1
|
Pal M, Schauer T, Burton A, Nakatani T, Pecori F, Hernández-Giménez A, Nadelson I, Marti-Renom MA, Torres-Padilla ME. The establishment of nuclear organization in mouse embryos is orchestrated by multiple epigenetic pathways. Cell 2025:S0092-8674(25)00396-4. [PMID: 40273908 DOI: 10.1016/j.cell.2025.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/07/2024] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
The folding of the genome in the 3D nuclear space is fundamental for regulating all DNA-related processes. The association of the genome with the nuclear lamina into lamina-associated domains (LADs) represents the earliest feature of nuclear organization during development. Here, we performed a gain-of-function screen in mouse embryos to obtain mechanistic insights. We find that perturbations impacting histone H3 modifications, heterochromatin, and histone content are crucial for the establishment of nuclear architecture in zygotes and/or 2-cell-stage embryos. Notably, some perturbations exerted differential effects on zygotes versus 2-cell-stage embryos. Moreover, embryos with disrupted LADs can rebuild nuclear architecture at the 2-cell stage, indicating that the initial establishment of LADs in zygotes might be dispensable for early development. Our findings provide valuable insights into the functional interplay between chromatin and structural components of the nucleus that guide genome-lamina interactions during the earliest developmental stages.
Collapse
Affiliation(s)
- Mrinmoy Pal
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | | | - Federico Pecori
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | | | - Iliya Nadelson
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Marc A Marti-Renom
- National Center for Genome Analysis, Baldiri Reixac 4, 08028 Barcelona, Spain; Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany; Faculty of Biology, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
2
|
Kamel D, Sookdeo A, Ikenouchi A, Zhong H. Fission yeast essential nuclear pore protein Nup211 regulates the expression of genes involved in cytokinesis. PLoS One 2024; 19:e0312095. [PMID: 39666777 PMCID: PMC11637317 DOI: 10.1371/journal.pone.0312095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/01/2024] [Indexed: 12/14/2024] Open
Abstract
Nuclear pore proteins control nucleocytoplasmic transport; however, certain nucleoporins play regulatory roles in activities such as transcription and chromatin organization. The fission yeast basket nucleoporin Nup211 is implicated in mRNA export and is essential for cell viability. Nup211 preferentially associates with heterochromatin, however, it is unclear whether it plays a role in regulating transcription. To better understand its functions, we constructed a nup211 "shut-off" strain and observed that Nup211 depletion led to severe defects in cell cycle progression, including septation and cytokinesis. Using RNA-Seq and RT-qPCR, we revealed that loss of Nup211 significantly altered the mRNA levels of a set of genes crucial for cell division. Using domain analysis and CRISPR/cas9 technology, we determined that the first 655 residues of Nup211 are sufficient for viability. This truncated protein was detected at the nuclear periphery. Furthermore, exogenous expression of this domain in nup211 shut-off cells effectively restored both cell morphology and transcript abundance for some selected genes. Our findings unveil a novel role for Nup211 in regulating gene expression.
Collapse
Affiliation(s)
- Domenick Kamel
- Department of Biological Sciences, Hunter College, The City University of New York, New York, NY, United States of America
- The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Ayisha Sookdeo
- The Graduate Center, The City University of New York, New York, NY, United States of America
- Department of Science and Mathematics, Guttman Community College, The City University of New York, New York, NY, United States of America
| | - Ayana Ikenouchi
- Department of Biological Sciences, Hunter College, The City University of New York, New York, NY, United States of America
| | - Hualin Zhong
- Department of Biological Sciences, Hunter College, The City University of New York, New York, NY, United States of America
- The Graduate Center, The City University of New York, New York, NY, United States of America
| |
Collapse
|
3
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
4
|
Long T, Wu W, Wang X, Chen M. TPR is a prognostic biomarker and potential therapeutic target associated with immune infiltration in hepatocellular carcinoma. Mol Clin Oncol 2024; 20:27. [PMID: 38414509 PMCID: PMC10895467 DOI: 10.3892/mco.2024.2725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 02/29/2024] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related mortality worldwide and hepatocellular carcinoma (HCC) is the most common primary liver cancer. In the present study, it was demonstrated that translocated promoter region (TPR) was upregulated in tumor tissues and associated with prognosis and immune infiltration in HCC. The clinical outcome of patients with HCC with aberrant expression of TPR was examined using multiple databases, including Gene Expression Omnibus, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression, Kaplan-Meier (KM) Plotter and Xiantao tool. The clinicopathologic characteristics of patients from TCGA database that were associated with overall survival were assessed using Cox regression and KM analysis. The potential hallmarks associated with TPR expression were further predicted by Metascape and Gene Set Enrichment Analysis, and the relationship between TPR and immune infiltration was explored using the Tumor-Immune System Interactions Database and the Tumor Immune Estimation Resource. The results demonstrated that TPR expression was higher in HCC and its overexpression was associated with a worse prognosis, alongside a correlation with several clinical features. Furthermore, cell differentiation, a prospective new hallmark of cancer, was differentially enriched in the high TPR expression phenotype pathway. Moreover, TPR may also modulate the tumor immune microenvironment as it was significantly associated with immunoregulators and chemokines, as well as different tumor infiltration immune cells. According to the in vitro experiments, TPR silencing inhibited the phosphorylation of AKT and the proliferation of HCC cells. In summary, TPR may be a new marker and target for HCC therapy.
