1
|
Crutchfield-Peters KL, Rempe DM, Tune AK, Dawson TE. Linked nitrogen and carbon dynamics reveal distinct pools and patterns in a deep, weathered bedrock rhizosphere. Proc Natl Acad Sci U S A 2025; 122:e2400452122. [PMID: 40343996 DOI: 10.1073/pnas.2400452122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Nitrogen is one of the most limiting nutrients to forest productivity worldwide. Recently, it has been established that diverse ecosystems source a substantial fraction of their water from weathered bedrock, leading to questions about whether root-driven nitrogen cycling extends into weathered bedrock as well. In this study, we specifically examined nitrogen dynamics using specialized instrumentation distributed across a 16 m weathered bedrock vadose zone (WBVZ) underlying an old growth forest in northern California where the rhizosphere-composed of plant roots and their associated microbiome-extends meters into rock. We documented total dissolved nitrogen (TDN), dissolved organic carbon (DOC), inorganic nitrogen (ammonium and nitrate), and CO2 and O2 gases every 1.5 m to 16 m depth for 2 y. We found that TDN concentrations increased with depth, were an order of magnitude greater at 15 m than in the upper 30 cm, and that the majority of TDN throughout the weathered bedrock vadose zone was organic. We also found that TDN concentrations are influenced by depth, season, and interannual precipitation patterns. Carbon isotope composition of the DOC suggests that dissolved organic matter in the WBVZ is primarily derived from plant sources, and not the nitrogen-rich bedrock. We conclude that nitrogen dynamics in the WBVZ may be driven, in part, by an active rhizosphere, meters below the base of soil, and we argue that weathered bedrock horizons may play a key role in C-N cycling in ecosystems with deep-rooted plants.
Collapse
Affiliation(s)
- Kelsey L Crutchfield-Peters
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Earth and Environmental Sciences Area, Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Daniella M Rempe
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas at Austin, TX 78712
| | - Alison K Tune
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas at Austin, TX 78712
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
2
|
Chen Q, Cao J, Zhang M, Guo L, Omidvar N, Xu Z, Hui C, Liu W. The role of soil chemical properties and microbial communities on Dendrocalamus brandisii bamboo shoot quality, Yunnan Province, China. Front Microbiol 2025; 16:1551638. [PMID: 40371113 PMCID: PMC12075379 DOI: 10.3389/fmicb.2025.1551638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/02/2025] [Indexed: 05/16/2025] Open
Abstract
Objective To explore the effects of soil nutrients and microbial communities on the quality of Dendrocalamus brandisii shoots in different regions, providing a scientific basis for their development and utilization. Methods Using seven different geographic sources of D. brandisii from Yunnan Province as research subjects, this study employs chemical analysis and high-throughput sequencing to reveal the relationship between soil nutrients, microbial functional groups, and the nutritional quality of bamboo shoots. Results The results indicate that there are significant differences in soil nutrient content among the regions (p < 0.05), with bamboo shoots from Baoshan Changning (CN) exhibiting the best overall nutritional quality. The key factors influencing bacterial community changes include pH, available phosphorus (AP), and available potassium (AK). In contrast, the main factors affecting fungal community changes are pH, soil organic matter (SOM), available potassium (AK), and total nitrogen (TN). This version maintains clarity and logical flow, making it easier for readers to understand the different factors influencing bacterial and fungal community changes. The diversity indices of soil microbial communities among different sources of Dendrocalamus brandisii show significant differences (p < 0.05). The dominant groups in the seven regions include Proteobacteria, Acidobacteriota, Actinobacteriota, Chloroflexi, Ascomycota, and Basidiomycota. The soil microbial community in Baoshan Changning (CN) shows significant structural differences compared to the other six regions, with the highest relative abundances of Chloroflexi and Acidobacteriota. In contrast, the highest relative abundance of Proteobacteria is found in Honghe Shiping (SP), while Actinobacteriota has the highest relative abundance in Yuxi Xinping (XP). RDA analysis indicates that soil nutrients (SOM, pH, AP, TN) affect the water content, soluble sugar, and crude fat of bamboo shoots. Additionally, the bacterial communities including Actinobacteriota, Chloroflexi, Patescibacteria, GAL15, and Cyanobacteria influence the water content, soluble sugar, ash content, protein, and lignin of bamboo shoots. Discussion In the fungal community, Basidiomycota, Kickxellomycota, Mucoromycota, unclassified-k-Fungi, and Glomeromycota affect the water content and tannin levels in bamboo shoots. In summary, soil nutrients and soil microorganisms are interconnected and work together to influence the quality of bamboo shoots.
Collapse
Affiliation(s)
- Qian Chen
- Research Institute of Bamboo and Rattan, Cluster Bamboo Engineering Technology Research Center, College of Forestry, Southwest Forestry University, Kunming, China
| | - Jianjie Cao
- Research Institute of Bamboo and Rattan, Cluster Bamboo Engineering Technology Research Center, College of Forestry, Southwest Forestry University, Kunming, China
| | - Manyun Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Lei Guo
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Negar Omidvar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Zhihong Xu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Chaomao Hui
- Research Institute of Bamboo and Rattan, Cluster Bamboo Engineering Technology Research Center, College of Forestry, Southwest Forestry University, Kunming, China
| | - Weiyi Liu
- Research Institute of Bamboo and Rattan, Cluster Bamboo Engineering Technology Research Center, College of Forestry, Southwest Forestry University, Kunming, China
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Nawaz S, Skala L, Amin M, Iruegas-Bocardo F, Samadi A, Zaman KHAU, Chang JH, Sajid I, Mahmud T. Genomic, Molecular Networking-Based Metabolomic, and Bioactivity Profiling of Actinobacteria from Undisturbed Caves in Pakistan. Appl Biochem Biotechnol 2025; 197:2667-2680. [PMID: 39786631 DOI: 10.1007/s12010-024-05158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Caves are a unique ecosystem that harbor diverse microorganisms, and provide a challenging environment to the dwelling microbial communities, which may boost gene expression and can lead to the production of inimitable bioactive natural products. In this study, we obtained 59 actinobacteria from four different caves located in Bahadurkhel, District Karak, Pakistan. On the basis of taxonomic characteristics, 30 isolates were selected and screened for secondary metabolites production and bioactivity profiling. The extracts of all the isolates exhibited promising antibacterial activity against several pathogenic bacteria, with the best outcome seen in the extract of isolate SNK 21. The metabolomic analysis of the extracts by LC-MS/MS-based molecular networking and whole genome sequencing (WGS) followed by antiSMASH analysis revealed the presence of diverse secondary metabolites and biosynthetic gene clusters (BGCs) in SNK 21. Purification of compounds by manual chromatography, HPLC, and characterization by NMR, HR-MS, led to the identification of the active compounds, actinomycin D and its isomer. In addition, metabolomic analysis and genome mining of morphologically distinct isolates, SNK 202 and SNK 329, also showed diverse secondary metabolites and BGCs, underscoring the potential of actinobacteria from undisturbed caves in Pakistan as a new source of bioactive compounds.
Collapse
Affiliation(s)
- Shahid Nawaz
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97333, USA
| | - Leigh Skala
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97333, USA
| | - Muhammad Amin
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97333, USA
| | | | - Arash Samadi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97333, USA
| | - K H Ahammad Uz Zaman
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97333, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Imran Sajid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97333, USA.
| |
Collapse
|
4
|
Taghavi MA, Ahmadi M, Dehghan-Nayeri D, Salehi Z, Shams-Ghahfarokhi M, Jamzivar F, Razzaghi-Abyaneh M. Antifungal effect of soil Bacillus bacteria on pathogenic species of the fungal genera Aspergillus and Trichophyton. IRANIAN JOURNAL OF MICROBIOLOGY 2025; 17:303-311. [PMID: 40337682 PMCID: PMC12053403 DOI: 10.18502/ijm.v17i2.18397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Background and Objectives The increasing prevalence of fungal infections due to antifungal resistance underscores the need for novel treatment strategies. The present study aimed to investigate the inhibitory effects of soil-originated antagonistic bacteria against Aspergillus and Trichophyton species. Materials and Methods Fifty soil samples collected from Isfahan and Khuzestan provinces by using the Zig-Zag method were cultured on glucose-yeast extract (GY) agar around fungal colonies to isolate antagonistic bacteria. Antifungal activity was assessed by measuring clear zones around the colonies of A. niger, A. fumigatus, T. rubrum, and T. mentagrophytes by co-culture linear method. Potent antagonistic bacteria were identified by 16S rRNA sequencing, and evaluated for antifungal activity using disk diffusion assays compared with amphotericin B and ketoconazole. Results Among 50 samples, fifteen showed antifungal effects, yielding 55 bacterial strains. Four isolates with strong antifungal activity against all tested fungi were identified as Bacillus subtilis, B. licheniformis, B. axarquiensis, and Bacillus sp. These bacteria were distributed in distinct clusters phylogenitically and showed diverse antifungal activity. Conclusion The results suggest the potential of soil-derived Bacillus species as promising antifungal agents. Further studies are recommended to identify their inhibitory metabolites, their ability as biocontrol agents against soil habitated fungi and to explore their mechanism of action and spectrum of activity.
Collapse
Affiliation(s)
| | - Maryam Ahmadi
- Department of Microbiology, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran
| | - Davoud Dehghan-Nayeri
- Department of Microbiology, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran
| | - Zahra Salehi
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | |
Collapse
|
5
|
Contreras-de la Rosa PA, De la Torre-Zavala S, O´Connor-Sánchez A, Prieto-Davó A, Góngora-Castillo EB. Exploring the microbial communities in coastal cenote and their hidden biotechnological potential. Microb Genom 2025; 11:001382. [PMID: 40178526 PMCID: PMC11968836 DOI: 10.1099/mgen.0.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial secondary metabolites are crucial bioactive compounds with significant therapeutic potential, playing key roles in ecological processes and the discovery of novel antimicrobial agents and natural products. Cenotes, as extreme environments, harbour untapped microbial diversity and hold an interesting potential as sources of novel secondary metabolites. While research has focused on the fauna and flora of cenotes, the study of their microbial communities and their biosynthetic capabilities remains limited. Advances in metagenomics and genome sequencing have greatly improved the capacity to explore these communities and their metabolites. In this study, we analysed the microbial diversity and biotechnological potential of micro-organisms inhabiting sediments from a coastal cenote. Metagenomic analyses revealed a rich diversity of bacterial and archaeal communities, containing several novel biosynthetic gene clusters (BGCs) linked to secondary metabolite production. Notably, polyketide synthase BGCs, including those encoding ladderanes and aryl-polyenes, were identified. Bioinformatics analyses of these pathways suggest the presence of compounds with potential industrial and pharmaceutical applications. These findings highlight the biotechnological value of cenotes as reservoirs of secondary metabolites. The study and conservation of these ecosystems are essential to facilitate the discovery of new bioactive compounds that could benefit various industries.
Collapse
Affiliation(s)
- Perla A. Contreras-de la Rosa
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, 66425, San Nicolás de los Garza, Nuevo León, Mexico
| | - Aileen O´Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Alejandra Prieto-Davó
- Unidad de Química-Sisal, Facultad de Química. Universidad Nacional Autónoma de México, 97356, Sisal, Yucatán, México
| | - Elsa B. Góngora-Castillo
- CONAHCYT- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo 97205, Mérida, Yucatán, México
- CONAHCYT-Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 6. Antigua carretera a Progreso. Cordemex, 97310, Mérida, Yucatán, México
| |
Collapse
|
6
|
Ji W, Zhou Z, Yang J, Zhang N, Yang Z, Chen K, Du Y. Soil Bacterial Community Characteristics and Functional Analysis of Estuarine Wetlands and Nearshore Estuarine Wetlands in Qinghai Lake. Microorganisms 2025; 13:759. [PMID: 40284596 PMCID: PMC12029417 DOI: 10.3390/microorganisms13040759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Qinghai Lake, the largest inland saline lake in China, plays a vital role in wetland carbon cycling. However, the structure and function of soil bacterial communities in its estuarine and nearshore estuarine wetlands remain unclear. This study examined the effects of wetland type and soil depth on bacterial diversity, community composition, and functional potential in the Shaliu, Heima, and Daotang River wetlands using high-throughput sequencing. The results showed that wetland type and soil depth significantly influenced bacterial communities. Nearshore wetlands exhibited lower bacterial diversity in the 0-10 cm layer, while deeper soils (10-20 cm) showed greater regional differentiation. Estuarine wetlands were enriched with Proteobacteria, Actinobacteriota, and Chloroflexi, whereas nearshore wetlands were dominated by Actinobacteriota and Cyanobacteria. Functionally, estuarine wetlands had higher sulfate reduction and anaerobic decomposition potential, with Desulfovibrio, Desulfobacter, and Desulfotomaculum regulating sulfur cycling and carbon decomposition. In contrast, nearshore wetlands showed greater nitrogen fixation and organic matter degradation, facilitated by Rhizobium, Azotobacter, Clostridium, and nitrogen-fixing Cyanobacteria (e.g., Anabaena, Nostoc). Microbial metabolic functions varied by depth: surface soils (0-10 cm) favored environmental adaptation and organic degradation, whereas deeper soils (10-20 cm) exhibited lipid metabolism and DNA repair strategies for low-oxygen adaptation. These findings highlight the spatial heterogeneity of bacterial communities and their role in biogeochemical cycles, providing insights into wetland carbon dynamics and informing conservation strategies.
