1
|
Ye ZW, Ong CP, Cao H, Tang K, Gray VS, Hinson Cheung PH, Wang J, Li W, Zhang H, Luo P, Ni T, Chan CP, Zhang M, Zhang Y, Ling GS, Yuan S, Jin DY. A live attenuated SARS-CoV-2 vaccine constructed by dual inactivation of NSP16 and ORF3a. EBioMedicine 2025; 114:105662. [PMID: 40132472 PMCID: PMC11985078 DOI: 10.1016/j.ebiom.2025.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/16/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Live attenuated vaccines against SARS-CoV-2 activate all phases of host immunity resembling a natural infection and they block viral transmission more efficiently than existing vaccines in human use. In our prior work, we characterised an attenuated SARS-CoV-2 variant, designated d16, which harbours a D130A mutation in the NSP16 protein, inactivating its 2'-O-methyltransferase function. The d16 variant has demonstrated an ability to induce both mucosal and sterilising immunity in animal models. However, further investigation is required to identify any additional modifications to d16 that could mitigate concerns regarding potential virulence reversion and the suboptimal regulation of the proinflammatory response. METHODS Mutations were introduced into molecular clone of SARS-CoV-2 and live attenuated virus was recovered from cultured cells. Virological, biochemical and immunological assays were performed in vitro and in two animal models to access the protective efficacies of the candidate vaccine strain. FINDINGS Here we describe evaluation of a derivative of d16. We further modified the d16 variant by inverting the open reading frame of the ORF3a accessory protein, resulting in the d16i3a strain. This modification is anticipated to enhance safety and reduce pathogenicity. d16i3a appeared to be further attenuated in hamsters and transgenic mice compared to d16. Intranasal vaccination with d16i3a stimulated humoural, cell-mediated and mucosal immune responses, conferring sterilising protection against SARS-CoV-2 Delta and Omicron variants in animals. A version of d16i3a expressing the XBB.1.16 spike protein further expanded the vaccine's protection spectrum against circulating variants. Notably, this version has demonstrated efficacy as a booster in hamsters, providing protection against Omicron subvariants and achieving inhibition of viral transmission. INTERPRETATION Our work established a platform for generating safe and effective live attenuated vaccines by dual inactivation of NSP16 and ORF3a of SARS-CoV-2. FUNDING This work was supported by National Key Research and Development Program of China (2021YFC0866100, 2023YFC3041600, and 2023YFE0203400), Hong Kong Health and Medical Research Fund (COVID190114, CID-HKU1-9, and 23220712), Hong Kong Research Grants Council (C7142-20GF and T11-709/21-N), Hong Kong Innovation and Technology Commission grant (MHP/128/22), Guangzhou Laboratory (EKPG22-01) and Health@InnoHK (CVVT). Funding sources had no role in the writing of the manuscript or the decision to submit it for publication.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Chon Phin Ong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Hehe Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Victor Sebastien Gray
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Pak-Hin Hinson Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Junjue Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Weixin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Hongzhuo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Peng Luo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Tao Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Chi Ping Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Ming Zhang
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Yuntao Zhang
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Hinkle JJ, Trychta KA, Wires ES, Osborn RM, Leach JR, Faraz ZF, Svarcbahs R, Richie CT, Dewhurst S, Harvey BK. Subcellular localization of SARS-CoV-2 E and 3a proteins along the secretory pathway. J Mol Histol 2025; 56:98. [PMID: 40025386 PMCID: PMC11872775 DOI: 10.1007/s10735-025-10375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
SARS-CoV-2 E and 3a proteins are important for the assembly, budding, and release of viral particles. These two transmembrane proteins have been implicated in forming channels in the membrane that allow the transport of ions to favor viral replication. During an active infection, both proteins generally localize to the endoplasmic reticulum (ER), ER-Golgi intermediate compartment (ERGIC), and the Golgi where viral assembly occurs. The ER and Golgi are critical for the proper packaging and trafficking of cellular proteins along the secretory pathways which determine a protein's final destination inside or outside of the cell. The SARS-CoV-2 virus primarily infects epithelial cells that are highly secretory in nature such as those in the lung and gut. Here we quantified the distribution of SARS-CoV-2 E and 3a proteins along the secretory pathways in a human intestinal epithelial cell line. We used NaturePatternMatch to demonstrate that epitope-tagged E and 3a proteins expressed alone via transient transfection have a similar immunoreactivity pattern as E and 3a proteins expressed by wild-type viral infection. While E and 3a proteins localized with all selected cellular markers to varying degrees, 3a protein displayed a higher correlation coefficient with the Golgi, early/late endosome, lysosome, and plasma membrane when compared to E protein. This work is the first to provide quantification of the subcellular distribution of E and 3a proteins along the multiple components of the secretory pathway and serves as a basis to develop models for examining how E and 3a alter proteostasis within these structures and affect their function.