Collapse
Affiliation(s)
- Teng Long
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Weijie Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Minshan Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
5
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
6
|
Wang Y, Guo Z, Tian Y, Cong L, Zheng Y, Wu Z, Shan G, Xia Y, Zhu Y, Li X, Song Y. MAPK1 promotes the metastasis and invasion of gastric cancer as a bidirectional transcription factor. BMC Cancer 2023; 23:959. [PMID: 37817112 PMCID: PMC10563293 DOI: 10.1186/s12885-023-11480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The Mitogen-activated protein kinase 1 (MAPK1) has both independent functions of phosphorylating histones as a kinase and directly binding the promoter regions of genes to regulate gene expression as a transcription factor. Previous studies have identified elevated expression of MAPK1 in human gastric cancer, which is associated with its role as a kinase, facilitating the migration and invasion of gastric cancer cells. However, how MAPK1 binds to its target genes as a transcription factor and whether it modulates related gene expressions in gastric cancer remains unclear. RESULTS Here, we integrated biochemical assays (protein interactions and chromatin immunoprecipitation (ChIP)), cellular analysis assays (cell proliferation and migration), RNA sequencing, ChIP sequencing, and clinical analysis to investigate the potential genomic recognition patterns of MAPK1 in a human gastric adenocarcinoma cell-line (AGS) and to uncover its regulatory effect on gastric cancer progression. We confirmed that MAPK1 promotes AGS cells invasion and migration by regulating the target genes in different directions, up-regulating seven target genes (KRT13, KRT6A, KRT81, MYH15, STARD4, SYTL4, and TMEM267) and down-regulating one gene (FGG). Among them, five genes (FGG, MYH15, STARD4, SYTL4, and TMEM267) were first associated with cancer procession, while the other three (KRT81, KRT6A, and KRT13) have previously been confirmed to be related to cancer metastasis and migration. CONCLUSION Our data showed that MAPK1 can bind to the promoter regions of these target genes to control their transcription as a bidirectional transcription factor, promoting AGS cell motility and invasion. Our research has expanded the understanding of the regulatory roles of MAPK1, enriched our knowledge of transcription factors, and provided novel candidates for cancer therapeutics.
Collapse
Affiliation(s)
- Yue Wang
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zheng Guo
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Yueli Tian
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liang Cong
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yulu Zheng
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Zhiyuan Wu
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Guangle Shan
- Department of Bioinformatics, Thrive Bioresearch, Beijing, China
| | - Yao Xia
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yahong Zhu
- Department of Bioinformatics, Thrive Bioresearch, Beijing, China
| | - Xingang Li
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.
| | - Ying Song
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Rasl J, Grusanovic J, Klimova Z, Caslavsky J, Grousl T, Novotny J, Kolar M, Vomastek T. ERK2 signaling regulates cell-cell adhesion of epithelial cells and enhances growth factor-induced cell scattering. Cell Signal 2022; 99:110431. [PMID: 35933033 DOI: 10.1016/j.cellsig.2022.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
The ERK signaling pathway, consisting of core protein kinases Raf, MEK and effector kinases ERK1/2, regulates various biological outcomes such as cell proliferation, differentiation, apoptosis, or cell migration. Signal transduction through the ERK signaling pathway is tightly controlled at all levels of the pathway. However, it is not well understood whether ERK pathway signaling can be modulated by the abundance of ERK pathway core kinases. In this study, we investigated the effects of low-level overexpression of the ERK2 isoform on the phenotype and scattering of cuboidal MDCK epithelial cells growing in discrete multicellular clusters. We show that ERK2 overexpression reduced the vertical size of lateral membranes that contain cell-cell adhesion complexes. Consequently, ERK2 overexpressing cells were unable to develop cuboidal shape, remained flat with increased spread area and intercellular adhesive contacts were present only on the basal side. Interestingly, ERK2 overexpression was not sufficient to increase phosphorylation of multiple downstream targets including transcription factors and induce global changes in gene expression, namely to increase the expression of pro-migratory transcription factor Fra1. However, ERK2 overexpression enhanced HGF/SF-induced cell scattering as these cells scattered more rapidly and to a greater extent than parental cells. Our results suggest that an increase in ERK2 expression primarily reduces cell-cell cohesion and that weakened intercellular adhesion synergizes with upstream signaling in the conversion of the multicellular epithelium into single migrating cells. This mechanism may be clinically relevant as the analysis of clinical data revealed that in one type of cancer, pancreatic adenocarcinoma, ERK2 overexpression correlates with a worse prognosis.
