Abstract
Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development.
Collapse
Affiliation(s)
- Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Mucosal tissue tropism and dissemination of HIV-1 subtype B acute envelope-expressing chimeric virus. J Virol 2012; 87:890-9. [PMID: 23135721 DOI: 10.1128/jvi.02216-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) transmission results from infection with one or a small number of variants from the donor quasispecies. Transmitted/founder (T/F) viruses have recently been identified from acutely infected patients, but the way in which they interact with primary targets of HIV-1 infection is poorly understood. We have conducted a biological characterization of a panel of subtype B T/F acute and chronic envelope (Env)-expressing chimeric virus in primary human target cells and mucosal tissues. Both acute and chronic Envs preferentially replicated in peripheral blood mononuclear cells (PBMC) and a CD4 T-cell line compared to monocyte-derived macrophages, or dendritic cells (DC). In a model of trans infection from monocyte-derived dendritic cells to T cells, chimeric virus from acute Envs achieved significantly lower titers compared to chronic Envs. Challenge of primary human mucosal tissues revealed significantly higher levels of replication in chronic Env-expressing virus in rectal tissue compared to cervical and penile tissues and enhanced replication in tonsillar tissue relative to acute Envs. In agreement with data from the DC to T-cell trans infection assay, chronic Env-chimeric virus pools were transmitted more efficiently by migratory cells from cervical and penile tissues to CD4(+) T cells than individual acute Env chimeras. These data indicate that virus with HIV-1 Envs of transmitted acute infections preferentially replicate in T cells rather than macrophages or dendritic cells and are less efficiently transmitted from antigen-presenting cells to CD4 T cells than chronic Envs. Such properties together with chemokine (C-C motif) receptor 5 (CCR5) use may confer an advantage for transmission.
Collapse
|
38
|
Guo H, Abrahamyan LG, Liu C, Waltke M, Geng Y, Chen Q, Wood C, Kong X. Comparative analysis of the fusion efficiency elicited by the envelope glycoprotein V1-V5 regions derived from human immunodeficiency virus type 1 transmitted perinatally. J Gen Virol 2012; 93:2635-2645. [PMID: 22956734 DOI: 10.1099/vir.0.046771-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the properties of viruses preferentially establishing infection during perinatal transmission of human immunodeficiency virus type 1 (HIV-1) is critical for the development of effective measures to prevent transmission. A previous study demonstrated that the newly transmitted viruses (in infants) of chronically infected mother-infant pairs (MIPs) were fitter in terms of growth, which was imparted by their envelope (Env) glycoprotein V1-V5 regions, than those in the corresponding chronically infected mothers. In order to investigate whether the higher fitness of transmitted viruses was conferred by their higher entry efficiency directed by the V1-V5 regions during perinatal transmission, the fusogenicity of Env containing V1-V5 regions derived from transmitted and non-tranmsmitted viruses of five chronically infected MIPs and two acutely infected MIPs was analysed using two different cell-cell fusion assays. The results showed that, in one chronically infected MIP, a higher fusion efficiency was induced by the infant Env V1-V5 compared with that of the corresponding mother. Moreover, the V4-V5 regions played an important role in discriminating the transmitted and non-transmitted viruses in this pair. However, neither a consistent pattern nor significant differences in fusogenicity mediated by the V1-V5 regions between maternal and infant variants was observed in the other MIPs. This study suggests that there is no consistent and significant correlation between viral fitness selection and entry efficiency directed by the V1-V5 regions during perinatal transmission. Other factors such as the route and timing of transmission may also be involved.
Collapse
Affiliation(s)
- Hongyan Guo
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, PR China.,Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, PR China
| | - Levon G Abrahamyan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, PR China
| | - Mackenzie Waltke
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Yunqi Geng
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qimin Chen
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, PR China
| | - Charles Wood
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, PR China
| |
Collapse
|
39
|
Immonen T, Gibson R, Leitner T, Miller MA, Arts EJ, Somersalo E, Calvetti D. A hybrid stochastic-deterministic computational model accurately describes spatial dynamics and virus diffusion in HIV-1 growth competition assay. J Theor Biol 2012; 312:120-32. [PMID: 22814476 DOI: 10.1016/j.jtbi.2012.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 06/21/2012] [Accepted: 07/06/2012] [Indexed: 01/14/2023]
Abstract
We present a new hybrid stochastic-deterministic, spatially distributed computational model to simulate growth competition assays on a relatively immobile monolayer of peripheral blood mononuclear cells (PBMCs), commonly used for determining ex vivo fitness of human immunodeficiency virus type-1 (HIV-1). The novel features of our approach include incorporation of viral diffusion through a deterministic diffusion model while simulating cellular dynamics via a stochastic Markov chain model. The model accounts for multiple infections of target cells, CD4-downregulation, and the delay between the infection of a cell and the production of new virus particles. The minimum threshold level of infection induced by a virus inoculum is determined via a series of dilution experiments, and is used to determine the probability of infection of a susceptible cell as a function of local virus density. We illustrate how this model can be used for estimating the distribution of cells infected by either a single virus type or two competing viruses. Our model captures experimentally observed variation in the fitness difference between two virus strains, and suggests a way to minimize variation and dual infection in experiments.
