1
|
Wang Z, Giedraitis E, Knoop C, Breiner DJ, Phelan VV, Van Bambeke F. Modeling reciprocal adaptation of Staphylococcus aureus and Pseudomonas aeruginosa co-isolates in artificial sputum medium. Biofilm 2025; 9:100279. [PMID: 40290724 PMCID: PMC12033965 DOI: 10.1016/j.bioflm.2025.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Co-infections by Staphylococcus aureus and Pseudomonas aeruginosa are frequent in the airways of patients with cystic fibrosis. These co-infections show higher antibiotic tolerance in vitro compared to mono-infections. In vitro models have been developed to study the interspecies interactions between P. aeruginosa and S. aureus. However, these model systems fail to incorporate clinical isolates with diverse phenotypes, do not reflect the nutritional environment of the CF airway mucus, and/or do not model the biofilm mode of growth observed in the CF airways. Here, we established a dual-species biofilm model grown in artificial sputum medium, where S. aureus was inoculated before P. aeruginosa to facilitate the maintenance of both species over time. It was successfully applied to ten pairs of clinical isolates exhibiting different phenotypes. Co-isolates from individual patients led to robust, stable co-cultures, supporting the theory of cross-adaptation in vivo. Investigation into the cross-adaptation of the VBB496 co-isolate pair revealed that both the P. aeruginosa and S. aureus isolates had reduced antagonism, in part due to reduced production of P. aeruginosa secondary metabolites as well as higher tolerance to those metabolites by S. aureus. Together, these results indicate that the two-species biofilm model system provides a useful tool for exploring interspecies interactions of P. aeruginosa and S. aureus in the context of CF airway infections.
Collapse
Affiliation(s)
- Zhifen Wang
- Pharmacologie Cellulaire et moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Emily Giedraitis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christiane Knoop
- Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Daniel J. Breiner
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Herzberg C, van Hasselt JGC. Pharmacodynamics of interspecies interactions in polymicrobial infections. NPJ Biofilms Microbiomes 2025; 11:20. [PMID: 39837846 PMCID: PMC11751299 DOI: 10.1038/s41522-024-00621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
The pharmacodynamic response of bacterial pathogens to antibiotics can be influenced by interactions with other bacterial species in polymicrobial infections (PMIs). Understanding the complex eco-evolutionary dynamics of PMIs and their impact on antimicrobial treatment response represents a step towards developing improved treatment strategies for PMIs. Here, we investigated how interspecies interactions in a multi-species bacterial community affect the pharmacodynamic response to antimicrobial treatment. To this end, we developed an in silico model which combined agent-based modeling with ordinary differential equations. Our analyses suggest that both interspecies interactions, modifying either drug sensitivity or bacterial growth rate, and drug-specific pharmacological properties drive the bacterial pharmacodynamic response. Furthermore, lifestyle of the bacterial population and the range of interactions can influence the impact of species interactions. In conclusion, this study provides a foundation for the design of antimicrobial treatment strategies for PMIs which leverage the effects of interspecies interactions.
Collapse
Affiliation(s)
- C Herzberg
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J G C van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Wardell SJT, Yung DBY, Gupta A, Bostina M, Overhage J, Hancock REW, Pletzer D. DJK-5, an anti-biofilm peptide, increases Staphylococcus aureus sensitivity to colistin killing in co-biofilms with Pseudomonas aeruginosa. NPJ Biofilms Microbiomes 2025; 11:8. [PMID: 39779734 PMCID: PMC11711674 DOI: 10.1038/s41522-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Chronic infections represent a significant global health and economic challenge. Biofilms, which are bacterial communities encased in an extracellular polysaccharide matrix, contribute to approximately 80% of these infections. In particular, pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated from the sputum of patients with cystic fibrosis and are commonly found in chronic wound infections. Within biofilms, bacteria demonstrate a remarkable increase in resistance and tolerance to antimicrobial treatment. We investigated the efficacy of combining the last-line antibiotic colistin with a membrane- and stringent stress response-targeting anti-biofilm peptide DJK-5 against co-biofilms comprised of multidrug-resistant P. aeruginosa and methicillin-resistant S. aureus (MRSA). Colistin lacks canonical activity against S. aureus. However, our study revealed that under co-biofilm conditions, the antibiofilm peptide DJK-5 synergized with colistin against S. aureus. Similar enhancement was observed when daptomycin, a cyclic lipopeptide against Gram-positive bacteria, was combined with DJK-5, resulting in increased activity against P. aeruginosa. The combinatorial treatment induced morphological changes in both P. aeruginosa and S. aureus cell shape and size within co-biofilms. Importantly, our findings also demonstrate synergistic activity against both P. aeruginosa and S. aureus in a murine subcutaneous biofilm-like abscess model. In conclusion, combinatorial treatments with colistin or daptomycin and the anti-biofilm peptide DJK-5 show significant potential for targeting co-biofilm infections. These findings offer promising avenues for developing new therapeutic approaches to combat complex chronic infections.
Collapse
Affiliation(s)
- Samuel J T Wardell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Deborah B Y Yung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Anupriya Gupta
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Baker EJ, Allcott G, Cox JAG. Polymicrobial infection in cystic fibrosis and future perspectives for improving Mycobacterium abscessus drug discovery. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:38. [PMID: 39843836 PMCID: PMC11721438 DOI: 10.1038/s44259-024-00060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/03/2024] [Indexed: 01/24/2025]
Abstract
Polymicrobial communities inhabit the cystic fibrosis (CF) airway, whereby microbial interactions can occur. One prominent CF pathogen is Mycobacterium abscessus, whose treatment is largely unsuccessful. This creates a need to discover novel antimicrobial agents to treat M. abscessus, however the methods used within antibiotic discovery are typically monomicrobial. This review will discuss this pathogen whilst considering the CF polymicrobial environment, to highlight future perspectives to improve M. abscessus drug discovery.
Collapse
Affiliation(s)
- Emily J Baker
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Gemma Allcott
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jonathan A G Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
5
|
Keim K, Bhattacharya M, Crosby HA, Jenul C, Mills K, Schurr M, Horswill A. Polymicrobial interactions between Staphylococcus aureus and Pseudomonas aeruginosa promote biofilm formation and persistence in chronic wound infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621402. [PMID: 39574578 PMCID: PMC11580920 DOI: 10.1101/2024.11.04.621402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Chronic, non-healing wounds are a leading cause of prolonged patient morbidity and mortality due to biofilm- associated, polymicrobial infections. Staphylococcus aureus and Pseudomonas aeruginosa are the most frequently co-isolated pathogens from chronic wound infections. Competitive interactions between these pathogens contribute to enhanced virulence, persistence, and antimicrobial tolerance. P. aeruginosa utilizes the extracellular proteases LasB, LasA, and AprA to degrade S. aureus surface structures, disrupt cellular physiology, and induce cell lysis, gaining a competitive advantage during co-infection. S. aureus evades P. aeruginosa by employing aggregation mechanisms to form biofilms. The cell wall protein SasG is implicated in S. aureus biofilm formation by facilitating intercellular aggregation upon cleavage by an extracellular protease. We have previously shown that proteolysis by a host protease can induce aggregation. In this study, we report that P. aeruginosa proteases LasA, LasB, and AprA cleave SasG to induce S. aureus aggregation. We demonstrate that SasG contributes to S. aureus biofilm formation in response to interactions with P. aeruginosa proteases by quantifying aggregation, SasG degradation, and proteolytic kinetics. Additionally, we assess the role of SasG in influencing S. aureus biofilm architecture during co-infection in vivo, chronic wound co-infections. This work provides further knowledge of some of the principal interactions that contribute to S. aureus persistence within chronic wounds co-infected with P. aeruginosa, and their impact on healing and infection outcomes.
Collapse
Affiliation(s)
- Klara Keim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Heidi A Crosby
- New England Biolabs, Ipswich, MA, United States of America
| | - Christian Jenul
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Krista Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Alphabet Health, New York, NY, United States of America
| | - Michael Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Alexander Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
6
|
Herzberg C, van Meegen EN, van Hasselt JGC. Interplay of virulence factors shapes ecology and treatment outcomes in polymicrobial infections. Math Biosci 2024; 377:109293. [PMID: 39245301 DOI: 10.1016/j.mbs.2024.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/11/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Polymicrobial infections, caused by a community of multiple micro-organisms, are often associated with increased infection severity and poorer patient outcomes. The design of improved antimicrobial treatment strategies for PMIs can be supported by an understanding of their ecological and evolutionary dynamics. Bacterial species present in polymicrobial infections can produce virulence factors to inhibit host immune responses, such as neutrophil recruitment and phagocytosis. The presence of virulence factors can indirectly affect other bacterial species acting as a type of host-mediated interspecies interaction. The aim of this study was to assess how bacterial virulence factors targeting neutrophil function influence ecology and treatment outcomes of PMIs. An agent-based model was constructed which describes a dual-species bacterial population in the presence of neutrophils and a bacteriostatic drug. Our analysis has revealed unforeseen dynamics of the interplay of multiple virulence factors acting as interspecies interaction. We found that the distribution of two phagocytosis-inhibiting virulence factors amongst species can impact whether they have a mutually protective effect for both species. The addition of a virulence factor inhibiting neutrophil recruitment was found to reduce the protective effect of phagocytosis-inhibiting virulence factors. Furthermore we demonstrate the importance of virulence strength of a species relative to other virulent species to determine the fate of a species. We conclude that virulence factors are an important driver of population dynamics in polymicrobial infections, and may be a relevant therapeutic target for treatment of polymicrobial infections.