Collapse
Affiliation(s)
- Wei Ji
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (W.J.); (Z.Z.); (J.Y.); (N.Z.); (Z.Y.)
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Zhiyun Zhou
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (W.J.); (Z.Z.); (J.Y.); (N.Z.); (Z.Y.)
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Jianpeng Yang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (W.J.); (Z.Z.); (J.Y.); (N.Z.); (Z.Y.)
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Ni Zhang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (W.J.); (Z.Z.); (J.Y.); (N.Z.); (Z.Y.)
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Ziwei Yang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (W.J.); (Z.Z.); (J.Y.); (N.Z.); (Z.Y.)
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Kelong Chen
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (W.J.); (Z.Z.); (J.Y.); (N.Z.); (Z.Y.)
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Yangong Du
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (W.J.); (Z.Z.); (J.Y.); (N.Z.); (Z.Y.)
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
7
|
Geers AU, Michoud G, Busi SB, Peter H, Kohler TJ, Ezzat L, The Vanishing Glaciers Field Team StyllasMichael1SchönMartina1TolosanoMatteo1de StaerckeVincent1PeterHannes1KohlerTyler2BattinTom J.1River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, EcolePolytechnique Fédérale de Lausanne (EPFL), Sion, SwitzerlandDepartment of Ecology, Faculty of Science, Charles University, Prague, Czechia, Battin TJ. Deciphering the biosynthetic landscape of biofilms in glacier-fed streams. mSystems 2025; 10:e0113724. [PMID: 39745394 PMCID: PMC11834409 DOI: 10.1128/msystems.01137-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/09/2024] [Indexed: 02/19/2025] Open
Abstract
Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood. In this study, we present the first large-scale exploration of biosynthetic gene clusters (BGCs) from benthic glacier-fed stream biofilms sampled by the Vanishing Glaciers project from the world's major mountain ranges. We found a remarkable diversity of BGCs, with more than 8,000 of them identified within 2,868 prokaryotic metagenome-assembled genomes, some of them potentially conferring ecological advantages, such as UV protection and quorum sensing. The BGCs were distinct from those sourced from other aquatic microbiomes, with over 40% of them being novel. The glacier-fed stream BGCs exhibited the highest similarity to BGCs from glacier microbiomes. BGC composition displayed geographic patterns and correlated with prokaryotic alpha diversity. We also found that BGC diversity was positively associated with benthic chlorophyll a and prokaryotic diversity, indicative of more biotic interactions in more extensive biofilms. Our study provides new insights into a hitherto poorly explored microbial ecosystem, which is now changing at a rapid pace as glaciers are shrinking due to climate change. IMPORTANCE Glacier-fed streams are characterized by low temperatures, high turbidity, and high flow. They host a unique microbiome within biofilms, which form the foundation of the food web and contribute significantly to biogeochemical cycles. Our investigation into secondary metabolites, which likely play an important role in these complex ecosystems, found a unique genetic potential distinct from other aquatic environments. We found the potential to synthesize several secondary metabolites, which may confer ecological advantages, such as UV protection and quorum sensing. This biosynthetic diversity was positively associated with the abundance and complexity of the microbial community, as well as concentrations of chlorophyll a. In the face of climate change, our study offers new insights into a vanishing ecosystem.
Collapse
Affiliation(s)
- Aileen Ute Geers
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Grégoire Michoud
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Susheel Bhanu Busi
- UK Centre for Ecology and Hydrology (UKCEH), Wallingford, United Kingdom
| | - Hannes Peter
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Tyler J. Kohler
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Leïla Ezzat
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - The Vanishing Glaciers Field TeamStyllasMichael1SchönMartina1TolosanoMatteo1de StaerckeVincent1PeterHannes1KohlerTyler2BattinTom J.1River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, EcolePolytechnique Fédérale de Lausanne (EPFL), Sion, SwitzerlandDepartment of Ecology, Faculty of Science, Charles University, Prague, Czechia
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Tom J. Battin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| |
Collapse
|
8
|
Payne PE, Knobbe LN, Chanton P, Zaugg J, Mortazavi B, Mason OU. Uncovering novel functions of the enigmatic, abundant, and active Anaerolineae in a salt marsh ecosystem. mSystems 2025; 10:e0116224. [PMID: 39714209 PMCID: PMC11748557 DOI: 10.1128/msystems.01162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/10/2024] [Indexed: 12/24/2024] Open
Abstract
Anaerolineae, particularly uncultured representatives, are one of the most abundant microbial groups in coastal salt marshes, dominating the belowground rhizosphere, where over half of plant biomass production occurs. However, this class generally remains poorly understood, particularly in a salt marsh context. Here, novel Anaerolineae metagenome-assembled genomes (MAGs) were generated from the salt marsh rhizosphere representing Anaerolineales, Promineifilales, JAAYZQ01, B4-G1, JAFGEY01, UCB3, and Caldilineales orders. Metagenome and metatranscriptome reads were mapped to annotated MAGs, revealing nearly all Anaerolineae encoded and transcribed genes required for oxidation of carbon compounds ranging from simple sugars to complex polysaccharides, fermentation, and carbon fixation. Furthermore, the majority of Anaerolineae expressed genes involved in anaerobic and aerobic respiration and secondary metabolite production. The data revealed that the belowground salt marsh Anaerolineae in the rhizosphere are important players in carbon cycling, including degradation of simple carbon compounds and more recalcitrant plant material, such as cellulose, using a diversity of electron acceptors and represent an unexplored reservoir of novel secondary metabolites.IMPORTANCEGiven that coastal salt marshes are recognized as biogeochemical hotspots, it is fundamentally important to understand the functional role of the microbiome in this ecosystem. In particular, Anaerolineae are abundant members of the salt marsh rhizosphere and have been identified as core microbes, suggesting they play an important functional role. Yet, little is known about the metabolic pathways encoded and expressed in this abundant salt marsh clade. Using an 'omics-based approach, we determined that Anaerolineae are capable of oxidizing a range of carbon compounds, including simple sugars to complex carbon compounds, while also encoding fermentation and carbon fixation. Surprisingly, Anaerolineae encoded and transcribed genes involved in aerobic respiration, which was unexpected given the reduced nature of the salt marsh rhizosphere. Finally, the majority of Anaerolineae appear to be involved in secondary metabolite production, suggesting that this group represents an unexplored reservoir of novel and important secondary metabolites.
Collapse
Affiliation(s)
- Paige E. Payne
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Loren N. Knobbe
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Patricia Chanton
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Behzad Mortazavi
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
- Dauphin Island Sea Lab, Dauphin Island, Alabama, USA
| | - Olivia U. Mason
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
9
|
de Oliveira ACFM, Vieira BD, de Felício R, Silva LDSE, Veras AADO, Graças DAD, Silva A, Azevedo Baraúna R, Barretto Barbosa Trivella D, Schneider MPC. A metabologenomics approach reveals the unexplored biosynthetic potential of bacteria isolated from an Amazon Conservation Unit. Microbiol Spectr 2025; 13:e0099624. [PMID: 39656018 PMCID: PMC11705897 DOI: 10.1128/spectrum.00996-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
The Amazon, an important biodiversity hotspot, remains poorly explored in terms of its microbial diversity and biotechnological potential. The present study characterized the metabolic potential of Gram-positive strains of the Actinomycetes and Bacilli classes isolated from soil samples of an Amazon Conservation Unit. The sequencing of the 16S rRNA gene classified the strains ACT015, ACT016, and FIR094 within the genera Streptomyces, Rhodococcus, and Brevibacillus, respectively. Genome mining identified 33, 17, and 14 biosynthetic gene clusters (BGCs) in these strains, including pathways for the biosynthesis of antibiotic and antitumor agents. Additionally, 40 BGCs (62,5% of the total BGCs) were related to unknown metabolites. The OSMAC approach and untargeted metabolomics analysis revealed a plethora of metabolites under laboratory conditions, underscoring the untapped chemical diversity and biotechnological potential of these isolates. Our findings illustrated the efficacy of the metabologenomics approach in elucidating secondary metabolism and selecting BGCs with chemical novelty.IMPORTANCEThe largest rainforest in the world is globally recognized for its biodiversity. However, until now, few studies have been conducted to prospect natural products from the Amazon microbiome. In this work, we isolated three free-living bacterial species from the microbiome of pristine soils and used two high-throughput technologies to reveal the vast unexplored repertoire of secondary metabolites produced by these microorganisms.
Collapse
Affiliation(s)
- Ana Carolina Favacho Miranda de Oliveira
- Biological Engineering Laboratory, Innovation Space, Guamá Science and Technology Park, Belém, Pará, Brazil
- Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Bruna Domingues Vieira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Lucas da Silva e Silva
- Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - Diego Assis das Graças
- Biological Engineering Laboratory, Innovation Space, Guamá Science and Technology Park, Belém, Pará, Brazil
| | - Artur Silva
- Biological Engineering Laboratory, Innovation Space, Guamá Science and Technology Park, Belém, Pará, Brazil
| | - Rafael Azevedo Baraúna
- Biological Engineering Laboratory, Innovation Space, Guamá Science and Technology Park, Belém, Pará, Brazil
| | - Daniela Barretto Barbosa Trivella
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Maria Paula Cruz Schneider
- Biological Engineering Laboratory, Innovation Space, Guamá Science and Technology Park, Belém, Pará, Brazil
- Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
10
|
Dinesen C, Vertot M, Jarmusch SA, Lozano-Andrade CN, Andersen AJC, Kovács ÁT. Subtilosin A production is influenced by surfactin levels in Bacillus subtilis. MICROLIFE 2025; 6:uqae029. [PMID: 39850962 PMCID: PMC11756287 DOI: 10.1093/femsml/uqae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025]
Abstract
Although not essential for their growth, the production of secondary metabolites increases the fitness of the producing microorganisms in their natural habitat by enhancing establishment, competition, and nutrient acquisition. The Gram-positive soil-dwelling bacterium, Bacillus subtilis, produces a variety of secondary metabolites. Here, we investigated the regulatory relationship between the non-ribosomal peptide surfactin and the sactipeptide bacteriocin subtilosin A. We discovered that B. subtilis mutants lacking surfactin production exhibited higher production of subtilosin A compared to their parental wild-type strain. Additionally, spatial visualization of B. subtilis production of metabolites demonstrated that surfactin secreted by a wild-type colony could suppress subtilosin A production in an adjacent mutant colony lacking surfactin production. Reporter assays were performed using mutants in specific transcriptional regulators, which confirmed the role of ResD as an activator of the subtilosin A encoding biosynthetic gene cluster (BGC), while the removal of Rok and AbrB repressors increased the expression of the BGC, which was further enhanced by additional deletion of surfactin, suggesting that a so-far-unidentified regulator might mediate the influence of surfactin on production of subtilosin A. Our study reveals a regulatory influence of one secondary metabolite on another, highlighting that the function of secondary metabolites could be more complex than its influence on other organisms and interactions among secondary metabolites could also contribute to their ecological significance.
Collapse
Affiliation(s)
- Caja Dinesen
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Manca Vertot
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | | | - Aaron J C Andersen
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
11
|
Hernandez A, Krull NK, Murphy BT. Use of MALDI-TOF mass spectrometry and IDBac to mine for understudied bacterial genera from the environment. ISME COMMUNICATIONS 2025; 5:ycaf046. [PMID: 40177464 PMCID: PMC11962939 DOI: 10.1093/ismeco/ycaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 04/05/2025]
Abstract
Bacterial natural products have greatly contributed to the global drug discovery effort. Further, the incorporation of understudied bacterial taxa into discovery pipelines remains a promising approach to supply much needed chemical diversity to this effort. Unfortunately, researchers lack rapid and efficient techniques to accomplish this. Here we present an approach that employs matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and the bioinformatics platform IDBac to perform targeted isolation of understudied bacteria from environmental samples. A dendrogram of MS protein spectra from 479 unknown bacterial isolates was seeded with spectra from 50 characterized strains that represented target understudied genera. This method was highly effective at identifying representatives from target taxa, demonstrating an 86.3% success rate when an estimated genus level cutoff was implemented in the dendrogram. Overall, this study shows the potential of MALDI-MS/IDBac to mine environmental bacterial isolate collections for target taxa in high-throughput, particularly in the absence of proprietary software. It also provides a cost-effective alternative to morphology and gene-sequencing analyses that are typically used to guide identification and prioritization strategies from large bacterial isolate collections.