Collapse
Affiliation(s)
- Taina Immonen
- Department of Mathematics, Case Western Reserve University, 10900 Euclid Avenue, Yost Hall Room 200, Cleveland, Ohio 44106, United States of America; Theoretical Biology and Biophysics, MS K710, T-6, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States of America.
| | - Richard Gibson
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 2109 Adelbert Road, BRB1034, Cleveland, Ohio 44106, United States of America.
| | - Thomas Leitner
- Theoretical Biology and Biophysics, MS K710, T-6, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States of America.
| | - Melanie A Miller
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 2109 Adelbert Road, BRB1034, Cleveland, Ohio 44106, United States of America.
| | - Eric J Arts
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 2109 Adelbert Road, BRB1034, Cleveland, Ohio 44106, United States of America.
| | - Erkki Somersalo
- Department of Mathematics, Case Western Reserve University, 10900 Euclid Avenue, Yost Hall Room 200, Cleveland, Ohio 44106, United States of America.
| | - Daniela Calvetti
- Department of Mathematics, Case Western Reserve University, 10900 Euclid Avenue, Yost Hall Room 200, Cleveland, Ohio 44106, United States of America.
| |
Collapse
|
40
|
Vicriviroc resistance decay and relative replicative fitness in HIV-1 clinical isolates under sequential drug selection pressures. J Virol 2012; 86:6416-26. [PMID: 22491471 DOI: 10.1128/jvi.00286-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously described an HIV-1-infected individual who developed resistance to vicriviroc (VCV), an investigational CCR5 antagonist, during 28 weeks of therapy (Tsibris AM et al., J. Virol. 82:8210-8214, 2008). To investigate the decay of VCV resistance mutations, a standard clonal analysis of full-length env (gp160) was performed on plasma HIV-1 samples obtained at week 28 (the time of VCV discontinuation) and at three subsequent time points (weeks 30, 42, and 48). During 132 days, VCV-resistant HIV-1 was replaced by VCV-sensitive viruses whose V3 loop sequences differed from the dominant pretreatment forms. A deep-sequencing analysis showed that the week 48 VCV-sensitive V3 loop form emerged from a preexisting viral variant. Enfuvirtide was added to the antiretroviral regimen at week 30; by week 48, enfuvirtide treatment selected for either the G36D or N43D HR-1 mutation. Growth competition experiments demonstrated that viruses incorporating the dominant week 28 VCV-resistant env were less fit than week 0 viruses in the absence of VCV but more fit than week 48 viruses. This week 48 fitness deficit persisted when G36D was corrected by either site-directed mutagenesis or week 48 gp41 domain swapping. The correction of N43D, in contrast, restored fitness relative to that of week 28, but not week 0, viruses. Virus entry kinetics correlated with observed fitness differences; the slower entry of enfuvirtide-resistant viruses corrected to wild-type rates in the presence of enfuvirtide. These findings suggest that while VCV and enfuvirtide select for resistance mutations in only one env subunit, gp120 and gp41 coevolve to maximize viral fitness under sequential drug selection pressures.