Collapse
Affiliation(s)
- C Herzberg
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - E N van Meegen
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - J G C van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| |
Collapse
|
7
|
Laffont C, Wechsler T, Kümmerli R. Interactions between Pseudomonas aeruginosa and six opportunistic pathogens cover a broad spectrum from mutualism to antagonism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70015. [PMID: 39356147 PMCID: PMC11445780 DOI: 10.1111/1758-2229.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Bacterial infections often involve more than one pathogen. While it is well established that polymicrobial infections can impact disease outcomes, we know little about how pathogens interact and affect each other's behaviour and fitness. Here, we used a microscopy approach to explore interactions between Pseudomonas aeruginosa and six human opportunistic pathogens that often co-occur in polymicrobial infections: Acinetobacter baumannii, Burkholderia cenocepacia, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, and Staphylococcus aureus. When following growing microcolonies on agarose pads over time, we observed a broad spectrum of species-specific ecological interactions, ranging from mutualism to antagonism. For example, P. aeruginosa engaged in a mutually beneficial interaction with E. faecium but suffered from antagonism by E. coli. While we found little evidence for active directional growth towards or away from cohabitants, we observed that some pathogens increased growth in double layers in response to competition and that physical forces due to fast colony expansion had a major impact on fitness. Overall, our work provides an atlas of pathogen interactions, highlighting the diversity of potential species dynamics that may occur in polymicrobial infections. We discuss possible mechanisms driving pathogen interactions and offer predictions of how the different ecological interactions could affect virulence.
Collapse
Affiliation(s)
- Clémentine Laffont
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Tobias Wechsler
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| |
Collapse
|
8
|
Sheykhsaran E, Abbasi A, Memar MY, Ghotaslou R, Baghi HB, Mazraeh FN, Laghousi D, Sadeghi J. The role of Staphylococcus aureus in cystic fibrosis pathogenesis and clinico-microbiological interactions. Diagn Microbiol Infect Dis 2024; 109:116294. [PMID: 38678689 DOI: 10.1016/j.diagmicrobio.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Cystic fibrosis (CF) is a progressive and inherited disease that affects approximately 70000 individuals all over the world annually. A mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene serves as its defining feature. Bacterial infections have a significant impact on the occurrence and development of CF. In this manuscript, we discuss the role and virulence factors of Staphylococcus aureus as an important human pathogen with the ability to induce respiratory tract infections. Recent studies have reported S. aureus as the first isolated bacteria in CF patients. Methicillin-resistant Staphylococcus aureus (MRSA) pathogens are approximately resistant to all β-lactams. CF patients are colonized by MRSA expressing various virulence factors including toxins, and Staphylococcal Cassette Chromosome mec (SCCmec) types, and have the potential for biofilm formation. Therefore, variations in clinical outcomes will be manifested. SCCmec type II has been reported in CF patients more than in other SCCmec types from different countries. The small-colony variants (SCVs) as specific morphologic subtypes of S. aureus with slow growth and unusual properties can also contribute to persistent and difficult-to-treat infections in CF patients. The pathophysiology of SCVs is complicated and not fully understood. Patients with cystic fibrosis should be aware of the intrinsic risk factors for complex S. aureus infections, including recurring infections, physiological issues, or coinfection with P. aeruginosa.
Collapse
Affiliation(s)
- Elham Sheykhsaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Naeimi Mazraeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
10
|
Truong-Bolduc QC, Yonker LM, Wang Y, Lawton BG, Hooper DC. NorA efflux pump mediates Staphylococcus aureus response to Pseudomonas aeruginosa pyocyanin toxicity. Antimicrob Agents Chemother 2024; 68:e0100123. [PMID: 38231535 PMCID: PMC10848749 DOI: 10.1128/aac.01001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.
Collapse
Affiliation(s)
- Q. C. Truong-Bolduc
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - L. M. Yonker
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Wang
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - B. G. Lawton
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. C. Hooper
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Liu Y, McQuillen EA, Rana PSJB, Gloag ES, Parsek MR, Wozniak DJ. A bacterial pigment provides cross-species protection from H 2O 2- and neutrophil-mediated killing. Proc Natl Acad Sci U S A 2024; 121:e2312334121. [PMID: 38170744 PMCID: PMC10786307 DOI: 10.1073/pnas.2312334121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Bacterial infections are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus cause chronic co-infections, which are more problematic than mono-species infections. Understanding the mechanisms of their interactions is crucial for treating co-infections. Staphyloxanthin (STX), a yellow pigment synthesized by the S. aureus crt operon, promotes S. aureus resistance to oxidative stress and neutrophil-mediated killing. We found that STX production by S. aureus, either as surface-grown macrocolonies or planktonic cultures, was elevated when exposed to the P. aeruginosa exoproduct, 2-heptyl-4-hydroxyquinoline N-oxide (HQNO). This was observed with both mucoid and non-mucoid P. aeruginosa strains. The induction phenotype was found in a majority of P. aeruginosa and S. aureus clinical isolates examined. When subjected to hydrogen peroxide or human neutrophils, P. aeruginosa survival was significantly higher when mixed with wild-type (WT) S. aureus, compared to P. aeruginosa alone or with an S. aureus crt mutant deficient in STX production. In a murine wound model, co-infection with WT S. aureus, but not the STX-deficient mutant, enhanced P. aeruginosa burden and disease compared to mono-infection. In conclusion, we identified a role for P. aeruginosa HQNO mediating polymicrobial interactions with S. aureus by inducing STX production, which consequently promotes resistance to the innate immune effectors H2O2 and neutrophils. These results further our understanding of how different bacterial species cooperatively cause co-infections.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Microbiology, Ohio State University, Columbus, OH43210
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
| | - Eleanor A. McQuillen
- Department of Health and Rehabilitation Sciences, Ohio State University College of Medicine, Columbus, OH43210
| | - Pranav S. J. B. Rana
- Department of Microbiology, Ohio State University, Columbus, OH43210
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
| | - Erin S. Gloag
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24060
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | - Daniel J. Wozniak
- Department of Microbiology, Ohio State University, Columbus, OH43210
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
| |
Collapse
|
12
|
Trognon J, Rima M, Lajoie B, Roques C, El Garah F. NaCl-induced modulation of species distribution in a mixed P. aeruginosa / S. aureus / B.cepacia biofilm. Biofilm 2023; 6:100153. [PMID: 37711514 PMCID: PMC10497989 DOI: 10.1016/j.bioflm.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia are notorious pathogens known for their ability to form resilient biofilms, particularly within the lung environment of cystic fibrosis (CF) patients. The heightened concentration of NaCl, prevalent in the airway liquid of CF patients' lungs, has been identified as a factor that promotes the growth of osmotolerant bacteria like S. aureus and dampens host antibacterial defenses, thereby fostering favorable conditions for infections. In this study, we aimed to investigate how increased NaCl concentrations impact the development of multi-species biofilms in vitro, using both laboratory strains and clinical isolates of P. aeruginosa, S. aureus, and B. cepacia co-cultures. Employing a low-nutrient culture medium that fosters biofilm growth of the selected species, we quantified biofilm formation through a combination of adherent CFU counts, qPCR analysis, and confocal microscopy observations. Our findings reaffirmed the challenges faced by S. aureus in establishing growth within 1:1 mixed biofilms with P. aeruginosa when cultivated in a minimal medium. Intriguingly, at an elevated NaCl concentration of 145 mM, a symbiotic relationship emerged between S. aureus and P. aeruginosa, enabling their co-existence. Notably, this hyperosmotic environment also exerted an influence on the interplay of these two bacteria with B. cepacia. We demonstrated that elevated NaCl concentrations play a pivotal role in orchestrating the distribution of these three species within the biofilm matrix. Furthermore, our study unveiled the beneficial impact of NaCl on the biofilm growth of clinically relevant mucoid P. aeruginosa strains, as well as two strains of methicillin-sensitive and methicillin-resistant S. aureus. This underscores the crucial role of the microenvironment during the colonization and infection processes. The results suggest that hyperosmotic conditions could hold the key to unlocking a deeper understanding of the genesis and behavior of CF multi-species biofilms.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maya Rima
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Barbora Lajoie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie Hygiène, Toulouse, France
| | - Fatima El Garah
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
13
|
Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev 2023; 47:fuad060. [PMID: 37884397 PMCID: PMC10644985 DOI: 10.1093/femsre/fuad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, 776 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH 43210, United States
- Department of Microbiology, The Ohio State University College, Biological Sciences Bldg, 105, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Health Sciences Bldg, 1705 NE Pacific St, Seattle, WA 98195-7735, United States
| | - P Lynne Howell
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
14
|
Yi K, Wang X, Filippov SK, Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. SMART MEDICINE 2023; 2:e20230031. [PMID: 39188296 PMCID: PMC11235813 DOI: 10.1002/smmd.20230031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 08/28/2024]
Abstract
Circulating tumor DNA (ctDNA) is naked DNA molecules shed from the tumor cells into the peripheral blood circulation. They contain tumor-specific gene mutations and other valuable information. ctDNA is considered to be one of the most significant analytes in liquid biopsies. Over the past decades, numerous researchers have developed various detection strategies to perform quantitative or qualitative ctDNA analysis, including PCR-based detection and sequencing-based detection. More and more studies have illustrated the great value of ctDNA as a biomarker in the diagnosis, prognosis and heterogeneity of tumor. In this review, we first outlined the development of digital PCR (dPCR)-based and next generation sequencing (NGS)-based ctDNA detection systems. Besides, we presented the introduction of the emerging ctDNA analysis strategies based on various biosensors, such as electrochemical biosensors, fluorescent biosensors, surface plasmon resonance and Raman spectroscopy, as well as their applications in the field of biomedicine. Finally, we summarized the essentials of the preceding discussions, and the existing challenges and prospects for the future are also involved.