Collapse
Affiliation(s)
- Jan Rasl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josipa Grusanovic
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Zuzana Klimova
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Josef Caslavsky
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Tomas Grousl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Jiri Novotny
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 160 00 Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Tomas Vomastek
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic.
| |
Collapse
|
8
|
Fernández-Barroso MÁ, García-Casco JM, Núñez Y, Ramírez-Hidalgo L, Matos G, Muñoz M. Understanding the role of myoglobin content in Iberian pigs fattened in an extensive system through analysis of the transcriptome profile. Anim Genet 2022; 53:352-367. [PMID: 35355298 PMCID: PMC9314091 DOI: 10.1111/age.13195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
Meat color is the first perceived sensory feature and one of the most important quality traits. Myoglobin is the main pigment in meat, giving meat its characteristic cherry‐red color, highly appreciated by the consumers. In the current study, we used the RNA‐seq technique to characterize the longissimus dorsi muscle transcriptome in two groups of Iberian pigs with divergent breeding values for myoglobin content. As a result, we identified 57 differentially expressed genes and transcripts (DEGs). Moreover, we have validated the RNA‐seq expression of a set of genes by quantitative PCR (qPCR). Functional analyses revealed an enrichment of DEGs in biological processes related to oxidation (HBA1), lipid metabolism (ECH1, PLA2G10, PLD2), inflammation (CHST1, CD209, PLA2G10), and immune system (CD209, MX2, LGALS3, LGALS9). The upstream analysis showed a total of five transcriptional regulatory factors and eight master regulators that could moderate the expression of some DEGs, highlighting SPI1 and MAPK1, since they regulate the expression of DEGs involved in immune defense and inflammatory processes. Iberian pigs with high myoglobin content also showed higher expression of the HBA1 gene and both molecules, myoglobin and hemoglobin, have been described as having a protective effect against oxidative and inflammatory processes. Therefore, the HBA1 gene is a very promising candidate gene to harbor polymorphisms underlying myoglobin content, whereby further studies should be carried out for its potential use in an Iberian pig selection program.
Collapse
Affiliation(s)
- Miguel Ángel Fernández-Barroso
- Centro Nacional de I+D del Cerdo Ibérico, INIA-CSIC, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Juan María García-Casco
- Centro Nacional de I+D del Cerdo Ibérico, INIA-CSIC, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | | | - Gema Matos
- Sánchez Romero Carvajal-Jabugo, SRC, Huelva, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| |
Collapse
|
9
|
ERK inhibition in glioblastoma is associated with autophagy activation and tumorigenesis suppression. J Neurooncol 2021; 156:123-137. [PMID: 34797524 DOI: 10.1007/s11060-021-03896-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Autophagy-dependent tumorigenic growth is one of the most commonly reported molecular mechanisms in glioblastoma (GBM) progression. However, the mechanistic correlation between autophagy and GBM is still largely unexplored, especially the roles of autophagy-related genes involved in GBM oncogenesis. In this study, we aimed to explore the genetic alterations that interact with both autophagic activity and GBM tumorigenesis, and to investigate the molecular mechanisms of autophagy involved in GBM cell death and survival. METHOD For this purpose, we systematically explored the alterations of autophagic molecules at the genome level in human GBM samples through deep RNA sequencing. The effect of genetic and pharmacologic inhibition of ERK on GBM growth in vitro and in vivo was researched. An image-based tracking analysis of LC3 using mCherry-eGFP-LC3 plasmid, and transmission electron microscopy were utilized to monitor autophagic flux. Immunoblot analysis was used to measure the related proteins. RESULTS MAPK ERK expression was identified as one of the most probable autophagy-related transcriptional responses during GBM growth. The genetic and pharmacologic inhibition of ERK in vivo and in vitro led to cell death, demonstrating its critical role for GBM proliferation and survival. To our surprise, autophagic activities were excessively activated and resulted in cytodestructive effects on GBM cells upon ERK inhibitor treatment. Furthermore, based on the observation of downregulation of mTOR signaling, we speculated the ERK inhibitor-induced GBM cells death might depend on mTOR-mediated pathway, leading to autophagy dysregulation. Accordingly, the in vivo and in vitro experiments revealed that the mTOR inhibitor rapamycin further increased cell mortality and exhibited enhanced antitumor effect on GBM cells when co-treated with the ERK inhibitor. CONCLUSION Our data creatively demonstrated that the autophagy-related regulator ERK maintains autophagic activity during GBM tumorigenesis via mTOR signaling pathway. The pharmacologic inhibition of both mTOR and ERK signaling exhibited synergistic therapeutic effect on GBM growth in vivo and in vitro, which has certain novelty and may provide a potential therapeutic approach for GBM treatment in the future.