Collapse
Affiliation(s)
- Joshua J Hinkle
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| | - Kathleen A Trychta
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Emily S Wires
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Raven M Osborn
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Justin R Leach
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Zoha F Faraz
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Reinis Svarcbahs
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Stephen Dewhurst
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Qudus MS, Afaq U, Liu S, Wu K, Yu C, Tian M, Wu J. SARS-CoV-2-ORF-3a Mediates Apoptosis Through Mitochondrial Dysfunction Modulated by the K + Ion Channel. Int J Mol Sci 2025; 26:1575. [PMID: 40004042 PMCID: PMC11855091 DOI: 10.3390/ijms26041575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) causes pulmonary edema, which disrupts the lung alveoli-capillary barrier and leads to pulmonary cell apoptosis, the main cause of death. However, the molecular mechanism behind SARS-CoV-2's apoptotic activity remains unknown. Here, we revealed that SARS-CoV-2-ORF-3a mediates the pulmonary pathology associated with SARS-CoV-2, which is demonstrated by the fact that it causes lung tissue damage. The in vitro results showed that SARS-CoV-2-ORF-3a triggers cell death via the disruption of mitochondrial homeostasis, which is modulated through the regulation of Mitochondrial ATP-sensitive Potassium Channel (MitoKATP). The addition of exogenous Potassium (K+) in the form of potassium chloride (KCl) attenuated mitochondrial apoptosis along with the inflammatory interferon response (IFN-β) triggered by SARS-ORF-3a. The addition of exogenous K+ strongly suggests that dysregulation of K+ ion channel function is the central mechanism underlying the mitochondrial dysfunction and stress response induced by SARS-CoV-2-ORF-3a. Our results designate that targeting the potassium channel or its interactions with ORF-3a may represent a promising therapeutic strategy to mitigate the damaging effects of infection with SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Chen Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Zhang C, Gerzanich V, Cruz-Cosme R, Zhang J, Tsymbalyuk O, Tosun C, Sallapalli BT, Liu D, Keledjian K, Papadimitriou JC, Drachenberg CB, Nasr M, Zhang Y, Tang Q, Simard JM, Zhao RY. SARS-CoV-2 ORF3a induces COVID-19-associated kidney injury through HMGB1-mediated cytokine production. mBio 2024; 15:e0230824. [PMID: 39345136 PMCID: PMC11559048 DOI: 10.1128/mbio.02308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024] Open
Abstract
The primary challenge posed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19-related mortality, often exacerbated by additional medical complications, such as COVID-19-associated kidney injuries (CAKIs). Up to half of COVID-19 patients experience kidney complications, with those facing acute respiratory failure and kidney injury having the worst overall prognosis. Despite the significant impact of CAKI on COVID-19-related mortality and its enduring effects in long COVID, the underlying causes and molecular mechanisms of CAKI remain elusive. In this study, we identified a functional relationship between the expression of the SARS-CoV-2 ORF3a protein and inflammation-driven apoptotic death of renal tubular epithelial cells in patients with CAKI. We demonstrate in vitro that ORF3a independently induces renal cell-specific apoptotic cell death, as evidenced by the elevation of kidney injury molecule-1 (KIM-1) and the activation of NF-kB-mediated proinflammatory cytokine (TNFα and IL-6) production. By examining kidney tissues of SARS-CoV-2-infected K18-ACE2 transgenic mice, we observed a similar correlation between ORF3a-induced cytopathic changes and kidney injury. This correlation was further validated through reconstitution of the ORF3a effects via direct adenoviral injection into mouse kidneys. Through medicinal analysis, we identified a natural compound, glycyrrhizin (GL4419), which not only blocks viral replication in renal cells, but also mitigates ORF3a-induced renal cell death by inhibiting activation of a high mobility group box 1 (HMGB1) protein, leading to a reduction of KIM-1. Moreover, ORF3a interacts with HMGB1. Overproduction or downregulation of hmgb1 expression results in correlative changes in renal cellular KIM-1 response and respective cytokine production, implicating a crucial role of HMGB1 in ORF3a-inflicted kidney injuries. Our data suggest a direct functional link between ORF3a and kidney injury, highlighting ORF3a as a unique therapeutic target contributing to CAKI. IMPORTANCE The major challenge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the pandemic is COVID-19-related mortality, which has tragically claimed millions of lives. COVID-19-associated morbidity and mortality are often exacerbated by pre-existing medical conditions, such as chronic kidney diseases (CKDs), or the development of acute kidney injury (AKI) due to COVID-19, collectively known as COVID-19-associated kidney injuries (CAKIs). Patients who experience acute respiratory failure with CAKI have the poorest clinical outcomes, including increased mortality. Despite these alarming clinical findings, there is a critical gap in our understanding of the underlying causes of CAKI. Our study establishes a direct correlation between the expression of the SARS-CoV-2 viral ORF3a protein and kidney injury induced by ORF3a linking to CAKI. This functional relationship was initially observed in our clinical studies of COVID-19 patients with AKI and was further validated through animal and in vitro cellular studies, either by expressing ORF3a alone or in the context of viral infection. By elucidating this functional relationship and its underlying mechanistic pathways, our research deepens the understanding of COVID-19-associated kidney diseases and presents potential therapeutic avenues to address the healthcare challenges faced by individuals with underlying conditions.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John C. Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cinthia B. Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Nasr