Collapse
Affiliation(s)
- Kexin Yi
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Xiaoju Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Sergey K. Filippov
- DWI‐Leibniz Institute for Interactive Materials e. V.AachenGermany
- School of PharmacyUniversity of ReadingReadingUK
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
15
|
Murali R, Yu H, Speth DR, Wu F, Metcalfe KS, Crémière A, Laso-Pèrez R, Malmstrom RR, Goudeau D, Woyke T, Hatzenpichler R, Chadwick GL, Connon SA, Orphan VJ. Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea. PLoS Biol 2023; 21:e3002292. [PMID: 37747940 PMCID: PMC10553843 DOI: 10.1371/journal.pbio.3002292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 10/05/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Sulfate-coupled anaerobic oxidation of methane (AOM) is performed by multicellular consortia of anaerobic methanotrophic archaea (ANME) in obligate syntrophic partnership with sulfate-reducing bacteria (SRB). Diverse ANME and SRB clades co-associate but the physiological basis for their adaptation and diversification is not well understood. In this work, we used comparative metagenomics and phylogenetics to investigate the metabolic adaptation among the 4 main syntrophic SRB clades (HotSeep-1, Seep-SRB2, Seep-SRB1a, and Seep-SRB1g) and identified features associated with their syntrophic lifestyle that distinguish them from their non-syntrophic evolutionary neighbors in the phylum Desulfobacterota. We show that the protein complexes involved in direct interspecies electron transfer (DIET) from ANME to the SRB outer membrane are conserved between the syntrophic lineages. In contrast, the proteins involved in electron transfer within the SRB inner membrane differ between clades, indicative of convergent evolution in the adaptation to a syntrophic lifestyle. Our analysis suggests that in most cases, this adaptation likely occurred after the acquisition of the DIET complexes in an ancestral clade and involve horizontal gene transfers within pathways for electron transfer (CbcBA) and biofilm formation (Pel). We also provide evidence for unique adaptations within syntrophic SRB clades, which vary depending on the archaeal partner. Among the most widespread syntrophic SRB, Seep-SRB1a, subclades that specifically partner ANME-2a are missing the cobalamin synthesis pathway, suggestive of nutritional dependency on its partner, while closely related Seep-SRB1a partners of ANME-2c lack nutritional auxotrophies. Our work provides insight into the features associated with DIET-based syntrophy and the adaptation of SRB towards it.
Collapse
Affiliation(s)
- Ranjani Murali
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Daan R. Speth
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Fabai Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Kyle S. Metcalfe
- Department of Plant and Molecular Biology, University of California, Berkeley. Berkeley, California, United States of America
| | - Antoine Crémière
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
| | - Rafael Laso-Pèrez
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Rex R. Malmstrom
- DOE Joint Genome Institute, Department of Energy, Berkeley, California, United States of America
| | - Danielle Goudeau
- DOE Joint Genome Institute, Department of Energy, Berkeley, California, United States of America
| | - Tanja Woyke
- DOE Joint Genome Institute, Department of Energy, Berkeley, California, United States of America
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
- Department of Plant and Molecular Biology, University of California, Berkeley. Berkeley, California, United States of America
| | - Stephanie A. Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
| | - Victoria J. Orphan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
| |
Collapse
|
16
|
Mésinèle J, Ruffin M, Guillot L, Boëlle PY, Corvol H. Airway infections as a risk factor for Pseudomonas aeruginosa acquisition and chronic colonisation in children with cystic fibrosis. J Cyst Fibros 2023; 22:901-908. [PMID: 37422431 DOI: 10.1016/j.jcf.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa (Pa) infection is detrimental to people with cystic fibrosis (pwCF). Several clinical and genetic factors predispose to early Pa infections. However, the role of earlier infections with other pathogens on the risk of Pa infection in paediatric pwCF remains unknown. METHODS Using Kaplan-Meier method, we computed the cumulative incidences of bacterial and fungal initial acquisition (IA) and chronic colonisation (CC) in 1,231 French pwCF under 18 years of age for methicillin-susceptible and resistant Staphylococcus aureus (MSSA and MRSA), Stenotrophomonas maltophilia, Haemophilus influenzae, Achromobacter xylosoxidans, and Aspergillus species. Previous infections were analysed as Pa-IA and Pa-CC risk factors using Cox regression models. RESULTS By 2 years of age, 65.5% pwCF had experienced at least one bacterial or fungal IA, and 27.9% had experienced at least one CC. The median age of Pa-IA was 5.1 years, and Pa-CC was present in 25% pwCF by 14.7 years. While 50% acquired MSSA at 2.1 years, 50% progressed to chronic MSSA colonisation at 8.4 years. At 7.9 and 9.7 years, 25% pwCF were infected by S. maltophilia and Aspergillus spp., respectively. The risk of Pa-IA and Pa-CC increased with IAs of all other species, with hazard ratios (HR) up to 2.19 (95% Confidence interval (CI) 1.18-4.07). The risk of Pa-IA increased with the number of previous bacterial/fungal IAs (HR=1.89, 95% CI 1.57-2.28), with a 16% increase per additional pathogen; same trend was noted for Pa-CC. CONCLUSIONS This study establishes that the microbial community in CF airways can modulate Pa occurrence. At the dawn of targeted therapies, it paves the way for characterizing future trends and evolution of infections.
Collapse
Affiliation(s)
- Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; Inovarion, 75005, Paris, France
| | - Manon Ruffin
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France.
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 75012 Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Service de Pneumologie Pédiatrique, 75012 Paris, France.
| |
Collapse
|
17
|
Oliveira M, Cunha E, Tavares L, Serrano I. P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiol 2023; 9:612-646. [PMID: 38173971 PMCID: PMC10758579 DOI: 10.3934/microbiol.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2024] Open
Abstract
This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.
Collapse
Affiliation(s)
- Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
18
|
Batoni G, Catelli E, Kaya E, Pompilio A, Bianchi M, Ghelardi E, Di Bonaventura G, Esin S, Maisetta G. Antibacterial and Antibiofilm Effects of Lactobacilli Strains against Clinical Isolates of Pseudomonas aeruginosa under Conditions Relevant to Cystic Fibrosis. Antibiotics (Basel) 2023; 12:1158. [PMID: 37508254 PMCID: PMC10376640 DOI: 10.3390/antibiotics12071158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Therapy of lung infections sustained by Pseudomonas aeruginosa in cystic fibrosis (CF) patients is challenging due to the presence of a sticky mucus in the airways and the ability of the bacterium to form biofilm, which exhibits increased antibiotic tolerance. A lung-directed bacteriotherapy through the airway administration of probiotics could represent an alternative approach to probiotic diet supplementation to improve the benefits and clinical outcomes of this kind of intervention in CF patients. This study aims to evaluate the ability of probiotic strains to grow in artificial sputum medium (ASM), mimicking the CF lung microenvironment, and to affect the planktonic and biofilm growth of CF clinical strains of P. aeruginosa in the same conditions. The results demonstrate that Lacticaseibacillus rhamnosus and Lactiplantibacillus plantarum (LP) can grow in ASM. LP inhibited the planktonic growth of P. aeruginosa, while both lactobacilli reduced the pre-formed biofilm of P. aeruginosa. Interestingly, LP was demonstrated to reduce the amount of polysaccharides in the extracellular matrix of P. aeruginosa biofilms and to potentiate the antibiofilm effects of tobramycin. Overall, the results indicated that LP is a promising candidate as an adjuvant in the antimicrobial therapy of P. aeruginosa infections in CF patients.