Collapse
Affiliation(s)
- Antonio Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Nyssa K Krull
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
12
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
13
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
14
|
Hoyos LV, Vasquez-Muñoz LE, Osorio Y, Valencia-Revelo D, Devia-Cometa D, Große M, Charria-Girón E, Caicedo-Ortega NH. Tailored culture strategies to promote antimicrobial secondary metabolite production in Diaporthe caliensis: a metabolomic approach. Microb Cell Fact 2024; 23:328. [PMID: 39639292 PMCID: PMC11619134 DOI: 10.1186/s12934-024-02567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND In the search for new antimicrobial secondary metabolites of fungi, optimizing culture conditions remains a critical challenge, as standard laboratory approaches often result in low yields. While non-selective methods, such as modifying culture media, have been effective in expanding the chemical diversity of fungal metabolites, they have not yet established a direct link to key process parameters crucial for further optimization. This study investigates the capacity of Diaporthe caliensis as a biofactory for biologically active secondary metabolites, employing tailored culture media to explore the relationship between chemical diversity and critical process variables. RESULTS The metabolomic profiles, antibacterial activities, and production yields of the extracts were analyzed to progressively adjust the culture conditions. This study was conducted in five steps, evaluating carbon and nitrogen source concentration, nitrogen source type, salt supplementation, and pH adjustment. Altering the rice starch concentration affected biomass yield per unit of oxygen consumed, while modifications to the nitrogen source concentration influenced both the bioactivity and chemical space by Diaporthe caliensis. Despite changes at the metabolome level, the extracts consistently exhibited potent antibacterial activities, influenced by the nitrogen source, added salts and pH adjustments. For instance, when using corn steep liquor and rice starch, supplemented with micronutrients, different metabolites were produced depending on whether buffer or water was used, though both conditions showed similar antibacterial activities (IC50 ≈ 0.10 mg mL- 1 against Staphylococcus aureus and ≈ 0.14 mg mL- 1 against Escherichia coli). In the treatment where buffer was used to stabilize pH change, there was an increase in the production of phomol-like compounds which are associated with known antibiotic properties. In contrast, in the treatments using water, the drop in pH stimulated the production of previously unidentified metabolites with potential antimicrobial activity. CONCLUSIONS This study proposes a strategic methodology for the tailored formulation of culture media aiming to promote the biosynthesis of diverse secondary metabolites. This approach revealed the critical role of nutrient limitation and pH regulation in stimulating the production of polyketide-lactone derivatives, including the antibiotic phomol. Ultimately, the systematic, custom-designed culture conditions developed in this work offer a promising strategy for expanding the chemical diversity of Diaporthe caliensis, while providing valuable insights into the key parameters needed for optimizing this fungal biofactory.
Collapse
Affiliation(s)
- Laura V Hoyos
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia
| | - Luis E Vasquez-Muñoz
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia
| | - Yuliana Osorio
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia
| | - Daniela Valencia-Revelo
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Daiana Devia-Cometa
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia
| | - Miriam Große
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.
| | - Nelson H Caicedo-Ortega
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología. Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Colombia.
- Centro BioInc, Universidad Icesi, Cali, Colombia.
| |
Collapse
|
15
|
Richy E, Thiago Dobbler P, Tláskal V, López-Mondéjar R, Baldrian P, Kyselková M. Long-read sequencing sheds light on key bacteria contributing to deadwood decomposition processes. ENVIRONMENTAL MICROBIOME 2024; 19:99. [PMID: 39627869 PMCID: PMC11613949 DOI: 10.1186/s40793-024-00639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Deadwood decomposition is an essential ecological process in forest ecosystems, playing a key role in nutrient cycling and carbon sequestration by enriching soils with organic matter. This process is driven by diverse microbial communities encompassing specialized functions in breaking down organic matter, but the specific roles of individual microorganisms in this process are still not fully understood. RESULTS Here, we characterized the deadwood microbiome in a natural mixed temperate forest in Central Europe using PacBio HiFi long-read sequencing and a genome-resolved transcriptomics approach in order to uncover key microbial contributors to wood decomposition. We obtained high quality assemblies, which allowed attribution of complex microbial functions such as nitrogen fixation to individual microbial taxa and enabled the recovery of metagenome-assembled genomes (MAGs) from both abundant and rare deadwood bacteria. We successfully assembled 69 MAGs (including 14 high-quality and 7 single-contig genomes) from 4 samples, representing most of the abundant bacterial phyla in deadwood. The MAGs exhibited a rich diversity of carbohydrate-active enzymes (CAZymes), with Myxococcota encoding the highest number of CAZymes and the full complement of enzymes required for cellulose decomposition. For the first time we observed active nitrogen fixation by Steroidobacteraceae, as well as hemicellulose degradation and chitin recycling by Patescibacteria. Furthermore, PacBio HiFi sequencing identified over 1000 biosynthetic gene clusters, highlighting a vast potential for secondary metabolite production in deadwood, particularly in Pseudomonadota and Myxococcota. CONCLUSIONS PacBio HiFi long-read sequencing offers comprehensive insights into deadwood decomposition processes by advancing the identification of functional features involving multiple genes. It represents a robust tool for unraveling novel microbial genomes in complex ecosystems and allows the identification of key microorganisms contributing to deadwood decomposition.
Collapse
Affiliation(s)
- Etienne Richy
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic.
| | - Priscila Thiago Dobbler
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 37005, České Budějovice, Czech Republic
| | - Rubén López-Mondéjar
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | - Martina Kyselková
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic.
| |
Collapse
|
16
|
Nascimento E, Klepa MS, Olchanheski LR, de Alencar Almeida M, Chicora K, Prestes L, Rodrigues EP, Hungria M, da Silva Batista JS. Phenotypic and genomic characterization of phosphate-solubilizing rhizobia isolated from native Mimosa and Desmodium in Brazil. Braz J Microbiol 2024; 55:3321-3334. [PMID: 39134912 PMCID: PMC11712060 DOI: 10.1007/s42770-024-01472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/21/2024] [Indexed: 01/11/2025] Open
Abstract
The phosphate (P)-solubilizing potential of rhizobia isolated from active root nodules of Brazilian native Mimosa and Desmodium was assessed. Out of the 15 strains selected, five Paraburkholderia isolated from Mimosa spp. grown in rocky outcrops stood out. The Ca3(PO4)2-solubilizing efficiency of these strains ranged from 110.67 to 356.3 mgL-1, with less expressive results for FePO4 and Al(H2PO4)3, that might be attributed to the low solubility of these two P compounds. Paraburkholderia strains CNPSo 3281 and CNPSo 3076 were the most efficient siderophore producers (44.17 and 41.87 µMol EDTA) and two of the top FePO4 solubilizers. Acidification of the culture media was observed for all the strains and P sources. Regarding Ca3(PO4)2 solubilization, the main organic acids detected were glucuronic (an important component of rhizobia exopolysaccharides) and gluconic acids. Genomic analysis of P. nodosa CNPSo 3281 and CNPSo 3076 along with other phosphate-solubilizing Paraburkholderia species of the genus pointed out a conserved gene organization of phoUBR, pstSCAB, ppk and ppx. Greenhouse experiment revealed that P. nodosa CNPSo 3281 and CNPSo 3076 promoted maize growth under low P. Our results indicate the relevance of native rhizobia as multifunctional plant-associated bacteria and the rocky outcrops ecosystems as hotspots for bioprospection.
Collapse
Affiliation(s)
- Erica Nascimento
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil
| | | | - Luiz Ricardo Olchanheski
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil
| | - Mayara de Alencar Almeida
- Departamento de Bioquímica, Universidade Estadual de Londrina, C.P. 10011, Londrina, PR, 86057-970, Brazil
| | - Kauane Chicora
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil
| | - Leticia Prestes
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil
| | - Elisete Pains Rodrigues
- Departamento de Biologia Geral, Universidade Estadual de Londrina, C.P. 10011, Londrina, PR, 86057-970, Brazil
| | | | - Jesiane Stefania da Silva Batista
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil.
| |
Collapse
|
17
|
Geers AU, Buijs Y, Schostag MD, Elberling B, Bentzon-Tilia M. Exploring the biosynthesis potential of permafrost microbiomes. ENVIRONMENTAL MICROBIOME 2024; 19:96. [PMID: 39578925 PMCID: PMC11583570 DOI: 10.1186/s40793-024-00644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Permafrost microbiomes are of paramount importance for the biogeochemistry of high latitude soils and while endemic biosynthetic domain sequences involved in secondary metabolism have been found in polar surface soils, the biosynthetic potential of permafrost microbiomes remains unexplored. Moreover, the nature of these ecosystems facilitates the unique opportunity to study the distribution and diversity of biosynthetic genes in relic DNA from ancient microbiomes. To explore the biosynthesis potential in permafrost, we used adenylation (AD) domain sequencing to evaluate non-ribosomal peptide (NRP) production in permafrost cores housing microbiomes separated at kilometer and kiloyear scales. RESULTS Permafrost microbiomes represented NRP repertoires significantly different from that of temperate soil microbiomes, but as for temperate soils, the estimated domain richness and diversity was strongly correlated to the bacterial taxonomic diversity across locations. Furthermore, we found significant differences in both community composition and AD domain composition across geographical and temporal distances. Overall, the vast majority of biosynthetic domains showed below 90% amino acid similarity to characterized BGCs, confirming the high degree of novelty of NRPs inherent to permafrost microbiomes. Using available metagenomic sequences, we further identified a high biosynthetic diversity beyond NRPs throughout arctic surface soils down to deep and ancient (megayear old) permafrost microbiomes. CONCLUSION We have shown that arctic permafrost microbiomes harbor a unique biosynthetic repertoire rich in hitherto undescribed NRPs. This diversity is driven by geographic separation across kilometer scales and by the bacterial taxonomic diversity between microbiomes confined in separate permafrost layers. Hence the permafrost biome represents a unique resource for studying secondary metabolism, and potentially for the discovery of novel drug leads.
Collapse
Affiliation(s)
- Aileen Ute Geers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Morten Dencker Schostag
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bo Elberling
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
18
|
Andreani-Gerard CM, Cambiazo V, González M. Biosynthetic gene clusters from uncultivated soil bacteria of the Atacama Desert. mSphere 2024; 9:e0019224. [PMID: 39287428 PMCID: PMC11520301 DOI: 10.1128/msphere.00192-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Soil microorganisms mediate several biological processes through the secretion of natural products synthesized in specialized metabolic pathways, yet functional characterization in ecological contexts remains challenging. Using culture-independent metagenomic analyses of microbial DNA derived directly from soil samples, we examined the potential of biosynthetic gene clusters (BGCs) from six bacterial communities distributed along an altitudinal gradient of the Andes Mountains in the Atacama Desert. We mined 38 metagenome-assembled genomes (MAGs) and identified 168 BGCs. Results indicated that most predicted BGCs were classified as non-ribosomal-peptides (NRP), post-translational modified peptides (RiPP), and terpenes, which were mainly identified in genomes of species from Acidobacteriota and Proteobacteria phyla. Based on BGC composition according to types of core biosynthetic genes, six clusters of MAGs were observed, three of them with predominance for a single phylum, of which two also showed specificity to a single sampling site. Comparative analyses of accessory genes in BGCs showed associations between membrane transporters and other protein domains involved in specialized metabolism with classes of biosynthetic cores, such as resistance-nodulation-cell division (RND) multidrug efflux pumps with RiPPs and the iron-dependent transporter TonB with terpenes. Our findings increase knowledge regarding the biosynthetic potential of uncultured bacteria inhabiting pristine locations from one of the oldest and driest nonpolar deserts on Earth.IMPORTANCEMuch of what we know about specialized metabolites in the Atacama Desert, including Andean ecosystems, comes from isolated microorganisms intended for drug development and natural product discovery. To complement research on the metabolic potential of microbes in extreme environments, comparative analyses on functional annotations of biosynthetic gene clusters (BGCs) from uncultivated bacterial genomes were carried out. Results indicated that in general, BGCs encode for structurally unique metabolites and that metagenome-assembled genomes did not show an obvious relationship between the composition of their core biosynthetic potential and taxonomy or geographic distribution. Nevertheless, some members of Acidobacteriota showed a phylogenetic relationship with specific metabolic traits and a few members of Proteobacteria and Desulfobacterota exhibited niche adaptations. Our results emphasize that studying specialized metabolism in environmental samples may significantly contribute to the elucidation of structures, activities, and ecological roles of microbial molecules.
