1
|
Li M, Suzuki K, Wang M, Benner C, Ku M, Ma L, Kobari L, Kim NY, Montserrat N, Chang CJ, Liu G, Qu J, Xu J, Zhang Y, Aizawa E, Wu J, Douay L, Esteban CR, Belmonte JCI. Dynamic WNT signaling controls differentiation of hematopoietic progenitor cells from human pluripotent stem cells. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2816-0. [PMID: 40080269 DOI: 10.1007/s11427-024-2816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/11/2024] [Indexed: 03/15/2025]
Abstract
Human pluripotent stem cells (hPSCs) can in theory give rise to any hematopoietic lineages, thereby offering opportunities for disease modeling, drug screening and cell therapies. However, gaps in our knowledge of the signaling requirements for the specification of human hematopoietic stem/progenitor cells (HSPCs), which lie at the apex of all hematopoietic lineages, greatly limit the potential of hPSC in hematological research and application. Transcriptomic analysis reveals aberrant regulation of WNT signaling during maturation of hPSC-derived hematopoietic progenitor cells (hPSC-HPCs), which results in higher mitochondria activity, misregulation of HOX genes, loss of self-renewal and precocious differentiation. These defects are partly due to the activation of the WNT target gene CDX2. Late-stage WNT inhibition improves the yield, self-renewal, multilineage differentiation, and transcriptional and metabolic profiles of hPSC-HPCs. Genome-wide mapping of transcription factor (TF) accessible chromatin reveals a significant overrepresentation of myeloid TF binding motifs in hPSC-HPCs, which could underlie their myeloid-biased lineage potential. Together our findings uncover a previously unappreciated dynamic requirement of the WNT signaling pathway during the specification of human HSPCs. Modulating the WNT pathway with small molecules normalizes the molecular differences between hPSC-HPCs and endogenous hematopoietic stem cells (HSCs), thereby representing a promising approach to improve the differentiation and function of hPSC-HPCs.
Collapse
Affiliation(s)
- Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 560-8531, Japan
| | - Mengge Wang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher Benner
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Manching Ku
- Next Generation Sequencing Core, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Li Ma
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Ladan Kobari
- Prolifération et Différentiation des Cellules Souches, UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Paris, F-75012, France
- Prolifération et Différentiation des Cellules Souches, INSERM, UMR_S938, Paris, F-75012, France
| | - Na Young Kim
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Nuria Montserrat
- Center for Regenerative Medicine in Barcelona, Barcelona, 08003, Spain
| | - Chan-Jung Chang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Guanghui Liu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Qu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinna Xu
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Yingzi Zhang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Emi Aizawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Luc Douay
- Prolifération et Différentiation des Cellules Souches, UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Paris, F-75012, France
- Unité d'Ingénierie et de Thérapie Cellulaire, EFS Ile de France, Créteil, F-94017, France
- Service d'Hématologie et immunologie biologique, AP-HP Hôpital Saint Antoine/Armand Trousseau, Paris, F-75012, France
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Altos Labs, San Diego, 92122, USA
| | - Juan Carlos Izpisua Belmonte
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.
- Altos Labs, San Diego, 92122, USA.
| |
Collapse
|
2
|
Nmezi B, Rodriguez Bey G, Oranburg TD, Dudnyk K, Lardo SM, Herdman N, Jacko A, Rubio S, Loeza-Alcocer E, Kofler J, Kim D, Rankin J, Kivuva E, Gutowski N, Schon K, van den Ameele J, Chinnery PF, Sousa SB, Palavra F, Toro C, Pinto E Vairo F, Saute J, Pan L, Alturkustani M, Hammond R, Gros-Louis F, Gold MS, Park Y, Bernard G, Raininko R, Zhou J, Hainer SJ, Padiath QS. An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants. Nat Commun 2025; 16:1373. [PMID: 39910058 PMCID: PMC11799162 DOI: 10.1038/s41467-025-56378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene (LMNB1) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR edited cell lines and mouse models, we have identified a silencer element that is lost in ADLD patients and that specifically targets expression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving LMNB1 and the recruitment of the PRC2 transcriptional repressor complex. Loss of the silencer element in ADLD identifies a role for non-coding regulatory elements in tissue specificity and disease causation.
Collapse
Affiliation(s)
- Bruce Nmezi
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guillermo Rodriguez Bey
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kseniia Dudnyk
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Santana M Lardo
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Herdman
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anastasia Jacko
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandy Rubio
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emanuel Loeza-Alcocer
- Dept. of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Kofler
- Dept. of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongkyeong Kim
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Epitor Therapeutics, New York, NY, USA
| | - Julia Rankin
- Dept. of Clinical Genetics, Royal Devon University Hospital, Exeter, UK
| | - Emma Kivuva
- Dept. of Clinical Genetics, Royal Devon University Hospital, Exeter, UK
| | | | - Katherine Schon
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jelle van den Ameele
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Sérgio B Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinic of Genetics, Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Filipe Palavra
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Center for Child Development-Neuropediatrics Unit, Hospital Pediátrico, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Laboratory of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Jonas Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lisa Pan
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Murad Alturkustani
- Department of Pathology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Hammond
- Departments of Pathology and Clinical Neurological Sciences, Western University and London Health Sciences Centre, Quebec City, Canada
| | - Francois Gros-Louis
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Division of Regenerative Medicine, CHU de Quebec research center, Laval University, Quebec City, QC, Canada
| | - Michael S Gold
- Dept. of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yungki Park
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Raili Raininko
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah J Hainer
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Quasar S Padiath
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- Dept. of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Laberthonnière C, Delourme M, Chevalier R, Dion C, Ganne B, Hirst D, Caron L, Perrin P, Adélaïde J, Chaffanet M, Xue S, Nguyen K, Reversade B, Déjardin J, Baudot A, Robin J, Magdinier F. In skeletal muscle and neural crest cells, SMCHD1 regulates biological pathways relevant for Bosma syndrome and facioscapulohumeral dystrophy phenotype. Nucleic Acids Res 2023; 51:7269-7287. [PMID: 37334829 PMCID: PMC10415154 DOI: 10.1093/nar/gkad523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Many genetic syndromes are linked to mutations in genes encoding factors that guide chromatin organization. Among them, several distinct rare genetic diseases are linked to mutations in SMCHD1 that encodes the structural maintenance of chromosomes flexible hinge domain containing 1 chromatin-associated factor. In humans, its function as well as the impact of its mutations remains poorly defined. To fill this gap, we determined the episignature associated with heterozygous SMCHD1 variants in primary cells and cell lineages derived from induced pluripotent stem cells for Bosma arhinia and microphthalmia syndrome (BAMS) and type 2 facioscapulohumeral dystrophy (FSHD2). In human tissues, SMCHD1 regulates the distribution of methylated CpGs, H3K27 trimethylation and CTCF at repressed chromatin but also at euchromatin. Based on the exploration of tissues affected either in FSHD or in BAMS, i.e. skeletal muscle fibers and neural crest stem cells, respectively, our results emphasize multiple functions for SMCHD1, in chromatin compaction, chromatin insulation and gene regulation with variable targets or phenotypical outcomes. We concluded that in rare genetic diseases, SMCHD1 variants impact gene expression in two ways: (i) by changing the chromatin context at a number of euchromatin loci or (ii) by directly regulating some loci encoding master transcription factors required for cell fate determination and tissue differentiation.
