1
|
Raglow Z, Lauring AS. Virus Evolution in Prolonged Infections of Immunocompromised Individuals. Clin Chem 2025; 71:109-118. [PMID: 39749520 DOI: 10.1093/clinchem/hvae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Many viruses can cause persistent infection and/or viral shedding in immunocompromised hosts. This is a well-described occurrence not only with SARS-CoV-2 but for many other viruses as well. Understanding how viruses evolve and mutate in these patients and the global impact of this phenomenon is critical as the immunocompromised population expands. CONTENT In this review, we provide an overview of populations at risk for prolonged viral shedding, clinical manifestations of persistent viral infection, and methods of assessing viral evolution. We then review the literature on viral evolution in immunocompromised patients across an array of RNA viruses, including SARS-CoV-2, norovirus, influenza, and poliovirus, and discuss the global implications of persistent viral infections in these hosts. SUMMARY There is significant evidence for accelerated viral evolution and accumulation of mutations in antigenic sites in immunocompromised hosts across many viral pathogens. However, the implications of this phenomenon are not clear; while there are rare reports of transmission of these variants, they have not clearly been shown to predict disease outbreaks or have significant global relevance. Emerging methods including wastewater monitoring may provide a more sophisticated understanding of the impact of variants that evolve in immunocompromised hosts on the wider host population.
Collapse
Affiliation(s)
- Zoe Raglow
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Estivariz CF, Krow-Lucal ER, Mach O. Immunodeficiency-Related Vaccine-Derived Poliovirus (iVDPV) Infections: A Review of Epidemiology and Progress in Detection and Management. Pathogens 2024; 13:1128. [PMID: 39770387 PMCID: PMC11677883 DOI: 10.3390/pathogens13121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Individuals with certain primary immunodeficiency disorders (PID) may be unable to clear poliovirus infection after exposure to oral poliovirus vaccine (OPV). Over time, vaccine-related strains can revert to immunodeficiency-associated vaccine-derived poliovirus (iVDPVs) that can cause paralysis in the patient and potentially spread in communities with low immunity. We reviewed the efforts for detection and management of PID patients with iVDPV infections and the epidemiology through an analysis of 184 cases reported to the World Health Organization (WHO) during 1962-2024 and a review of polio program and literature reports. Most iVDPV patients (79%) reported in the WHO Registry were residents in middle-income countries and almost half (48%) in the Eastern Mediterranean Region. Type 2 iVDPV was most frequently isolated (53%), but a sharp decline was observed after the switch to bivalent OPV in 2016, with only six cases reported during 2017-2024 compared to 63 during 2009-2016. Patients with common variable immunodeficiency have longer excretion of iVDPV than with other PID types. Implementation of sensitive sentinel surveillance to detect cases of iVDPV infection in high-risk countries and offer antiviral treatment to patients is challenged by competition with other health priorities and regulatory hurdles to the compassionate use of investigational antiviral drugs.
Collapse
Affiliation(s)
| | - Elisabeth R. Krow-Lucal
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30033, USA;
- World Health Organization Headquarters, Av Appia 10, 1211 Geneva, Switzerland;
| | - Ondrej Mach
- World Health Organization Headquarters, Av Appia 10, 1211 Geneva, Switzerland;
| |
Collapse
|
3
|
Ben Salem I, Khemiri H, Drechsel O, Arbi M, Böttcher S, Mekki N, Ben Fraj I, Souiai O, Yahyaoui M, Ben Farhat E, Meddeb Z, Touzi H, Ben Mustapha I, BenKahla A, Ouederni M, Barbouche MR, Diedrich S, Triki H, Haddad-Boubaker S. Reversion of neurovirulent mutations, recombination and high intra-host diversity in vaccine-derived poliovirus excreted by patients with primary immune deficiency. J Med Virol 2024; 96:e29918. [PMID: 39311394 DOI: 10.1002/jmv.29918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
Patients with Primary immunodeficiency (PIDs) may be infected by Polioviruses (PVs), especially when vaccinated with live Oral Polio Vaccine before diagnosis. They may establish long-term shedding of divergent strains and may act as reservoirs of PV transmission. This study delved into the effect of the genetic evolution of complete PV genomes, from MHC class II-deficient patients, on the excretion duration and clinical outcomes. Stool samples from three PID patients underwent analysis for PV detection through inoculation on cell culture and real-time PCR, followed by VP1 partial sequencing and full genome sequencing using the Illumina technology. Our findings revealed a low number of mutations for one patient who cleared the virus, while two exhibited a high intra-host diversity favoring the establishment of severe outcomes. Neurovirulence-reverse mutations were detected in two patients, possibly leading to paralysis development. Furthermore, a recombination event, between type 3 Vaccine-Derived Poliovirus and Sabin-like1 (VDPV3/SL1), occurred in one patient. Our findings have suggested an association between intra-host diversity, recombination, prolonged excretion of the virus, and emergence of highly pathogenic strains. Further studies on intra-host diversity are crucial for a better understanding of the virus evolution as well as for the success of the Global Polio Eradication Initiative.
Collapse
Affiliation(s)
- Imene Ben Salem
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Haifa Khemiri
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Oliver Drechsel
- Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | - Marwa Arbi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sindy Böttcher
- National Reference Laboratory for Poliomyelitis and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunology of Infections (LR11IPT02), Department of Immunobiology of infections, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ilhem Ben Fraj
- National Bone Marrow Transplantation Center, Pediatric Hematology-Immunology Unit, Tunis, Tunisia
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mahrez Yahyaoui
- National Program of Immunization Basic Health Care Division, Ministry of Health, Tunis, Tunisia
| | - Essia Ben Farhat
- National Program of Immunization Basic Health Care Division, Ministry of Health, Tunis, Tunisia
| | - Zina Meddeb
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imene Ben Mustapha
- Laboratory of Transmission, Control and Immunology of Infections (LR11IPT02), Department of Immunobiology of infections, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Alia BenKahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Monia Ouederni
- National Bone Marrow Transplantation Center, Pediatric Hematology-Immunology Unit, Tunis, Tunisia
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed-R Barbouche
- Laboratory of Transmission, Control and Immunology of Infections (LR11IPT02), Department of Immunobiology of infections, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Sabine Diedrich
- National Reference Laboratory for Poliomyelitis and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Sondes Haddad-Boubaker
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- National Program of Immunization Basic Health Care Division, Ministry of Health, Tunis, Tunisia
| |
Collapse
|
4
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
5
|
Walter KS, Altamirano J, Huang C, Carrington YJ, Zhou F, Andrews JR, Maldonado Y. Rapid emergence and transmission of virulence-associated mutations in the oral poliovirus vaccine following vaccination campaigns. NPJ Vaccines 2023; 8:137. [PMID: 37749086 PMCID: PMC10520055 DOI: 10.1038/s41541-023-00740-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
There is an increasing burden of circulating vaccine-derived polioviruses (cVDPVs) due to the continued use of oral poliovirus vaccine (OPV). However, the informativeness of routine OPV VP1 sequencing for the early identification of viruses carrying virulence-associated reversion mutations has not been directly evaluated in a controlled setting. We prospectively collected 15,331 stool samples to track OPV shedding from children receiving OPV and their contacts for ten weeks following an immunization campaign in Veracruz State, Mexico and sequenced VP1 genes from 358 samples. We found that OPV was genetically unstable and evolves at an approximately clocklike rate that varies across serotypes and by vaccination status. Overall, 61% (11/18) of OPV-1, 71% (34/48) OPV-2, and 96% (54/56) OPV-3 samples with available data had evidence of a reversion at the key 5' UTR attenuating position and 28% (13/47) of OPV-1, 12% (14/117) OPV-2, and 91% (157/173) OPV-3 of Sabin-like viruses had ≥1 known reversion mutations in the VP1 gene. Our results are consistent with previous work documenting rapid reversion to virulence of OPV and underscores the need for intensive surveillance following OPV use.
Collapse
Affiliation(s)
- Katharine S Walter
- Division of Epidemiology, University of Utah, Salt Lake City, UT, 84105, USA.
| | - Jonathan Altamirano
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - ChunHong Huang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan J Carrington
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank Zhou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yvonne Maldonado
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Guo Q, Zhu S, Wang D, Li X, Zhu H, Song Y, Liu X, Xiao F, Zhao H, Lu H, Xiao J, Yu L, Wang W, He Y, Liu Y, Li J, Zhang Y, Xu W, Yan D. Genetic characterization and molecular evolution of type 3 vaccine-derived polioviruses from an immunodeficient patient in China. Virus Res 2023; 334:199177. [PMID: 37479187 PMCID: PMC10388201 DOI: 10.1016/j.virusres.2023.199177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
In 2013, a case of immunodeficiency vaccine-derived poliovirus (iVDPV) was identified in Jiangxi Province, China. In this study, we purified 14 type 3 original viral isolates from this case and characterized the molecular evolution of these iVDPVs for 298 days. Genetic variants were found in most of the original viral isolates, with complex genetic and evolutionary relationships among the variants. A phylogenetic tree constructed based on the P1 region showed that these iVDPVs were classified into lineage A and B. The dominant lineage B represents a major trend in virus evolution. The nucleotide substitution rate at the third codon position (3CP) estimated by the BEAST program was 1.76 × 10-2 substitutions/site/year (95% HPD: 1.23-2.39 × 10-2). The initial OPV dose was given dating back to March 2013, which was close to the time of the last OPV vaccination, suggesting that OPV infection may have originated with the last dose of vaccine. Recombinant analysis showed that these iVDPVs were inter-vaccine recombinants with two recombination patterns, S3/S2/S1 and S3/S2/S3/S2/S1. Whole genome sequence analysis revealed that key nucleotide sites (C472U, C2034U, U2493C) associated with the attenuated phenotype of Sabin 3 have been replaced. Temperature sensitivity test showed that all tested strains were temperature-sensitive, except for the variant Day11-5. Interestingly, we observed that the variant Day11-5 temperature resistance properties may be associated with the Lys to Met substitution at the VP2-162 site. Serological test and whole genome sequence analysis showed that the seropositivity rate remained high, and mutations in the antigenic sites did not significantly alter neutralization ability.