Collapse
Affiliation(s)
- Constanza M. Andreani-Gerard
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
- Center for Mathematical Modeling (CMM) – Universidad de Chile, Santiago, Chile
| | - Verónica Cambiazo
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
| | - Mauricio González
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
| |
Collapse
|
19
|
Contessa CR, Moreira EC, Moraes CC, de Medeiros Burkert JF. Production and SERS characterization of bacteriocin-like inhibitory substances by latilactobacillus sakei in whey permeate powder: exploring natural antibacterial potential. Bioprocess Biosyst Eng 2024; 47:1723-1734. [PMID: 39014172 DOI: 10.1007/s00449-024-03065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Bacteriocins are antimicrobial compounds that have awakened interest across several industries due to their effectiveness. However, their large-scale production often becomes unfeasible on an industrial scale, primarily because of high process costs. Addressing this challenge, this work analyzes the potential of using low-cost whey permeate powder, without any supplementation, to produce bacteriocin-like inhibitory substances (BLIS) through the fermentation of Latilactobacillus sakei. For this purpose, different concentrations of whey permeate powder (55.15 gL-1, 41.3 gL-1 and 27.5 gL-1) were used. The ability of L. sakei to produce BLIS was evaluated, as well as the potential of crude cell-free supernatant to act as a preservative. Raman spectroscopy and surface-enhanced Raman scattering (SERS) provided detailed insights into the composition and changes occurring during fermentation. SERS, in particular, enhanced peak definition significantly, allowing for the identification of key components, such as lactose, proteins, and phenylalanine, which are crucial in understanding the fermentation process and BLIS characteristics. The results revealed that the concentration of 55.15 gL-1 of whey permeate powder, in flasks without agitation and a culture temperature of 32.5 °C, presented the highest biological activity of BLIS, reaching 99% of inhibition of Escherichia coli and Staphylococcus aureus with minimum inhibitory concentration of 36-45%, respectively. BLIS production began within 60 h of cultivation and was associated with class II bacteriocins. The results demonstrate a promising approach for producing BLIS in an economical and environmentally sustainable manner, with potential implications for various industries.
Collapse
Affiliation(s)
- Camila Ramão Contessa
- Engineering and Science of Food Graduate Program, College of Chemistry and Food Engineering, Laboratory Bioprocess Engineering, Federal University of Rio Grande, PO Box 474, Rio Grande, RS, 96203-900, Brazil.
| | - Eduardo Ceretta Moreira
- Science and Engineering of Materials Graduate Program, Spectroscopy Laboratory, Federal University of Pampa, PO Box 1650, Bagé, RS, 96413170, Brazil
| | - Caroline Costa Moraes
- Science and Engineering of Materials Graduate Program, Laboratory of Microbiology and Food Toxicology, Federal University of Pampa, PO Box 1650, Bagé, RS, 96413170, Brazil
| | - Janaína Fernandes de Medeiros Burkert
- Engineering and Science of Food Graduate Program, College of Chemistry and Food Engineering, Laboratory Bioprocess Engineering, Federal University of Rio Grande, PO Box 474, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
20
|
Wang X, Ganzert L, Bartholomäus A, Amen R, Yang S, Guzmán CM, Matus F, Albornoz MF, Aburto F, Oses-Pedraza R, Friedl T, Wagner D. The effects of climate and soil depth on living and dead bacterial communities along a longitudinal gradient in Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173846. [PMID: 38871316 DOI: 10.1016/j.scitotenv.2024.173846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Soil bacterial communities play a critical role in shaping soil stability and formation, exhibiting a dynamic interaction with local climate and soil depth. We employed an innovative DNA separation method to characterize microbial assemblages in low-biomass environments such as deserts and distinguish between intracellular DNA (iDNA) and extracellular DNA (eDNA) in soils. This approach, combined with analyses of physicochemical properties and co-occurrence networks, investigated soil bacterial communities across four sites representing diverse climatic gradients (i.e., arid, semi-arid, Mediterranean, and humid) along the Chilean Coastal Cordillera. The separation method yielded a distinctive unimodal pattern in the iDNA pool alpha diversity, increasing from arid to semi-arid climates and decreasing in humid environments, highlighting the rapid feedback of the iDNA community to increasing soil moisture. In the arid region, harsh surface conditions restrict bacterial growth, leading to peak iDNA abundance and diversity occurring in slightly deeper layers than the other sites. Our findings confirmed the association between specialist bacteria and ecosystem-functional traits. We observed transitions from Halomonas and Delftia, resistant to extreme arid environments, to Class AD3 and the genus Bradyrhizobium, associated with plants and organic matter in humid environments. The distance-based redundancy analysis (dbRDA) analysis revealed that soil pH and moisture were the key parameters that influenced bacterial community variation. The eDNA community correlated slightly better with the environment than the iDNA community. Soil depth was found to influence the iDNA community significantly but not the eDNA community, which might be related to depth-related metabolic activity. Our investigation into iDNA communities uncovered deterministic community assembly and distinct co-occurrence modules correlated with unique bacterial taxa, thereby showing connections with sites and key environmental factors. The study additionally revealed the effects of climatic gradients and soil depth on living and dead bacterial communities, emphasizing the need to distinguish between iDNA and eDNA pools.
Collapse
Affiliation(s)
- Xiuling Wang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Lars Ganzert
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Rahma Amen
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; Department of Zoology, Faculty of Science, Aswan University, 81528 Aswan, Egypt
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Carolina Merino Guzmán
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, BIOREN, Universidad de La Frontera, Temuco 4780000, Chile
| | - Francisco Matus
- Laboratory of Conservation and Dynamics of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco 4780000, Chile; Network for Extreme Environmental Research (NEXER), Universidad de La Frontera, Temuco 4780000, Chile
| | - Maria Fernanda Albornoz
- Laboratorio de Investigación de Suelos, Aguas y Bosques (LISAB), Universidad de Concepción, Concepción, Chile
| | - Felipe Aburto
- Pedology and Soil Biogeochemistry Lab, Soil and Crop Sciences Department, Texas A&M University, College Station, TX, USA
| | - Rómulo Oses-Pedraza
- Centro Regional de Investigación y Desarrollo Sustentable de Atacama, Universidad de Atacama (CRIDESAT UDA), Copayapu 484, Copiapó 1530000, Chile
| | - Thomas Friedl
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, 37073 Göttingen, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
21
|
Du Y, Qian C, Li X, Zheng X, Huang S, Yin Z, Chen T, Pan L. Unveiling intraspecific diversity and evolutionary dynamics of the foodborne pathogen Bacillus paranthracis through high-quality pan-genome analysis. Curr Res Food Sci 2024; 9:100867. [PMID: 39376581 PMCID: PMC11456886 DOI: 10.1016/j.crfs.2024.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Understanding the evolutionary dynamics of foodborne pathogens throughout host-associated habitats is of utmost importance. Bacterial pan-genomes, as dynamic entities, are strongly influenced by ecological lifestyles. As a phenotypically diverse species in the Bacillus cereus group, Bacillus paranthracis is recognized as an emerging foodborne pathogen and a probiotic simultaneously. This poorly understood species is a suitable study model for adaptive pan-genome evolution. In this study, we determined the biogeographic distribution, abundance, genetic diversity, and genotypic profiles of key genetic elements of B. paranthracis. Metagenomic read recruitment analyses demonstrated that B. paranthracis members are globally distributed and abundant in host-associated habitats. A high-quality pan-genome of B. paranthracis was subsequently constructed to analyze the evolutionary dynamics involved in ecological adaptation comprehensively. The open pan-genome indicated a flexible gene repertoire with extensive genetic diversity. Significant divergences in the phylogenetic relationships, functional enrichment, and degree of selective pressure between the different components demonstrated different evolutionary dynamics between the core and accessory genomes driven by ecological forces. Purifying selection and gene loss are the main signatures of evolutionary dynamics in B. paranthracis pan-genome. The plasticity of the accessory genome is characterized by horizontal gene transfer (HGT), massive gene losses, and weak purifying or positive selection, which might contribute to niche-specific adaptation. In contrast, although the core genome dominantly undergoes purifying selection, its association with HGT and positively selected mutations indicates its potential role in ecological diversification. Furthermore, host fitness-related dynamics are characterized by the loss of secondary metabolite biosynthesis gene clusters (BGCs) and CAZyme-encoding genes and the acquisition of antimicrobial resistance (AMR) and virulence genes via HGT. This study offers a case study of pan-genome evolution to investigate the ecological adaptations reflected by biogeographical characteristics, thereby advancing the understanding of intraspecific diversity and evolutionary dynamics of foodborne pathogens.
Collapse
Affiliation(s)
- Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Chengqian Qian
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
- Foshan Branch of Tianyan (Tianjin) High-tech Co., Ltd, Foshan, 528000, Guangdong, PR China
| | - Xianxin Li
- Foshan Branch of Tianyan (Tianjin) High-tech Co., Ltd, Foshan, 528000, Guangdong, PR China
| | - Xinqian Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Shoucong Huang
- Foshan Haitian (Gaoming) Flavouring Food Co., Ltd, Foshan, 52a8000, Guangdong, PR China
| | - Zhiqiu Yin
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, Guangdong, PR China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| |
Collapse
|
22
|
Ai C, Cui P, Liu C, Wu J, Xu Y, Liang X, Yang QE, Tang X, Zhou S, Liao H, Friman VP. Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. Appl Environ Microbiol 2024; 90:e0069524. [PMID: 39078126 PMCID: PMC11337816 DOI: 10.1128/aem.00695-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024] Open
Abstract
While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.
Collapse
Affiliation(s)
- Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Cui
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiawei Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Qiu-e Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | | |
Collapse
|
23
|
Gong X, Xu L, Langwig MV, Chen Z, Huang S, Zhao D, Su L, Zhang Y, Francis CA, Liu J, Li J, Baker BJ. Globally distributed marine Gemmatimonadota have unique genomic potentials. MICROBIOME 2024; 12:149. [PMID: 39123272 PMCID: PMC11316326 DOI: 10.1186/s40168-024-01871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong, China.
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Marguerite V Langwig
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shujie Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Duo Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Yan Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Christopher A Francis
- Departments of Earth System Science & Oceans, Stanford University, Stanford, CA, 94305, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China.
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
24
|
Wei L, Wang Y, Li N, Zhao N, Xu S. Bacteria-Like Gaiella Accelerate Soil Carbon Loss by Decomposing Organic Matter of Grazing Soils in Alpine Meadows on the Qinghai-Tibet Plateau. MICROBIAL ECOLOGY 2024; 87:104. [PMID: 39110233 PMCID: PMC11306262 DOI: 10.1007/s00248-024-02414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
The alpine meadows of the Qinghai-Tibet Plateau have significant potential for storing soil carbon, which is important to global carbon sequestration. Grazing is a major threat to its potential for carbon sequestration. However, grazing poses a major threat to this potential by speeding up the breakdown of organic matter in the soil and releasing carbon, which may further lead to positive carbon-climate change feedback and threaten ecological security. Therefore, in order to accurately explore the driving mechanism and regulatory factors of soil organic matter decomposition in grazing alpine meadows on the Qinghai-Tibet Plateau, we took the grazing sample plots of typical alpine meadows as the research object and set up grazing intensities of different life cycles, aiming to explore the relationship and main regulatory factors of grazing on soil organic matter decomposition and soil microorganisms. The results show the following: (1) soil microorganisms, especially Acidobacteria and Acidobacteria, drove the decomposition of organic matter in the soil, thereby accelerating the release of soil carbon, which was not conducive to soil carbon sequestration in grassland; (2) the grazing triggering effect formed a positive feedback with soil microbial carbon release, accelerating the decomposition of organic matter and soil carbon loss; and (3) the grazing ban and light grazing were more conducive to slowing down soil organic matter decomposition and increasing soil carbon sequestration.
Collapse
Affiliation(s)
- Lin Wei
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, Qinghai, China
| | - Yalin Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Na Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, Qinghai, China.