Collapse
|
41
|
de Medeiros RM, Junqueira DM, Matte MCC, Barcellos NT, Chies JAB, Matos Almeida SE. Co-circulation HIV-1 subtypes B, C, and CRF31_BC in a drug-naïve population from Southernmost Brazil: analysis of primary resistance mutations. J Med Virol 2012; 83:1682-8. [PMID: 21837783 DOI: 10.1002/jmv.22188] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In Southernmost Brazil HIV-1 subtypes B, C, and CRF31_BC co-circulates and, since 1996 with the implementation of free access to highly active antiretroviral treatment (HAART), this epidemic is under a quite characteristic selective pressure. The profile of mutations and polymorphisms in the protease (PR) and reverse transcriptase (RT) genes of HIV-1 from untreated patients living in Porto Alegre, Southernmost Brazil were evaluated in order to identify the subtypes and circulating drug resistant genotypes. Blood samples from 99 HIV-1 positive drugs-naïve patients were collected from 2006 to 2007 in Porto Alegre, Brazil. HIV PR and RT genes were amplified, sequenced, and subtyped. The HIV-1 genotyping was performed by partial sequence analysis of the pol in the HIV Drug Resistance Database of Stanford University. Phylogenetic analyses allowed to classify the HIV samples according to their subtypes: B (26.2%), C (39.4%), F (1.1%), CRF31_CB (19.2%), and URF (14.1%). Eight (8.1%) samples showed primary resistance mutations according to the Calibrated Population Resistance tool based in the 2009 Surveillance Drug Resistance Mutation list. Two samples presented resistance mutations to PI, three NRTI and three NNRTI. There was no significant association between presence of resistant genotypes and subtypes, but resistance mutations seem to be less frequent in the subtype C. In addition, this study describes for the first time the mutational profile of CRF31_BC to PI, NRTI, and NNRTI. Genetic analyses of HIV-1 from naïve patients are a promising and important method for surveillance of HIV infection.
Collapse
Affiliation(s)
- Rúbia Marília de Medeiros
- Technological and Scientific Development Center - CDCT, State Foundation in Production and Health Research - FEPPS, Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | |
Collapse
|
42
|
HIV-1 clinical isolates resistant to CCR5 antagonists exhibit delayed entry kinetics that are corrected in the presence of drug. J Virol 2011; 86:1119-28. [PMID: 22090117 DOI: 10.1128/jvi.06421-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV CCR5 antagonists select for env gene mutations that enable virus entry via drug-bound coreceptor. To investigate the mechanisms responsible for viral adaptation to drug-bound coreceptor-mediated entry, we studied viral isolates from three participants who developed CCR5 antagonist resistance during treatment with vicriviroc (VCV), an investigational small-molecule CCR5 antagonist. VCV-sensitive and -resistant viruses were isolated from one HIV subtype C- and two subtype B-infected participants; VCV-resistant isolates had mutations in the V3 loop of gp120 and were cross-resistant to TAK-779, an investigational antagonist, and maraviroc (MVC). All three resistant isolates contained a 306P mutation but had variable mutations elsewhere in the V3 stem. We used a virus-cell β-lactamase (BlaM) fusion assay to determine the entry kinetics of recombinant viruses that incorporated full-length VCV-sensitive and -resistant envelopes. VCV-resistant isolates exhibited delayed entry rates in the absence of drug, relative to pretherapy VCV-sensitive isolates. The addition of drug corrected these delays. These findings were generalizable across target cell types with a range of CD4 and CCR5 surface densities and were observed when either population-derived or clonal envelopes were used to construct recombinant viruses. V3 loop mutations alone were sufficient to restore virus entry in the presence of drug, and the accumulation of V3 mutations during VCV therapy led to progressively higher rates of viral entry. We propose that the restoration of pre-CCR5 antagonist therapy HIV entry kinetics drives the selection of V3 loop mutations and may represent a common mechanism that underlies the emergence of CCR5 antagonist resistance.
Collapse
|
43
|
Romero A, Sued O, Puig T, Esteve A, Pumarola T, Casabona J, González V, Matas L, Tural C, Rodrigo I, Margall N, Domingo P, Casanova A, Ferrer E, Caballero E, Ribera E, Farré J, Puig T, Amengual MJ, Navarro G, Prat JM, Masabeu À, Simó JM, Villaverde CA, Barrufet P, Sauca MG, Ortin X, Ortí A, Navarro R, Euras JM, Vilaró J, Villà MC, Montull S, Vilanova C, Pujol F, Díaz O, Miró JM. Prevalence of Transmitted Antiretroviral Resistance and Distribution of HIV-1 Subtypes Among Patients with Recent Infection in Catalonia (Spain) between 2003 and 2005. Enferm Infecc Microbiol Clin 2011; 29:482-9. [DOI: 10.1016/j.eimc.2011.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 02/27/2011] [Accepted: 03/03/2011] [Indexed: 10/17/2022]
|
44
|
Decreased infectivity of a neutralization-resistant equine infectious anemia virus variant can be overcome by efficient cell-to-cell spread. J Virol 2011; 85:10421-4. [PMID: 21752904 DOI: 10.1128/jvi.05349-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two variants of equine infectious anemia virus (EIAV) that differed in sensitivity to broadly neutralizing antibody were tested in direct competition assays. No differences were observed in the growth curves and relative fitness scores of EIAVs of principal neutralizing domain variants of groups 1 (EIAV(PND-1)) and 5 (EIAV(PND-5)), respectively; however, the neutralization-resistant EIAV(PND-5) variant was less infectious in single-round replication assays. Infectious center assays indicated similar rates of cell-to-cell spread, which was approximately 1,000-fold more efficient than cell-free infectivity. These data indicate that efficient cell-to-cell spread can overcome the decreased infectivity that may accompany immune escape and should be considered in studies assessing the relative levels of fitness among lentivirus variants, including HIV-1.