Collapse
Affiliation(s)
| | - Mégane Delourme
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Raphaël Chevalier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Camille Dion
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Benjamin Ganne
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - David Hirst
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Leslie Caron
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Pierre Perrin
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - José Adélaïde
- Aix Marseille Univ, INSERM, CNRS, Institut Paoli Calmette, Centre de Recherche en Cancérologie de Marseille, Laboratory of predictive Oncology, Marseille 13009, France
| | - Max Chaffanet
- Aix Marseille Univ, INSERM, CNRS, Institut Paoli Calmette, Centre de Recherche en Cancérologie de Marseille, Laboratory of predictive Oncology, Marseille 13009, France
| | - Shifeng Xue
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Karine Nguyen
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
- Département de Génétique Médicale, AP-HM, Hôpital d’enfants de la Timone, Marseille 13005, France
| | - Bruno Reversade
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Medical Genetics, Koç University, School of Medicine, Istanbul, Turkey
- Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Laboratory of Human Genetics & Therapeutics, Smart-Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Jérôme Déjardin
- Institut de Génétique Humaine, UMR 9002, CNRS–Université de Montpellier, Montpellier 34000, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Jérôme D Robin
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | | |
Collapse
|
4
|
Nmezi B, Bey GR, Oranburg TD, Dudnyk K, Lardo SM, Herdman N, Jacko A, Rubio S, Alcocer EL, Kofler J, Kim D, Rankin J, Kivuva E, Gutowski N, Schon K, van den Ameele J, Chinnery PF, Sousa SB, Palavra F, Toro C, Pinto E Vairo F, Saute J, Pan L, Alturkustani M, Hammond R, Gros-Louis F, Gold M, Park Y, Bernard G, Raininko R, Zhou J, Hainer SJ, Padiath QS. An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551473. [PMID: 37609196 PMCID: PMC10441294 DOI: 10.1101/2023.08.03.551473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.
Collapse
|
5
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
6
|
Jiang L, Liu Y, Wen Z, Yang Y, Singer SD, Bennett D, Xu W, Su Z, Yu Z, Cohn J, Luo X, Liu Z, Chae H, Que Q, Liu Z. CW198 acts as a genetic insulator to block enhancer-promoter interaction in plants. Transgenic Res 2022; 31:647-660. [PMID: 36053433 DOI: 10.1007/s11248-022-00326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 08/15/2022] [Indexed: 01/20/2023]
Abstract
Insulators in vertebrates play a role in genome architecture and orchestrate temporo-spatial enhancer-promoter interactions. In plants, insulators and their associated binding factors have not been documented as of yet, largely as a result of a lack of characterized insulators. In this study, we took a comprehensive strategy to identify and validate the enhancer-blocking insulator CW198. We show that a 1.08-kb CW198 fragment from Arabidopsis can, when interposed between an enhancer and a promoter, efficiently abrogate the activation function of both constitutive and floral organ-specific enhancers in transgenic Arabidopsis and tobacco plants. In plants, both transcriptional crosstalk and spreading of histone modifications were rarely detectable across CW198, which resembles the insulation property observed across the CTCF insulator in the mammalian genome. Taken together, our findings support that CW198 acts as an enhancer-blocking insulator in both Arabidopsis and tobacco. The significance of the present findings and their relevance to the mitigation of mutual interference between enhancers and promoters, as well as multiple promoters in transgenes, is discussed.
Collapse
Affiliation(s)
- Li Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,USDA-ARS, -Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhifeng Wen
- USDA-ARS, -Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA.,College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingjun Yang
- USDA-ARS, -Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA.,Forestry College, Henan University of Science and Technology, Luoyang, 471023, China
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Dennis Bennett
- USDA-ARS, -Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhifang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Josh Cohn
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Hyunsook Chae
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Qiudeng Que
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Zongrang Liu
- USDA-ARS, -Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA.
| |
Collapse
|
7
|
Liu H, Jiang L, Wen Z, Yang Y, Singer SD, Bennett D, Xu W, Su Z, Yu Z, Cohn J, Chae H, Que Q, Liu Y, Liu C, Liu Z. Rice RS2-9, which is bound by transcription factor OSH1, blocks enhancer-promoter interactions in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:541-554. [PMID: 34773305 PMCID: PMC9303810 DOI: 10.1111/tpj.15574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/02/2021] [Indexed: 05/13/2023]
Abstract
Insulators characterized in Drosophila and mammals have been shown to play a key role in the restriction of promiscuous enhancer-promoter interactions, as well as reshaping the topological landscape of chromosomes. Yet the role of insulators in plants remains poorly understood, in large part because of a lack of well-characterized insulators and binding factor(s). In this study, we isolated a 1.2-kb RS2-9 insulator from the Oryza sativa (rice) genome that can, when interposed between an enhancer and promoter, efficiently block the activation function of both constitutive and floral organ-specific enhancers in transgenic Arabidopsis and Nicotiana tabacum (tobacco). In the rice genome, the genes flanking RS2-9 exhibit an absence of mutual transcriptional interactions, as well as a lack of histone modification spread. We further determined that O. sativa Homeobox 1 (OSH1) bound two regions of RS2-9, as well as over 50 000 additional sites in the rice genome, the majority of which resided in intergenic regions. Mutation of one of the two OSH1-binding sites in RS2-9 impaired insulation activity by up to 60%, whereas the mutation of both binding sites virtually abolished insulator function. We also demonstrated that OSH1 binding sites were associated with 72% of the boundaries of topologically associated domains (TADs) identified in the rice genome, which is comparable to the 77% of TAD boundaries bound by the insulator CCCTC-binding factor (CTCF) in mammals. Taken together, our findings indicate that OSH1-RS2-9 acts as a true insulator in plants, and highlight a potential role for OSH1 in gene insulation and topological organization in plant genomes.