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, Qinghai, China.
| |
Collapse
|
25
|
Kifle BA, Sime AM, Gemeda MT, Woldesemayat AA. Shotgun metagenomic insights into secondary metabolite biosynthetic gene clusters reveal taxonomic and functional profiles of microbiomes in natural farmland soil. Sci Rep 2024; 14:15096. [PMID: 38956049 PMCID: PMC11220033 DOI: 10.1038/s41598-024-63254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Antibiotic resistance is a worldwide problem that imposes a devastating effect on developing countries and requires immediate interventions. Initially, most of the antibiotic drugs were identified by culturing soil microbes. However, this method is prone to discovering the same antibiotics repeatedly. The present study employed a shotgun metagenomics approach to investigate the taxonomic diversity, functional potential, and biosynthetic capacity of microbiomes from two natural agricultural farmlands located in Bekeka and Welmera Choke Kebelle in Ethiopia for the first time. Analysis of the small subunit rRNA revealed bacterial domain accounting for 83.33% and 87.24% in the two selected natural farmlands. Additionally, the analysis showed the dominance of Proteobacteria representing 27.27% and 28.79% followed by Actinobacteria making up 12.73% and 13.64% of the phyla composition. Furthermore, the analysis revealed the presence of unassigned bacteria in the studied samples. The metagenome functional analysis showed 176,961 and 104, 636 number of protein-coding sequences (pCDS) from the two samples found a match with 172,655 and 102, 275 numbers of InterPro entries, respectively. The Genome ontology annotation suggests the presence of 5517 and 3293 pCDS assigned to the "biosynthesis process". Numerous Kyoto Encyclopedia of Genes and Genomes modules (KEGG modules) involved in the biosynthesis of terpenoids and polyketides were identified. Furthermore, both known and novel Biosynthetic gene clusters, responsible for the production of secondary metabolites, such as polyketide synthases, non-ribosomal peptide synthetase, ribosomally synthesized and post-translationally modified peptides (Ripp), and Terpene, were discovered. Generally, from the results it can be concluded that the microbiomes in the selected sampling sites have a hidden functional potential for the biosynthesis of secondary metabolites. Overall, this study can serve as a strong preliminary step in the long journey of bringing new antibiotics to the market.
Collapse
Affiliation(s)
- Bezayit Amare Kifle
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Amsale Melkamu Sime
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mesfin Tafesse Gemeda
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Adugna Abdi Woldesemayat
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| |
Collapse
|
26
|
Jeong E, Kim V, Kim C, Lee YB, Kim D. Structural Insights into the Interaction of Terpenoids with Streptomyces avermitilis CYP107P2. Biomol Ther (Seoul) 2024; 32:474-480. [PMID: 38835149 PMCID: PMC11214959 DOI: 10.4062/biomolther.2024.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 06/06/2024] Open
Abstract
Streptomyces avermitilis genome includes 33 genes encoding monooxygenation-catalyzing cytochrome P450 enzymes. We investigated the structure of CYP107P2 and its interactions with terpenoid compounds. The recombinant CYP107P2 protein was expressed in Escherichia coli and the purified enzyme exhibited a typical P450 spectrum upon CO-binding in its reduced state. Type-I substrate-binding spectral titrations were observed with various terpenoid compounds, including α-pinene, β-pinene, α-terpinyl acetate, and (+)-3-carene. The calculated binding affinities (Kd) ranged from 15.9 to 50.8 μM. The X-ray crystal structure of CYP107P2 was determined at 1.99 Å resolution, with a well-conserved overall P450 folding conformation. The terpenoid compound docking models illustrated that the structural interaction between monoterpenes and CYP107P2, with the distance between heme and terpenes ranging from 3.4 to 5.4 Å, indicates potential substrate binding for P450 enzyme. This study suggests that CYP107P2 is a Streptomyces P450 enzyme capable of catalyzing terpenes as substrates, signifying noteworthy advancements in comprehending a novel P450 enzyme's involvement in terpene reactions.
Collapse
Affiliation(s)
- Eunseo Jeong
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Changmin Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Yoo-bin Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea
| |
Collapse
|
27
|
Medeiros W, Hidalgo K, Leão T, de Carvalho LM, Ziemert N, Oliveira V. Unlocking the biosynthetic potential and taxonomy of the Antarctic microbiome along temporal and spatial gradients. Microbiol Spectr 2024; 12:e0024424. [PMID: 38747631 PMCID: PMC11237469 DOI: 10.1128/spectrum.00244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Extreme environments, such as Antarctica, select microbial communities that display a range of evolutionary strategies to survive and thrive under harsh environmental conditions. These include a diversity of specialized metabolites, which have the potential to be a source for new natural product discovery. Efforts using (meta)genome mining approaches to identify and understand biosynthetic gene clusters in Antarctica are still scarce, and the extent of their diversity and distribution patterns in the environment have yet to be discovered. Herein, we investigated the biosynthetic gene diversity of the biofilm microbial community of Whalers Bay, Deception Island, in the Antarctic Peninsula and revealed its distribution patterns along spatial and temporal gradients by applying metagenome mining approaches and multivariable analysis. The results showed that the Whalers Bay microbial community harbors a great diversity of biosynthetic gene clusters distributed into seven classes, with terpene being the most abundant. The phyla Proteobacteria and Bacteroidota were the most abundant in the microbial community and contributed significantly to the biosynthetic gene abundances in Whalers Bay. Furthermore, the results highlighted a significant correlation between the distribution of biosynthetic genes and taxonomic diversity, emphasizing the intricate interplay between microbial taxonomy and their potential for specialized metabolite production.IMPORTANCEThis research on antarctic microbial biosynthetic diversity in Whalers Bay, Deception Island, unveils the hidden potential of extreme environments for natural product discovery. By employing metagenomic techniques, the research highlights the extensive diversity of biosynthetic gene clusters and identifies key microbial phyla, Proteobacteria and Bacteroidota, as significant contributors. The correlation between taxonomic diversity and biosynthetic gene distribution underscores the intricate interplay governing specialized metabolite production. These findings are crucial for understanding microbial adaptation in extreme environments and hold significant implications for bioprospecting initiatives. The study opens avenues for discovering novel bioactive compounds with potential applications in medicine and industry, emphasizing the importance of preserving and exploring these polyextreme ecosystems to advance biotechnological and pharmaceutical research.
Collapse
Affiliation(s)
- William Medeiros
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
- Interfaculty Institute of Microbiology, and Infection Medicine Institute for Bioinformatics and Medical Informatics, German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Kelly Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| | - Tiago Leão
- Chemistry Institute, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Lucas Miguel de Carvalho
- Center for Computing in Engineering and Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology, and Infection Medicine Institute for Bioinformatics and Medical Informatics, German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Valeria Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| |
Collapse
|
28
|
Lamont RJ. Three's a crowd: Saccharibacteria episymbiosis modulates phage predation of host bacteria. Proc Natl Acad Sci U S A 2024; 121:e2405822121. [PMID: 38684001 PMCID: PMC11087802 DOI: 10.1073/pnas.2405822121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY40202
| |
Collapse
|
29
|
Dong X, Zhang T, Wu W, Peng Y, Liu X, Han Y, Chen X, Gao Z, Xia J, Shao Z, Greening C. A vast repertoire of secondary metabolites potentially influences community dynamics and biogeochemical processes in cold seeps. SCIENCE ADVANCES 2024; 10:eadl2281. [PMID: 38669328 PMCID: PMC11051675 DOI: 10.1126/sciadv.adl2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
In deep-sea cold seeps, microbial communities thrive on the geological seepage of hydrocarbons and inorganic compounds, differing from photosynthetically driven ecosystems. However, their biosynthetic capabilities remain largely unexplored. Here, we analyzed 81 metagenomes, 33 metatranscriptomes, and 7 metabolomes derived from nine different cold seep areas to investigate their secondary metabolites. Cold seep microbiomes encode diverse and abundant biosynthetic gene clusters (BGCs). Most BGCs are affiliated with understudied bacteria and archaea, including key mediators of methane and sulfur cycling. The BGCs encode diverse antimicrobial compounds that potentially shape community dynamics and various metabolites predicted to influence biogeochemical cycling. BGCs from key players are widely distributed and highly expressed, with their abundance and expression levels varying with sediment depth. Sediment metabolomics reveals unique natural products, highlighting uncharted chemical potential and confirming BGC activity in these sediments. Overall, these results demonstrate that cold seep sediments serve as a reservoir of hidden natural products and sheds light on microbial adaptation in chemosynthetically driven ecosystems.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Tianxueyu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310005, China
| | - Weichao Wu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiangwei Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jinmei Xia
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
30
|
Zhang Z, Zhang L, Zhang L, Chu H, Zhou J, Ju F. Diversity and distribution of biosynthetic gene clusters in agricultural soil microbiomes. mSystems 2024; 9:e0126323. [PMID: 38470142 PMCID: PMC11019929 DOI: 10.1128/msystems.01263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Bacterial secondary metabolites serve as an important source of molecules for drug discovery. They also play an important function in mediating the interactions of microbial producers with their living environment and surrounding organisms. However, little is known about the genetic novelty, distribution, and community-level impacts of soil bacterial biosynthetic potential on a large geographic scale. Here, we constructed the first catalog of 11,149 biosynthetic gene clusters (BGCs) from agricultural soils across China and unearthed hidden biosynthetic potential for new natural product discovery from the not-yet-cultivated soil bacteria. Notably, we revealed soil pH as the strongest environmental driver of BGC biogeography and predicted that soil acidification and global climate change could damage the biosynthetic potential of the soil microbiome. The co-occurrence network of bacterial genomes revealed two BGC-rich species, i.e., Nocardia niigatensis from Actinobacteriota and PSRF01 from Acidobacteriota, as the module hub and connector, respectively, indicating their keystone positions in the soil microbial communities. We also uncovered a dominant role of BGC-inferred biotic interactions over environmental drivers in structuring the soil microbiome. Overall, this study achieved novel insights into the BGC landscape in agricultural soils of China, substantially expanding our understanding of the diversity and novelty of bacterial secondary metabolism and the potential role of secondary metabolites in microbiota assembly.IMPORTANCEBacterial secondary metabolites not only serve as the foundation for numerous therapeutics (e.g., antibiotics and anticancer drugs), but they also play critical ecological roles in mediating microbial interactions (e.g., competition and communication). However, our knowledge of bacterial secondary metabolism is limited to only a small fraction of cultured strains, thus restricting our comprehensive understanding of their diversity, novelty, and potential ecological roles in soil ecosystems. Here, we used culture-independent metagenomics to explore biosynthetic potentials in agricultural soils of China. Our analyses revealed a high degree of genetic diversity and novelty within biosynthetic gene clusters in agricultural soil environments, offering valuable insights for biochemists seeking to synthesize novel bioactive products. Furthermore, we uncovered the pivotal role of BGC-rich species in microbial communities and the significant relationship between BGC richness and microbial phylogenetic turnover. This information emphasizes the importance of biosynthetic potential in the assembly of microbial communities.
Collapse
Affiliation(s)
- Zhiguo Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lihan Zhang
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Department of Chemistry, Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Kirchner G, Carter J, Treves DS. Complete genome sequence of Bacillus pumilus F12-21, a halotolerant bacterium with antibacterial properties isolated from a Big Bone Lick State Park salt spring. Microbiol Resour Announc 2024; 13:e0091123. [PMID: 38501782 PMCID: PMC11008204 DOI: 10.1128/mra.00911-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Bacillus pumilus F12-21 is a halotolerant bacterium isolated from a sulfur-enriched salt spring. F12-21 inhibits bacteria of human health interest and bacterial salt spring co-inhabitants. We report the genome of Bacillus pumilus F12-21, with a predicted genome of 3.77 Mbp containing 3,732 protein-coding genes, 80 tRNAs, and 24 rRNAs.