Collapse
Affiliation(s)
- Qin Guo
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China; Da Zhou Vocational College of Chinese Medicine, Dazhou, China
| | - Shuangli Zhu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Dongyan Wang
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Xiaolei Li
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Hui Zhu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Yang Song
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Xiaoqing Liu
- Jiangxi Center for Disease Control and Prevention, Nanchang, China
| | - Fang Xiao
- Jiangxi Center for Disease Control and Prevention, Nanchang, China
| | - Hehe Zhao
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Huanhuan Lu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Jinbo Xiao
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Liheng Yu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Wenhui Wang
- School of Public Health and Management, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Yun He
- School of Public Health and Management, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Liu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Jichen Li
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Yong Zhang
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Wenbo Xu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Dongmei Yan
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China.
| |
Collapse
|
7
|
Polio and Its Epidemiology. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
8
|
Fan Q, Ma J, Li X, Jorba J, Yuan F, Zhu H, Hu L, Song Y, Wang D, Zhu S, Yan D, Chen H, Xu W, Zhang Y. Molecular evolution and antigenic drift of type 3 iVDPVs excreted from a patient with immunodeficiency in Ningxia, China. J Med Virol 2023; 95:e28215. [PMID: 36224711 DOI: 10.1002/jmv.28215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 01/11/2023]
Abstract
A 2.5-year-old pediatric patient with acute flaccid paralysis was diagnosed with primary immunodeficiency (PID) in Ningxia Province, China, in 2011. Twelve consecutive stool specimens were collected from the patient over a period of 10 months (18 February 2011 to 20 November 2011), and 12 immunodeficiency vaccine-derived poliovirus (iVDPV) strains (CHN15017-1 to CHN15017-12) were subsequently isolated. Nucleotide sequencing analysis of the plaque-purified iVDPVs revealed 2%-3.5% VP1-region differences from their parental Sabin 3 strain. Full-length genome sequencing showed they were all Sabin 3/Sabin 1 recombinants, sharing a common 2C-region crossover site, and the two key determinants of attenuation (U472C in the 5' untranslated region and T2493C in the VP1 region) had reverted. Temperature-sensitive experiments demonstrated that the first two iVDPV strains partially retained the temperature-sensitive phenotype's nature, while the subsequent ten iVDPV strains distinctly lost it, possibly associated with increased neurovirulence. Nineteen amino-acid substitutions were detected between 12 iVDPVs and the parental Sabin strain, of which only one (K1419R) was found on the subsequent 10 iVDPV isolates, suggesting this site's potential as a temperature-sensitive determination site. A Bayesian Monte Carlo Markov Chain phylogenetic analysis based on the P1 coding region yielded a mean iVDPV evolutionary rate of 1.02 × 10-2 total substitutions/site/year, and the initial oral-polio-vaccine dose was presumably administered around June 2009. Our findings provide valuable information regarding the genetic structure, high-temperature growth sensitivity, and antigenic properties of iVDPVs following long-term evolution in a single PID patient, thus augmenting the currently limited knowledge regarding the dynamic changes and evolutionary pathway of iVDPV populations with PID during long-term global replication.
Collapse
Affiliation(s)
- Qin Fan
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Jiangtao Ma
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan City, Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China
| | - Xiaolei Li
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jaume Jorba
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Fang Yuan
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan City, Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China
| | - Hui Zhu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Lan Hu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yang Song
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongyan Wang
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hui Chen
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan City, Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China
| | - Wenbo Xu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yong Zhang
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
9
|
Kitamura K, Shimizu H. The Molecular Evolution of Type 2 Vaccine-Derived Polioviruses in Individuals with Primary Immunodeficiency Diseases. Viruses 2021; 13:v13071407. [PMID: 34372613 PMCID: PMC8310373 DOI: 10.3390/v13071407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022] Open
Abstract
The oral poliovirus vaccine (OPV), which prevents person-to-person transmission of poliovirus by inducing robust intestinal immunity, has been a crucial tool for global polio eradication. However, polio outbreaks, mainly caused by type 2 circulating vaccine-derived poliovirus (cVDPV2), are increasing worldwide. Meanwhile, immunodeficiency-associated vaccine-derived poliovirus (iVDPV) is considered another risk factor during the final stage of global polio eradication. Patients with primary immunodeficiency diseases are associated with higher risks for long-term iVDPV infections. Although a limited number of chronic iVDPV excretors were reported, the recent identification of a chronic type 2 iVDPV (iVDPV2) excretor in the Philippines highlights the potential risk of inapparent iVDPV infection for expanding cVDPV outbreaks. Further research on the genetic characterizations and molecular evolution of iVDPV2, based on comprehensive iVDPV surveillance, will be critical for elucidating the remaining risk of iVDPV2 during the post-OPV era.
Collapse
|
10
|
Shulman LM, Weil M, Somech R, Stauber T, Indenbaum V, Rahav G, Mendelson E, Sofer D. Underperformed and Underreported Testing for Persistent Oropharyngeal Poliovirus Infections in Primary Immune Deficient Patients-Risk for Reemergence of Polioviruses. J Pediatric Infect Dis Soc 2021; 10:326-333. [PMID: 32538431 DOI: 10.1093/jpids/piaa053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/06/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Individuals with primary immune deficiencies (PIDs) may excrete poliovirus for extended periods and remain a major reservoir for polio after eradication. Poliovirus can spread by fecal-oral or oral-oral transmission. In middle- and high-income countries, oral-oral transmission may be more prevalent than fecal-oral transmission of polioviruses where PIDs patients survive longer. Our aim was to determine the prevalence of prolonged or persistent oropharyngeal poliovirus infections in PIDs. METHODS We performed a literature search for reports of prolonged (excreting poliovirus for ≥6 months and ≤5 years) or persistent (excreting poliovirus for >5 years) poliovirus infections in PIDs. RESULTS There were 140 PID cases with prolonged or persistent poliovirus infections. All had poliovirus-positive stools. Testing of oropharyngeal mucosa was only reported for 6 cases, 4 of which were positive. Molecular analyses demonstrated independent evolution of poliovirus in the gut and oropharyngeal mucosa in 2 cases. Seven PIDs had multiple lineages of the same poliovirus serotype in stools without information about polioviruses in oropharyngeal mucosa. CONCLUSIONS Testing for persistence of poliovirus in oropharyngeal mucosa of PID patients is rare, with virus recovered in 4 of 5 cases in whom stools were positive. Multiple lineages or serotypes in 7 additional PID cases may indicate separate foci of infection, some of which might be in oropharyngeal mucosa. We recommend screening throat swabs in addition to stools for poliovirus in PID patients. Containment protocols for reducing both oral-oral and fecal-oral transmission from PID patients must be formulated for hospitals and community settings.
Collapse
Affiliation(s)
- Lester M Shulman
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Weil
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Tali Stauber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Victoria Indenbaum
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Galia Rahav
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Infectious Disease Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danit Sofer
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
11
|
Weil M, Rahav G, Somech R, Stauber T, Alfandari J, Weiss L, Silberstein I, Indenbaum V, Or IB, Mendelson E, Sofer D, Shulman LM. First report of a persistent oropharyngeal infection of type 2 vaccine-derived poliovirus (iVDPV2) in a primary immune deficient (PID) patient after eradication of wild type 2 poliovirus. Int J Infect Dis 2019; 83:40-43. [DOI: 10.1016/j.ijid.2019.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 01/12/2023] Open
|
12
|
Zhao K, Henderson E, Bullard K, Oberste MS, Burns CC, Jorba J. PoSE: visualization of patterns of sequence evolution using PAML and MATLAB. BMC Bioinformatics 2018; 19:364. [PMID: 30343671 PMCID: PMC6196406 DOI: 10.1186/s12859-018-2335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Determining patterns of nucleotide and amino acid substitution is the first step during sequence evolution analysis. However, it is not easy to visualize the different phylogenetic signatures imprinted in aligned nucleotide and amino acid sequences. Results Here we present PoSE (Pattern of Sequence Evolution), a reliable resource for unveiling the evolutionary history of sequence alignments and for graphically displaying their contents. Substitutions are displayed by category (transitions and transversions), codon position, and phenotypic effect (synonymous and nonsynonymous). Visualization is accomplished using MATLAB scripts wrapped around PAML (Phylogenetic Analysis by Maximum Likelihood), implemented in an easy-to-use graphical user interface. The application displays inferred substitutions estimated by baseml or codeml, two programs included in the PAML software package. PoSE organizes patterns of substitution in eleven plots, including estimated non-synonymous/synonymous ratios (dN/dS) along the sequence alignment. In addition, PoSE provides visualization and annotation of patterns of amino acid substitutions along groups of related sequences that can be graphically inspected in a phylogenetic tree window. Conclusions PoSE is a useful tool to help determine major patterns during sequence evolution of protein-coding sequences, hypervariable regions, or changes in dN/dS ratios. PoSE is publicly available at https://github.com/CDCgov/PoSE
Collapse
|
13
|
Kew O, Pallansch M. Breaking the Last Chains of Poliovirus Transmission: Progress and Challenges in Global Polio Eradication. Annu Rev Virol 2018; 5:427-451. [PMID: 30001183 DOI: 10.1146/annurev-virology-101416-041749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the launch of the Global Polio Eradication Initiative (GPEI), paralytic cases associated with wild poliovirus (WPV) have fallen from ∼350,000 in 1988 to 22 in 2017. WPV type 2 (WPV2) was last detected in 1999, WPV3 in 2012, and WPV1 appeared to be localized to Pakistan and Afghanistan in 2017. Through continuous refinement, the GPEI has overcome operational and biological challenges far more complex and daunting than originally envisioned. Operational challenges had led to sustained WPV endemicity in core reservoirs and widespread dissemination to polio-free countries. The biological challenges derive from intrinsic limitations to the oral poliovirus vaccine: ( a) reduced immunogenicity in high-risk settings and ( b) genetic instability, leading to repeated outbreaks of circulating vaccine-derived polioviruses and prolonged infections in individuals with primary immunodeficiencies. As polio eradication enters its multifaceted endgame, the GPEI, with its technical, operational, and social innovations, stands as the preeminent model for control of vaccine-preventable diseases worldwide.