Collapse
Affiliation(s)
- Huawei Liu
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Li Jiang
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Zhifeng Wen
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yingjun Yang
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- Forestry CollegeHenan University of Science and TechnologyLuoyang471023China
| | - Stacy D. Singer
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeAlbertaT1J 4B1Canada
| | - Dennis Bennett
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhifang Yu
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jonathan Cohn
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Hyunsook Chae
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Qiudeng Que
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Yue Liu
- College of HorticultureQingdao Agricultural UniversityQingdao266109China
| | - Chang Liu
- Department of EpigeneticsUniversity of HohenheimStuttgart70599Germany
| | - Zongrang Liu
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
| |
Collapse
|
8
|
Labade AS, Salvi A, Kar S, Karmodiya K, Sengupta K. Nup93 and CTCF modulate spatiotemporal dynamics and function of the HOXA gene locus during differentiation. J Cell Sci 2021; 134:273378. [PMID: 34746948 DOI: 10.1242/jcs.259307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/30/2021] [Indexed: 11/20/2022] Open
Abstract
Nucleoporins regulate nuclear transport and are also involved in DNA damage, repair, cell cycle, chromatin organization, and gene expression. Here, we studied the role of nucleoporin Nup93 and the chromatin organizer CTCF in regulating HOXA expression during differentiation. ChIP sequencing revealed a significant overlap between Nup93 and CTCF peaks. Interestingly, Nup93 and CTCF are associated with the 3' and 5'HOXA genes respectively. Depletions of Nup93 and CTCF antagonistically modulate expression levels of 3'and 5'HOXA genes in undifferentiated NT2/D1 cells. Nup93 also regulates the localization of the HOXA gene locus, which disengages from the nuclear periphery upon Nup93 but not CTCF depletion, consistent with its upregulation. The dynamic association of Nup93 and CTCF with the HOXA locus during differentiation correlates with its spatial positioning and expression. While Nup93 tethers the HOXA locus to the nuclear periphery, CTCF potentially regulates looping of the HOXA gene cluster in a temporal manner. In summary, Nup93 and CTCF complement one another in modulating the spatiotemporal dynamics and function of the HOXA gene locus during differentiation.
Collapse
Affiliation(s)
- Ajay S Labade
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Adwait Salvi
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Saswati Kar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Kundan Sengupta
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| |
Collapse
|
9
|
Jeong DS, Kim MH, Lee J. Depletion of CTCF disrupts PSG gene expression in the human trophoblast cell line Swan 71. FEBS Open Bio 2021; 11:804-812. [PMID: 33452729 PMCID: PMC7931220 DOI: 10.1002/2211-5463.13087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/25/2020] [Accepted: 01/13/2021] [Indexed: 11/24/2022] Open
Abstract
Pregnancy‐specific glycoproteins (PSGs) are fetal proteins secreted by the placenta during pregnancy. The PSG level in maternal serum is an indicator of risk for pregnancy complications. However, little is known about the molecular mechanisms underlying PSG gene expression. Recently, the importance of epigenetic regulation of placental genes has been emphasized in the study of developmental defects and placental disease. In this study, the role of the CCCTC‐binding factor (CTCF) in regulation of PSG expression was investigated to better understand the epigenetic regulatory mechanisms of the PSG genes. Inhibition of CTCF expression disturbed transcription of several PSG genes: PSG1, PSG2, PSG4, PSG5, PSG8, and PSG9 were upregulated and PSG6 and PSG11 were downregulated. These transcriptional changes were correlated with decreased CTCF binding and changes in histone modification at the PSG promoters. Our data demonstrate that CTCF is a potential mediator in the regulation of PSG gene expression.
Collapse
Affiliation(s)
- Da Som Jeong
- Department of AnatomyEmbryology LaboratoryYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS project for Medical ScienceYonsei University College of MedicineSeoulKorea
| | - Myoung Hee Kim
- Department of AnatomyEmbryology LaboratoryYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS project for Medical ScienceYonsei University College of MedicineSeoulKorea
| | - Ji‐Yeon Lee
- Department of AnatomyEmbryology LaboratoryYonsei University College of MedicineSeoulKorea
| |
Collapse
|
10
|
Hussain I, Deb P, Chini A, Obaid M, Bhan A, Ansari KI, Mishra BP, Bobzean SA, Udden SMN, Alluri PG, Das HK, Brothers RM, Perrotti LI, Mandal SS. HOXA5 Expression Is Elevated in Breast Cancer and Is Transcriptionally Regulated by Estradiol. Front Genet 2021; 11:592436. [PMID: 33384715 PMCID: PMC7770181 DOI: 10.3389/fgene.2020.592436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
HOXA5 is a homeobox-containing gene associated with the development of the lung, gastrointestinal tract, and vertebrae. Here, we investigate potential roles and the gene regulatory mechanism in HOXA5 in breast cancer cells. Our studies demonstrate that HOXA5 expression is elevated in breast cancer tissues and in estrogen receptor (ER)-positive breast cancer cells. HOXA5 expression is critical for breast cancer cell viability. Biochemical studies show that estradiol (E2) regulates HOXA5 gene expression in cultured breast cancer cells in vitro. HOXA5 expression is also upregulated in vivo in the mammary tissues of ovariectomized female rats. E2-induced HOXA5 expression is coordinated by ERs. Knockdown of either ERα or ERβ downregulated E2-induced HOXA5 expression. Additionally, ER co-regulators, including CBP/p300 (histone acetylases) and MLL-histone methylases (MLL2, MLL3), histone acetylation-, and H3K4 trimethylation levels are enriched at the HOXA5 promoter in present E2. In summary, our studies demonstrate that HOXA5 is overexpressed in breast cancer and is transcriptionally regulated via estradiol in breast cancer cells.