Collapse
Affiliation(s)
- Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Elisa Catelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Esingül Kaya
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Marta Bianchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| |
Collapse
|
19
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
21
|
AtbFinder Diagnostic Test System Improves Optimal Selection of Antibiotic Therapy in Persons with Cystic Fibrosis. J Clin Microbiol 2023; 61:e0155822. [PMID: 36602344 PMCID: PMC9879114 DOI: 10.1128/jcm.01558-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by mutations of CFTR that lead to increased viscous secretions, bacterial colonization, and recurrent infections. Chronic Pseudomonas aeruginosa infection in persons with CF is associated with progressive and accelerated lung function decline despite aggressive antibiotic treatment. We report the management of respiratory infections in persons with CF with antibiotic therapy that was based on the recommendations of AtbFinder, a novel, rapid, culture-based diagnostic test system that employs a novel paradigm of antibiotic selection. AtbFinder mimics bacterial interactions with antibiotics at concentrations that can be achieved in affected tissues or organs and models conditions of interbacterial interactions within polymicrobial biofilms. This open-label, single-arm, investigator-initiated clinical study was designed to identify the efficacy of antibiotics selected using AtbFinder in persons with CF. Microbiological and clinical parameters were assessed following the change of antibiotic therapy to antibiotics selected with AtbFinder between January 2016 and December 2018 and retrospectively compared with clinical data collected between January 2013 and December 2015. We enrolled 35 persons with CF (33 with chronic P. aeruginosa colonization). Antibiotics selected using AtbFinder resulted in clearance of P. aeruginosa in 81.8% of subsequent cultures, decreased pulmonary exacerbations from 1.21 per patient per annum to 0, and an increase in predicted percent predicted forced expiratory volume in 1 s up to 28.4% from baseline. The number of systemic antibiotic courses used in patients after switching to the AtbFinder-selected therapy was reduced from 355 to 178. These findings describe the superiority of antibiotic regimens selected with AtbFinder compared with routine antimicrobial susceptibility testing.
Collapse
|
22
|
Liu Y, McQuillen EA, Rana PSJB, Gloag ES, Wozniak DJ. Cross-Species Protection to Innate Immunity Mediated by A Bacterial Pigment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524085. [PMID: 36711503 PMCID: PMC9882196 DOI: 10.1101/2023.01.15.524085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bacterial infections are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus cause chronic co-infections, which are more problematic than mono-species infections. We found that the production of S. aureus membrane-bound pigment staphyloxanthin (STX), was induced by the P. aeruginosa exoproduct, 2-heptyl-4-hydroxyquinoline N-oxide (HQNO). The induction phenotype was conserved in P. aeruginosa and S. aureus clinical isolates examined. When subjected to hydrogen peroxide or human neutrophils, P. aeruginosa survival was significantly higher when mixed with wild-type (WT) S. aureus , compared to a mutant deficient in STX production or P. aeruginosa alone. In a murine wound model, co-infection with WT S. aureus , but not the STX-deficient mutant, enhanced P. aeruginosa burden and disease compared to mono-infection. In conclusion, we discovered a novel role for P. aeruginosa HQNO mediating polymicrobial interactions with S. aureus by inducing STX production, which consequently promotes resistance of both pathogens to innate immune effectors. These results further our understanding of how different bacterial species cooperatively cause co-infections.
Collapse
|
23
|
Juhas M. Microbial Communities. BRIEF LESSONS IN MICROBIOLOGY 2023:43-50. [DOI: 10.1007/978-3-031-29544-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Jean-Pierre V, Boudet A, Sorlin P, Menetrey Q, Chiron R, Lavigne JP, Marchandin H. Biofilm Formation by Staphylococcus aureus in the Specific Context of Cystic Fibrosis. Int J Mol Sci 2022; 24:ijms24010597. [PMID: 36614040 PMCID: PMC9820612 DOI: 10.3390/ijms24010597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen whose characteristics support its success in various clinical settings including Cystic Fibrosis (CF). In CF, S. aureus is indeed the most commonly identified opportunistic pathogen in children and the overall population. S. aureus colonization/infection, either by methicillin-susceptible or methicillin-resistant strains, will become chronic in about one third of CF patients. The persistence of S. aureus in CF patients' lungs, despite various eradication strategies, is favored by several traits in both host and pathogen. Among the latter, living in biofilm is a highly protective way to survive despite deleterious environmental conditions, and is a common characteristic shared by the main pathogens identified in CF. This is why CF has earned the status of a biofilm-associated disease for several years now. Biofilm formation by S. aureus, and the molecular mechanisms governing and regulating it, have been extensively studied but have received less attention in the specific context of CF lungs. Here, we review the current knowledge on S. aureus biofilm in this very context, i.e., the importance, study methods, molecular data published on mono- and multi-species biofilm and anti-biofilm strategies. This focus on studies including clinical isolates from CF patients shows that they are still under-represented in the literature compared with studies based on reference strains, and underlines the need for such studies. Indeed, CF clinical strains display specific characteristics that may not be extrapolated from results obtained on laboratory strains.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
| | - Agathe Boudet
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Pauline Sorlin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34093 Montpellier, France
| | - Quentin Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, 59000 Lille, France
| | - Raphaël Chiron
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Philippe Lavigne
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Hélène Marchandin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
25
|
Precise spatial structure impacts antimicrobial susceptibility of S. aureus in polymicrobial wound infections. Proc Natl Acad Sci U S A 2022; 119:e2212340119. [PMID: 36520668 PMCID: PMC9907066 DOI: 10.1073/pnas.2212340119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A hallmark of microbial ecology is that interactions between members of a community shape community function. This includes microbial communities in human infections, such as chronic wounds, where interactions can result in more severe diseases. Staphylococcus aureus is the most common organism isolated from human chronic wound infections and has been shown to have both cooperative and competitive interactions with Pseudomonas aeruginosa. Still, despite considerable study, most interactions between these microbes have been characterized using in vitro well-mixed systems, which do not recapitulate the infection environment. Here, we characterized interactions between S. aureus and P. aeruginosa in chronic murine wounds, focusing on the role that both macro- and micro-scale spatial structures play in disease. We discovered that S. aureus and P. aeruginosa coexist at high cell densities in murine wounds. High-resolution imaging revealed that these microbes establish a patchy distribution, only occupying 5 to 25% of the wound volume. Using a quantitative framework, we identified a precise spatial structure at both the macro (mm)- and micro (µm)-scales, which was largely mediated by P. aeruginosa production of the antimicrobial 2-heptyl-4-hydroxyquinoline N-oxide, while the antimicrobial pyocyanin had no impact. Finally, we discovered that this precise spatial structure enhances S. aureus tolerance to aminoglycoside antibiotics but not vancomycin. Our results provide mechanistic insights into the biogeography of S. aureus and P. aeruginosa coinfected wounds and implicate spatial structure as a key determinant of antimicrobial tolerance in wound infections.
Collapse
|
26
|
Huang B, An L, Su W, Yan T, Zhang H, Yu DJ. Exploring the alterations and function of skin microbiome mediated by ionizing radiation injury. Front Cell Infect Microbiol 2022; 12:1029592. [DOI: 10.3389/fcimb.2022.1029592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
BackgroundRadiation-induced skin injury (RISI) is still the most common and severe side effect of radiotherapy. The role of the skin’s microbial barrier in the pathogenesis and progression of RISI needs to be fully investigated.MethodsThis study aimed to explore the alterations in and functions of the skin microbiota in RISI. We applied the unculturable approach to characterize the cutaneous microbiomes of a radiation-induced animal model by sequencing the V1–V3 regions of the 16S ribosomal RNA (rRNA) gene. Combined with the downloaded clinical data of patients, a comprehensive analysis was performed to identify potential radioprotective species and metabolic pathways.ResultsThere were no significant differences in the alpha diversity indices (Sobs, Shannon, Simpson, Ace, and Chao) between the acute radiation injury and control groups. Phylum-level analysis of the RISI microbiomes exhibited significant predominance of Firmicutes (mean abundance = 67%, corrected p = 0.0035). The high abundance of Firmicutes was significantly associated with rapid healing of RISI (average relative abundance = 52%; Kruskal–Wallis: p = 5.7E−4). Among its members, Streptococcus, Staphylococcus, Acetivibrio ethanolgignens group, Peptostreptococcus, Anaerofilum, and UCG-002 [linear discriminant analysis (LDA) > 3, p < 0.05] were identified as the core genera of Firmicutes. In addition, Lachnosiraceae and Lactobacillus occupied an important position in the interaction network (r > 0.6, p < 0.05). The differential metabolic pathways of RISI were mainly associated with carbohydrate metabolism (butanoate and propanoate metabolism), amino acid metabolism (tryptophan and histidine metabolism), energy metabolism, and lipid metabolism (fatty acid degradation and biosynthesis).ConclusionThis study provides new insights into the potential mechanism and skin microbial changes in the progression of RISI. The overwhelming predominance of members of Firmicutes, including Streptococcaceae, Staphylococcaceae, Lachnospiraceae, and Lactobacillus, is potentially related to rapid healing of RISI. The microbiota–metabolite axis plays a critical role in RISI and provides promising therapeutic targets for the treatment of adverse side effects.