Collapse
Affiliation(s)
- Olen Kew
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA; ,
| | - Mark Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA; ,
| |
Collapse
|
14
|
Dynamics of Evolution of Poliovirus Neutralizing Antigenic Sites and Other Capsid Functional Domains during a Large and Prolonged Outbreak. J Virol 2018; 92:JVI.01949-17. [PMID: 29444940 DOI: 10.1128/jvi.01949-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022] Open
Abstract
We followed the dynamics of capsid amino acid replacement among 403 Nigerian outbreak isolates of type 2 circulating vaccine-derived poliovirus (cVDPV2) from 2005 through 2011. Four different functional domains were analyzed: (i) neutralizing antigenic (NAg) sites, (ii) residues binding the poliovirus receptor (PVR), (iii) VP1 residues 1 to 32, and (iv) the capsid structural core. Amino acid replacements mapped to 37 of 43 positions across all 4 NAg sites; the most variable and polymorphic residues were in NAg sites 2 and 3b. The most divergent of the 120 NAg variants had no more than 5 replacements in all NAg sites and were still neutralized at titers similar to those of Sabin 2. PVR-binding residues were less variable (25 different variants; 0 to 2 replacements per isolate; 30/44 invariant positions), with the most variable residues also forming parts of NAg sites 2 and 3a. Residues 1 to 32 of VP1 were highly variable (133 different variants; 0 to 6 replacements per isolate; 5/32 invariant positions), with residues 1 to 18 predicted to form a well-conserved amphipathic helix. Replacement events were dated by mapping them onto the branches of time-scaled phylogenies. Rates of amino acid replacement varied widely across positions and followed no simple substitution model. Replacements in the structural core were the most conservative and were fixed at an overall rate ∼20-fold lower than the rates for the NAg sites and VP1 1 to 32 and ∼5-fold lower than the rate for the PVR-binding sites. Only VP1 143-Ile, a non-NAg site surface residue and known attenuation site, appeared to be under strong negative selection.IMPORTANCE The high rate of poliovirus evolution is offset by strong selection against amino acid replacement at most positions of the capsid. Consequently, poliovirus vaccines developed from strains isolated decades ago have been used worldwide to bring wild polioviruses almost to extinction. The apparent antigenic stability of poliovirus obscures a dynamic of continuous change within the neutralizing antigenic (NAg) sites. During 7 years of a large outbreak in Nigeria, the circulating type 2 vaccine-derived polioviruses generated 120 different NAg site variants via multiple independent pathways. Nonetheless, overall antigenic evolution was constrained, as no isolate had fixed more than 5 amino acid differences from the Sabin 2 NAg sites, and the most divergent isolates were efficiently neutralized by human immune sera. Evolution elsewhere in the capsid was also constrained. Amino acids binding the poliovirus receptor were strongly conserved, and extensive variation in the VP1 amino terminus still conserved a predicted amphipathic helix.
Collapse
|
15
|
Shaghaghi M, Soleyman-Jahi S, Abolhassani H, Yazdani R, Azizi G, Rezaei N, Barbouche MR, McKinlay MA, Aghamohammadi A. New insights into physiopathology of immunodeficiency-associated vaccine-derived poliovirus infection; systematic review of over 5 decades of data. Vaccine 2018; 36:1711-1719. [PMID: 29478755 DOI: 10.1016/j.vaccine.2018.02.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 12/25/2022]
Abstract
Widespread administration of oral poliovirus vaccine (OPV) has decreased global incidence of poliomyelitis by ≈99.9%. However, the emergence of vaccine-derived polioviruses (VDPVs) is threatening polio-eradication program. Primary immunodeficiency (PID) patients are at higher risks of vaccine-associated paralytic poliomyelitis (VAPP) and prolonged excretion of immunodeficiency-associated VDPV (iVDPV). We searched Embase, Medline, Science direct, Scopus, Web of Science, and CDC and WHO databases by 30 September 2016, for all reports of iVDPV cases. Patient-level data were extracted form eligible studies. Data on immunization coverage and income-level of countries were extracted from WHO/UNICEF and the WORLD BANK databases, respectively. We assessed bivariate associations between immunological, clinical, and virological parameters, and exploited multivariable modeling to identify independent determinants of poliovirus evolution and patients' outcomes. Study protocol was registered with PROSPERO (CRD42016052931). 4329 duplicate-removed titles were screened. A total of 107 iVDPV cases were identified from 68 eligible articles. The majority of cases were from higher income countries with high polio-immunization coverage. 74 (69.81%) patients developed VAPP. Combined immunodeficiency patients showed lower rates of VAPP (p < .001) and infection clearance (p = .02), compared to humoral immunodeficiency patients. The rate of poliovirus genomic evolution was higher at early stages of replication, decreasing over time until reaching a steady state. Independent of replication duration, higher extent (p = .04) and rates (p = .03) of genome divergence contributed to a less likelihood of virus clearance. PID type (p < .001), VAPP occurrence (p = .008), and income-level of country (p = .04) independently influenced patients' survival. With the use of OPV, new iVDPVs will emerge independent of the rate of immunization coverage. Inherent features of PIDs contribute to the clinical course of iVDPV infection and virus evolution. This finding could shed further light on poliomyelitis pathogenesis and iVDPV evolution pattern. It also has implications for public health, the polio eradication effort and the development of effective antiviral interventions.
Collapse
Affiliation(s)
- Mohammadreza Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeed Soleyman-Jahi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamed-Ridha Barbouche
- Department of Immunology, Institut Pasteur de Tunis and University Tunis El-Manar, Tunis, Tunisia
| | - Mark A McKinlay
- Center for Vaccine Equity, Task Force for Global Health, Atlanta, GA, United States
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
16
|
Are Circulating Type 2 Vaccine-derived Polioviruses (VDPVs) Genetically Distinguishable from Immunodeficiency-associated VDPVs? Comput Struct Biotechnol J 2017; 15:456-462. [PMID: 29276577 PMCID: PMC5671402 DOI: 10.1016/j.csbj.2017.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
Public health response to vaccine-derived poliovirus (VDPV) that is transmitted from person to person (circulating VDPV [cVDPV]) differs significantly from response to virus that replicates in individuals with primary immunodeficiency (immunodeficiency-associated VDPV [iVDPV]). cVDPV outbreaks require a community immunization response, whereas iVDPV chronic infections require careful patient monitoring and appropriate individual treatment. To support poliovirus outbreak response, particularly for type 2 VDPV, we investigated the genetic distinctions between cVDPV2 and iVDPV2 sequences. We observed that simple genetic measurements of nucleotide and amino acid substitutions are sufficient for distinguishing highly divergent iVDPV2 from cVDPV2 sequences, but are insufficient to make a clear distinction between the two categories among less divergent sequences. We presented quantitative approaches using genetic information as a surveillance tool for early detection of VDPV outbreaks. This work suggests that genetic variations between cVDPV2 and iVDPV2 may reflect differences in viral micro-environments, host-virus interactions, and selective pressures during person-to-person transmission compared with chronic infections in immunodeficient patients.
Collapse
|
17
|
Weil M, Shulman LM, Heiman S, Stauber T, Alfandari J, Weiss L, Silberstein I, Indenbaum V, Mendelson E, Sofer D. Prolonged excretion of type-2 poliovirus from a primary immune deficient patient during the transition to a type-2 poliovirus-free world, Israel, 2016. ACTA ACUST UNITED AC 2017; 21:30408. [PMID: 27918258 PMCID: PMC5291147 DOI: 10.2807/1560-7917.es.2016.21.47.30408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/24/2016] [Indexed: 02/02/2023]
Abstract
Wild poliovirus type-2 has been eradicated, use of live type-2 vaccine has been terminated globally, and all type-2 polioviruses are under strict laboratory containment protocols. Re-emergence may arise from prolonged asymptomatic excretion of poliovirus by hospitalised primary immune deficient (PID) patients, as described here, through repeated exposure of close contacts to high titres of infected material. At this transition time, PID patients should be screened and hospital containment protocols updated in parallel with laboratory containment.