Collapse
Affiliation(s)
- Imran Hussain
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Paromita Deb
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Avisankar Chini
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Monira Obaid
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Arunoday Bhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Bibhu P Mishra
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Samara A Bobzean
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - S M Nashir Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Prasanna G Alluri
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hriday K Das
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Institute for Healthy Aging, Fort Worth, TX, United States
| | - Robert Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
11
|
Zhang H, Zhang Y, Zhou X, Wright S, Hyle J, Zhao L, An J, Zhao X, Shao Y, Xu B, Lee HM, Chen T, Zhou Y, Chen X, Lu R, Li C. Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen. eLife 2020; 9:e57858. [PMID: 33001025 PMCID: PMC7599066 DOI: 10.7554/elife.57858] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant HOXA9 expression is a hallmark of most aggressive acute leukemias, notably those with KMT2A (MLL) gene rearrangements. HOXA9 overexpression not only predicts poor diagnosis and outcome but also plays a critical role in leukemia transformation and maintenance. However, our current understanding of HOXA9 regulation in leukemia is limited, hindering development of therapeutic strategies. Here, we generated the HOXA9-mCherry knock-in reporter cell lines to dissect HOXA9 regulation. By utilizing the reporter and CRISPR/Cas9 screens, we identified transcription factors controlling HOXA9 expression, including a novel regulator, USF2, whose depletion significantly down-regulated HOXA9 expression and impaired MLLr leukemia cell proliferation. Ectopic expression of Hoxa9 rescued impaired leukemia cell proliferation upon USF2 loss. Cut and Run analysis revealed the direct occupancy of USF2 at HOXA9 promoter in MLLr leukemia cells. Collectively, the HOXA9 reporter facilitated the functional interrogation of the HOXA9 regulome and has advanced our understanding of the molecular regulation network in HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Xinyue Zhou
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Lianzhong Zhao
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Jie An
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research HospitalMemphisUnited States
| | - Ying Shao
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Hyeong-Min Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research HospitalMemphisUnited States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research HospitalMemphisUnited States
| | - Yang Zhou
- Department of Biomedical Engineering School of Engineering, University of Alabama at BirminghamBirminghamUnited States
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Rui Lu
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| |
Collapse
|
12
|
Applebaum MA, Barr EK, Karpus J, West-Szymanski DC, Oliva M, Sokol EA, Zhang S, Zhang Z, Zhang W, Chlenski A, Salwen HR, Wilkinson E, Dobratic M, Grossman RL, Godley LA, Stranger BE, He C, Cohn SL. 5-Hydroxymethylcytosine Profiles in Circulating Cell-Free DNA Associate with Disease Burden in Children with Neuroblastoma. Clin Cancer Res 2020; 26:1309-1317. [PMID: 31852832 PMCID: PMC7073281 DOI: 10.1158/1078-0432.ccr-19-2829] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE 5-Hydroxymethylcytosine (5-hmC) is an epigenetic marker of open chromatin and active gene expression. We profiled 5-hmC with Nano-hmC-Seal technology using 10 ng of plasma-derived cell-free DNA (cfDNA) in blood samples from patients with neuroblastoma to determine its utility as a biomarker. EXPERIMENTAL DESIGN For the Discovery cohort, 100 5-hmC profiles were generated from 34 well children and 32 patients (27 high-risk, 2 intermediate-risk, and 3 low-risk) at various time points during the course of their disease. An independent Validation cohort encompassed 5-hmC cfDNA profiles (n = 29) generated from 21 patients (20 high-risk and 1 intermediate-risk). Metastatic burden was classified as high, moderate, low, or none per Curie metaiodobenzylguanidine scores and percentage of tumor cells in bone marrow. Genes with differential 5-hmC levels between samples according to metastatic burden were identified using DESeq2. RESULTS Hierarchical clustering using 5-hmC levels of 347 genes identified from the Discovery cohort defined four clusters of samples that were confirmed in the Validation cohort and corresponded to high, high-moderate, moderate, and low/no metastatic burden. Samples from patients with increased metastatic burden had increased 5-hmC deposition on genes in neuronal stem cell maintenance and epigenetic regulatory pathways. Further, 5-hmC cfDNA profiles generated with 1,242 neuronal pathway genes were associated with subsequent relapse in the cluster of patients with predominantly low or no metastatic burden (sensitivity 65%, specificity 75.6%). CONCLUSIONS cfDNA 5-hmC profiles in children with neuroblastoma correlate with metastatic burden and warrants development as a biomarker of treatment response and outcome.
Collapse
Affiliation(s)
- Mark A Applebaum
- Department of Pediatrics, University of Chicago, Chicago, Illinois.
| | - Erin K Barr
- Department of Pediatrics, Texas Tech University Health Sciences, Lubbock, Texas
| | - Jason Karpus
- Department of Chemistry, University of Chicago, Chicago, Illinois
| | | | - Meritxell Oliva
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Elizabeth A Sokol
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sheng Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | | | - Helen R Salwen
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Emma Wilkinson
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Marija Dobratic
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Robert L Grossman
- Institute for Genomics and Systems Biology, Center for Translational Data Science, University of Chicago, Chicago, Illinois
| | - Lucy A Godley
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and Indirect Targeting of HOXA9 Transcription Factor in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060837. [PMID: 31213012 PMCID: PMC6627208 DOI: 10.3390/cancers11060837] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
HOXA9 (Homeobox A9) is a homeotic transcription factor known for more than two decades to be associated with leukemia. The expression of HOXA9 homeoprotein is associated with anterior-posterior patterning during embryonic development, and its expression is then abolished in most adult cells, with the exception of hematopoietic progenitor cells. The oncogenic function of HOXA9 was first assessed in human acute myeloid leukemia (AML), particularly in the mixed-phenotype associated lineage leukemia (MPAL) subtype. HOXA9 expression in AML is associated with aggressiveness and a poor prognosis. Since then, HOXA9 has been involved in other hematopoietic malignancies and an increasing number of solid tumors. Despite this, HOXA9 was for a long time not targeted to treat cancer, mainly since, as a transcription factor, it belongs to a class of protein long considered to be an "undruggable" target; however, things have now evolved. The aim of the present review is to focus on the different aspects of HOXA9 targeting that could be achieved through multiple ways: (1) indirectly, through the inhibition of its expression, a strategy acting principally at the epigenetic level; or (2) directly, through the inhibition of its transcription factor function by acting at either the protein/protein interaction or the protein/DNA interaction interfaces.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Meryem Alioui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Samy Jambon
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Sabine Depauw
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Isabelle Van Seuningen
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
| | - Marie-Hélène David-Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| |
Collapse
|
14
|
Oh JH, Kim CY, Lee JY, Kim MH. Retinoic acid and CTCF play key roles in inducing the collinear expression of the Hoxa cluster. Acta Biochim Biophys Sin (Shanghai) 2018; 50:555-559. [PMID: 29688244 DOI: 10.1093/abbs/gmy039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
During the development of an embryo, the initiation of the collinear expression of Hox genes is essential for the proper formation of the anteroposterior body axis. Retinoic acid (RA), a natural derivative of vitamin A, plays a role in vertebrate development by regulating Hox gene expression. CCCTC-binding factor (CTCF), an insulator protein that controls gene transcription, also regulates the expression of Hox genes by binding to the CTCF-binding sites (CBSs). It has been reported that upon RA signaling, retinoic acid response elements (RAREs) located in the Hox clusters become occupied. Interestingly, RAREs exist in close proximity with CBSs, and therefore when RA is bound, CTCF cannot bind. Without CTCF and its insulator activities, the repressive domain in the chromatin becomes open for gene transcription. Here, we examine the relationship between RA and CTCF during the RA-induced expression of the Hoxa cluster genes, using F9 murine embryonic teratocarcinoma cells as a model system. We treated F9 cells with RA for different time, confirmed the collinear expression of Hoxa genes, and validated CTCF-binding in F9 cells as well as in CTCF-overexpressing F9 cells, in the presence of RA. The present study suggests that RA and CTCF pose antagonistic effects on each other during vertebrate development to attain Hox gene collinearity.