Collapse
|
27
|
Kou TS, Wu JH, Chen XW, Peng B. Functional proteomics identify mannitol metabolism in serum resistance and therapeutic implications in Vibrio alginolyticus. Front Immunol 2022; 13:1010526. [PMID: 36389821 PMCID: PMC9660324 DOI: 10.3389/fimmu.2022.1010526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 08/18/2023] Open
Abstract
Serum resistance is recognized as one of the most important pathogenic traits of bacterial pathogens, and no control measure is available. Based on our previous discovery that pathogenic Escherichia coli represses glycine, serine, and threonine metabolism to confer serum resistance and that the reactivation of this pathway by exogenous glycine could restore serum sensitivity, we further investigate the mechanism underlying the action of glycine in Vibrio alginolyticus. Thus, V. alginolyticus is treated with glycine, and the proteomic change is profiled with tandem mass tag-based quantitative proteomics. Compared to the control group, glycine treatment influences the expression of a total of 291 proteins. Among them, a trap-type mannitol/chloroaromatic compound transport system with periplasmic component, encoded by N646_0992, is the most significantly increased protein. In combination with the pathway enrichment analysis showing the altered fructose and mannitol metabolism, mannitol has emerged as a possible metabolite in enhancing the serum killing activity. To demonstrate this, exogenous mannitol reduces bacterial viability. This synergistic effect is further confirmed in a V. alginolyticus-Danio rerio infection model. Furthermore, the mechanism underlying mannitol-enabled serum killing is dependent on glycolysis and the pyruvate cycle that increases the deposition of complement components C3b and C5b-9 on the bacterial surface, whereas inhibiting glycolysis or the pyruvate cycle significantly weakened the synergistic effects and complement deposition. These data together suggest that mannitol is a potent metabolite in reversing the serum resistance of V. alginolyticus and has promising use in aquaculture.
Collapse
Affiliation(s)
- Tian-shun Kou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuan-wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
28
|
Electrochemical Biosensors for Circulating Tumor DNA Detection. BIOSENSORS 2022; 12:bios12080649. [PMID: 36005048 PMCID: PMC9406149 DOI: 10.3390/bios12080649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Early diagnosis and treatment have always been highly desired in the fight against cancer, and detection of circulating tumor DNA (ctDNA) has recently been touted as highly promising for early cancer-screening. Consequently, the detection of ctDNA in liquid biopsy is gaining much attention in the field of tumor diagnosis and treatment, which has also attracted research interest from industry. However, it is difficult to achieve low-cost, real-time, and portable measurement of ctDNA in traditional gene-detection technology. Electrochemical biosensors have become a highly promising solution to ctDNA detection due to their unique advantages such as high sensitivity, high specificity, low cost, and good portability. Therefore, this review aims to discuss the latest developments in biosensors for minimally invasive, rapid, and real-time ctDNA detection. Various ctDNA sensors are reviewed with respect to their choices of receptor probes, designs of electrodes, detection strategies, preparation of samples, and figures of merit, sorted by type of electrode surface recognition elements. The development of biosensors for the Internet of Things, point-of-care testing, big data, and big health is analyzed, with a focus on their portable, real-time, and non-destructive characteristics.
Collapse
|
29
|
Jaganathan D, Bruscia EM, Kopp BT. Emerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis. Int J Mol Sci 2022; 23:7750. [PMID: 35887098 PMCID: PMC9319215 DOI: 10.3390/ijms23147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Chronic inflammation and decline in lung function are major reasons for morbidity in CF. Mutant CFTR expressed in phagocytic cells such as macrophages contributes to persistent infection, inflammation, and lung disease in CF. Macrophages play a central role in innate immunity by eliminating pathogenic microbes by a process called phagocytosis. Phagocytosis is required for tissue homeostasis, balancing inflammation, and crosstalk with the adaptive immune system for antigen presentation. This review focused on (1) current understandings of the signaling underlying phagocytic mechanisms; (2) existing evidence for phagocytic dysregulation in CF; and (3) the emerging role of CFTR modulators in influencing CF phagocytic function. Alterations in CF macrophages from receptor initiation to phagosome formation are linked to disease progression in CF. A deeper understanding of macrophages in the context of CFTR and phagocytosis proteins at each step of phagosome formation might contribute to the new therapeutic development of dysregulated innate immunity in CF. Therefore, the review also indicates future areas of research in the context of CFTR and macrophages.
Collapse
Affiliation(s)
- Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Benjamin T. Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| |
Collapse
|
30
|
Pseudomonas aeruginosa polysaccharide Psl supports airway microbial community development. THE ISME JOURNAL 2022; 16:1730-1739. [PMID: 35338335 PMCID: PMC9213427 DOI: 10.1038/s41396-022-01221-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa dominates the complex polymicrobial cystic fibrosis (CF) airway and is a leading cause of death in persons with CF. Oral streptococcal colonization has been associated with stable CF lung function. However, no studies have demonstrated how Streptococcus salivarius, the most abundant streptococcal species found in individuals with stable CF lung disease, potentially improves lung function or becomes incorporated into the CF airway biofilm. By utilizing a two-species biofilm model to probe interactions between S. salivarius and P. aeruginosa, we discovered that the P. aeruginosa exopolysaccharide Psl promoted S. salivarius biofilm formation. Further, we identified a S. salivarius maltose-binding protein (MalE) that is required for promotion of biofilm formation both in vitro and in a Drosophila melanogaster co-infection model. Finally, we demonstrate that promotion of dual biofilm formation with S. salivarius is common among environmental and clinical P. aeruginosa isolates. Overall, our data supports a model in which S. salivarius uses a sugar-binding protein to interact with P. aeruginosa exopolysaccharide, which may be a strategy by which S. salivarius establishes itself within the CF airway microbial community.
Collapse
|
31
|
O'Brien TJ, Figueroa W, Welch M. Decreased efficacy of antimicrobial agents in a polymicrobial environment. THE ISME JOURNAL 2022; 16:1694-1704. [PMID: 35304578 PMCID: PMC9213441 DOI: 10.1038/s41396-022-01218-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
Abstract
The airways of people with cystic fibrosis (CF) often harbour diverse polymicrobial communities. These airway infections can be impossible to resolve through antibiotic intervention, even though isolates of the individual species present are susceptible to the treatment when tested in vitro. In this work, we investigate how polymicrobial cultures comprised of key CF-associated pathogens respond to challenge with species-specific antimicrobial agents; colistin (targets Pseudomonas aeruginosa), fusidic acid (targets Staphylococcus aureus), and fluconazole (targets Candida albicans). We found that growth in a polymicrobial environment protects the target microorganism (sometimes by several orders of magnitude) from the effect(s) of the antimicrobial agent. This decreased antimicrobial efficacy was found to have both non-heritable (physiological) and heritable (genetic) components. Whole-genome sequencing of the colistin-resistant P. aeruginosa isolates revealed single nucleotide polymorphisms and indels in genes encoding lipopolysaccharide (LPS) biosynthesis and/or pilus biogenesis, indicating that a previously undescribed colistin resistance mechanism was in operation. This was subsequently confirmed through further genetic analyses. Our findings indicate that the polymicrobial nature of the CF airways is likely to have a significant impact on the clinical response to antimicrobial therapy.
Collapse
Affiliation(s)
| | - Wendy Figueroa
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
32
|
Rahman MU, Fleming DF, Wang L, Rumbaugh KP, Gordon VD, Christopher GF. Microrheology of Pseudomonas aeruginosa biofilms grown in wound beds. NPJ Biofilms Microbiomes 2022; 8:49. [PMID: 35705574 PMCID: PMC9200728 DOI: 10.1038/s41522-022-00311-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
A new technique was used to measure the viscoelasticity of in vivo Pseudomonas aeruginosa biofilms. This was done through ex vivo microrheology measurements of in vivo biofilms excised from mouse wound beds. To our knowledge, this is the first time that the mechanics of in vivo biofilms have been measured. In vivo results are then compared to typical in vitro measurements. Biofilms grown in vivo are more relatively elastic than those grown in a wound-like medium in vitro but exhibited similar compliance. Using various genetically mutated P. aeruginosa strains, it is observed that the contributions of the exopolysaccharides Pel, Psl, and alginate to biofilm viscoelasticity were different for the biofilms grown in vitro and in vivo. In vitro experiments with collagen containing medium suggest this likely arises from the incorporation of host material, most notably collagen, into the matrix of the biofilm when it is grown in vivo. Taken together with earlier studies that examined the in vitro effects of collagen on mechanical properties, we conclude that collagen may, in some cases, be the dominant contributor to biofilm viscoelasticity in vivo.