Collapse
|
10
|
A New Symmetrical Thiazolidinedione Derivative: In Silico Design, Synthesis, and In Vivo Evaluation on a Streptozotocin-Induced Rat Model of Diabetes. Processes (Basel) 2021. [DOI: 10.3390/pr9081294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
By activating PPAR-γ, thiazolidinediones normalize glucose levels in animal models of type 2 diabetes and in patients with this pathology. The aim of the present study was to analyze 219 new derivatives in silico and select the best for synthesis, to be evaluated for acute oral toxicity in female rats and for control of diabetes-related parameters in a rat model of streptozotocin-induced diabetes. The best compound was chosen based on pharmacokinetic, pharmacodynamic, and toxicological parameters obtained in silico and binding orientation observed by docking simulations on PPAR-γ. Compound 1G was synthesized by a quick and easy Knoevenagel condensation. Acute oral toxicity was found at a dose greater than 2000 mg/Kg. Compound 1G apparently produces therapeutic effects similar to those of pioglitazone, decreasing glycaemia and triglyceride levels in diabetic animals, without liver damage. Moreover, it did not cause a significant weight gain and tended to reduce polydipsia and polyphagia, while diminishing systemic inflammation related to TNF-α and IL-6. It lowered the level of endogenous antioxidant molecules such as reduced glutathione and glutathione reductase. In conclusion, 1G may be a candidate for further testing as an euglycemic agent capable of preventing the complications of diabetes.
Collapse
|
11
|
Nucleoporin TPR Affects C2C12 Myogenic Differentiation via Regulation of Myh4 Expression. Cells 2021; 10:cells10061271. [PMID: 34063931 PMCID: PMC8224082 DOI: 10.3390/cells10061271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022] Open
Abstract
The nuclear pore complex (NPC) has emerged as a hub for the transcriptional regulation of a subset of genes, and this type of regulation plays an important role during differentiation. Nucleoporin TPR forms the nuclear basket of the NPC and is crucial for the enrichment of open chromatin around NPCs. TPR has been implicated in the regulation of transcription; however, the role of TPR in gene expression and cell differentiation has not been described. Here we show that depletion of TPR results in an aberrant morphology of murine proliferating C2C12 myoblasts (MBs) and differentiated C2C12 myotubes (MTs). The ChIP-Seq data revealed that TPR binds to genes linked to muscle formation and function, such as myosin heavy chain (Myh4), myocyte enhancer factor 2C (Mef2C) and a majority of olfactory receptor (Olfr) genes. We further show that TPR, possibly via lysine-specific demethylase 1 (LSD1), promotes the expression of Myh4 and Olfr376, but not Mef2C. This provides a novel insight into the mechanism of myogenesis; however, more evidence is needed to fully elucidate the mechanism by which TPR affects specific myogenic genes.
Collapse
|
12
|
ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. BIOLOGY 2021; 10:biology10040346. [PMID: 33923899 PMCID: PMC8072600 DOI: 10.3390/biology10040346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
Integration of cellular responses to extracellular cues is essential for cell survival and adaptation to stress. Extracellular signal-regulated kinase (ERK) 1 and 2 serve an evolutionarily conserved role for intracellular signal transduction that proved critical for cardiomyocyte homeostasis and cardiac stress responses. Considering the importance of ERK1/2 in the heart, understanding how these kinases operate in both normal and disease states is critical. Here, we review the complexity of upstream and downstream signals that govern ERK1/2-dependent regulation of cardiac structure and function. Particular emphasis is given to cardiomyocyte hypertrophy as an outcome of ERK1/2 activation regulation in the heart.