Collapse
Affiliation(s)
- Gretchen Kirchner
- Biology Program, Indiana University Southeast, New Albany, Indiana, USA
| | - Jance Carter
- Biology Program, Indiana University Southeast, New Albany, Indiana, USA
| | - David S. Treves
- Biology Program, Indiana University Southeast, New Albany, Indiana, USA
| |
Collapse
|
32
|
Williams TJ, Allen MA, Ray AE, Benaud N, Chelliah DS, Albanese D, Donati C, Selbmann L, Coleine C, Ferrari BC. Novel endolithic bacteria of phylum Chloroflexota reveal a myriad of potential survival strategies in the Antarctic desert. Appl Environ Microbiol 2024; 90:e0226423. [PMID: 38372512 PMCID: PMC10952385 DOI: 10.1128/aem.02264-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
The ice-free McMurdo Dry Valleys of Antarctica are dominated by nutrient-poor mineral soil and rocky outcrops. The principal habitat for microorganisms is within rocks (endolithic). In this environment, microorganisms are provided with protection against sub-zero temperatures, rapid thermal fluctuations, extreme dryness, and ultraviolet and solar radiation. Endolithic communities include lichen, algae, fungi, and a diverse array of bacteria. Chloroflexota is among the most abundant bacterial phyla present in these communities. Among the Chloroflexota are four novel classes of bacteria, here named Candidatus Spiritibacteria class. nov. (=UBA5177), Candidatus Martimicrobia class. nov. (=UBA4733), Candidatus Tarhunnaeia class. nov. (=UBA6077), and Candidatus Uliximicrobia class. nov. (=UBA2235). We retrieved 17 high-quality metagenome-assembled genomes (MAGs) that represent these four classes. Based on genome predictions, all these bacteria are inferred to be aerobic heterotrophs that encode enzymes for the catabolism of diverse sugars. These and other organic substrates are likely derived from lichen, algae, and fungi, as metabolites (including photosynthate), cell wall components, and extracellular matrix components. The majority of MAGs encode the capacity for trace gas oxidation using high-affinity uptake hydrogenases, which could provide energy and metabolic water required for survival and persistence. Furthermore, some MAGs encode the capacity to couple the energy generated from H2 and CO oxidation to support carbon fixation (atmospheric chemosynthesis). All encode mechanisms for the detoxification and efflux of heavy metals. Certain MAGs encode features that indicate possible interactions with other organisms, such as Tc-type toxin complexes, hemolysins, and macroglobulins.IMPORTANCEThe ice-free McMurdo Dry Valleys of Antarctica are the coldest and most hyperarid desert on Earth. It is, therefore, the closest analog to the surface of the planet Mars. Bacteria and other microorganisms survive by inhabiting airspaces within rocks (endolithic). We identify four novel classes of phylum Chloroflexota, and, based on interrogation of 17 metagenome-assembled genomes, we predict specific metabolic and physiological adaptations that facilitate the survival of these bacteria in this harsh environment-including oxidation of trace gases and the utilization of nutrients (including sugars) derived from lichen, algae, and fungi. We propose that such adaptations allow these endolithic bacteria to eke out an existence in this cold and extremely dry habitat.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle A Allen
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Angelique E Ray
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Devan S Chelliah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Davide Albanese
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), Genova, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Dewar AE, Belcher LJ, Scott TW, West SA. Genes for cooperation are not more likely to be carried by plasmids. Proc Biol Sci 2024; 291:20232549. [PMID: 38412971 PMCID: PMC10898968 DOI: 10.1098/rspb.2023.2549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Cooperation is prevalent across bacteria, but risks being exploited by non-cooperative cheats. Horizontal gene transfer, particularly via plasmids, has been suggested as a mechanism to stabilize cooperation. A key prediction of this hypothesis is that genes which are more likely to be transferred, such as those on plasmids, should be more likely to code for cooperative traits. Testing this prediction requires identifying all genes for cooperation in bacterial genomes. However, previous studies used a method which likely misses some of these genes for cooperation. To solve this, we used a new genomics tool, SOCfinder, which uses three distinct modules to identify all kinds of genes for cooperation. We compared where these genes were located across 4648 genomes from 146 bacterial species. In contrast to the prediction of the hypothesis, we found no evidence that plasmid genes are more likely to code for cooperative traits. Instead, we found the opposite-that genes for cooperation were more likely to be carried on chromosomes. Overall, the vast majority of genes for cooperation are not located on plasmids, suggesting that the more general mechanism of kin selection is sufficient to explain the prevalence of cooperation across bacteria.
Collapse
Affiliation(s)
- Anna E Dewar
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | | - Thomas W Scott
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
34
|
Voutsinos MY, West-Roberts JA, Sachdeva R, Moreau JW, Banfield JF. Weathered granites and soils harbour microbes with lanthanide-dependent methylotrophic enzymes. BMC Biol 2024; 22:41. [PMID: 38369453 PMCID: PMC10875860 DOI: 10.1186/s12915-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Prior to soil formation, phosphate liberated by rock weathering is often sequestered into highly insoluble lanthanide phosphate minerals. Dissolution of these minerals releases phosphate and lanthanides to the biosphere. Currently, the microorganisms involved in phosphate mineral dissolution and the role of lanthanides in microbial metabolism are poorly understood. RESULTS Although there have been many studies of soil microbiology, very little research has investigated microbiomes of weathered rock. Here, we sampled weathered granite and associated soil to identify the zones of lanthanide phosphate mineral solubilisation and genomically define the organisms implicated in lanthanide utilisation. We reconstructed 136 genomes from 11 bacterial phyla and found that gene clusters implicated in lanthanide-based metabolism of methanol (primarily xoxF3 and xoxF5) are surprisingly common in microbial communities in moderately weathered granite. Notably, xoxF3 systems were found in Verrucomicrobia for the first time, and in Acidobacteria, Gemmatimonadetes and Alphaproteobacteria. The xoxF-containing gene clusters are shared by diverse Acidobacteria and Gemmatimonadetes, and include conserved hypothetical proteins and transporters not associated with the few well studied xoxF systems. Given that siderophore-like molecules that strongly bind lanthanides may be required to solubilise lanthanide phosphates, it is notable that candidate metallophore biosynthesis systems were most prevalent in bacteria in moderately weathered rock, especially in Acidobacteria with lanthanide-based systems. CONCLUSIONS Phosphate mineral dissolution, putative metallophore production and lanthanide utilisation by enzymes involved in methanol oxidation linked to carbonic acid production co-occur in the zone of moderate granite weathering. In combination, these microbial processes likely accelerate the conversion of granitic rock to soil.
Collapse
Affiliation(s)
- Marcos Y Voutsinos
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacob A West-Roberts
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Rohan Sachdeva
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - John W Moreau
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
| | - Jillian F Banfield
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
35
|
Liu S, Zhang Z, Wang X, Ma Y, Ruan H, Wu X, Li B, Mou X, Chen T, Lu Z, Zhao W. Biosynthetic potential of the gut microbiome in longevous populations. Gut Microbes 2024; 16:2426623. [PMID: 39529240 PMCID: PMC11559365 DOI: 10.1080/19490976.2024.2426623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/26/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Gut microbiome plays a pivotal role in combating diseases and facilitating healthy aging, and natural products derived from biosynthetic gene clusters (BGCs) of the human microbiome exhibit significant biological activities. However, the natural products of the gut microbiome in long-lived populations remain poorly understood. Here, we integrated six cohorts of long-lived populations, encompassing a total of 1029 fecal metagenomic samples, and employed the metagenomic single sample assembled BGCs (MSSA-BGCs) analysis pipeline to investigate the natural products and their associated species. Our findings reveal that the BGC composition of the extremely long-lived group differed significantly from that of younger elderly and young individuals across five cohorts. Terpene and Type I PKS BGCs were enriched in the extremely long-lived, whereas cyclic-lactone-autoinducer BGCs were more prevalent in the young. Association analysis indicated that terpene BGCs were strongly associated with the abundance of Akkermansia muciniphila, which was also more abundant in the long-lived elderly across at least three cohorts. We assembled 18 A. muciniphila draft genomes using metagenomic data from the extremely long-lived group across six cohorts and discovered that they all harbor two classes of terpene BGCs, which aligns with the 97 complete genomes of A. muciniphila strains retrieved from the NCBI database. The core domains of these two BGC classes are squalene/phytoene synthases involved in the biosynthesis of tri- and tetraterpenes. Furthermore, the abundance of fecal A. muciniphila was significantly associated with eight types of triterpenoids. Targeted terpenoid metabolomic analysis revealed that two triterpenoids, Holstinone C and colubrinic acid, were enriched in the A. muciniphila culture solution compared to the medium, thereby confirming the production of triterpenoids by A. muciniphila. The natural products derived from the gut of long-lived populations provide intriguing indications of their potential beneficial roles in regulating health.
Collapse
Affiliation(s)
- Sheng Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhao Zhang
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Xudong Wang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Ma
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Hengfang Ruan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing Wu
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Baoxia Li
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tao Chen
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjing Zhao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
36
|
Le VV, Ko SR, Oh HM, Ahn CY. Genomic Insights into Paucibacter aquatile DH15, a Cyanobactericidal Bacterium, and Comparative Genomics of the Genus Paucibacter. J Microbiol Biotechnol 2023; 33:1615-1624. [PMID: 37811910 PMCID: PMC10772561 DOI: 10.4014/jmb.2307.07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Microcystis blooms threaten ecosystem function and cause substantial economic losses. Microorganism-based methods, mainly using cyanobactericidal bacteria, are considered one of the most ecologically sound methods to control Microcystis blooms. This study focused on gaining genomic insights into Paucibacter aquatile DH15 that exhibited excellent cyanobactericidal effects against Microcystis. Additionally, a pan-genome analysis of the genus Paucibacter was conducted to enhance our understanding of the ecophysiological significance of this genus. Based on phylogenomic analyses, strain DH15 was classified as a member of the species Paucibacter aquatile. The genome analysis supported that strain DH15 can effectively destroy Microcystis, possibly due to the specific genes involved in the flagellar synthesis, cell wall degradation, and the production of cyanobactericidal compounds. The pan-genome analysis revealed the diversity and adaptability of the genus Paucibacter, highlighting its potential to absorb external genetic elements. Paucibacter species were anticipated to play a vital role in the ecosystem by potentially providing essential nutrients, such as vitamins B7, B12, and heme, to auxotrophic microbial groups. Overall, our findings contribute to understanding the molecular mechanisms underlying the action of cyanobactericidal bacteria against Microcystis and shed light on the ecological significance of the genus Paucibacter.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
37
|
Muscatt G, Cook R, Millard A, Bending GD, Jameson E. Viral metagenomics reveals diverse virus-host interactions throughout the soil depth profile. mBio 2023; 14:e0224623. [PMID: 38032184 PMCID: PMC10746233 DOI: 10.1128/mbio.02246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Soil viruses can moderate the roles that their host microbes play in global carbon cycling. However, given that most studies investigate the surface layer (i.e., top 20 cm) of soil, the extent to which this occurs in subsurface soil (i.e., below 20 cm) is unknown. Here, we leveraged public sequencing data to investigate the interactions between viruses and their hosts at soil depth intervals, down to 115 cm. While most viruses were detected throughout the soil depth profile, their adaptation to host microbes varied. Nonetheless, we uncovered evidence for the potential of soil viruses to encourage their hosts to recycle plant-derived carbon in both surface and subsurface soils. This work reasons that our understanding of soil viral functions requires us to continue to dig deeper and compare viruses existing throughout soil ecosystems.
Collapse
Affiliation(s)
- George Muscatt
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Andrew Millard
- Department of Genetics and Genome Biology, Leicester Centre for Phage Research, University of Leicester, Leicester, United Kingdom
| | - Gary D. Bending
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
38
|
Belcher LJ, Dewar AE, Hao C, Katz Z, Ghoul M, West SA. SOCfinder: a genomic tool for identifying social genes in bacteria. Microb Genom 2023; 9:001171. [PMID: 38117204 PMCID: PMC10763506 DOI: 10.1099/mgen.0.001171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
Bacteria cooperate by working collaboratively to defend their colonies, share nutrients, and resist antibiotics. Nevertheless, our understanding of these remarkable behaviours primarily comes from studying a few well-characterized species. Consequently, there is a significant gap in our understanding of microbial social traits, particularly in natural environments. To address this gap, we can use bioinformatic tools to identify genes that control cooperative or otherwise social traits. Existing tools address this challenge through two approaches. One approach is to identify genes that encode extracellular proteins, which can provide benefits to neighbouring cells. An alternative approach is to predict gene function using annotation tools. However, these tools have several limitations. Not all extracellular proteins are cooperative, and not all cooperative behaviours are controlled by extracellular proteins. Furthermore, existing functional annotation methods frequently miss known cooperative genes. We introduce SOCfinder as a new tool to find bacterial genes that control cooperative or otherwise social traits. SOCfinder combines information from several methods, considering if a gene is likely to [1] code for an extracellular protein [2], have a cooperative functional annotation, or [3] be part of the biosynthesis of a cooperative secondary metabolite. We use data on two extensively-studied species (P. aeruginosa and B. subtilis) to show that SOCfinder is better at finding known cooperative genes than existing tools. We also use theory from population genetics to identify a signature of kin selection in SOCfinder cooperative genes, which is lacking in genes identified by existing tools. SOCfinder opens up a number of exciting directions for future research, and is available to download from https://github.com/lauriebelch/SOCfinder.