Collapse
Affiliation(s)
- Minhaz Ur Rahman
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, USA
| | - Derek F Fleming
- Department of Surgery, Texas Tech University Health Sciences, Lubbock, TX, USA
| | - Liyun Wang
- Department of Physics, Center for Nonlinear Dynamics, Interdisciplinary Life Sciences Graduate Programs, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences, Lubbock, TX, USA
| | - Vernita D Gordon
- Department of Physics, Center for Nonlinear Dynamics, Interdisciplinary Life Sciences Graduate Programs, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| | - Gordon F Christopher
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
33
|
Zhang Y, Gallant É, Park JD, Seyedsayamdost MR. The Small-Molecule Language of Dynamic Microbial Interactions. Annu Rev Microbiol 2022; 76:641-660. [PMID: 35679616 PMCID: PMC10171915 DOI: 10.1146/annurev-micro-042722-091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although microbes are routinely grown in monocultures in the laboratory, they are almost never encountered as single species in the wild. Our ability to detect and identify new microorganisms has advanced significantly in recent years, but our understanding of the mechanisms that mediate microbial interactions has lagged behind. What makes this task more challenging is that microbial alliances can be dynamic, consisting of multiple phases. The transitions between phases, and the interactions in general, are often mediated by a chemical language consisting of small molecules, also referred to as secondary metabolites or natural products. In this microbial lexicon, the molecules are like words and through their effects on recipient cells they convey meaning. The current review highlights three dynamic microbial interactions in which some of the words and their meanings have been characterized, especially those that mediate transitions in selected multiphasic associations. These systems provide insights into the principles that govern microbial symbioses and a playbook for interrogating similar associations in diverse ecological niches. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; ,
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Jong-Duk Park
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , .,Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| |
Collapse
|
34
|
Liu Y, Gloag ES, Hill PJ, Parsek MR, Wozniak DJ. Interbacterial Antagonism Mediated by a Released Polysaccharide. J Bacteriol 2022; 204:e0007622. [PMID: 35446119 PMCID: PMC9112932 DOI: 10.1128/jb.00076-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are two common pathogens causing chronic infections in the lungs of people with cystic fibrosis (CF) and in wounds, suggesting that these two organisms coexist in vivo. However, P. aeruginosa utilizes various mechanisms to antagonize S. aureus when these organisms are grown together in vitro. Here, we suggest a novel role for Psl in antagonizing S. aureus growth. Psl is an exopolysaccharide that exists in both cell-associated and cell-free forms and is important for biofilm formation in P. aeruginosa. When grown in planktonic coculture with a P. aeruginosa psl mutant, S. aureus had increased survival compared to when it was grown with wild-type P. aeruginosa. We found that cell-free Psl was critical for the killing, as purified cell-free Psl was sufficient to kill S. aureus. Transmission electron microscopy of S. aureus treated with Psl revealed disrupted cell envelopes, suggesting that Psl causes S. aureus cell lysis. This was independent of known mechanisms used by P. aeruginosa to antagonize S. aureus. Cell-free Psl could also promote S. aureus killing during growth in in vivo-like conditions. We also found that Psl production in P. aeruginosa CF clinical isolates positively correlated with the ability to kill S. aureus. This could be a result of P. aeruginosa coevolution with S. aureus in CF lungs. In conclusion, this study defines a novel role for P. aeruginosa Psl in killing S. aureus, potentially impacting the coexistence of these two opportunistic pathogens in vivo. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are two important opportunistic human pathogens commonly coisolated from clinical samples. However, P. aeruginosa can utilize various mechanisms to antagonize S. aureus in vitro. Here, we investigated the interactions between these two organisms and report a novel role for P. aeruginosa exopolysaccharide Psl in killing S. aureus. We found that cell-free Psl could kill S. aureus in vitro, possibly by inducing cell lysis. This was also observed in conditions reflective of in vivo scenarios. In accord with this, Psl production in P. aeruginosa clinical isolates positively correlated with their ability to kill S. aureus. Together, our data suggest a role for Psl in affecting the coexistence of P. aeruginosa and S. aureus in vivo.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Erin S. Gloag
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Preston J. Hill
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Daniel J. Wozniak
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
35
|
Jiang K, Xu Y, Yuan B, Yue Y, Zhao M, Luo R, Wu H, Wang L, Zhang Y, Xiao J, Lin F. Effect of Autoinducer-2 Quorum Sensing Inhibitor on Interspecies Quorum Sensing. Front Microbiol 2022; 13:791802. [PMID: 35418956 PMCID: PMC8996156 DOI: 10.3389/fmicb.2022.791802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial drug resistance caused by overuse and misuse of antibiotics is common, especially in clinical multispecies infections. It is of great significance to discover novel agents to treat clinical bacterial infections. Studies have demonstrated that autoinducer-2 (AI-2), a signal molecule in quorum sensing (QS), plays an important role in communication among multiple bacterial species and bacterial drug-resistance. Previously, 14 AI-2 inhibited compounds were selected through virtual screening by using the AI-2 receptor protein LuxP as a target. Here, we used Vibrio harveyi BB170 as a reporter strain for the preliminary screening of 14 inhibitors and compound Str7410 had higher AI-2 QS inhibition activity (IC50 = 0.3724 ± 0.1091 μM). Then, co-culture of Pseudomonas aeruginosa PAO1 with Staphylococcus aureus ATCC 25923 was used to evaluate the inhibitory effects of Str7410 on multispecies infection in vitro and in vivo. In vitro, Str7410 significantly inhibited the formation of mixed bacterial biofilms. Meanwhile, the combination of Str7410 with meropenem trihydrate (MEPM) significantly improved the susceptibility of mixed-species-biofilm cells to the antibiotic. In vivo, Str7410 significantly increased the survival rate of wild-type Caenorhabditis elegans N2 co-infected by P. aeruginosa PAO1 and S. aureus ATCC 25923. Real-time quantitative PCR analysis showed that Str7410 reduced virulence factor (pyocyanin and elastase) production and swarming motility of P. aeruginosa PAO1 by downregulating the expression of QS-related genes in strain PAO1 in co-culture with S. aureus ATCC 25923. Compound Str7410 is a candidate agent for treating drug-resistant multispecies infections. The work described here provides a strategy for discovering novel antibacterial drugs.
Collapse
Affiliation(s)
- Kai Jiang
- School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yijie Xu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bo Yuan
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,No. 971 Hospital of People's Liberation Army Navy, Qingdao, China
| | - Yuandong Yue
- School of Life Sciences, Jilin University, Changchun, China
| | - Meihua Zhao
- School of Life Sciences, Jilin University, Changchun, China
| | - Rui Luo
- School of Life Sciences, Jilin University, Changchun, China
| | - Hao Wu
- School of Life Sciences, Jilin University, Changchun, China
| | - Lei Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yuanyuan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Junhai Xiao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Feng Lin
- School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
36
|
Biswas L, Götz F. Molecular Mechanisms of Staphylococcus and Pseudomonas Interactions in Cystic Fibrosis. Front Cell Infect Microbiol 2022; 11:824042. [PMID: 35071057 PMCID: PMC8770549 DOI: 10.3389/fcimb.2021.824042] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/16/2021] [Indexed: 11/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder that is characterized by recurrent and chronic infections of the lung predominantly by the opportunistic pathogens, Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. While S. aureus is the main colonizing bacteria of the CF lungs during infancy and early childhood, its incidence declines thereafter and infections by P. aeruginosa become more prominent with increasing age. The competitive and cooperative interactions exhibited by these two pathogens influence their survival, antibiotic susceptibility, persistence and, consequently the disease progression. For instance, P. aeruginosa secretes small respiratory inhibitors like hydrogen cyanide, pyocyanin and quinoline N-oxides that block the electron transport pathway and suppress the growth of S. aureus. However, S. aureus survives this respiratory attack by adapting to respiration-defective small colony variant (SCV) phenotype. SCVs cause persistent and recurrent infections and are also resistant to antibiotics, especially aminoglycosides, antifolate antibiotics, and to host antimicrobial peptides such as LL-37, human β-defensin (HBD) 2 and HBD3; and lactoferricin B. The interaction between P. aeruginosa and S. aureus is multifaceted. In mucoid P. aeruginosa strains, siderophores and rhamnolipids are downregulated thus enhancing the survival of S. aureus. Conversely, protein A from S. aureus inhibits P. aeruginosa biofilm formation while protecting both P. aeruginosa and S. aureus from phagocytosis by neutrophils. This review attempts to summarize the current understanding of the molecular mechanisms that drive the competitive and cooperative interactions between S. aureus and P. aeruginosa in the CF lungs that could influence the disease outcome.
Collapse
Affiliation(s)
- Lalitha Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Mixed Populations and Co-Infection: Pseudomonas aeruginosa and Staphylococcus aureus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:397-424. [DOI: 10.1007/978-3-031-08491-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Kadam S, Madhusoodhanan V, Dhekane R, Bhide D, Ugale R, Tikhole U, Kaushik KS. Milieu matters: An in vitro wound milieu to recapitulate key features of, and probe new insights into, mixed-species bacterial biofilms. Biofilm 2021; 3:100047. [PMID: 33912828 PMCID: PMC8065265 DOI: 10.1016/j.bioflm.2021.100047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial biofilms are a major cause of delayed wound healing. Consequently, the study of wound biofilms, particularly in host-relevant conditions, has gained importance. Most in vitro studies employ refined laboratory media to study biofilms, representing conditions that are not relevant to the infection state. To mimic the wound milieu, in vitro biofilm studies often incorporate serum or plasma in growth conditions, or employ clot or matrix-based biofilm models. While incorporating serum or plasma alone is a minimalistic approach, the more complex in vitro wound models are technically demanding, and poorly compatible with standard biofilm assays. Based on previous reports of clinical wound fluid composition, we have developed an in vitro wound milieu (IVWM) that includes, in addition to serum (to recapitulate wound fluid), matrix elements and biochemical factors. With Luria-Bertani broth and Fetal Bovine Serum (FBS) for comparison, the IVWM was used to study planktonic growth, biofilm features, and interspecies interactions, of common wound pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. We demonstrate that the IVWM recapitulates widely reported in vivo biofilm features such as biomass formation, metabolic activity, increased antibiotic tolerance, 3D structure, and interspecies interactions for monospecies and mixed-species biofilms. Further, the IVWM is simple to formulate, uses laboratory-grade components, and is compatible with standard biofilm assays. Given this, it holds potential as a tractable approach to study wound biofilms under host-relevant conditions.