Collapse
|
13
|
Lee ES, Wolf EJ, Ihn SSJ, Smith HW, Emili A, Palazzo AF. TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Res 2021; 48:11645-11663. [PMID: 33091126 PMCID: PMC7672458 DOI: 10.1093/nar/gkaa919] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022] Open
Abstract
While splicing has been shown to enhance nuclear export, it has remained unclear whether mRNAs generated from intronless genes use specific machinery to promote their export. Here, we investigate the role of the major nuclear pore basket protein, TPR, in regulating mRNA and lncRNA nuclear export in human cells. By sequencing mRNA from the nucleus and cytosol of control and TPR-depleted cells, we provide evidence that TPR is required for the efficient nuclear export of mRNAs and lncRNAs that are generated from short transcripts that tend to have few introns, and we validate this with reporter constructs. Moreover, in TPR-depleted cells reporter mRNAs generated from short transcripts accumulate in nuclear speckles and are bound to Nxf1. These observations suggest that TPR acts downstream of Nxf1 recruitment and may allow mRNAs to leave nuclear speckles and properly dock with the nuclear pore. In summary, our study provides one of the first examples of a factor that is specifically required for the nuclear export of intronless and intron-poor mRNAs and lncRNAs.
Collapse
Affiliation(s)
- Eliza S Lee
- University of Toronto, Department of Biochemistry, Canada
| | - Eric J Wolf
- University of Toronto, Department of Molecular Genetics, Canada
| | - Sean S J Ihn
- University of Toronto, Department of Biochemistry, Canada
| | | | - Andrew Emili
- University of Toronto, Department of Molecular Genetics, Canada.,Boston University School of Medicine, Department of Biochemistry, Boston, MA, USA
| | | |
Collapse
|
14
|
Wigington CP, Roy J, Damle NP, Yadav VK, Blikstad C, Resch E, Wong CJ, Mackay DR, Wang JT, Krystkowiak I, Bradburn DA, Tsekitsidou E, Hong SH, Kaderali MA, Xu SL, Stearns T, Gingras AC, Ullman KS, Ivarsson Y, Davey NE, Cyert MS. Systematic Discovery of Short Linear Motifs Decodes Calcineurin Phosphatase Signaling. Mol Cell 2020; 79:342-358.e12. [PMID: 32645368 DOI: 10.1016/j.molcel.2020.06.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.
Collapse
Affiliation(s)
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Nikhil P Damle
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Vikash K Yadav
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Cecilia Blikstad
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer T Wang
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Su Hyun Hong
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Malika Amyn Kaderali
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, M5S 3H7 ON, Canada
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fullham Road, London SW3 6JB, UK
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Erk1/2 inactivation promotes a rapid redistribution of COP1 and degradation of COP1 substrates. Proc Natl Acad Sci U S A 2020; 117:4078-4087. [PMID: 32041890 DOI: 10.1073/pnas.1913698117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Anthrax lethal toxin (LT) is a protease virulence factor produced by Bacillus anthracis that is required for its pathogenicity. LT treatment causes a rapid degradation of c-Jun protein that follows inactivation of the MEK1/2-Erk1/2 signaling pathway. Here we identify COP1 as the ubiquitin E3 ligase that is essential for LT-induced c-Jun degradation. COP1 knockdown using siRNA prevents degradation of c-Jun, ETV4, and ETV5 in cells treated with either LT or the MEK1/2 inhibitor, U0126. Immunofluorescence staining reveals that COP1 preferentially localizes to the nuclear envelope, but it is released from the nuclear envelope into the nucleoplasm following Erk1/2 inactivation. At baseline, COP1 attaches to the nuclear envelope via interaction with translocated promoter region (TPR), a component of the nuclear pore complex. Disruption of this COP1-TPR interaction, through Erk1/2 inactivation or TPR knockdown, leads to rapid COP1 release from the nuclear envelope into the nucleoplasm where it degrades COP1 substrates. COP1-mediated degradation of c-Jun protein, combined with LT-mediated blockade of the JNK1/2 signaling pathway, inhibits cellular proliferation. This effect on proliferation is reversed by COP1 knockdown and ectopic expression of an LT-resistant MKK7-4 fusion protein. Taken together, this study reveals that the nuclear envelope acts as a reservoir, maintaining COP1 poised for action. Upon Erk1/2 inactivation, COP1 is rapidly released from the nuclear envelope, promoting the degradation of its nuclear substrates, including c-Jun, a critical transcription factor that promotes cellular proliferation. This regulation allows mammalian cells to respond rapidly to changes in extracellular cues and mediates pathogenic mechanisms in disease states.