Collapse
Affiliation(s)
- Merav Weil
- Central Virology Laboratory, Public Health Services, Israel Ministry of Heath, at Sheba Medical Center, Tel Hashomer, Israel.,These authors contributed equally to this work
| | - Lester M Shulman
- Central Virology Laboratory, Public Health Services, Israel Ministry of Heath, at Sheba Medical Center, Tel Hashomer, Israel.,These authors contributed equally to this work.,Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Heiman
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Tali Stauber
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Jacqueline Alfandari
- Central Virology Laboratory, Public Health Services, Israel Ministry of Heath, at Sheba Medical Center, Tel Hashomer, Israel
| | - Leah Weiss
- Central Virology Laboratory, Public Health Services, Israel Ministry of Heath, at Sheba Medical Center, Tel Hashomer, Israel
| | - Ilana Silberstein
- Central Virology Laboratory, Public Health Services, Israel Ministry of Heath, at Sheba Medical Center, Tel Hashomer, Israel
| | - Viki Indenbaum
- Central Virology Laboratory, Public Health Services, Israel Ministry of Heath, at Sheba Medical Center, Tel Hashomer, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Israel Ministry of Heath, at Sheba Medical Center, Tel Hashomer, Israel.,Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danit Sofer
- Central Virology Laboratory, Public Health Services, Israel Ministry of Heath, at Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
18
|
Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng KW, Russell S. Designing and building oncolytic viruses. Future Virol 2017; 12:193-213. [PMID: 29387140 PMCID: PMC5779534 DOI: 10.2217/fvl-2016-0129] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care.
Collapse
Affiliation(s)
- Justin Maroun
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Miguel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Autumn Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Stephen Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Puligedda RD, Kouiavskaia D, Al-Saleem FH, Kattala CD, Nabi U, Yaqoob H, Bhagavathula VS, Sharma R, Chumakov K, Dessain SK. Characterization of human monoclonal antibodies that neutralize multiple poliovirus serotypes. Vaccine 2017; 35:5455-5462. [PMID: 28343771 DOI: 10.1016/j.vaccine.2017.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023]
Abstract
Following the eradication of wild poliovirus (PV), achieving and maintaining a polio-free status will require eliminating potentially pathogenic PV strains derived from the oral attenuated vaccine. For this purpose, a combination of non-cross-resistant drugs, such as small molecules and neutralizing monoclonal antibodies (mAbs), may be ideal. We previously isolated chimpanzee and human mAbs capable of neutralizing multiple PV types (cross-neutralization). Here, we describe three additional human mAbs that neutralize types 1 and 2 PV and one mAb that neutralizes all three types. Most bind conformational epitopes and have unusually long heavy chain complementarity determining 3 domains (HC CDR3). We assessed the ability of the mAbs to neutralize A12 escape mutant PV strains, and found that the neutralizing activities of the mAbs were disrupted by different amino acid substitutions. Competitive binding studies further suggested that the specific mAb:PV interactions that enable cross-neutralization differ among mAbs and serotypes. All of the cloned mAbs bind PV in the vicinity of the "canyon", a circular depression around the 5-fold axis of symmetry through which PV recognizes its cellular receptor. We were unable to generate escape mutants to two of the mAbs, suggesting that their epitopes are important for the PV life cycle. These data indicate that PV cross-neutralization involves binding to highly conserved structures within the canyon that binds to the cellular receptor. These may be facilitated by the long HC CDR3 domains, which may adopt alternative binding configurations. We propose that the human and chimpanzee mAbs described here could have potential as anti-PV therapeutics.
Collapse
Affiliation(s)
- Rama Devudu Puligedda
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, USA
| | - Diana Kouiavskaia
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Fetweh H Al-Saleem
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, USA
| | - Chandana Devi Kattala
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, USA
| | - Usman Nabi
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, USA
| | - Hamid Yaqoob
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, USA
| | - V Sandeep Bhagavathula
- Department of Biotechnology, College of Science & Technology, Andhra University, Visakhapatnam 530 003, Andhra Pradesh, India
| | - Rashmi Sharma
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, USA
| | - Konstantin Chumakov
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Scott K Dessain
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, USA.
| |
Collapse
|
20
|
Woodman A, Arnold JJ, Cameron CE, Evans DJ. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination. Nucleic Acids Res 2016; 44:6883-95. [PMID: 27317698 PMCID: PMC5001610 DOI: 10.1093/nar/gkw567] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/14/2016] [Indexed: 11/13/2022] Open
Abstract
Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3′ non-coding region we have further developed a cell-based assay (the 3′CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process.
Collapse
Affiliation(s)
- Andrew Woodman
- Dept. of Biochemistry & Molecular Biology, 201 Althouse Lab, University Park, PA 16802, USA
| | - Jamie J Arnold
- Dept. of Biochemistry & Molecular Biology, 201 Althouse Lab, University Park, PA 16802, USA
| | - Craig E Cameron
- Dept. of Biochemistry & Molecular Biology, 201 Althouse Lab, University Park, PA 16802, USA
| | - David J Evans
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, St. Andrews KY16 9ST, UK
| |
Collapse
|
21
|
An Insight into Recombination with Enterovirus Species C and Nucleotide G-480 Reversion from the Viewpoint of Neurovirulence of Vaccine-Derived Polioviruses. Sci Rep 2015; 5:17291. [PMID: 26603565 PMCID: PMC4658552 DOI: 10.1038/srep17291] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/28/2015] [Indexed: 12/03/2022] Open
Abstract
A poliomyelitis outbreak caused by type 1 circulating vaccine-derived polioviruses
(cVDPVs) was identified in China in 2004. Six independent cVDPVs (eight isolates)
could be grouped into a single cluster with pathways of divergence different from a
single cVDPV progenitor, which circulated and evolved into both a highly
neurovirulent lineage and a less neurovirulent lineage. They were as neurovirulent
as the wild type 1 Mahoney strain, recombination was absent, and their nucleotide
480-G was identical to that of the Sabin strain. The Guizhou/China cVDPV strains
shared 4 amino acid replacements in the NAg sites: 3 located at the BC loop, which
may underlie the aberrant results of the ELISA intratypic differentiation (ITD)
test. The complete ORF tree diverged into two main branches from a common ancestral
infection estimated to have occurred in about mid-September 2003, nine months before
the appearance of the VDPV case, which indicated recently evolved VDPV. Further,
recombination with species C enteroviruses may indicate the presence and density of
these enteroviruses in the population and prolonged virus circulation in the
community. The aforementioned cVDPVs has important implications in the global
initiative to eradicate polio: high quality surveillance permitted earliest
detection and response.
Collapse
|
22
|
Dunn G, Klapsa D, Wilton T, Stone L, Minor PD, Martin J. Twenty-Eight Years of Poliovirus Replication in an Immunodeficient Individual: Impact on the Global Polio Eradication Initiative. PLoS Pathog 2015; 11:e1005114. [PMID: 26313548 PMCID: PMC4552295 DOI: 10.1371/journal.ppat.1005114] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022] Open
Abstract
There are currently huge efforts by the World Health Organization and partners to complete global polio eradication. With the significant decline in poliomyelitis cases due to wild poliovirus in recent years, rare cases related to the use of live-attenuated oral polio vaccine assume greater importance. Poliovirus strains in the oral vaccine are known to quickly revert to neurovirulent phenotype following replication in humans after immunisation. These strains can transmit from person to person leading to poliomyelitis outbreaks and can replicate for long periods of time in immunodeficient individuals leading to paralysis or chronic infection, with currently no effective treatment to stop excretion from these patients. Here, we describe an individual who has been excreting type 2 vaccine-derived poliovirus for twenty eight years as estimated by the molecular clock established with VP1 capsid gene nucleotide sequences of serial isolates. This represents by far the longest period of excretion described from such a patient who is the only identified individual known to be excreting highly evolved vaccine-derived poliovirus at present. Using a range of in vivo and in vitro assays we show that the viruses are very virulent, antigenically drifted and excreted at high titre suggesting that such chronic excreters pose an obvious risk to the eradication programme. Our results in virus neutralization assays with human sera and immunisation-challenge experiments using transgenic mice expressing the human poliovirus receptor indicate that while maintaining high immunisation coverage will likely confer protection against paralytic disease caused by these viruses, significant changes in immunisation strategies might be required to effectively stop their occurrence and potential widespread transmission. Eventually, new stable live-attenuated polio vaccines with no risk of reversion might be required to respond to any poliovirus isolation in the post-eradication era. The global polio eradication initiative is the most ambitious and complex public health programme directed at a single disease in history with a projected cost of $16.5 billion. Of the three serotypes types 2 and 3 appear to have been eradicated in the wild and type 1 is mostly confined to a region of Pakistan and Afghanistan. There is a real probability of total eradication in the near future. The main vaccine used is a live attenuated virus, and our paper concerns one of the most intractable significant implications that this has for the polio endgame. We describe virological studies of a patient deficient in humoral immunity who has been excreting type 2 vaccine-derived poliovirus for 28 years. Our results show that the viruses are excreted at high titres, extremely virulent and antigenically drifted and raise questions about how the population may best be protected from them, particularly in the light of possible changes in vaccine production which are being encouraged to increase capability and reduce costs. The study has implications for the ecology of poliovirus in the human gut and highlights the risks that such vaccine-derived isolates pose for polio re-emergence in the post-eradication era.