- Division of AIDS, NIAID, NIH, Drug Development and Clinical Sciences Branch, Bethesda, Maryland, USA
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Khan A, Ling J, Li J. Is Autophagy a Friend or Foe in SARS-CoV-2 Infection? Viruses 2024; 16:1491. [PMID: 39339967 PMCID: PMC11437447 DOI: 10.3390/v16091491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As obligate parasites, viruses need to hijack resources from infected cells to complete their lifecycle. The interaction between the virus and host determines the viral infection process, including viral propagation and the disease's outcome. Understanding the interaction between the virus and host factors is a basis for unraveling the intricate biological processes in the infected cells and thereby developing more efficient and targeted antivirals. Among the various fundamental virus-host interactions, autophagy plays vital and also complicated roles by directly engaging in the viral lifecycle and functioning as an anti- and/or pro-viral factor. Autophagy thus becomes a promising target against virus infection. Since the COVID-19 pandemic, there has been an accumulation of studies aiming to investigate the roles of autophagy in SARS-CoV-2 infection by using different models and from distinct angles, providing valuable information for systematically and comprehensively dissecting the interplay between autophagy and SARS-CoV-2. In this review, we summarize the advancements in the studies of the interaction between SARS-CoV-2 and autophagy, as well as detailed molecular mechanisms. We also update the current knowledge on the pharmacological strategies used to suppress SARS-CoV-2 replication through remodeling autophagy. These extensive studies on SARS-CoV-2 and autophagy can advance our understanding of virus-autophagy interaction and provide insights into developing efficient antiviral therapeutics by regulating autophagy.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
| |
Collapse
|
6
|
Cheng L, Rui Y, Wang Y, Chen S, Su J, Yu XF. A glimpse into viral warfare: decoding the intriguing role of highly pathogenic coronavirus proteins in apoptosis regulation. J Biomed Sci 2024; 31:70. [PMID: 39003473 PMCID: PMC11245872 DOI: 10.1186/s12929-024-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.
Collapse
Affiliation(s)
- Leyi Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shiqi Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
7
|
Zhang J, Benko Z, Zhang C, Zhao RY. Advanced Protocol for Molecular Characterization of Viral Genome in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2024; 13:566. [PMID: 39057793 PMCID: PMC11279667 DOI: 10.3390/pathogens13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Fission yeast, a single-cell eukaryotic organism, shares many fundamental cellular processes with higher eukaryotes, including gene transcription and regulation, cell cycle regulation, vesicular transport and membrane trafficking, and cell death resulting from the cellular stress response. As a result, fission yeast has proven to be a versatile model organism for studying human physiology and diseases such as cell cycle dysregulation and cancer, as well as autophagy and neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. Given that viruses are obligate intracellular parasites that rely on host cellular machinery to replicate and produce, fission yeast could serve as a surrogate to identify viral proteins that affect host cellular processes. This approach could facilitate the study of virus-host interactions and help identify potential viral targets for antiviral therapy. Using fission yeast for functional characterization of viral genomes offers several advantages, including a well-characterized and haploid genome, robustness, cost-effectiveness, ease of maintenance, and rapid doubling time. Therefore, fission yeast emerges as a valuable surrogate system for rapid and comprehensive functional characterization of viral proteins, aiding in the identification of therapeutic antiviral targets or viral proteins that impact highly conserved host cellular functions with significant virologic implications. Importantly, this approach has a proven track record of success in studying various human and plant viruses. In this protocol, we present a streamlined and scalable molecular cloning strategy tailored for genome-wide and comprehensive functional characterization of viral proteins in fission yeast.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Zsigmond Benko
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Chenyu Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Richard Y. Zhao
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Department of Microbiology-Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Global Health, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Keramidas P, Pitou M, Papachristou E, Choli-Papadopoulou T. Insights into the Activation of Unfolded Protein Response Mechanism during Coronavirus Infection. Curr Issues Mol Biol 2024; 46:4286-4308. [PMID: 38785529 PMCID: PMC11120126 DOI: 10.3390/cimb46050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER's ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy.