Collapse
|
16
|
Rempel IL, Steen A, Veenhoff LM. Poor old pores-The challenge of making and maintaining nuclear pore complexes in aging. FEBS J 2020; 287:1058-1075. [PMID: 31912972 PMCID: PMC7154712 DOI: 10.1111/febs.15205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
The nuclear pore complex (NPC) is the sole gateway to the nuclear interior, and its function is essential to all eukaryotic life. Controlling the functionality of NPCs is a tremendous challenge for cells. Firstly, NPCs are large structures, and their complex assembly does occasionally go awry. Secondly, once assembled, some components of the NPC persist for an extremely long time and, as a result, are susceptible to accumulate damage. Lastly, a significant proportion of the NPC is composed of intrinsically disordered proteins that are prone to aggregation. In this review, we summarize how the quality of NPCs is guarded in young cells and discuss the current knowledge on the fate of NPCs during normal aging in different tissues and organisms. We discuss the extent to which current data supports a hypothesis that NPCs are poorly maintained during aging of nondividing cells, while in dividing cells the main challenge is related to the assembly of new NPCs. Our survey of current knowledge points toward NPC quality control as an important node in aging of both dividing and nondividing cells. Here, the loss of protein homeostasis during aging is central and the NPC appears to both be impacted by, and to drive, this process.
Collapse
Affiliation(s)
- Irina L Rempel
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
17
|
Fišerová J, Maninová M, Sieger T, Uhlířová J, Šebestová L, Efenberková M, Čapek M, Fišer K, Hozák P. Nuclear pore protein TPR associates with lamin B1 and affects nuclear lamina organization and nuclear pore distribution. Cell Mol Life Sci 2019; 76:2199-2216. [PMID: 30762072 PMCID: PMC11105453 DOI: 10.1007/s00018-019-03037-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
The organization of the nuclear periphery is crucial for many nuclear functions. Nuclear lamins form dense network at the nuclear periphery and play a substantial role in chromatin organization, transcription regulation and in organization of nuclear pore complexes (NPCs). Here, we show that TPR, the protein located preferentially within the nuclear baskets of NPCs, associates with lamin B1. The depletion of TPR affects the organization of lamin B1 but not lamin A/C within the nuclear lamina as shown by stimulated emission depletion microscopy. Finally, reduction of TPR affects the distribution of NPCs within the nuclear envelope and the effect can be reversed by simultaneous knock-down of lamin A/C or the overexpression of lamin B1. Our work suggests a novel role for the TPR at the nuclear periphery: the TPR contributes to the organization of the nuclear lamina and in cooperation with lamins guards the interphase assembly of nuclear pore complexes.
Collapse
Affiliation(s)
- Jindřiška Fišerová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic.
| | - Miloslava Maninová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Tomáš Sieger
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jana Uhlířová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Lenka Šebestová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Michaela Efenberková
- Microscopy Centre-LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Martin Čapek
- Microscopy Centre-LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Karel Fišer
- CLIP Laboratories, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
- Microscopy Centre-LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
- Division BIOCEV, Institute of Molecular Genetics CAS, v.v.i., Průmyslová 595, Vestec, 252 50, Prague, Czech Republic
| |
Collapse
|
18
|
The Effect of FG-Nup Phosphorylation on NPC Selectivity: A One-Bead-Per-Amino-Acid Molecular Dynamics Study. Int J Mol Sci 2019; 20:ijms20030596. [PMID: 30704069 PMCID: PMC6387328 DOI: 10.3390/ijms20030596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/16/2023] Open
Abstract
Nuclear pore complexes (NPCs) are large protein complexes embedded in the nuclear envelope separating the cytoplasm from the nucleoplasm in eukaryotic cells. They function as selective gates for the transport of molecules in and out of the nucleus. The inner wall of the NPC is coated with intrinsically disordered proteins rich in phenylalanine-glycine repeats (FG-repeats), which are responsible for the intriguing selectivity of NPCs. The phosphorylation state of the FG-Nups is controlled by kinases and phosphatases. In the current study, we extended our one-bead-per-amino-acid (1BPA) model for intrinsically disordered proteins to account for phosphorylation. With this, we performed molecular dynamics simulations to probe the effect of phosphorylation on the Stokes radius of isolated FG-Nups, and on the structure and transport properties of the NPC. Our results indicate that phosphorylation causes a reduced attraction between the residues, leading to an extension of the FG-Nups and the formation of a significantly less dense FG-network inside the NPC. Furthermore, our simulations show that upon phosphorylation, the transport rate of inert molecules increases, while that of nuclear transport receptors decreases, which can be rationalized in terms of modified hydrophobic, electrostatic, and steric interactions. Altogether, our models provide a molecular framework to explain how extensive phosphorylation of FG-Nups decreases the selectivity of the NPC.