Collapse
Affiliation(s)
- Glynis Dunn
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Dimitra Klapsa
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Thomas Wilton
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Lindsay Stone
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Philip D. Minor
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Baj A, Colombo M, Headley JL, McFarlane JR, Liethof MA, Toniolo A. Post-poliomyelitis syndrome as a possible viral disease. Int J Infect Dis 2015; 35:107-16. [PMID: 25939306 DOI: 10.1016/j.ijid.2015.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022] Open
Abstract
This review summarizes current concepts on post-polio syndrome (PPS), a condition that may arise in polio survivors after partial or complete functional recovery followed by a prolonged interval of stable neurological function. PPS affects 15-20 million people worldwide. Epidemiological data are reported, together with the pathogenic pathways that possibly lead to the progressive degeneration and loss of neuromuscular motor units. As a consequence of PPS, polio survivors experience new weakness, generalized fatigue, atrophy of previously unaffected muscles, and a physical decline that may culminate in the loss of independent life. Emphasis is given to the possible pathogenic role of persistent poliovirus infection and chronic inflammation. These factors could contribute to the neurological and physical decline in polio survivors. A perspective is then given on novel anti-poliovirus compounds and monoclonal antibodies that have been developed to contribute to the final phases of polio eradication. These agents could also be useful for the treatment or prevention of PPS. Some of these compounds/antibodies are in early clinical development. Finally, current clinical trials for PPS are reported. In this area, the intravenous infusion of normal human immunoglobulins appears both feasible and promising.
Collapse
Affiliation(s)
- Andreina Baj
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy
| | - Martina Colombo
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy
| | - Joan L Headley
- Post-Polio Health International, Saint Louis, Missouri, USA
| | | | - Mary-Ann Liethof
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy; Polio Australia Incorporated, Kew, Victoria, Australia
| | - Antonio Toniolo
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy.
| |
Collapse
|
24
|
Abstract
The attenuated oral poliovirus vaccine (OPV) has many properties favoring its use in polio eradication: ease of administration, efficient induction of intestinal immunity, induction of durable humoral immunity, and low cost. Despite these advantages, OPV has the disadvantage of genetic instability, resulting in rare and sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) and the emergence of genetically divergent vaccine-derived polioviruses (VDPVs). Whereas VAPP is an adverse event following exposure to OPV, VDPVs are polioviruses whose genetic properties indicate prolonged replication or transmission. Three categories of VDPVs are recognized: (1) circulating VDPVs (cVDPVs) from outbreaks in settings of low OPV coverage, (2) immunodeficiency-associated VDPVs (iVDPVs) from individuals with primary immunodeficiencies, and (3) ambiguous VDPVs (aVDPVs), which cannot be definitively assigned to either of the first 2 categories. Because most VDPVs are type 2, the World Health Organization's plans call for coordinated worldwide replacement of trivalent OPV with bivalent OPV containing poliovirus types 1 and 3.
Collapse
Affiliation(s)
- Cara C Burns
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Olen M Kew
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
25
|
Li L, Ivanova O, Driss N, Tiongco-Recto M, da Silva R, Shahmahmoodi S, Sazzad HMS, Mach O, Kahn AL, Sutter RW. Poliovirus excretion among persons with primary immune deficiency disorders: summary of a seven-country study series. J Infect Dis 2014; 210 Suppl 1:S368-72. [PMID: 25316857 DOI: 10.1093/infdis/jiu065] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Persons with primary immune deficiency disorders (PID), especially those disorders affecting the B-cell system, are at substantially increased risk of paralytic poliomyelitis and can excrete poliovirus chronically. However, the risk of prolonged or chronic excretion is not well characterized in developing countries. We present a summary of a country study series on poliovirus excretion among PID cases. METHODS Cases with PID from participating institutions were enrolled during the first year and after obtaining informed consent were tested for polioviruses in stool samples. Those cases excreting poliovirus were followed on a monthly basis during the second year until 2 negative stool samples were obtained. RESULTS A total of 562 cases were enrolled in Bangladesh, China, Iran, Philippines, Russia, Sri Lanka, and Tunisia during 2008-2013. Of these, 17 (3%) shed poliovirus, including 2 cases with immunodeficient vaccine-derived poliovirus. Poliovirus was detected in a single sample from 5/17 (29%) cases. One case excreted for more than 6 months. None of the cases developed paralysis during the study period. CONCLUSIONS Chronic polioviruses excretion remains a rare event even among individuals with PID. Nevertheless, because these individuals were not paralyzed they would have been missed by current surveillance; therefore, surveillance for polioviruses among PID should be established.
Collapse
Affiliation(s)
- Li Li
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Olga Ivanova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides of Russian Academy of Medical Sciences, Moscow, Russia
| | - Nadia Driss
- Institut Pasteur, Tunis El Manar University, Tunis, Tunisia
| | | | | | | | | | - Ondrej Mach
- World Health Organization, Geneva, Switzerland
| | | | | |
Collapse
|
26
|
Sazzad HMS, Rainey JJ, Kahn AL, Mach O, Liyanage JBL, Alam AN, Kawser CA, Hossain A, Sutter R, Luby SP. Screening for long-term poliovirus excretion among children with primary immunodeficiency disorders: preparation for the polio posteradication era in Bangladesh. J Infect Dis 2014; 210 Suppl 1:S373-9. [PMID: 25316858 PMCID: PMC12001814 DOI: 10.1093/infdis/jiu221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Persons with primary immune deficiency disorders (PIDD) who receive oral poliovirus vaccine (OPV) may transmit immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) and cause paralytic polio. The objective of this study was to identify children with PIDD in Bangladesh, and estimate the proportion with chronic poliovirus excretion. METHODS Patients admitted at 5 teaching hospitals were screened for PIDD according to standardized clinical case definitions. PIDD was confirmed by age-specific quantitative immunoglobulin levels. Stool specimens were collected from patients with confirmed PIDD. RESULTS From February 2011 through January 2013, approximately 96 000 children were screened, and 53 patients were identified who met the clinical case definition for PIDD. Thirteen patients (24%) had age-specific quantitative immunoglobulins results that confirmed PIDD. Of these, 9 (69%) received OPV 3-106 months before stool specimen collection. Among 11 patients, stool specimens from 1 patient tested positive for polioviruses 34 months after OPV ingestion. However, the poliovirus isolate was not available for genetic sequencing, and a subsequent stool specimen 45 days later was negative. CONCLUSIONS The risk of chronic poliovirus excretion among children with PIDD in Bangladesh seems to be low. The national polio eradication program should incorporate strategies for screening for poliovirus excretion among patients with PIDD.
Collapse
Affiliation(s)
| | | | | | - Ondrej Mach
- World Health Organization, Geneva, Switzerland
| | | | | | | | - Asgar Hossain
- Rajshahi Medical College Hospital, Rajshahi, Bangladesh
| | | | | |
Collapse
|
27
|
Identification of vaccine-derived polioviruses using dual-stage real-time RT-PCR. J Virol Methods 2013; 197:25-8. [PMID: 24321704 DOI: 10.1016/j.jviromet.2013.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 01/21/2023]
Abstract
Vaccine-derived polioviruses (VDPVs) are associated with polio outbreaks and prolonged infections in individuals with primary immunodeficiencies. VDPV-specific PCR assays for each of the three Sabin oral poliovirus vaccine (OPV) strains were developed, targeting sequences within the VP1 capsid region that are selected for during replication of OPV in the human intestine. Over 2400 Sabin-related isolates and identified 755 VDPVs were screened. Sensitivity of all assays was 100%, while specificity was 100% for serotypes 1 and 3, and 76% for serotype 2. The assays permit rapid, sensitive identification of OPV-related viruses and flag programmatically important isolates for further characterization by genomic sequencing.
Collapse
|
28
|
Highly divergent type 2 and 3 vaccine-derived polioviruses isolated from sewage in Tallinn, Estonia. J Virol 2013; 87:13076-80. [PMID: 24049178 DOI: 10.1128/jvi.01174-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Highly divergent vaccine-derived polioviruses (VDPVs) have been isolated from sewage in Tallinn, Estonia, since 2002. Sequence analysis of VDPVs of serotypes 2 and 3 showed that they shared common noncapsid region recombination sites, indicating origination from a single trivalent oral polio vaccine dose, estimated to have been given between 1986 and 1998. The sewage isolates closely resemble VDPVs chronically excreted by persons with common variable immunodeficiency, but no chronic excretors have yet been identified in Estonia.