Collapse
Affiliation(s)
| | | | | | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.); (M.P.); (E.P.)
| |
Collapse
|
9
|
Pérez-Martínez Z, Boga JA, Potes Y, Melón S, Coto-Montes A. Effect of Melatonin on Herpesvirus Type 1 Replication. Int J Mol Sci 2024; 25:4037. [PMID: 38612846 PMCID: PMC11012353 DOI: 10.3390/ijms25074037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Acute HSV-1 infection is associated with mild symptoms, such as fever and lesions of the mouth, face and skin. This phase is followed by a latency period before reactivation, which is associated with symptoms ranging from ulcers to encephalitis. Despite available anti-HSV-1 drugs, the development of new antiviral agents is sought due to the presence of resistant viruses. Melatonin, a molecule secreted by the pineal gland, has been shown to be an antioxidant, inducer of antioxidant enzymes, and regulator of various biological processes. Clinical trials have explored its therapeutic utility in conditions including infections. This study focuses on melatonin's role in HSV-1 replication and the underlying mechanisms. Melatonin was found to decrease the synthesis of HSV-1 proteins in infected Vero cells measured by immunofluorescence, indicating an inhibition of HSV-1 replication. Additionally, it regulates the activities of antioxidant enzymes and affects proteasome activity. Melatonin activates the unfolded protein response (UPR) and autophagy and suppresses apoptosis in HSV-1-infected cells. In summary, melatonin demonstrates an inhibitory role in HSV-1 replication by modulating various cellular responses, suggesting its potential utility in the treatment of viral infections.
Collapse
Affiliation(s)
- Zulema Pérez-Martínez
- Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Z.P.-M.); (J.A.B.); (S.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Jose Antonio Boga
- Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Z.P.-M.); (J.A.B.); (S.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Yaiza Potes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Santiago Melón
- Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Z.P.-M.); (J.A.B.); (S.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
10
|
Zhang J, Hom K, Zhang C, Nasr M, Gerzanich V, Zhang Y, Tang Q, Xue F, Simard JM, Zhao RY. SARS-CoV-2 ORF3a Protein as a Therapeutic Target against COVID-19 and Long-Term Post-Infection Effects. Pathogens 2024; 13:75. [PMID: 38251382 PMCID: PMC10819734 DOI: 10.3390/pathogens13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has posed unparalleled challenges due to its rapid transmission, ability to mutate, high mortality and morbidity, and enduring health complications. Vaccines have exhibited effectiveness, but their efficacy diminishes over time while new variants continue to emerge. Antiviral medications offer a viable alternative, but their success has been inconsistent. Therefore, there remains an ongoing need to identify innovative antiviral drugs for treating COVID-19 and its post-infection complications. The ORF3a (open reading frame 3a) protein found in SARS-CoV-2, represents a promising target for antiviral treatment due to its multifaceted role in viral pathogenesis, cytokine storms, disease severity, and mortality. ORF3a contributes significantly to viral pathogenesis by facilitating viral assembly and release, essential processes in the viral life cycle, while also suppressing the body's antiviral responses, thus aiding viral replication. ORF3a also has been implicated in triggering excessive inflammation, characterized by NF-κB-mediated cytokine production, ultimately leading to apoptotic cell death and tissue damage in the lungs, kidneys, and the central nervous system. Additionally, ORF3a triggers the activation of the NLRP3 inflammasome, inciting a cytokine storm, which is a major contributor to the severity of the disease and subsequent mortality. As with the spike protein, ORF3a also undergoes mutations, and certain mutant variants correlate with heightened disease severity in COVID-19. These mutations may influence viral replication and host cellular inflammatory responses. While establishing a direct link between ORF3a and mortality is difficult, its involvement in promoting inflammation and exacerbating disease severity likely contributes to higher mortality rates in severe COVID-19 cases. This review offers a comprehensive and detailed exploration of ORF3a's potential as an innovative antiviral drug target. Additionally, we outline potential strategies for discovering and developing ORF3a inhibitor drugs to counteract its harmful effects, alleviate tissue damage, and reduce the severity of COVID-19 and its lingering complications.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Mohamed Nasr
- Drug Development and Clinical Sciences Branch, Division of AIDS, NIAID, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA;
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
- Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|