Collapse
Affiliation(s)
- Ji Hoon Oh
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Clara Yuri Kim
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Zhao X, Li D, Huang D, Song H, Mei H, Fang E, Wang X, Yang F, Zheng L, Huang K, Tong Q. Retracted: Risk-Associated Long Noncoding RNA FOXD3-AS1 Inhibits Neuroblastoma Progression by Repressing PARP1-Mediated Activation of CTCF. Mol Ther 2018; 26:755-773. [PMID: 29398485 PMCID: PMC5910666 DOI: 10.1016/j.ymthe.2017.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in childhood. Recent studies have implicated the emerging roles of long noncoding RNAs (lncRNAs) in tumorigenesis and aggressiveness. However, the functions and targets of risk-associated lncRNAs in NB progression still remain to be determined. Herein, through mining of public microarray datasets, we identify lncRNA forkhead box D3 antisense RNA 1 (FOXD3-AS1) as an independent prognostic marker for favorable outcome of NB patients. FOXD3-AS1 is downregulated in NB tissues and cell lines, and ectopic expression of FOXD3-AS1 induces neuronal differentiation and decreases the aggressiveness of NB cells in vitro and in vivo. Mechanistically, as a nuclear lncRNA, FOXD3-AS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1) to inhibit the poly(ADP-ribosyl)ation and activation of CCCTC-binding factor (CTCF), resulting in derepressed expression of downstream tumor-suppressive genes. Rescue experiments indicate that FOXD3-AS1 harbors tumor-suppressive properties by inhibiting the oncogenic roles of PARP1 or CTCF and plays crucial roles in all-trans-retinoic-acid-mediated therapeutic effects on NB. Administration of FOXD3-AS1 construct or siRNAs against PARP1 or CTCF reduces the tumor growth and prolongs the survival of nude mice. These findings suggest that as a risk-associated lncRNA, FOXD3-AS1 inhibits the progression of NB through repressing PARP1-mediated CTCF activation.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Dandan Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
16
|
Lee HK, Willi M, Wang C, Yang CM, Smith HE, Liu C, Hennighausen L. Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res 2017; 45:4606-4618. [PMID: 28334928 PMCID: PMC5416830 DOI: 10.1093/nar/gkx185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023] Open
Abstract
The zinc finger protein CTCF has been invoked in establishing boundaries between genes, thereby controlling spatial and temporal enhancer activities. However, there is limited genetic evidence to support the concept that these boundaries restrict the search space of enhancers. We have addressed this question in the casein locus containing five mammary and two non-mammary genes under the control of at least seven putative enhancers. We have identified two CTCF binding sites flanking the locus and two associated with a super-enhancer. Individual deletion of these sites from the mouse genome did not alter expression of any of the genes. However, deletion of the border CTCF site separating the Csn1s1 mammary enhancer from neighboring genes resulted in the activation of Sult1d1 at a distance of more than 95 kb but not the more proximal and silent Sult1e1 gene. Loss of this CTCF site led to de novo interactions between the Sult1d1 promoter and several enhancers in the casein locus. Our study demonstrates that only one out of the four CTCF sites in the casein locus had a measurable in vivo activity. Studies on additional loci are needed to determine the biological role of CTCF sites associated with enhancers.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Department of Cell and Developmental Biology & Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | - Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Chul Min Yang
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Harold E Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core,National Heart Lung and Blood Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Abstract
How eukaryotic chromosomes fold inside the nucleus is an age-old question that remains unanswered today. Early biochemical and microscopic studies revealed the existence of chromatin domains and loops as a pervasive feature of interphase chromosomes, but the biological implications of such organizational features were obscure. Genome-wide analysis of pair-wise chromatin interactions using chromatin conformation capture (3C)-based techniques has shed new light on the organization of chromosomes in interphase nuclei. Particularly, the finding of cell-type invariant, evolutionarily conserved topologically associating domains (TADs) in a broad spectrum of cell types has provided a new molecular framework for the study of animal development and human diseases. Here, we review recent progress in characterization of such chromatin domains and delineation of mechanisms of their formation in animal cells.
Collapse
Affiliation(s)
- Jesse R Dixon
- Peptide Biology Lab and the Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - David U Gorkin
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA; University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, and Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA.
| |
Collapse
|
18
|
Ishihara K, Nakamoto M, Nakao M. DNA methylation-independent removable insulator controls chromatin remodeling at the HOXA locus via retinoic acid signaling. Hum Mol Genet 2017; 25:5383-5394. [PMID: 27798106 DOI: 10.1093/hmg/ddw354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/12/2016] [Indexed: 11/14/2022] Open
Abstract
Chromatin insulators partition the genome into functional units to control gene expression, particularly in complex chromosomal regions. The CCCTC-binding factor (CTCF) is an insulator-binding protein that functions in transcriptional regulation and higher-order chromatin formation. Variable CTCF-binding sites have been identified to be cell type-specific partly due to differential DNA methylation. Here, we show that DNA methylation-independent removable CTCF insulator is responsible for retinoic acid (RA)-mediated higher-order chromatin remodeling in the human HOXA gene locus. Detailed chromatin analysis characterized multiple CTCF-enriched sites and RA-responsive enhancers at this locus. These regulatory elements and transcriptionally silent HOXA genes are closely positioned under basal conditions. Notably, upon RA signaling, the RAR/RXR transcription factor induced loss of adjacent CTCF binding and changed the higher-order chromatin conformation of the overall locus. Targeted disruption of a CTCF site by genome editing with zinc finger nucleases and CRISPR/Cas9 system showed that the site is required for chromatin conformations that maintain the initial associations among insulators, enhancers and promoters. The results indicate that the initial chromatin conformation affects subsequent RA-induced HOXA gene activation. Our study uncovers that a removable insulator spatiotemporally switches higher-order chromatin and multiple gene activities via cooperation of CTCF and key transcription factors.