Collapse
|
45
|
Influence of Gag-protease-mediated replication capacity on disease progression in individuals recently infected with HIV-1 subtype C. J Virol 2011; 85:3996-4006. [PMID: 21289112 DOI: 10.1128/jvi.02520-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HLA class I-mediated selection of immune escape mutations in functionally important Gag epitopes may partly explain slower disease progression in HIV-1-infected individuals with protective HLA alleles. To investigate the impact of Gag function on disease progression, the replication capacities of viruses encoding Gag-protease from 60 individuals in early HIV-1 subtype C infection were assayed in an HIV-1-inducible green fluorescent protein reporter cell line and were correlated with subsequent disease progression. Replication capacities did not correlate with viral load set points (P = 0.37) but were significantly lower in individuals with below-median viral load set points (P = 0.03), and there was a trend of correlation between lower replication capacities and lower rates of CD4 decline (P = 0.09). Overall, the proportion of host HLA-specific Gag polymorphisms in or adjacent to epitopes was negatively associated with replication capacities (P = 0.04), but host HLA-B-specific polymorphisms were associated with higher viral load set points (P = 0.01). Further, polymorphisms associated with host-specific protective HLA alleles were linked with higher viral load set points (P = 0.03). These data suggest that transmission or early HLA-driven selection of Gag polymorphisms results in reduced early cytotoxic T-lymphocyte (CTL) responses and higher viral load set points. In support of the former, 46% of individuals with nonprotective alleles harbored a Gag polymorphism exclusively associated with a protective HLA allele, indicating a high rate of their transmission in sub-Saharan Africa. Overall, HIV disease progression is likely to be affected by the ability to mount effective Gag CTL responses as well as the replication capacity of the transmitted virus.
Collapse
|
46
|
Xu HT, Quan Y, Asahchop E, Oliveira M, Moisi D, Wainberg MA. Comparative biochemical analysis of recombinant reverse transcriptase enzymes of HIV-1 subtype B and subtype C. Retrovirology 2010; 7:80. [PMID: 20929562 PMCID: PMC2959035 DOI: 10.1186/1742-4690-7-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/07/2010] [Indexed: 11/10/2022] Open
Abstract
Background HIV-1 subtype C infections account for over half of global HIV infections, yet the vast focus of HIV-1 research has been on subtype B viruses which represent less than 12% of the global pandemic. Since HIV-1 reverse transcriptase (RT) is a major target of antiviral therapy, and since differential drug resistance pathways have been observed among different HIV subtypes, it is important to study and compare the enzymatic activities of HIV-1 RT derived from each of subtypes B and C as well as to determine the susceptibilities of these enzymes to various RT inhibitors in biochemical assays. Methods Recombinant subtype B and C HIV-1 RTs in heterodimeric form were purified from Escherichia coli and enzyme activities were compared in cell-free assays. The efficiency of (-) ssDNA synthesis was measured using gel-based assays with HIV-1 PBS RNA template and tRNA3Lys as primer. Processivity was assayed under single-cycle conditions using both homopolymeric and heteropolymeric RNA templates. Intrinsic RNase H activity was compared using 5'-end labeled RNA template annealed to 3'-end recessed DNA primer in a time course study in the presence and absence of a heparin trap. A mis-incorporation assay was used to assess the fidelity of the two RT enzymes. Drug susceptibility assays were performed both in cell-free assays using recombinant enzymes and in cell culture phenotyping assays. Results The comparative biochemical analyses of recombinant subtype B and subtype C HIV-1 reverse transcriptase indicate that the two enzymes are very similar biochemically in efficiency of tRNA-primed (-) ssDNA synthesis, processivity, fidelity and RNase H activity, and that both enzymes show similar susceptibilities to commonly used NRTIs and NNRTIs. Cell culture phenotyping assays confirmed these results. Conclusions Overall enzyme activity and drug susceptibility of HIV-1 subtype C RT are comparable to those of subtype B RT. The use of RT inhibitors (RTIs) against these two HIV-1 enzymes should have comparable effects.