Collapse
|
29
|
Hovi T, Savolainen-Kopra C, Smura T, Blomqvist S, Al-Hello H, Roivainen M. Evolution of type 2 vaccine derived poliovirus lineages. Evidence for codon-specific positive selection at three distinct locations on capsid wall. PLoS One 2013; 8:e66836. [PMID: 23840537 PMCID: PMC3696017 DOI: 10.1371/journal.pone.0066836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/09/2013] [Indexed: 12/17/2022] Open
Abstract
Partial sequences of 110 type 2 poliovirus strains isolated from sewage in Slovakia in 2003-2005, and most probably originating from a single dose of oral poliovirus vaccine, were subjected to a detailed genetic analysis. Evolutionary patterns of these vaccine derived poliovirus strains (SVK-aVDPV2) were compared to those of type 1 and type 3 wild poliovirus (WPV) lineages considered to have a single seed strain origin, respectively. The 102 unique SVK-aVDPV VP1 sequences were monophyletic differing from that of the most likely parental poliovirus type 2/Sabin (PV2 Sabin) by 12.5-15.6%. Judging from this difference and from the rate of accumulation of synonymous transversions during the 22 month observation period, the relevant oral poliovirus vaccine dose had been administered to an unknown recipient more than 12 years earlier. The patterns of nucleotide substitution during the observation period differed from those found in the studied lineages of WPV1 or 3, including a lower transition/transversion (Ts/Tv) bias and strikingly lower Ts/Tv rate ratios at the 2(nd) codon position for both purines and pyrimidines. A relatively low preference of transitions at the 2(nd) codon position was also found in the large set of VP1 sequences of Nigerian circulating (c)VDPV2, as well as in the smaller sets from the Hispaniola cVDPV1 and Egypt cVDPV2 outbreaks, and among aVDPV1and aVDPV2 strains recently isolated from sewage in Finland. Codon-wise analysis of synonymous versus non-synonymous substitution rates in the VP1 sequences suggested that in five codons, those coding for amino acids at sites 24, 144, 147, 221 and 222, there may have been positive selection during the observation period. We conclude that pattern of poliovirus VP1 evolution in prolonged infection may differ from that found in WPV epidemics. Further studies on sufficiently large independent datasets are needed to confirm this suggestion and to reveal its potential significance.
Collapse
Affiliation(s)
- Tapani Hovi
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
30
|
Lauring AS, Acevedo A, Cooper SB, Andino R. Codon usage determines the mutational robustness, evolutionary capacity, and virulence of an RNA virus. Cell Host Microbe 2013; 12:623-32. [PMID: 23159052 DOI: 10.1016/j.chom.2012.10.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/03/2012] [Accepted: 10/05/2012] [Indexed: 02/07/2023]
Abstract
RNA viruses exist as dynamic and diverse populations shaped by constant mutation and selection. Yet little is known about how the mutant spectrum contributes to virus evolvability and pathogenesis. Because several codon choices are available for a given amino acid, a central question concerns whether viral sequences have evolved to optimize not only the protein coding consensus, but also the DNA/RNA sequences accessible through mutation. Here we directly test this hypothesis by comparing wild-type poliovirus to synthetic viruses carrying re-engineered capsid sequences with hundreds of synonymous mutations. Strikingly, such rewiring of the population's mutant network reduced its robustness and attenuated the virus in an animal model of infection. We conclude that the position of a virus in sequence space defines its mutant spectrum, evolutionary trajectory, and pathogenicity. This organizing principle for RNA virus populations confers tolerance to mutations and facilitates replication and spread within the dynamic host environment.
Collapse
Affiliation(s)
- Adam S Lauring
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
31
|
Duintjer Tebbens RJ, Pallansch MA, Kim JH, Burns CC, Kew OM, Oberste MS, Diop OM, Wassilak SGF, Cochi SL, Thompson KM. Oral poliovirus vaccine evolution and insights relevant to modeling the risks of circulating vaccine-derived polioviruses (cVDPVs). RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2013; 33:680-702. [PMID: 23470192 PMCID: PMC7890645 DOI: 10.1111/risa.12022] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The live, attenuated oral poliovirus vaccine (OPV) provides a powerful tool for controlling and stopping the transmission of wild polioviruses (WPVs), although the risks of vaccine-associated paralytic polio (VAPP) and circulating vaccine-derived poliovirus (cVDPV) outbreaks exist as long as OPV remains in use. Understanding the dynamics of cVDPV emergence and outbreaks as a function of population immunity and other risk factors may help to improve risk management and the development of strategies to respond to possible outbreaks. We performed a comprehensive review of the literature related to the process of OPV evolution and information available from actual experiences with cVDPV outbreaks. Only a relatively small fraction of poliovirus infections cause symptoms, which makes direct observation of the trajectory of OPV evolution within a population impractical and leads to significant uncertainty. Despite a large global surveillance system, the existing genetic sequence data largely provide information about transmitted virulent polioviruses that caused acute flaccid paralysis, and essentially no data track the changes that occur in OPV sequences as the viruses transmit largely asymptomatically through real populations with suboptimal immunity. We updated estimates of cVDPV risks based on actual experiences and identified the many limitations in the existing data on poliovirus transmission and immunity and OPV virus evolution that complicate modeling. Modelers should explore the space of potential model formulations and inputs consistent with the available evidence and future studies should seek to improve our understanding of the OPV virus evolution process to provide better information for policymakers working to manage cVDPV risks.
Collapse
|
32
|
Identification and manipulation of the molecular determinants influencing poliovirus recombination. PLoS Pathog 2013; 9:e1003164. [PMID: 23408891 PMCID: PMC3567174 DOI: 10.1371/journal.ppat.1003164] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
The control and prevention of communicable disease is directly impacted by the genetic mutability of the underlying etiological agents. In the case of RNA viruses, genetic recombination may impact public health by facilitating the generation of new viral strains with altered phenotypes and by compromising the genetic stability of live attenuated vaccines. The landscape of homologous recombination within a given RNA viral genome is thought to be influenced by several factors; however, a complete understanding of the genetic determinants of recombination is lacking. Here, we utilize gene synthesis and deep sequencing to create a detailed recombination map of the poliovirus 1 coding region. We identified over 50 thousand breakpoints throughout the genome, and we show the majority of breakpoints to be concentrated in a small number of specific "hotspots," including those associated with known or predicted RNA secondary structures. Nucleotide base composition was also found to be associated with recombination frequency, suggesting that recombination is modulated across the genome by predictable and alterable motifs. We tested the predictive utility of the nucleotide base composition association by generating an artificial hotspot in the poliovirus genome. Our results imply that modification of these motifs could be extended to whole genome re-designs for the development of recombination-deficient, genetically stable live vaccine strains.
Collapse
|
33
|
Sutter RW, Kew OM, Cochi SL, Aylward RB. Poliovirus vaccine—live. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
34
|
|
35
|
Prevalence of prolonged and chronic poliovirus excretion among persons with primary immune deficiency disorders in Sri Lanka. Vaccine 2012; 30:7561-5. [PMID: 23099333 DOI: 10.1016/j.vaccine.2012.10.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND The Global Polio Eradication Initiative, established in 1988, has made substantial progress toward achieving this target, with only 3 countries never having eliminated wild poliovirus. Persons with primary immune deficiency disorders (PIDD) exposed to OPV are at increased risk of vaccine-associated paralytic poliomyelitis (VAPP) and of prolonged excretion of Sabin polioviruses. However, the risk for prolonged excretion is not known. Therefore, we studied the prevalence of PIDD with long-term poliovirus excretion in Sri Lanka, a middle income country currently using OPV. METHODS We stimulated the referral of patients under the age of 35 years, with clinical features suggestive of immune deficiency to the single immunology clinic in the country, where these patients were investigated for the presence of PIDD. Stool samples from patients with PIDD were cultured for the presence of poliovirus (PV). Poliovirus isolates were tested for intratypic differentiation (ITD). The VP1 region of all poliovirus isolates was sequenced. RESULTS Of 942 patients investigated, 51 (5.4%) were diagnosed with PIDD. Five (10.2%) patients excreted poliovirus. A patient with X linked agammaglobulinemia (XLA) excreted a mixture of all three Sabin like (SL) poliovirus serotypes. One patient with severe combined immune deficiency (SCID) excreted SL type 2, and another with SCID excreted SL type 3. One patient with SCID excreted a P2 vaccine-derived poliovirus (VDPV 2), and another with common variable immune deficiency (CVID) excreted a VDPV 3. The 3 patients with SCID died before scheduled collection of subsequent samples one month later, while the patient with XLA had cleared the virus in stool sample collected after 3 and 11 months. The CVID patient with VDPV 3 excreted for 7 months, and has developed a 23 nucleotide divergence in VP1 (∼900 nucleotides) from the parental Sabin virus. CONCLUSIONS In our study, several patients with SCID, XLA and CVID excreted poliovirus. With improving health care quality patients with CVID and XLA may survive longer especially with provision of intravenous immune globulin. Regular screening of patients with PIDD for excretion of poliovirus is necessary to identify chronic excretors and make available specific therapies.
Collapse
|
36
|
Pliaka V, Kyriakopoulou Z, Markoulatos P. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. Expert Rev Vaccines 2012; 11:609-28. [PMID: 22827246 DOI: 10.1586/erv.12.28] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Global Polio Eradication Initiative was launched in 1988 with the aim to eliminate paralytic poliomyelitis. Two effective vaccines are available: inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Since 1964, OPV has been used instead of IPV in most countries due to several economic and biological advantages. However, in rare cases, the live-attenuated Sabin strains of OPV revert to neurovirulence and cause vaccine-associated paralytic poliomyelitis in vaccinees or lead to emergence of vaccine-derived poliovirus strains. Attenuating mutations and recombination events have been associated with the reversion of vaccine strains to neurovirulence. The substitution of OPV with an improved new-generation IPV and the availability of new specific drugs against polioviruses are considered as future strategies for outbreak control and the eradication of paralytic poliomyelitis worldwide.