Collapse
|
19
|
Yu DS, Weng TH, Hu CY, Wu ZG, Li YH, Cheng LF, Wu NP, Li LJ, Yao HP. Chaperones, Membrane Trafficking and Signal Transduction Proteins Regulate Zaire Ebola Virus trVLPs and Interact With trVLP Elements. Front Microbiol 2018; 9:2724. [PMID: 30483236 PMCID: PMC6240689 DOI: 10.3389/fmicb.2018.02724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/24/2018] [Indexed: 01/19/2023] Open
Abstract
Ebolavirus (EBOV) life cycle involves interactions with numerous host factors, but it remains poorly understood, as does pathogenesis. Herein, we synthesized 65 siRNAs targeting host genes mostly connected with aspects of the negative-sense RNA virus life cycle (including viral entry, uncoating, fusion, replication, assembly, and budding). We produced EBOV transcription- and replication-competent virus-like particles (trVLPs) to mimic the EBOV life cycle. After screening host factors associated with the trVLP life cycle, we assessed interactions of host proteins with trVLP glycoprotein (GP), VP40, and RNA by co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP). The results demonstrate that RNAi silencing with 11 siRNAs (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) decreased the replication efficiency of trVLPs. Co-IP revealed nine candidate host proteins (FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) potentially interacting with trVLP GP, and four (ANXA5, GRP78, HSPA1A, and HSP90AB1) potentially interacting with trVLP VP40. Ch-IP identified nine candidate host proteins (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, MAPK11, MEK2, and NTRK1) interacting with trVLP RNA. This study was based on trVLP and could not replace live ebolavirus entirely; in particular, the interaction between trVLP RNA and host proteins cannot be assumed to be identical in live virus. However, the results provide valuable information for further studies and deepen our understanding of essential host factors involved in the EBOV life cycle.
Collapse
Affiliation(s)
- Dong-Shan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen-Yu Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Gang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan-Hua Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin-Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Su Y, Pelz C, Huang T, Torkenczy K, Wang X, Cherry A, Daniel CJ, Liang J, Nan X, Dai MS, Adey A, Impey S, Sears RC. Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes Dev 2018; 32:1398-1419. [PMID: 30366908 PMCID: PMC6217735 DOI: 10.1101/gad.314377.118] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
In this study, Su et al. investigate how post-translational modifications of Myc that affect stability and oncogenic activity regulate its function. They show that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression, thus providing new insights into how post-translational modification of MYC controls its spatial activity. The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states.
Collapse
Affiliation(s)
- Yulong Su
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Carl Pelz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA.,Oregon Stem Cell Center, Oregon Health and Science University, Oregon 97239, USA
| | - Tao Huang
- Department of Biomedical Engineering, Oregon Health and Science University, Oregon 97239, USA
| | - Kristof Torkenczy
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Allison Cherry
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Juan Liang
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health and Science University, Oregon 97239, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Andrew Adey
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Oregon 97239, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| |
Collapse
|
21
|
McCloskey A, Ibarra A, Hetzer MW. Tpr regulates the total number of nuclear pore complexes per cell nucleus. Genes Dev 2018; 32:1321-1331. [PMID: 30228202 PMCID: PMC6169833 DOI: 10.1101/gad.315523.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 01/16/2023]
Abstract
In this study, McCloskey et al. investigated the underlying mechanisms that control how many nuclear transport channels are assembled into a given nuclear envelope. Their results show that depletion of the NPC basket protein Tpr, but not Nup153, dramatically increases the total NPC number in various cell types and provide insight into a critical role of the nucleoporin Tpr in coordinating signal transduction pathways during cell proliferation and the dynamic organization of the nucleus. The total number of nuclear pore complexes (NPCs) per nucleus varies greatly between different cell types and is known to change during cell differentiation and cell transformation. However, the underlying mechanisms that control how many nuclear transport channels are assembled into a given nuclear envelope remain unclear. Here, we report that depletion of the NPC basket protein Tpr, but not Nup153, dramatically increases the total NPC number in various cell types. This negative regulation of Tpr occurs via a phosphorylation cascade of extracellular signal-regulated kinase (ERK), the central kinase of the mitogen-activated protein kinase (MAPK) pathway. Tpr serves as a scaffold for ERK to phosphorylate the nucleoporin (Nup) Nup153, which is critical for early stages of NPC biogenesis. Our results reveal a critical role of the Nup Tpr in coordinating signal transduction pathways during cell proliferation and the dynamic organization of the nucleus.