Collapse
Affiliation(s)
| | - Anna E. Dewar
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Zohar Katz
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Stuart A. West
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
39
|
Hammad M, Ali H, Hassan N, Tawab A, Salman M, Jawad I, de Jong A, Moreno CM, Kuipers OP, Feroz Y, Rashid MH. Food safety and biological control; genomic insights and antimicrobial potential of Bacillus velezensis FB2 against agricultural fungal pathogens. PLoS One 2023; 18:e0291975. [PMID: 37963161 PMCID: PMC10645337 DOI: 10.1371/journal.pone.0291975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/08/2023] [Indexed: 11/16/2023] Open
Abstract
Development of natural, broad-spectrum, and eco-friendly bio-fungicides is of high interest in the agriculture and food industries. In this context, Bacillus genus has shown great potential for producing a wide range of antimicrobial metabolites against various pathogens. A Bacillus velezensis strain FB2 was isolated from an agricultural field of National Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad, Pakistan, exhibiting good antifungal properties. The complete genome of this strain was sequenced, and its antifungal potential was assayed by dual culture method. Moreover, structural characterization of its antifungal metabolites, produced in vitro, were studied. Genome analysis and mining revealed the secondary metabolite gene clusters, encoding non-ribosomal peptides (NRPs) production (e.g., surfactin, iturin and fengycin) and polyketide (PK) synthesis (e.g., difficidin, bacillaene and macrolactin). Furthermore, the Bacillus velezensis FB2 strain was observed to possess in vitro antifungal activity; 41.64, 40.38 and 26% growth inhibition against major fungal pathogens i.e. Alternaria alternata, Fusarium oxysporum and Fusarium solani respectively. Its lipopeptide extract obtained by acid precipitation method was also found effective against the above-mentioned fungal pathogens. The ESI-MS/MS analysis indicated various homologs of surfactin and iturin-A, responsible for their antifungal activities. Overall, this study provides a better understanding of Bacillus velezensis FB2, as a promising candidate for biocontrol purposes, acting in a safe and sustainable way, to control plant pathogens.
Collapse
Affiliation(s)
- Masooma Hammad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Abdul Tawab
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Iqra Jawad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Anne de Jong
- Groningen Molecular Biology and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Claudia Munoz Moreno
- Groningen Molecular Biology and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Oscar P. Kuipers
- Groningen Molecular Biology and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Yusra Feroz
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Hamid Rashid
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
40
|
Wegner CE, Stahl R, Velsko I, Hübner A, Fagernäs Z, Warinner C, Lehmann R, Ritschel T, Totsche KU, Küsel K. A glimpse of the paleome in endolithic microbial communities. MICROBIOME 2023; 11:210. [PMID: 37749660 PMCID: PMC10518947 DOI: 10.1186/s40168-023-01647-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/09/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The terrestrial subsurface is home to a significant proportion of the Earth's microbial biomass. Our understanding about terrestrial subsurface microbiomes is almost exclusively derived from groundwater and porous sediments mainly by using 16S rRNA gene surveys. To obtain more insights about biomass of consolidated rocks and the metabolic status of endolithic microbiomes, we investigated interbedded limestone and mudstone from the vadose zone, fractured aquifers, and deep aquitards. RESULTS By adapting methods from microbial archaeology and paleogenomics, we could recover sufficient DNA for downstream metagenomic analysis from seven rock specimens independent of porosity, lithology, and depth. Based on the extracted DNA, we estimated between 2.81 and 4.25 × 105 cells × g-1 rock. Analyzing DNA damage patterns revealed paleome signatures (genetic records of past microbial communities) for three rock specimens, all obtained from the vadose zone. DNA obtained from deep aquitards isolated from surface input was not affected by DNA decay indicating that water saturation and not flow is controlling subsurface microbial survival. Decoding the taxonomy and functional potential of paleome communities revealed increased abundances for sequences affiliated with chemolithoautotrophs and taxa such as Cand. Rokubacteria. We also found a broader metabolic potential in terms of aromatic hydrocarbon breakdown, suggesting a preferred utilization of sedimentary organic matter in the past. CONCLUSIONS Our study suggests that limestones function as archives for genetic records of past microbial communities including those sensitive to environmental stress at modern times, due to their specific conditions facilitating long-term DNA preservation. Video Abstract.
Collapse
Affiliation(s)
- Carl-Eric Wegner
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Raphaela Stahl
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Irina Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Alex Hübner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Zandra Fagernäs
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Department of Anthropology, Harvard University, Cambridge, MA, USA
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Robert Lehmann
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Thomas Ritschel
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Kai U Totsche
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
| |
Collapse
|
41
|
Yu X, Tu Q, Liu J, Peng Y, Wang C, Xiao F, Lian Y, Yang X, Hu R, Yu H, Qian L, Wu D, He Z, Shu L, He Q, Tian Y, Wang F, Wang S, Wu B, Huang Z, He J, Yan Q, He Z. Environmental selection and evolutionary process jointly shape genomic and functional profiles of mangrove rhizosphere microbiomes. MLIFE 2023; 2:253-266. [PMID: 38817818 PMCID: PMC10989796 DOI: 10.1002/mlf2.12077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/21/2023] [Accepted: 06/29/2023] [Indexed: 06/01/2024]
Abstract
Mangrove reforestation with introduced species has been an important strategy to restore mangrove ecosystem functioning. However, how such activities affect microbially driven methane (CH4), nitrogen (N), and sulfur (S) cycling of rhizosphere microbiomes remains unclear. To understand the effect of environmental selection and the evolutionary process on microbially driven biogeochemical cycles in native and introduced mangrove rhizospheres, we analyzed key genomic and functional profiles of rhizosphere microbiomes from native and introduced mangrove species by metagenome sequencing technologies. Compared with the native mangrove (Kandelia obovata, KO), the introduced mangrove (Sonneratia apetala, SA) rhizosphere microbiome had significantly (p < 0.05) higher average genome size (AGS) (5.8 vs. 5.5 Mb), average 16S ribosomal RNA gene copy number (3.5 vs. 3.1), relative abundances of mobile genetic elements, and functional diversity in terms of the Shannon index (7.88 vs. 7.84) but lower functional potentials involved in CH4 cycling (e.g., mcrABCDG and pmoABC), N2 fixation (nifHDK), and inorganic S cycling (dsrAB, dsrC, dsrMKJOP, soxB, sqr, and fccAB). Similar results were also observed from the recovered Proteobacterial metagenome-assembled genomes with a higher AGS and distinct functions in the introduced mangrove rhizosphere. Additionally, salinity and ammonium were identified as the main environmental drivers of functional profiles of mangrove rhizosphere microbiomes through deterministic processes. This study advances our understanding of microbially mediated biogeochemical cycling of CH4, N, and S in the mangrove rhizosphere and provides novel insights into the influence of environmental selection and evolutionary processes on ecosystem functions, which has important implications for future mangrove reforestation.
Collapse
Affiliation(s)
- Xiaoli Yu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Qichao Tu
- Institute of Marine Science and TechnologyShandong UniversityQingdaoChina
| | - Jihua Liu
- Institute of Marine Science and TechnologyShandong UniversityQingdaoChina
| | - Yisheng Peng
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Cheng Wang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Fanshu Xiao
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yingli Lian
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Xueqin Yang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Ruiwen Hu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Huang Yu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Lu Qian
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Daoming Wu
- College of Forestry & Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Ziying He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine ScienceSun Yat‐sen UniversityGuangzhouChina
| | - Longfei Shu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Qiang He
- Department of Civil and Environmental EngineeringThe University of TennesseeKnoxvilleTennesseeUSA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life SciencesXiamen UniversityXiamenChina
| | - Faming Wang
- Xiaoliang Research Station for Tropical Coastal Ecosystems and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Shanquan Wang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Bo Wu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhijian Huang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine ScienceSun Yat‐sen UniversityGuangzhouChina
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine ScienceSun Yat‐sen UniversityGuangzhouChina
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Qingyun Yan
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhili He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
42
|
Huang R, Wang Y, Liu D, Wang S, Lv H, Yan Z. Long-Read Metagenomics of Marine Microbes Reveals Diversely Expressed Secondary Metabolites. Microbiol Spectr 2023; 11:e0150123. [PMID: 37409950 PMCID: PMC10434046 DOI: 10.1128/spectrum.01501-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Microbial secondary metabolites play crucial roles in microbial competition, communication, resource acquisition, antibiotic production, and a variety of other biotechnological processes. The retrieval of full-length BGC (biosynthetic gene cluster) sequences from uncultivated bacteria is difficult due to the technical constraints of short-read sequencing, making it impossible to determine BGC diversity. Using long-read sequencing and genome mining, 339 mainly full-length BGCs were recovered in this study, illuminating the wide range of BGCs from uncultivated lineages discovered in seawater from Aoshan Bay, Yellow Sea, China. Many extremely diverse BGCs were discovered in bacterial phyla such as Proteobacteria, Bacteroidota, Acidobacteriota, and Verrucomicrobiota as well as the previously uncultured archaeal phylum "Candidatus Thermoplasmatota." The data from metatranscriptomics showed that 30.1% of secondary metabolic genes were being expressed, and they also revealed the expression pattern of BGC core biosynthetic genes and tailoring enzymes. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional expression of BGCs in environmental processes. IMPORTANCE Genome mining of metagenomic data has become the preferred method for the bioprospecting of novel compounds by cataloguing secondary metabolite potential. However, the accurate detection of BGCs requires unfragmented genomic assemblies, which have been technically difficult to obtain from metagenomes until recently with new long-read technologies. We used high-quality metagenome-assembled genomes generated from long-read data to determine the biosynthetic potential of microbes found in the surface water of the Yellow Sea. We recovered 339 highly diverse and mostly full-length BGCs from largely uncultured and underexplored bacterial and archaeal phyla. Additionally, we present long-read metagenomic sequencing combined with metatranscriptomic analysis as a potential method for gaining access to the largely underutilized genetic reservoir of specialized metabolite gene clusters in the majority of microbes that are not cultured. The combination of long-read metagenomic and metatranscriptomic analyses is significant because it can more accurately assess the mechanisms of microbial adaptation to the environment through BGC expression based on metatranscriptomic data.
Collapse
Affiliation(s)
- Ranran Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Yafei Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Daixi Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Shaoyu Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Haibo Lv
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China
| |
Collapse
|
43
|
Santana-Pereira ALR, Moen FS, Severance B, Liles MR. Influence of soil nutrients on the presence and distribution of CPR bacteria in a long-term crop rotation experiment. Front Microbiol 2023; 14:1114548. [PMID: 37577441 PMCID: PMC10413278 DOI: 10.3389/fmicb.2023.1114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Bacteria affiliated with the Candidate Phyla Radiation (CPR) are a hyper-diverse group of ultra-small bacteria with versatile yet sparse metabolisms. However, most insights into this group come from a surprisingly small number of environments, and recovery of CPR bacteria from soils has been hindered due to their extremely low abundance within complex microbial assemblages. In this study we enriched soil samples from 14 different soil fertility treatments for ultra-small (<0.45 μm) bacteria in order to study rare soil CPR. 42 samples were sequenced, enabling the reconstruction of 27 quality CPR metagenome-assembled genomes (MAGs) further classified as Parcubacteria/Paceibacteria, Saccharibacteria/Saccharimonadia and ABY1, in addition to representative genomes from Gemmatimonadetes, Dependentiae and Chlamydae phyla. These genomes were fully annotated and used to reconstruct the CPR community across all 14 plots. Additionally, for five of these plots, the entire microbiota was reconstructed using 16S amplification, showing that specific soil CPR may form symbiotic relationships with a varied and circumstantial range of hosts. Cullars CPR had a prevalence of enzymes predicted to degrade plant-derived carbohydrates, which suggests they have a role in plant biomass degradation. Parcubacteria appear to be more apt at microfauna necromass degradation. Cullars Saccharibacteria and a Parcubacteria group were shown to carry a possible aerotolerance mechanism coupled with potential for aerobic respiration, which appear to be a unique adaptation to the oxic soil environment. Reconstruction of CPR communities across treatment plots showed that they were not impacted by changes in nutrient levels or microbiota composition, being only impacted by extreme conditions, causing some CPR to dominate the community. These findings corroborate the understanding that soil-dwelling CPR bacteria have a very broad symbiont range and have metabolic capabilities associated to soil environments which allows them to scavenge resources and form resilient communities. The contributions of these microbial dark matter species to soil ecology and plant interactions will be of significant interest in future studies.