Collapse
Affiliation(s)
- Vaia Pliaka
- University of Thessaly, School of Health Sciences, Department of Biochemistry and Biotechnology, Microbiology-Virology Laboratory, Larissa, Greece.
| | | | | |
Collapse
|
37
|
Adedeji AO, Okonko IO, Adu FD. Sabin and wild type polioviruses from children who presented with acute flaccid paralysis in Nigeria. Afr Health Sci 2012; 12:345-54. [PMID: 23382751 PMCID: PMC3557676 DOI: 10.4314/ahs.v12i3.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Sensitive poliovirus surveillance to detect vaccine-derived-polioviruses will continue to increase in importance. OBJECTIVE Isolating and identifying poliovirus strains from children of pediatrics age in Nigeria. METHODS A total of 120 fecal samples were randomly collected from children under the age of five who presented with acute flaccid paralysis. Samples were tested by tissue culture technique and further characterized by intratypic differentiation testing using ELISA and PCR methods. RESULTS The study confirmed the presence of 22(18.3%) enteroviral isolates comprising 19(86.4%) polioviruses and 3(13.6%) non-polio enteroviruses. These 19 polioviruses include: Sabin-type poliovirus-1 (15.8%), poliovirus-2 (10.5%), poliovirus-3 (10.5%) and wild-type poliovirus-1 (63.2%) isolates. It showed that poliovirus infection was higher in children ages 6-11 months (18.9%), females (18.4%), northern states (91.0%) with no vaccination record (75.0%). Wild-type poliovirus-1 was isolated from the stool samples of 12(54.6%) children from northern states and in all age groups except 18-23 months. No significant differences (P >0.05) between poliovirus infection and age (18.9% vs. 17.7%; 81.9% vs. 18.2%) and sex (18.3% vs. 18.4%). There was significant differences (P<0.05) between poliovirus infection and location (91.0% vs. 9.0%) and history of polio vaccination (75.0% vs. 0.0%). No wild-type poliovirus was found in those with complete vaccination. CONCLUSION This study further confirms the presence of Sabin and wild-type poliovirus among children in Nigeria. The isolation of Sabin strain of poliovirus is advantageous to the polio eradication program as it is capable of inducing natural immunity in susceptible hosts. Transmission of wild-type poliovirus among children with incomplete vaccination poses a serious threat to polio eradication program in Nigeria. Environmental and serological surveillance with larger sample size are important for monitoring poliovirus circulation in Nigeria.
Collapse
Affiliation(s)
- A O Adedeji
- Department of Veterinary Microbiology & Parasitology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
38
|
Sazzad HMS, Rainey JJ, Mach O, Sutter R, Diordista S, Kawser CA, Mobarak R, Alam D, Chowdhury MA, Hossain MJ, Hasan ASMM, Luby SP. The feasibility of identifying children with primary immunodeficiency disorders: preparation for the polio post-eradication era in Bangladesh. Vaccine 2012; 30:5396-400. [PMID: 22728220 DOI: 10.1016/j.vaccine.2012.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/06/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Persons with primary immunodeficiency disorders (PIDD) who receive oral poliovirus vaccine (OPV) or are household contacts of OPV recipients are at risk of excreting immunodeficiency-associated vaccine-derived polioviruses (iVDPVs). iVDPVs can be transmitted and cause paralytic polio. The objective of this study was to determine the feasibility of identifying infants and young children with PIDD in Bangladesh, and among those identified, to estimate the proportion excreting iVDPVs. METHODS Patients admitted at 5 referral and teaching hospitals from the hospital catchment area were screened for PIDD using a standardized clinical case definition. PIDD was confirmed using results of testing for age-specific quantitative immunoglobulins (QIGs) levels. Stool specimens were collected according to WHO guidelines from children with confirmed PIDD. RESULTS During February-July 2009, 13 patients were identified who met the clinical case definition for PIDD; their median age was 1.4 years (range: 2 months to 10 years). Six (46%) of the patients had age-specific QIG results that confirmed PIDD. Stool specimens from four patients tested negative for polio vaccine viruses. All four had received OPV between 50 and 264 days prior to study recruitment. CONCLUSION Identifying children with PIDD at referral and teaching hospitals in Bangladesh is feasible, but a larger number of patients is needed to estimate the risk for iVDPV excretion. The national polio eradication program should expand surveillance for PIDD case-patients and regularly test persons with PIDD for poliovirus excretion. These efforts will be essential for developing effective prevention and control strategies following OPV cessation, especially for densely populated and tropical countries like Bangladesh where even a minimal iVDPV risk could have significant public health consequences.
Collapse
Affiliation(s)
- Hossain M S Sazzad
- International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kew O. Reaching the last one per cent: progress and challenges in global polio eradication. Curr Opin Virol 2012; 2:188-98. [PMID: 22482715 DOI: 10.1016/j.coviro.2012.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Since its launch in 1988, the World Health Organization's Global Polio Eradication Initiative has reduced worldwide polio incidence by >99%. The most dramatic progress was achieved up to the year 2000, the original eradication target date, but subsequent years have seen only limited progress in preventing the last 1% of cases. Recent gains in India and Nigeria have been offset by continued endemicity in Pakistan and Afghanistan, and repeated reseeding of wild poliovirus into polio-free areas has led to large outbreaks and re-established transmission. Although wild poliovirus type 2 was eradicated in 1999 and wild poliovirus type 3 may be nearing eradication, the continued emergence of circulating vaccine-derived polioviruses, especially type 2, presents ongoing challenges to stopping all poliovirus transmission.
Collapse
Affiliation(s)
- Olen Kew
- Division of Viral Diseases, G-10, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
40
|
van de Ven AAJM, Hoytema van Konijnenburg DP, Wensing AMJ, van Montfrans JM. The role of prolonged viral gastrointestinal infections in the development of immunodeficiency-related enteropathy. Clin Rev Allergy Immunol 2012; 42:79-91. [PMID: 22116710 DOI: 10.1007/s12016-011-8292-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients with primary immunodeficiencies are prone to develop enteropathy of unknown pathogenesis. We hypothesize that ineffective clearance of gastrointestinal pathogens, particularly viruses, in combination with defective immune regulation may cause inflammatory enteropathy in certain immunodeficient hosts. We reviewed publications related to prolonged enteric viral infection, immunodeficiency, and the subsequent development of inflammatory enteropathy. Prolonged infection with especially enteroviral infections was reported more often in immunocompromised hosts than in healthy individuals. Protracted enteric viral shedding was not always associated with the presence or duration of gastrointestinal symptoms. The development of immunodeficiency-associated enteropathy after prolonged viral infections was described in sporadic cases. Clinical consequences of viral gut infections in immunocompromised hosts comprise isolation issues and supportive care. Prospective studies in cohorts of immunodeficient patients are required to study the impact of prolonged enteric viral replication with respect to the pathogenesis of non-infectious enteropathy.
Collapse
Affiliation(s)
- Annick A J M van de Ven
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
41
|
Abstract
Poliovirus causes paralytic poliomyelitis, an ancient disease of humans that became a major public-health issue in the 20th century. The primary site of infection is the gut, where virus replication is entirely harmless; the two very effective vaccines developed in the 1950s (oral polio vaccine, or OPV, and inactivated polio vaccine, or IPV) induce humoral immunity, which prevents viraemic spread and disease. The success of vaccination in middle-income and developing countries encouraged the World Health Organization to commit itself to an eradication programme, which has made great advances. The features of the infection, including its largely silent nature and the ability of the live vaccine (OPV) to evolve and change in vaccine recipients and their contacts, make eradication particularly challenging. Understanding the pathogenesis and virology of the infection is of major significance as the programme reaches its conclusion.
Collapse
Affiliation(s)
- Philip D Minor
- National Institute of Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
42
|
Lancaster KZ, Pfeiffer JK. Mechanisms controlling virulence thresholds of mixed viral populations. J Virol 2011; 85:9778-88. [PMID: 21795346 PMCID: PMC3196390 DOI: 10.1128/jvi.00355-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 07/16/2011] [Indexed: 02/05/2023] Open
Abstract
The propensity of RNA viruses to revert attenuating mutations contributes to disease and complicates vaccine development. Despite the presence of virulent revertant viruses in some live-attenuated vaccines, disease from vaccination is rare. This suggests that in mixed viral populations, attenuated viruses may limit the pathogenesis of virulent viruses, thus establishing a virulence threshold. Here we examined virulence thresholds using mixtures of virulent and attenuated viruses in a transgenic mouse model of poliovirus infection. We determined that a 1,000-fold excess of the attenuated Sabin strain of poliovirus was protective against disease induced by the virulent Mahoney strain. Protection was induced locally, and inactivated virus conferred protection. Treatment with a poliovirus receptor-blocking antibody phenocopied the protective effect of inactivated viruses in vitro and in vivo, suggesting that one mechanism controlling virulence thresholds may be competition for a viral receptor. Additionally, the type I interferon response reduces poliovirus pathogenesis; therefore, we examined virulence thresholds in mice lacking the alpha/beta interferon receptor. We found that the attenuated virus was virulent in immunodeficient mice due to the enhanced replication and reversion of attenuating mutations. Therefore, while the type I interferon response limits the virulence of the attenuated strain by reducing replication, protection from disease conferred by the attenuated strain in immunocompetent mice can occur independently of replication. Our results identified mechanisms controlling the virulence of mixed viral populations and indicate that live-attenuated vaccines containing virulent virus may be safe, as long as virulent viruses are present at levels below a critical threshold.
Collapse
Affiliation(s)
| | - Julie K. Pfeiffer
- Corresponding author. Mailing address: Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048. Phone: (214) 633-1377. Fax: (214) 648-5905. E-mail:
| |
Collapse
|
43
|
Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence. Viruses 2011; 3:1460-84. [PMID: 21994791 PMCID: PMC3185806 DOI: 10.3390/v3081460] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.