Collapse
Affiliation(s)
- Hong-Tao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
47
|
HIV-1 Entry, Inhibitors, and Resistance. Viruses 2010; 2:1069-1105. [PMID: 21994672 PMCID: PMC3187606 DOI: 10.3390/v2051069] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/16/2010] [Accepted: 04/18/2010] [Indexed: 02/07/2023] Open
Abstract
Entry inhibitors represent a new class of antiretroviral agents for the treatment of infection with HIV-1. While resistance to other HIV drug classes has been well described, resistance to this new class is still ill defined despite considerable clinical use. Several potential mechanisms have been proposed: tropism switching (utilization of CXCR4 instead of CCR5 for entry), increased affinity for the coreceptor, increased rate of virus entry into host cells, and utilization of inhibitor-bound receptor for entry. In this review we will address the development of attachment, fusion, and coreceptor entry inhibitors and explore recent studies describing potential mechanisms of resistance.
Collapse
|
48
|
HIV replication capacity is an independent predictor of disease progression in persons with untreated chronic HIV infection. J Acquir Immune Defic Syndr 2010; 53:472-9. [PMID: 20032783 DOI: 10.1097/qai.0b013e3181cae480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To assess the effect of pol replication capacity (RC) on the hazard ratio of progression to a composite endpoint of time to progression to <350 CD4+ cells per microliter, initiation of therapy, or death. METHODS pol RC assays were performed after study closure in baseline samples obtained from 316 enrollees in a prospectively monitored cohort of treatment-naive adults with >or=450 CD4+ cells per microliter and >or=1000 HIV-1 RNA copies per milliliter. RESULTS The median RC was 79%. Patients with a lower RC had a lower median viral load (4.0 vs 4.2 Log HIV-1 RNA copies/mL, P = 0.026) and a lower rate of protease inhibitor resistance 2% vs 8%, P = 0.03). Otherwise, baseline demographic and laboratory characteristics were similar. The hazard ratio of progression to the composite endpoint was 0.73 (P = 0.041) for persons with lower RC, 2.07 per 1.0 log10 higher viral load (P < 0.001), and 0.86 per 50 cells per microliter higher CD4+ cell count (P < 0.001). The effect of lower RC was also significant in a separate analysis of time to initiation of therapy (P = 0.04). CONCLUSIONS These results show that untreated patients with lower vs higher RC had a slower rate of progression as assessed by a composite outcome of time to CD4+ count <or=350 cells per microliter, treatment initiation, or death.
Collapse
|
49
|
Jakobsen MR, Ellett A, Churchill MJ, Gorry PR. Viral tropism, fitness and pathogenicity of HIV-1 subtype C. Future Virol 2010. [DOI: 10.2217/fvl.09.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of studies on HIV-1 pathogenesis have been conducted on subtype B HIV-1 (B-HIV) strains. However, B-HIV strains constitute the minority of HIV-1 cases worldwide, and are not common in regions that stand to benefit the most from advances in HIV-1 research such as southern Africa and Asia, where the HIV-1 pandemic is at its worst. The majority of individuals with HIV-1 are infected with subtype C HIV-1 (C-HIV) and reside in Southern Africa and Central Asia. Relatively little is known about C-HIV, but current evidence suggests the pathogenesis of C-HIV is distinct from B-HIV and other HIV-1 subtypes. This article summarizes what is currently known about the viral tropism, fitness and pathogenicity of C-HIV, and compares and contrasts these features to B-HIV. A thorough understanding of the molecular pathogenesis of C-HIV is important for a targeted approach to developing vaccines and novel drugs optimized for effectiveness in populations that are most in need.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Infectious Diseases, Aarhus University Hospital, Skejby, Brendstrupgaardvej 100, 8200 Aarhus N, Denmark
| | - Anne Ellett
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Melissa J Churchill
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Paul R Gorry
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Medicine, Monash University, Melbourne, Victoria, Australia and Department of Microbiology & Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Kümmerle T, Lehmann C, Hartmann P, Wyen C, Fätkenheuer G. Vicriviroc: a CCR5 antagonist for treatment-experienced patients with HIV-1 infection. Expert Opin Investig Drugs 2009; 18:1773-85. [DOI: 10.1517/13543780903357478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|