Collapse
Affiliation(s)
- Ko Ishihara
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutionary Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masafumi Nakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutionary Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
19
|
Abstract
Acute Myeloid Leukemia (AML) is a hematologic malignancy with a poor prognosis. Recent genome-wide sequencing studies have identified frequent mutations in genes encoding members of the cohesin complex. Mutations in cohesin contribute to myeloid malignancies by conferring enhanced self-renewal of hematopoietic stem and progenitor cells but the mechanisms behind this phenotype have not been fully elucidated. Of note, cohesin mutations are highly prevalent in acute megakaryocytic leukemia associated with Down syndrome (DS-AMKL), where they occur in over half of patients. Evidence suggests that cohesin mutations alter gene expression through changes in chromatin accessibility and/or aberrant targeting of epigenetic complexes. In this review we discuss the pathogenic mechanisms by which cohesin mutations contribute to myeloid malignancies.
Collapse
Affiliation(s)
- Joseph B. Fisher
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Maureen McNulty
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Michael J. Burke
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John D. Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Sridhar Rao
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
20
|
Fisher JB, Peterson J, Reimer M, Stelloh C, Pulakanti K, Gerbec ZJ, Abel AM, Strouse JM, Strouse C, McNulty M, Malarkannan S, Crispino JD, Milanovich S, Rao S. The cohesin subunit Rad21 is a negative regulator of hematopoietic self-renewal through epigenetic repression of Hoxa7 and Hoxa9. Leukemia 2017; 31:712-719. [PMID: 27554164 PMCID: PMC5332284 DOI: 10.1038/leu.2016.240] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Acute myelogenous leukemia (AML) is a high-risk hematopoietic malignancy caused by a variety of mutations, including genes encoding the cohesin complex. Recent studies have demonstrated that reduction in cohesin complex levels leads to enhanced self-renewal in hematopoietic stem and progenitors (HSPCs). We sought to delineate the molecular mechanisms by which cohesin mutations promote enhanced HSPC self-renewal as this represents a critical initial step during leukemic transformation. We verified that RNAi against the cohesin subunit Rad21 causes enhanced self-renewal of HSPCs in vitro through derepression of polycomb repressive complex 2 (PRC2) target genes, including Hoxa7 and Hoxa9. Importantly, knockdown of either Hoxa7 or Hoxa9 suppressed self-renewal, implying that both are critical downstream effectors of reduced cohesin levels. We further demonstrate that the cohesin and PRC2 complexes interact and are bound in close proximity to Hoxa7 and Hoxa9. Rad21 depletion resulted in decreased levels of H3K27me3 at the Hoxa7 and Hoxa9 promoters, consistent with Rad21 being critical to proper gene silencing by recruiting the PRC2 complex. Our data demonstrates that the cohesin complex regulates PRC2 targeting to silence Hoxa7 and Hoxa9 and negatively regulate self-renewal. Our studies identify a novel epigenetic mechanism underlying leukemogenesis in AML patients with cohesin mutations.
Collapse
Affiliation(s)
- Joseph B. Fisher
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI
| | | | - Michael Reimer
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Cary Stelloh
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI
| | - Kirthi Pulakanti
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI
| | - Zachary J. Gerbec
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Alex M. Abel
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Maureen McNulty
- Northwestern University Division of Hematology/Oncology, Chicago, IL
| | - Subramaniam Malarkannan
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - John D. Crispino
- Northwestern University Division of Hematology/Oncology, Chicago, IL
| | - Samuel Milanovich
- Sanford Research Center and University of South Dakota Sanford School of Medicine, Sioux Falls, SD
| | - Sridhar Rao
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
21
|
Wang XQD, Dostie J. Chromosome folding and its regulation in health and disease. Curr Opin Genet Dev 2016; 43:23-30. [PMID: 27940207 DOI: 10.1016/j.gde.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 12/23/2022]
Abstract
There are many ways in which cells may not adequately behave or respond to their environment, and the molecular mechanisms leading to these defects are as diverse as they are many. In this review, we report on how spatial chromatin organization contributes to the proper expression of genes, relating how CTCF-one of its main architects-contributes to gene regulation. We also touch on the emerging role of long noncoding RNAs in shaping chromatin organization and activity. The HOX gene clusters have been used as paradigm in the study of various biological pathways, and the overview we provide gives emphasis to what research on these loci has revealed about chromatin architecture and its regulation in the control of gene expression.
Collapse
Affiliation(s)
- Xue Qing David Wang
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, 3655 Promenade Sir-William-Osler, Room 815A, Montréal, Québec, Canada H3G1Y6
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, 3655 Promenade Sir-William-Osler, Room 815A, Montréal, Québec, Canada H3G1Y6.
| |
Collapse
|
22
|
Labade AS, Karmodiya K, Sengupta K. HOXA repression is mediated by nucleoporin Nup93 assisted by its interactors Nup188 and Nup205. Epigenetics Chromatin 2016; 9:54. [PMID: 27980680 PMCID: PMC5135769 DOI: 10.1186/s13072-016-0106-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background The nuclear pore complex (NPC) mediates nuclear transport of RNA and proteins into and out of the nucleus. Certain nucleoporins have additional functions in chromatin organization and transcription regulation. Nup93 is a scaffold nucleoporin at the nuclear pore complex which is associated with human chromosomes 5, 7 and 16 and with the promoters of the HOXA gene as revealed by ChIP-on-chip studies using tiling microarrays for these chromosomes. However, the functional consequences of the association of Nup93 with HOXA is unknown. Results Here, we examined the association of Nup93 with the HOXA gene cluster and its consequences on HOXA gene expression in diploid colorectal cancer cells (DLD1). Nup93 showed a specific enrichment ~1 Kb upstream of the transcription start site of each of the HOXA1, HOXA3 and HOXA5 promoters, respectively. Furthermore, the association of Nup93 with HOXA was assisted by its interacting partners Nup188 and Nup205. The depletion of the Nup93 sub-complex significantly upregulated HOXA gene expression levels. However, expression levels of a control gene locus (GLCCI1) on human chromosome 7 were unaffected. Three-dimensional fluorescence in situ hybridization (3D-FISH) analyses revealed that the depletion of the Nup93 sub-complex (but not Nup98) disengages the HOXA gene locus from the nuclear periphery, suggesting a potential role for Nup93 in tethering and repressing the HOXA gene cluster. Consistently, Nup93 knockdown increased active histone marks (H3K9ac), decreased repressive histone marks (H3K27me3) on the HOXA1 promoter and increased transcription elongation marks (H3K36me3) within the HOXA1 gene. Moreover, the combined depletion of Nup93 and CTCF (a known organizer of HOXA gene cluster) but not Nup93 alone, significantly increased GLCCI1 gene expression levels. Taken together, this suggests a novel role for Nup93 and its interactors in repressing the HOXA gene cluster. Conclusions This study reveals that the nucleoporin Nup93 assisted by its interactors Nup188 and Nup205 mediates the repression of HOXA gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0106-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay S Labade
- Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008 India
| | - Krishanpal Karmodiya
- Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008 India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008 India
| |
Collapse
|
23
|
Stelloh C, Reimer MH, Pulakanti K, Blinka S, Peterson J, Pinello L, Jia S, Roumiantsev S, Hessner MJ, Milanovich S, Yuan GC, Rao S. The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing. Epigenetics Chromatin 2016; 9:14. [PMID: 27087855 PMCID: PMC4832553 DOI: 10.1186/s13072-016-0063-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/23/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The cohesin complex consists of multiple core subunits that play critical roles in mitosis and transcriptional regulation. The cohesin-associated protein Wapal plays a central role in off-loading cohesin to facilitate sister chromatid separation, but its role in regulating mammalian gene expression is not understood. We used embryonic stem cells as a model, given that the well-defined transcriptional regulatory circuits were established through master transcription factors and epigenetic pathways that regulate their ability to maintain a pluripotent state. RESULTS RNAi-mediated depletion of Wapal causes a loss of pluripotency, phenocopying loss of core cohesin subunits. Using chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq), we determine that Wapal occupies genomic sites distal to genes in combination with CTCF and core cohesin subunits such as Rad21. Interestingly, genomic sites occupied by Wapal appear enriched for cohesin, implying that Wapal does not off-load cohesin at regions it occupies. Wapal depletion induces derepression of Polycomb group (PcG) target genes without altering total levels of Polycomb-mediated histone modifications, implying that PcG enzymatic activity is preserved. By integrating ChIP-seq and gene expression changes data, we identify that Wapal binding is enriched at the promoters of PcG-silenced genes and is required for proper Polycomb repressive complex 2 (PRC2) recruitment. Lastly, we demonstrate that Wapal is required for the interaction of a distal cis-regulatory element (CRE) with the c-Fos promoter. CONCLUSIONS Collectively, this work indicates that Wapal plays a critical role in silencing of PcG target genes through the interaction of distal CREs with promoters.
Collapse
Affiliation(s)
- Cary Stelloh
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Michael H Reimer
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI USA
| | - Kirthi Pulakanti
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Steven Blinka
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI USA
| | - Jonathan Peterson
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Luca Pinello
- Dana Farber Cancer Institute, Harvard School of Public Health, Boston, MA USA
| | - Shuang Jia
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI USA
| | - Sergei Roumiantsev
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA USA
| | - Martin J Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI USA
| | - Samuel Milanovich
- Sanford Research Center, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Guo-Cheng Yuan
- Dana Farber Cancer Institute, Harvard School of Public Health, Boston, MA USA
| | - Sridhar Rao
- Blood Research Institute, BloodCenter of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53226 USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
24
|
Ali T, Renkawitz R, Bartkuhn M. Insulators and domains of gene expression. Curr Opin Genet Dev 2016; 37:17-26. [PMID: 26802288 DOI: 10.1016/j.gde.2015.11.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/07/2023]
Abstract
The genomic organization into active and inactive chromatin domains imposes specific requirements for having domain boundaries to prohibit interference between the opposing activities of neighbouring domains. These boundaries provide an insulator function by binding architectural proteins that mediate long-range interactions. Among these, CTCF plays a prominent role in establishing chromatin loops (between pairs of CTCF binding sites) through recruiting cohesin. CTCF-mediated long-range interactions are integral for a multitude of topological features of interphase chromatin, such as the formation of topologically associated domains, domain insulation, enhancer blocking and even enhancer function.
Collapse
Affiliation(s)
- Tamer Ali
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, D35392 Giessen, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, D35392 Giessen, Germany.
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, D35392 Giessen, Germany
| |
Collapse
|
25
|
Stein C, Nötzold RR, Riedl S, Bouchard C, Bauer UM. The Arginine Methyltransferase PRMT6 Cooperates with Polycomb Proteins in Regulating HOXA Gene Expression. PLoS One 2016; 11:e0148892. [PMID: 26848759 PMCID: PMC4746130 DOI: 10.1371/journal.pone.0148892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyses asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a), which has been shown to impede the deposition of histone H3 lysine 4 trimethylation (H3K4me3) by blocking the binding and activity of the MLL1 complex. Importantly, the genomic occurrence of H3R2me2a has been found to coincide with histone H3 lysine 27 trimethylation (H3K27me3), a repressive histone mark generated by the Polycomb repressive complex 2 (PRC2). Therefore, we investigate here a putative crosstalk between PRMT6- and PRC-mediated repression in a cellular model of neuronal differentiation. We show that PRMT6 and subunits of PRC2 as well as PRC1 are bound to the same regulatory regions of rostral HOXA genes and that they control the differentiation-associated activation of these genes. Furthermore, we find that PRMT6 interacts with subunits of PRC1 and PRC2 and that depletion of PRMT6 results in diminished PRC1/PRC2 and H3K27me3 occupancy and in increased H3K4me3 levels at these target genes. Taken together, our data uncover a novel, additional mechanism of how PRMT6 contributes to gene repression by cooperating with Polycomb proteins.
Collapse
Affiliation(s)
- Claudia Stein
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - René Reiner Nötzold
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Riedl
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Atrian F, Lelièvre SA. Mining the epigenetic landscape of tissue polarity in search of new targets for cancer therapy. Epigenomics 2015; 7:1313-25. [PMID: 26646365 DOI: 10.2217/epi.15.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The epigenetic nature of cancer encourages the development of inhibitors of epigenetic pathways. Yet, the clinical use for solid tumors of approved epigenetic drugs is meager. We argue that this situation might improve upon understanding the coinfluence between epigenetic pathways and tissue architecture. We present emerging information on the epigenetic control of the polarity axis, a central feature of epithelial architecture created by the orderly distribution of multiprotein complexes at cell-cell and cell-extracellular matrix contacts and altered upon cancer onset (with apical polarity loss), invasive progression (with basolateral polarity loss) and metastatic development (with basoapical polarity imbalance). This information combined with the impact of polarity-related proteins on epigenetic mechanisms of cancer enables us to envision how to guide the choice of drugs specific for distinct epigenetic modifiers, in order to halt cancer development and counter the consequences of polarity alterations.