Collapse
|
44
|
Shulman LM, Sofer D, Manor Y, Mendelson E, Balanant J, Salvati AL, Delpeyroux F, Fiore L. Antiviral activity of 3(2H)- and 6-chloro-3(2H)-isoflavenes against highly diverged, neurovirulent vaccine-derived, type2 poliovirus sewage isolates. PLoS One 2011; 6:e18360. [PMID: 21904594 PMCID: PMC3102060 DOI: 10.1371/journal.pone.0018360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 03/06/2011] [Indexed: 11/18/2022] Open
Abstract
Background Substituted flavanoids interfere with uncoating of Enteroviruses including Sabin-2 polio vaccine strains. However flavanoid resistant and dependent, type-2 polio vaccine strains (minimally-diverged), emerged during in vitro infections. Between 1998–2009, highly-diverged (8 to >15%) type-2, aVDPV2s, from two unrelated persistent infections were periodically isolated from Israeli sewage. Aim To determine whether highly evolved aVDPV2s derived from persistent infections retained sensitivity to isoflavenes. Methods Sabin-2 and ten aVDPV2 isolates from two independent Israeli sources were titered on HEp2C cells in the presence and absence of 3(2H)- Isoflavene and 6-chloro-3(2H)-Isoflavene. Neurovirulence of nine aVDPV2s was measured in PVR-Tg-21 transgenic mice. Differences were related to unique amino acid substitutions within capsid proteins. Principal Findings The presence of either flavanoid inhibited viral titers of Sabin-2 and nine of ten aVDPV2s by one to two log10. The tenth aVDPV2, which had unique amino acid substitution distant from the isoflavene-binding pocket but clustered at the three- and five-fold axies of symmetry between capsomeres, was unaffected by both flavanoids. Genotypic neurovirulence attenuation sites in the 5′UTR and VP1 reverted in all aVDPV2s and all reacquired a full neurovirulent phenotype except one with amino acid substitutions flanking the VP1 site. Conclusion Both isoflavenes worked equally well against Sabin 2 and most of the highly-diverged, Israeli, aVDPV2s isolates. Thus, functionality of the hydrophobic pocket may be unaffected by selective pressures exerted during persistent poliovirus infections. Amino acid substitutions at sites remote from the drug-binding pocket and adjacent to a neurovirulence attenuation site may influence flavanoid antiviral activity, and neurovirulence, respectively.
Collapse
Affiliation(s)
- Lester M Shulman
- Central Virology Laboratory, Public Health Services Israel Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Savolainen-Kopra C, Blomqvist S. Mechanisms of genetic variation in polioviruses. Rev Med Virol 2011; 20:358-71. [PMID: 20949639 DOI: 10.1002/rmv.663] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polioviruses, as with all RNA viruses, are in a constant process of evolution driven by different mechanisms. With multiple mechanisms for genetic variability, they are successful conformists, adapting to changes in their habitat. The evolution of polioviruses may occur with generation of point mutations followed by genetic drift and selection. The mutation rate of polioviruses based on several studies is approximately 3 × 10(-2) mutations/synonymous site/year in the gene encoding viral protein 1. Genetic variation in polioviruses may also be increased by sharing of genetic data of two different poliovirus lineages by means of homologous recombination. According to the current view, recombination is considered usually to occur by strand-switching, but a non-replicative model has also been described. In recombination, polioviruses may either gain a set of advantageous mutations selected and fixed in previous generations of the parental viruses or get rid of deleterious ones. The prerequisites and constraints of the evolution mechanisms will be discussed. Furthermore, consequences of poliovirus evolution will be reviewed in the light of observations made on currently circulating polioviruses. We will also describe how polioviruses strike back: as wild type polioviruses approach eradication, vaccine derived strains increase their occurrence and genetic variability.
Collapse
Affiliation(s)
- Carita Savolainen-Kopra
- National Institute for Health and Welfare (THL), Department of Infectious Disease Surveillance and Control, Unit of Intestinal Viruses, Helsinki, Finland.
| | | |
Collapse
|
46
|
New vaccine design based on defective genomes that combines features of attenuated and inactivated vaccines. PLoS One 2010; 5:e10414. [PMID: 20454676 PMCID: PMC2861626 DOI: 10.1371/journal.pone.0010414] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/12/2010] [Indexed: 12/22/2022] Open
Abstract
Background New vaccine designs are needed to control diseases associated with antigenically variable RNA viruses. Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that inflicts severe economic losses. Although the current whole-virus chemically inactivated vaccine has proven effective, it has led to new outbreaks of FMD because of incomplete inactivation of the virus or the escape of infectious virus from vaccine production premises. We have previously shown that serial passages of FMD virus (FMDV) C-S8c1 at high multiplicity of infection in cell culture resulted in virus populations consisting of defective genomes that are infectious by complementation (termed C-S8p260). Principal Finding Here we evaluate the immunogenicity of C-S8p260, first in a mouse model system to establish a proof of principle, and second, in swine, the natural host of FMDV C-S8c1. Mice were completely protected against a lethal challenge with FMDV C-S8c1, after vaccination with a single dose of C-S8p260. Pigs immunized with different C-S8p260 doses and challenged with FMDV C-S8c1 either did not develop any clinical signs or showed delayed and mild disease symptoms. C-S8p260 induced high titers of both FMDV-specific, neutralizing antibodies and activated FMDV-specific T cells in swine, that correlated with solid protection against FMDV. Conclusions The defective virus-based vaccine did not produce detectable levels of transmissible FMDV. Therefore, a segmented, replication-competent form of a virus, such as FMDV C-S8p260, can provide the basis of a new generation of attenuated antiviral vaccines with two safety barriers. The design can be extended to any viral pathogen that encodes trans-acting gene products, allowing complementation between replication-competent, defective forms.
Collapse
|
47
|
Kapusinszky B, Molnár Z, Szomor KN, Berencsi G. Molecular characterization of poliovirus isolates from children who contracted vaccine-associated paralytic poliomyelitis (VAPP) following administration of monovalent type 3 oral poliovirus vaccine in the 1960s in Hungary. ACTA ACUST UNITED AC 2010; 58:211-7. [DOI: 10.1111/j.1574-695x.2009.00621.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Chi CY, Tseng FC, Liu DP, Chang YW, Wu HC, Huang YF, Hwang KP, Hsu YW, Wang SM, Liu CC, Wu HS, Yang JY, Yang CF, Wang JR, Su IJ. Investigations of clinical isolations of oral poliovirus vaccine strains between 2000 and 2005 in southern Taiwan. J Clin Virol 2009; 45:129-34. [PMID: 19394265 DOI: 10.1016/j.jcv.2009.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 03/20/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND In Taiwan, trivalent oral poliovirus vaccine (tOPV) is in the routine immunization schedule, but its association with illnesses had not been examined. OBJECTIVES To investigate clinical presentations and viral characteristics of patients with poliovirus isolates. STUDY DESIGN Clinical data, vaccination records and viral sequences were retrospectively analyzed for patients from whom polioviruses were isolated during 2000-2005. RESULTS OPV-like strains were the only pathogen identified in 208 children who were diagnosed with lower respiratory tract infection (24.5%), acute gastroenteritis (16.8%) or upper respiratory tract infection (10.6%). Timing of poliovirus isolation relative to the tOPV vaccination was unusual in 59 patients, including 6 before any dose and 53 more than 10 weeks after the 3rd or later dose of tOPV. Sequence analyses of the VP1, 2C and 3C/D regions for 19 poliovirus isolates revealed that 4 had previously reported neurovirulence reversions, 1 had intertypic recombination, and 6 had both. No patient had neurological complications, but 3 died of myocarditis, including 2 with recombinant strains and 1 who never received OPV. CONCLUSION This study describes the isolation of OPV-like strains from patients with a variety of illnesses, raising concerns about their pathogenic potential in an area where tOPV is routinely administered. The detection of genetic variations among OPV-like strains warrants continuing surveillance for these variants in patients with severe illnesses besides neurological complications.
Collapse
Affiliation(s)
- Chia-Yu Chi
- Division of Infectious Diseases, National Health Research Institutes, 367 Sheng-Li Road, Tainan 704, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Alexander J, Ehresmann K, Seward J, Wax G, Harriman K, Fuller S, Cebelinski E, Chen Q, Jorba J, Kew O, Pallansch M, Oberste M, Schleiss M, Davis J, Warshawsky B, Squires S, Hull H. Transmission of Imported Vaccine‐Derived Poliovirus in an Undervaccinated Community in Minnesota. J Infect Dis 2009; 199:391-7. [DOI: 10.1086/596052] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
50
|
Evolution of the Sabin vaccine into pathogenic derivatives without appreciable changes in antigenic properties: need for improvement of current poliovirus surveillance. J Virol 2009; 83:3402-6. [PMID: 19129444 DOI: 10.1128/jvi.02122-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sabin oral polio vaccine (OPV) may evolve into pathogenic viruses, causing sporadic cases and outbreaks of poliomyelitis. Such vaccine-derived polioviruses (VDPV) generally exhibit altered antigenicity. The current paradigm to distinguish VDPV from OPV and wild polioviruses is to characterize primarily those poliovirus isolates that demonstrate deviations from OPV in antigenic and genetic intratypic differentiation (ITD) tests. Here we report on two independent cases of poliomyelitis caused by VDPVs with "Sabin-like" properties in several ITD assays. The results suggest the existence of diverse pathways of OPV evolution and necessitate improvement of poliovirus surveillance, which currently potentially misses this class of VDPV.
Collapse
|