Collapse
Affiliation(s)
| | | | | | - Mark R. Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
44
|
Songnaka N, Lertcanawanichakul M, Hutapea AM, Nisoa M, Krobthong S, Yingchutrakul Y, Atipairin A. Atmospheric and Room Temperature Plasma (ARTP) Mutagenesis Improved the Anti-MRSA Activity of Brevibacillus sp. SPR20. Int J Mol Sci 2023; 24:12016. [PMID: 37569391 PMCID: PMC10419081 DOI: 10.3390/ijms241512016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Brevibacillus sp. SPR20 produced potentially antibacterial substances against methicillin-resistant Staphylococcus aureus (MRSA). The synthesis of these substances is controlled by their biosynthetic gene clusters. Several mutagenesis methods are used to overcome the restriction of gene regulations when genetic information is absent. Atmospheric and room temperature plasma (ARTP) is a powerful technique to initiate random mutagenesis for microbial strain improvement. This study utilized an argon-based ARTP to conduct the mutations on SPR20. The positive mutants of 40% occurred. The M27 mutant exhibited an increase in anti-MRSA activity when compared to the wild-type strain, with the MIC values of 250-500 and 500 μg/mL, respectively. M27 had genetic stability because it exhibited constant activity throughout fifteen generations. This mutant had similar morphology and antibiotic susceptibility to the wild type. Comparative proteomic analysis identified some specific proteins that were upregulated in M27. These proteins were involved in the metabolism of amino acids, cell structure and movement, and catalytic enzymes. These might result in the enhancement of the anti-MRSA activity of the ARTP-treated SPR20 mutant. This study supports the ARTP technology designed to increase the production of valuable antibacterial agents.
Collapse
Affiliation(s)
- Nuttapon Songnaka
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand;
- Drug and Cosmetics Excellence Center, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | | | | | - Mudtorlep Nisoa
- School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand;
- Center of Excellence in Plasma Science and Electromagnetic Waves, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand;
- Drug and Cosmetics Excellence Center, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
45
|
Pang G, Li X, Ding M, Jiang S, Chen P, Zhao Z, Gao R, Song B, Xu X, Shen Q, Cai FM, Druzhinina IS. The distinct plastisphere microbiome in the terrestrial-marine ecotone is a reservoir for putative degraders of petroleum-based polymers. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131399. [PMID: 37062095 DOI: 10.1016/j.jhazmat.2023.131399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Research into plastic-degrading bacteria and fungi is important for understanding how microorganisms can be used to address the problem of plastic pollution and for developing new approaches to sustainable waste management and bioplastic production. In the present study, we isolated 55 bacterial and 184 fungal strains degrading polycaprolactone (PCL) in plastic waste samples from Dafeng coastal salt marshes, Jiangsu, China. Of these, Jonesia and Streptomyces bacteria also showed potential to degrade other types of petroleum-based polymers. The metabarcoding results proved the existence of plastisphere as a distinct ecological niche regardless of the plastic types where 27 bacterial and 29 fungal amplicon sequence variants (ASVs) were found to be significantly (p < 0.05) enriched, including some belonging to Alternaria (Ascomycota, Fungi) and Pseudomonas (Gammaproteobacteria, Bacteria) that were also mined out by the method of cultivation. Further assembly analyses demonstrated the importance of deterministic processes especially the environmental filtering effect of carbon content and pH on bacteria as well as the carbon and cation content on fungi in shaping the plastisphere communities in this ecosystem. Thus, the unique microbiome of the plastisphere in the terrestrial-marine ecotone is enriched with microorganisms that are potentially capable of utilizing petroleum-based polymers, making it a valuable resource for screening plastic biodegraders.
Collapse
Affiliation(s)
- Guan Pang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuesong Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Ding
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqi Jiang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Peijie Chen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Renwei Gao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Xiaowei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng M Cai
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China.
| | | |
Collapse
|
46
|
Salazar B, Ortiz A, Keswani C, Minkina T, Mandzhieva S, Pratap Singh S, Rekadwad B, Borriss R, Jain A, Singh HB, Sansinenea E. Bacillus spp. as Bio-factories for Antifungal Secondary Metabolites: Innovation Beyond Whole Organism Formulations. MICROBIAL ECOLOGY 2023; 86:1-24. [PMID: 35604432 DOI: 10.1007/s00248-022-02044-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Several fungi act as parasites for crops causing huge annual crop losses at both pre- and post-harvest stages. For years, chemical fungicides were the solution; however, their wide use has caused environmental contamination and human health problems. For this reason, the use of biofungicides has been in practice as a green solution against fungal phytopathogens. In the context of a more sustainable agriculture, microbial biofungicides have the largest share among the commercial biocontrol products that are available in the market. Precisely, the genus Bacillus has been largely studied for the management of plant pathogenic fungi because they offer a chemically diverse arsenal of antifungal secondary metabolites, which have spawned a heightened industrial engrossment of it as a biopesticide. In this sense, it is indispensable to know the wide arsenal that Bacillus genus has to apply these products for sustainable agriculture. Having this idea in our minds, in this review, secondary metabolites from Bacillus having antifungal activity are chemically and structurally described giving details of their action against several phytopathogens. Knowing the current status of Bacillus secreted antifungals is the base for the goal to apply these in agriculture and it is addressed in depth in the second part of this review.
Collapse
Affiliation(s)
- Bruno Salazar
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, México
| | - Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, México
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Satyendra Pratap Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Bhagwan Rekadwad
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Rainer Borriss
- Institut Für Agrar- Und Gartenbauwissenschaften, Fachgebiet Phytomedizin, Humboldt-Universität Zu Berlin, Lentze-Allee 55-57, 14195, Berlin, Germany
| | - Akansha Jain
- Division of Plant Biology, Bose Institute, CIT Road, Kankurgachi, Kolkata, India
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura, 281406, India
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, México.
| |
Collapse
|
47
|
Siddiqui R, Akbar N, Soares NC, Al-Hroub HM, Semreen MH, Maciver SK, Khan NA. Mass spectrometric analysis of bioactive conditioned media of bacteria isolated from reptilian gut. Future Sci OA 2023; 9:FSO861. [PMID: 37180607 PMCID: PMC10167718 DOI: 10.2144/fsoa-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Aim To determine whether selected gut bacteria of crocodile exhibit antibacterial properties. Materials & methods Two bacteria isolated from Crocodylus porosus gut were used, namely: Pseudomonas aeruginosa and Aeromonas dhakensis. Conditioned media were tested against pathogenic bacteria and metabolites were analyzed using liquid chromatography-mass spectrometry. Results & conclusion Antibacterial assays revealed that conditioned media showed potent effects against pathogenic Gram-positive and Gram-negative bacteria. LC-MS revealed identity of 210 metabolites. The abundant metabolites were, N-Acetyl-L-tyrosine, Acetaminophen, Trans-Ferulic acid, N, N-Dimethylformamide, Pyrocatechol, Cyclohexanone, Diphenhydramine, Melatonin, Gamma-terpinene, Cysteamine, 3-phenoxypropionic acid, Indole-3-carbinol, Benzaldehyde, Benzocaine, 2-Aminobenzoic acid, 3-Methylindole. These findings suggest that crocodile gut bacteria are potential source of novel bioactive molecules that can be utilized as pre/post/antibiotics for the benefit of human health.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts & Sciences, American University of Sharjah, University City, Sharjah, 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Noor Akbar
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nelson Cruz Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamza Mohammad Al-Hroub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammad Harb Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
48
|
Du R, Xiong W, Xu L, Xu Y, Wu Q. Metagenomics reveals the habitat specificity of biosynthetic potential of secondary metabolites in global food fermentations. MICROBIOME 2023; 11:115. [PMID: 37210545 DOI: 10.1186/s40168-023-01536-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Fermented foods are considered to be beneficial for human health. Secondary metabolites determined by biosynthetic gene clusters (BGCs) are precious bioactive compounds with various biological activities. However, the diversity and distribution of the biosynthetic potential of secondary metabolites in global food fermentations remain largely unknown. In this study, we performed a large-scale and comprehensive investigation for the BGCs in global food fermentations by metagenomics analysis. RESULTS We recovered 653 bacterial metagenome-assembled genomes (MAGs) from 367 metagenomic sequencing datasets covering 15 general food fermentation types worldwide. In total, 2334 secondary metabolite BGCs, including 1003 novel BGCs, were identified in these MAGs. Bacillaceae, Streptococcaceae, Streptomycetaceae, Brevibacteriaceae and Lactobacillaceae contained high abundances of novel BGCs (≥ 60 novel BGCs). Among 2334 BGCs, 1655 were habitat-specific, originating from habitat-specific species (80.54%) and habitat-specific genotypes within multi-habitat species (19.46%) in different food fermentation types. Biological activity analysis suggested that 183 BGC-producing secondary metabolites exhibited high probabilities of antibacterial activity (> 80%). These 183 BGCs were distributed across all 15 food fermentation types, and cheese fermentation contained the most BGC number. CONCLUSIONS This study demonstrates that food fermentation systems are an untapped reservoir of BGCs and bioactive secondary metabolites, and it provides novel insights into the potential human health benefits of fermented foods. Video Abstract.
Collapse
Affiliation(s)
- Rubing Du
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wu Xiong
- Laboratory of Bio-Interactions and Crop Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lei Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
49
|
Chase AB, Bogdanov A, Demko AM, Jensen PR. Biogeographic patterns of biosynthetic potential and specialized metabolites in marine sediments. THE ISME JOURNAL 2023:10.1038/s41396-023-01410-3. [PMID: 37061583 DOI: 10.1038/s41396-023-01410-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
While the field of microbial biogeography has largely focused on the contributions of abiotic factors to community patterns, the potential influence of biotic interactions in structuring microbial communities, such as those mediated by the production of specialized metabolites, remains largely unknown. Here, we examined the relationship between microbial community structure and specialized metabolism at local spatial scales in marine sediment samples collected from the Long-Term Ecological Research (LTER) site in Moorea, French Polynesia. By employing a multi-omic approach to characterize the taxonomic, functional, and specialized metabolite composition within sediment communities, we find that biogeographic patterns were driven by local scale processes (e.g., biotic interactions) and largely independent of dispersal limitation. Specifically, we observed high variation in biosynthetic potential (based on Bray-Curtis dissimilarity) between samples, even within 1 m2 plots, that reflected uncharacterized chemical space associated with site-specific metabolomes. Ultimately, connecting biosynthetic potential to community metabolomes facilitated the in situ detection of natural products and revealed new insights into the complex metabolic dynamics associated with sediment microbial communities. Our study demonstrates the potential to integrate biosynthetic genes and metabolite production into assessments of microbial community dynamics.
Collapse
Affiliation(s)
- Alexander B Chase
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, USA.
| | - Alexander Bogdanov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Alyssa M Demko
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
50
|
Ghare U, Narvekar S, Lodha T, Mallebhari R, Dastager S, Barvkar VT, Dhotre D, Karmalkar NR, Pable AA. Bacterial Communities and Diversity of Western Ghats Soil: A Study of a Biodiversity Hotspot. Curr Microbiol 2023; 80:108. [PMID: 36807001 DOI: 10.1007/s00284-023-03207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023]
Abstract
The Western Ghats is one of India's mega-diversity hotspots and an ecologically and geologically important area for the diversity of endemic plants and animals. The present study provides insights into the aerobic bacterial diversity and composition of the soils of North Western Ghats located in Maharashtra state (NWGM), India. The samples for the culture-dependent study were collected from 6 different locations namely Malshej Ghat, Bhimashankar, Lonavala, Mulshi, Tail-Baila, and Mahabaleshwar. A total of 173 isolates were obtained from the different samples, which belonged to Proteobacteria (43%), Firmicutes (36%), and Actinobacteria (19%). Sequences of 15 strains shared ≤ 98.7% similarity (a species cut-off) which represent potential novel species. Metagenomic analysis revealed the presence of Actinobacteria and Proteobacteria as the most dominant phyla at both MB and MG. However, both sites showed variation in the composition of rare phyla and other dominant phyla. This difference in bacterial community composition could be due to differences in altitude or other physicochemical properties. The functional prediction from the amplicon sequencing showed the abundance of carbohydrate, protein, and lipid metabolism which was corroborated by screening the isolated bacterial strains for the same. The present study has a unique take on microbial diversity and defines the importance of community assembly processes such as drift, dispersal, and selection. Such processes are relatively important in controlling community diversity, distribution, as well as succession. This study has shown that the microbial community of NWGM is a rich source of polysaccharide degrading bacteria having biotechnological potential.
Collapse
Affiliation(s)
- Uma Ghare
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Simran Narvekar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Tushar Lodha
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Rubiya Mallebhari
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Syed Dastager
- National Collection of Industrial Microorganisms (NCIM), National Chemical Laboratory, Pune, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | | | | | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|