Collapse
Affiliation(s)
- Farzaneh Atrian
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47906, USA
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47906, USA
| |
Collapse
|
27
|
Liu GY, Zhao GN, Chen XF, Hao DL, Zhao X, Lv X, Liu DP. The long noncoding RNA Gm15055 represses Hoxa gene expression by recruiting PRC2 to the gene cluster. Nucleic Acids Res 2015; 44:2613-27. [PMID: 26615201 PMCID: PMC4824075 DOI: 10.1093/nar/gkv1315] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/11/2015] [Indexed: 11/17/2022] Open
Abstract
The Hox genes encode transcription factors that determine embryonic pattern formation. In embryonic stem cells, the Hox genes are silenced by PRC2. Recent studies have reported a role for long noncoding RNAs in PRC2 recruitment in vertebrates. However, little is known about how PRC2 is recruited to the Hox genes in ESCs. Here, we used stable knockdown and knockout strategies to characterize the function of the long noncoding RNA Gm15055 in the regulation of Hoxa genes in mouse ESCs. We found that Gm15055 is highly expressed in mESCs and its expression is maintained by OCT4. Gm15055 represses Hoxa gene expression by recruiting PRC2 to the cluster and maintaining the H3K27me3 modification on Hoxa promoters. A chromosome conformation capture assay revealed the close physical association of the Gm15055 locus to multiple sites at the Hoxa gene cluster in mESCs, which may facilitate the in cis targeting of Gm15055 RNA to the Hoxa genes. Furthermore, an OCT4-responsive positive cis-regulatory element is found in the Gm15055 gene locus, which potentially regulates both Gm15055 itself and the Hoxa gene activation. This study suggests how PRC2 is recruited to the Hoxa locus in mESCs, and implies an elaborate mechanism for Hoxa gene regulation in mESCs.
Collapse
Affiliation(s)
- Guo-You Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| | - Guang-Nian Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiao-Feng Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| | - De-Long Hao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiang Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiang Lv
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
28
|
Mustafa M, Lee JY, Kim MH. CTCF negatively regulates HOXA10 expression in breast cancer cells. Biochem Biophys Res Commun 2015; 467:828-34. [PMID: 26478432 DOI: 10.1016/j.bbrc.2015.10.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 01/13/2023]
Abstract
HOX genes not only play important roles in defining body patterning during embryonic development, but also control numerous cellular events in adult cells. Deregulated HOX gene expression in different cancers including breast cancer is now increasingly being reported. Given that human HOXA cluster is marked with several CTCF binding sites, we investigated whether the presence of CTCF is associated directly with expression of HOXA genes in breast cancer cells. Several HOX genes, such as HOXA4, HOXA5 and HOXA10, were deregulated by CTCF overexpression and knockdown in MCF-7 cells. Among these genes, HOXA10 is an emerging tumor suppressor for its role in activation of p53 and in countering tumorigenesis in breast cancer. Here we provided evidences that CTCF functions as a negative regulator of HOXA10 in breast cancer cells. The putative promoter region of HOXA10 lies between 5.3 and 6.1 kb upstream of its start codon and its promoter activity was negatively regulated by CTCF. Together with in-silico analysis and in vitro mutation assay we identified a 20 bp CTCF binding motif flanking with core promoter element of HOXA10. HOXA10 promoter region was kept inactivated by maintaining H3K27me3 inactivation marks in the presence of CTCF. Epigenetic silencing of HOXA10 by CTCF in breast cancer cells may contribute towards tumorigenesis by decreasing apoptosis and promoting metastasis.
Collapse
Affiliation(s)
- Muhammad Mustafa
- Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea.
| |
Collapse
|
29
|
Wang X, Xu M, Zhao G, Liu G, Hao D, Lv X, Liu D. Exploring CTCF and cohesin related chromatin architecture at HOXA gene cluster in primary human fibroblasts. SCIENCE CHINA. LIFE SCIENCES 2015; 58:860-6. [PMID: 26376810 DOI: 10.1007/s11427-015-4913-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/02/2015] [Indexed: 01/06/2023]
Abstract
Spatial expression patterns of homeobox (HOX) genes delineate positional identity of primary fibroblasts from different topographic sites. The molecular mechanism underlying the establishing or maintaining of HOX gene expression pattern remains an attractive developmental issue to be addressed. Our previous work suggested a critical role of CTCF/cohesin-mediated higher- order chromatin structure in RA-induced HOXA activation in human teratocarcinoma NT2/D1 cells. This study investigated the recruitment of CTCF and cohesin, and the higher-order chromatin structure of the HOXA locus in fetal lung and adult foreskin fibroblasts, which display complementary HOXA gene expression patterns. Chromatin contacts between the CTCF-binding sites were observed with lower frequency in human foreskin fibroblasts. This observation is consistent with the lower level of cohesin recruitment and 5' HOXA gene expression in the same cells. We also showed that CTCF-binding site A56 (CBSA56) related chromatin structures exhibit the most notable changes in between the two types of cell, and hence may stand for one of the key CTCF-binding sites for cell-type specific chromatin structure organization. Together, these results imply that CTCF/cohesin coordinates HOXA cluster higher-order chromatin structure and expression during development, and provide insight into the relationship between cell-type specific chromatin organization and the spatial collinearity.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Miao Xu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - GuangNian Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - GuoYou Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - DeLong Hao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiang Lv
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - DePei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
30
|
Srivastava S, Dhawan J, Mishra RK. Epigenetic mechanisms and boundaries in the regulation of mammalian Hox clusters. Mech Dev 2015; 138 Pt 2:160-169. [PMID: 26254900 DOI: 10.1016/j.mod.2015.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/07/2023]
Abstract
Hox gene expression imparts segment identity to body structures along the anterior-posterior axis and is tightly governed by higher order chromatin mechanisms. Chromatin regulatory features of the homeotic complex are best defined in Drosophila melanogaster, where multiple cis-regulatory elements have been identified that ensure collinear Hox gene expression patterns in accordance with their genomic organization. Recent studies focused on delineating the epigenetic features of the vertebrate Hox clusters have helped reveal their dynamic chromatin organization and its impact on gene expression. Enrichment for the 'activating' H3K4me3 and 'repressive' H3K27me3 histone modifications is a particularly strong read-out for transcriptional status and correlates well with the evidence for chromatin loop domain structures and stage specific topological changes at these loci. However, it is not clear how such distinct domains are imposed and regulated independent of each other. Comparative analysis of the chromatin structure and organization of the homeotic gene clusters in fly and mammals is increasingly revealing the functional conservation of chromatin mediated mechanisms. Here we discuss the case for interspersed boundary elements existing within mammalian Hox clusters along with their possible roles and mechanisms of action. Recent studies suggest a role for factors other than the well characterized vertebrate boundary factor CTCF, such as the GAGA binding factor (GAF), in maintaining chromatin domains at the Hox loci. We also present data demonstrating how such regulatory elements may be involved in organizing higher order structure and demarcating active domains of gene expression at the mammalian Hox clusters.
Collapse
Affiliation(s)
- Surabhi Srivastava
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
31
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|