Collapse
Affiliation(s)
- Snehal Kadam
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vandana Madhusoodhanan
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Radhika Dhekane
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Devyani Bhide
- MES Abasaheb Garware College of Arts and Science, Pune, India
| | - Rutuja Ugale
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Utkarsha Tikhole
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Karishma S. Kaushik
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
39
|
Warrier A, Satyamoorthy K, Murali TS. Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiol 2021; 16:1003-1021. [PMID: 34414776 DOI: 10.2217/fmb-2020-0301] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic polymicrobial wound infections are often characterized by the presence of bacterial biofilms. They show considerable structural and functional heterogeneity, which influences the choice of antimicrobial therapy and wound healing dynamics. The hallmarks of biofilm-associated bacterial infections include elevated antibiotic resistance and extreme pathogenicity. Biofilm helps bacteria to evade the host defense mechanisms and persist longer in the host. Quorum-sensing (QS)-mediated cell signaling primarily regulates biofilm formation in chronic infections and plays a major role in eliciting virulence. This review focuses on the QS mechanisms of two major bacterial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa and explains how they interact in the wound microenvironment to regulate biofilm development and virulence. The review also provides an insight into the treatment modalities aimed at eradicating polymicrobial biofilms. This information will help us develop better diagnostic modalities and devise effective treatment regimens to successfully manage and overcome severe life-threatening bacterial infections.
Collapse
Affiliation(s)
- Anjali Warrier
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Manipal Center for Infectious Diseases (MAC ID), Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
40
|
O'Brien TJ, Hassan MM, Harrison F, Welch M. An in vitro model for the cultivation of polymicrobial biofilms under continuous-flow conditions. F1000Res 2021; 10:801. [PMID: 34557293 PMCID: PMC8442117 DOI: 10.12688/f1000research.55140.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/04/2023] Open
Abstract
The airways of people with cystic fibrosis (CF) are often chronically colonised with a diverse array of bacterial and fungal species. However, little is known about the relative partitioning of species between the planktonic and biofilm modes of growth in the airways. Existing in vivo and in vitro models of CF airway infection are ill-suited for the long-term recapitulation of mixed microbial communities. Here we describe a simple, in vitro continuous-flow model for the cultivation of polymicrobial biofilms and planktonic cultures on different substrata. Our data provide evidence for inter-species antagonism and synergism in biofilm ecology. We further show that the type of substratum on which the biofilms grow has a profound influence on their species composition. This happens without any major alteration in the composition of the surrounding steady-state planktonic community. Our experimentally-tractable model enables the systematic study of planktonic and biofilm communities under conditions that are nutritionally reminiscent of the CF airway microenvironment, something not possible using any existing in vivo models of CF airway infection.
Collapse
Affiliation(s)
| | | | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| |
Collapse
|
41
|
Monteiro R, Magalhães AP, Pereira MO, Sousa AM. Long-term coexistence of Pseudomonas aeruginosa and Staphylococcus aureus using an in vitro cystic fibrosis model. Future Microbiol 2021; 16:879-893. [PMID: 34319132 DOI: 10.2217/fmb-2021-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role of pre-established Staphylococcus aureus on Pseudomonas aeruginosa adaptation and antibiotic tolerance. Materials & methods: Bacteria were cultured mimicking the sequential pattern of lung colonization and exposure to ciprofloxacin. Results: In the absence of ciprofloxacin exposure, S. aureus and P. aeruginosa coexisted supported by the physicochemical characteristics of the artificial sputum medium. S. aureus had no role in P. aeruginosa tolerance against ciprofloxacin and did not select P. aeruginosa small-colony variants during antibiotic treatment. rhlR and psqE were downregulated after the contact with S. aureus indicating that P. aeruginosa attenuated its virulence potential. Conclusion: P. aeruginosa and S. aureus can cohabit in cystic fibrosis airway environment for long-term without significant impact on P. aeruginosa adaptation and antibiotic tolerance.
Collapse
Affiliation(s)
- Rosana Monteiro
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Patrícia Magalhães
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
42
|
Ruhal R, Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res 2021; 251:126829. [PMID: 34332222 DOI: 10.1016/j.micres.2021.126829] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
The Gram-positive and Gram-negative bacteria are attributable to matrix-enclosed aggregates known as biofilms. Biofilms are root cause of industrial biofouling and characterized by antimicrobial resistance during infections. Many biofilm studies examine specific Gram type cultures, whereas nearly all biofilm communities in nature comprise both Gram-negative and Gram-positive bacteria. Thus, a greater understanding of the conserved themes in biofilm formation is required for common therapeutics. We tried to focus on common components which exist at each stage of biofilm development and regulation. The Lipopolysaccharides (LPS) and cell wall glyco-polymers of Gram-negative and Gram-positive bacteria seem to play similar roles during initial adhesion. The inhibition of the polymerization of amyloid-like proteins might impact the biofilms of both Gram-type bacteria. Enzymatic degradation of matrix components by glycoside hydrolase and DNase (nuclease) may disrupt both Gram-type biofilms. An additional common feature is the presence of membrane vesicles, and the potential of these vesicles requires further investigation. Genetic regulation by c-di-GMP is prominent in Gram-negative bacteria. However, quorum sensing (QS) may play a common regulation during biofilms dispersal. These studies are significant not only for common therapeutic against mixed biofilms, but for better understanding of bacterial interactions within natural or host infection environment as well.
Collapse
Affiliation(s)
- Rohit Ruhal
- Regional Centre for Biotechnology, Faridabad, India.
| | - Rashmi Kataria
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
43
|
Reigada I, San-Martin-Galindo P, Gilbert-Girard S, Chiaro J, Cerullo V, Savijoki K, Nyman TA, Fallarero A, Miettinen I. Surfaceome and Exoproteome Dynamics in Dual-Species Pseudomonas aeruginosa and Staphylococcus aureus Biofilms. Front Microbiol 2021; 12:672975. [PMID: 34248881 PMCID: PMC8267900 DOI: 10.3389/fmicb.2021.672975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Bacterial biofilms are an important underlying cause for chronic infections. By switching into the biofilm state, bacteria can evade host defenses and withstand antibiotic chemotherapy. Despite the fact that biofilms at clinical and environmental settings are mostly composed of multiple microbial species, biofilm research has largely been focused on single-species biofilms. In this study, we investigated the interaction between two clinically relevant bacterial pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) by label-free quantitative proteomics focusing on proteins associated with the bacterial cell surfaces (surfaceome) and proteins exported/released to the extracellular space (exoproteome). The changes observed in the surfaceome and exoproteome of P. aeruginosa pointed toward higher motility and lower pigment production when co-cultured with S. aureus. In S. aureus, lower abundances of proteins related to cell wall biosynthesis and cell division, suggesting increased persistence, were observed in the dual-species biofilm. Complementary phenotypic analyses confirmed the higher motility and the lower pigment production in P. aeruginosa when co-cultured with S. aureus. Higher antimicrobial tolerance associated with the co-culture setting was additionally observed in both species. To the best of our knowledge, this study is among the first systematic explorations providing insights into the dynamics of both the surfaceome and exoproteome of S. aureus and P. aeruginosa dual-species biofilms.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paola San-Martin-Galindo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ilkka Miettinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Olszowiec-Chlebna M, Mospinek E, Jerzynska J. Impact of newborn screening for cystic fibrosis on clinical outcomes of pediatric patients: 10 years' experience in Lodz Voivodship. Ital J Pediatr 2021; 47:87. [PMID: 33836782 PMCID: PMC8033729 DOI: 10.1186/s13052-021-01040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background Cystic Fibrosis newborn screening (CFNBS) is the optimal method to diagnose the disease during the asymptomatic period. The aim of the study was to determine how CFNBS affects long term clinical outcomes. Methods Data from infants who were born in Lodz Voivodship, referred to CF center as a part of CFNBS according to IRT/DNA protocol were compared to the data of children with established CF diagnosis before the start of NBS in Poland (Group CF, n = 52). Results In 37 children (during 151 referred infants) the diagnosis of CF was established due to CF NBS (CF NBS Group, n = 37). The average time of diagnosis was 1.59 month in Group CF NBS and 45.25 months in 52 children from Group CF. Pulmonary exacerbations occurred on average 4.2 times in Group CFNBS and they were hospitalized on average 0.5 times compared to Group CF – respectively 6.77 and 2.14 (p < 0.001). The number of PA infected patients increased between the fifth and eighth year of age (OR = 1.16 (95% CI: 1.04–19) (P = 0.007)) regardless of the study group (P = 0.984). Patients with MRSA infection have a higher risk of PA infections in subsequent years of their life (OR = 1.45 (95% CI: 1.03–2.03) (P = 0.032)). Conclusions CF NBS has beneficial effects primarily on decrease of pulmonary withhope for a longer life expectancy and better and centralised treatment in multidisciplinary CF focused centres.
Collapse
Affiliation(s)
- M Olszowiec-Chlebna
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Korczak Paediatric Center, Piłsudskiego 71 Str, 90-329, Lodz, Poland
| | - E Mospinek
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Korczak Paediatric Center, Piłsudskiego 71 Str, 90-329, Lodz, Poland
| | - J Jerzynska
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Korczak Paediatric Center, Piłsudskiego 71 Str, 90-329, Lodz, Poland.
| |
Collapse
|
45
|
Dehbashi S, Alikhani MY, Tahmasebi H, Arabestani MR. The inhibitory effects of Staphylococcus aureus on the antibiotic susceptibility and virulence factors of Pseudomonas aeruginosa: A549 cell line model. AMB Express 2021; 11:50. [PMID: 33786713 PMCID: PMC8010066 DOI: 10.1186/s13568-021-01210-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus often lead to serious lung infections. This study aimed to investigate the role of S. aureus in the expression of the β-lactamase enzymes and virulence factors of P. aeruginosa in the polymicrobial infections of the respiratory tract. Biofilm and planktonic co-culture of P. aeruginosa and S. aureus were performed in the A549 cell line. Then, antibiotic resistance and virulence factors of P. aeruginosa were examined, and the expression of lasR, lasI, algD, mexR, and KPC genes were determined using qPCR. S.aureus decreased β-lactam resistance but increased resistance to tobramycin in the biofilm condition. Furthermore, S.aureus showed a positive effect on reducing resistance to meropenem, doripenem, and tobramycin (except PA-2). Altough it was demonstrated that S.aureus reduced the viability of P. aeruginosa, particularly in the biofilm state, the pathogenicity of the recovered strains of P.aeruginosa increased. Moreover, the gene expression levels for lasR/I and algD were increased in biofilm conditions. The levels of lasI were more prominent in the virulent strain than the β-lactamase producing strain. Furthermore, the expression of KPC was increased in all strains of P. aeruginosa. According to the findings of this study, S. aureus has an inhibitory effect in polymicrobial infections by suppressing the β-lactamase genes and viability of P. aeruginosa. Also, it cooperates with the biofilm-producing P. aeruginosa strains to increase pathogenicity and resistance to tobramycin.
Collapse
|
46
|
Cendra MDM, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv 2021; 49:107734. [PMID: 33785375 DOI: 10.1016/j.biotechadv.2021.107734] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.
Collapse
Affiliation(s)
- Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
47
|
Xia A, Qian M, Wang C, Huang Y, Liu Z, Ni L, Jin F. Optogenetic Modification of Pseudomonas aeruginosa Enables Controllable Twitching Motility and Host Infection. ACS Synth Biol 2021; 10:531-541. [PMID: 33667080 DOI: 10.1021/acssynbio.0c00559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important secondary messenger that controls carbon metabolism, type IVa pili biogenesis, and virulence in Pseudomonas aeruginosa. Precise manipulation of bacterial intracellular cAMP levels may enable tunable control of twitching motility or virulence, and optogenetic tools are attractive because they afford excellent spatiotemporal resolution and are easy to operate. Here, we developed an engineered P. aeruginosa strain (termed pactm) with light-dependent intracellular cAMP levels through introducing a photoactivated adenylate cyclase gene (bPAC) into bacteria. On blue light illumination, pactm displayed a 15-fold increase in the expression of the cAMP responsive promoter and an 8-fold increase in its twitching activity. The skin lesion area of nude mouse in a subcutaneous infection model after 2-day pactm inoculation was increased 14-fold by blue light, making pactm suitable for applications in controllable bacterial host infection. In addition, we achieved directional twitching motility of pactm colonies through localized light illumination, which will facilitate the studies of contact-dependent interactions between microbial species.
Collapse
Affiliation(s)
- Aiguo Xia
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Mingjie Qian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Congcong Wang
- Department of Chemical Physics, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, PR China
| | - Yajia Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lei Ni
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Fan Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, PR China
| |
Collapse
|
48
|
Yamamoto K, Kusada H, Kamagata Y, Tamaki H. Parallel Evolution of Enhanced Biofilm Formation and Phage-Resistance in Pseudomonas aeruginosa during Adaptation Process in Spatially Heterogeneous Environments. Microorganisms 2021; 9:569. [PMID: 33801971 PMCID: PMC7999436 DOI: 10.3390/microorganisms9030569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/22/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
An opportunistic pathogen Pseudomonas aeruginosa has a versatile phenotype and high evolutionary potential to adapt to various natural habitats. As the organism normally lives in spatially heterogeneous and polymicrobial environments from open fields to the inside of hosts, adaptation to abiotic (spatial heterogeneity) and biotic factors (interspecies interactions) is a key process to proliferate. However, our knowledge about the adaptation process of P. aeruginosa in spatially heterogeneous environments associated with other species is limited. We show herein that the evolutionary dynamics of P. aeruginosa PAO1 in spatially heterogeneous environments with Staphylococcus aureus known to coexist in vivo is dictated by two distinct core evolutionary trajectories: (i) the increase of biofilm formation and (ii) the resistance to infection by a filamentous phage which is retained in the PAO1 genome. Hyperbiofilm and/or pili-deficient phage-resistant variants were frequently selected in the laboratory evolution experiment, indicating that these are key adaptive traits under spatially structured conditions. On the other hand, the presence of S. aureus had only a marginal effect on the emergence and maintenance of these variants. These results show key adaptive traits of P. aeruginosa and indicate the strong selection pressure conferred by spatial heterogeneity, which might overwhelm the effect of interspecies interactions.
Collapse
Affiliation(s)
- Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 0628517, Hokkaido, Japan
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058577, Ibaraki, Japan
| | - Hiroyuki Kusada
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
| | - Yoichi Kamagata
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
| | - Hideyuki Tamaki
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058577, Ibaraki, Japan
- Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan
| |
Collapse
|
49
|
Shi H, Tang J, An C, Yang L, Zhou X. Protein A of Staphylococcus aureus strain NCTC8325 interacted with heparin. Arch Microbiol 2021; 203:2563-2573. [PMID: 33683394 DOI: 10.1007/s00203-021-02255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
Heparin, known for its anticoagulant activity, is commonly used as the coatings of medical devices. The attaching of Staphylococcus aureus, a prominent human and animal pathogen, to the heparin coatings usually leads to catheter-related bloodstream infections. Hence, the study of the interaction between heparin and S. aureus surface proteins is desired. Here, we found that protein A (SpA) of S. aureus was a heparin-binding protein, contributing to the interaction between S. aureus and heparin. The cell-wall-anchored SpA was one of the most critical S. aureus virulence factors with a lysin-like motif (LysM). When SpA was mutated to remove the LysM motif, the heparin-binding capability of SpA dropped 50%. The in-frame deletion of spa also reduced the heparin-binding capability of S. aureus. There was 1.3-fold more of heparin bound to wild type S. aureus than the Δspa::Em strain. These results would help understand the host-microbe interaction and the infection by S. aureus.
Collapse
Affiliation(s)
- Hui Shi
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiaqin Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cuiying An
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lingkang Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xianxuan Zhou
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
50
|
Yung DBY, Sircombe KJ, Pletzer D. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 2021; 116:1-15. [PMID: 33576132 DOI: 10.1111/mmi.14699] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa) are opportunistic pathogens that are most commonly co-isolated from chronic wounds and the sputum of cystic fibrosis patients. Over the last few years, there have been plenty of contrasting results from studies involving P. aeruginosa and S. aureus co-cultures. The general concept that P. aeruginosa outcompetes S. aureus has been challenged and there is more evidence now that they can co-exist. Nevertheless, it still remains difficult to mimic polymicrobial infections in vitro and in vivo. In this review, we discuss recent advances in regard to Pa-Sa molecular interactions, their physical responses, and in vitro and in vivo models. We believe it is important to optimize growth conditions in the laboratory, determine appropriate bacterial starting ratios, and consider environmental factors to study the co-existence of these two pathogens. Ideally, optimized growth media should reflect host-mimicking conditions with or without host cells that allow both bacteria to co-exist. To further identify mechanisms that could help to treat these complex infections, we propose to use relevant polymicrobial animal models. Ultimately, we briefly discuss how polymicrobial infections can increase antibiotic tolerance.
Collapse
Affiliation(s)
- Deborah Bow Yue Yung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|