Collapse
Affiliation(s)
- Asako McCloskey
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92130, USA
| | - Arkaitz Ibarra
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92130, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92130, USA
| |
Collapse
|
22
|
Behera S, Kapadia B, Kain V, Alamuru-Yellapragada NP, Murunikkara V, Kumar ST, Babu PP, Seshadri S, Shivarudraiah P, Hiriyan J, Gangula NR, Maddika S, Misra P, Parsa KV. ERK1/2 activated PHLPP1 induces skeletal muscle ER stress through the inhibition of a novel substrate AMPK. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1702-1716. [DOI: 10.1016/j.bbadis.2018.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/29/2018] [Accepted: 02/22/2018] [Indexed: 11/28/2022]
|
23
|
Eblen ST. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv Cancer Res 2018; 138:99-142. [PMID: 29551131 DOI: 10.1016/bs.acr.2018.02.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extracellular-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that are involved in regulating cellular signaling in both normal and pathological conditions. Their expression is critical for development and their hyperactivation is a major factor in cancer development and progression. Since their discovery as one of the major signaling mediators activated by mitogens and Ras mutation, we have learned much about their regulation, including their activation, binding partners and substrates. In this review I will discuss some of what has been discovered about the members of the Ras to ERK pathway, including regulation of their activation by growth factors and cell adhesion pathways. Looking downstream of ERK activation I will also highlight some of the many ERK substrates that have been discovered, including those involved in feedback regulation, cell migration and cell cycle progression through the control of transcription, pre-mRNA splicing and protein synthesis.
Collapse
Affiliation(s)
- Scott T Eblen
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
24
|
Ünal EB, Uhlitz F, Blüthgen N. A compendium of ERK targets. FEBS Lett 2017; 591:2607-2615. [PMID: 28675784 DOI: 10.1002/1873-3468.12740] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022]
Abstract
The RAF-MEK-ERK cascade is one of the most studied signaling pathways as it controls many vital cellular programs. There has been an immense amount of effort to determine ERK target proteins involved in regulating these programs. Classical biochemical and genetic approaches have elicited hundreds of direct ERK substrates, and with the advent of phospho-proteomic technologies, numerous studies have expanded the number of ERK target proteins. Here, we compile a comprehensive ERK target phospho-site archive, in which we gathered information from various research studies, and we provide this archive as an online database to form a searchable compendium of ERK targets.
Collapse
Affiliation(s)
- Evrim B Ünal
- Integrative Research Institute Life Sciences & Institute for Theoretical Biology, Humboldt Universität zu Berlin, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, Germany
| | - Florian Uhlitz
- Integrative Research Institute Life Sciences & Institute for Theoretical Biology, Humboldt Universität zu Berlin, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, Germany
| | - Nils Blüthgen
- Integrative Research Institute Life Sciences & Institute for Theoretical Biology, Humboldt Universität zu Berlin, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, Germany.,Berlin Institute of Health, Germany
| |
Collapse
|
25
|
Rose JC, Huang PS, Camp ND, Ye J, Leidal AM, Goreshnik I, Trevillian BM, Dickinson MS, Cunningham-Bryant D, Debnath J, Baker D, Wolf-Yadlin A, Maly DJ. A computationally engineered RAS rheostat reveals RAS-ERK signaling dynamics. Nat Chem Biol 2016; 13:119-126. [PMID: 27870838 PMCID: PMC5161653 DOI: 10.1038/nchembio.2244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 09/08/2016] [Indexed: 01/07/2023]
Abstract
Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here, we report a computationally-guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop Chemically Inducible Activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS/ERK signaling dynamics compared to growth factor stimulation, and that these dynamics differ between cell types. We also found that the clinically-approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach to design intramolecularly-regulated protein tools by applying this methodology to the Rho Family GEFs.
Collapse
Affiliation(s)
- John C Rose
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Po-Ssu Huang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Nathan D Camp
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jordan Ye
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | - Miles S Dickinson
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | | | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Buscà R, Pouysségur J, Lenormand P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front Cell Dev Biol 2016; 4:53. [PMID: 27376062 PMCID: PMC4897767 DOI: 10.3389/fcell.2016.00053] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022] Open
Abstract
The MAP kinase signaling cascade Ras/Raf/MEK/ERK has been involved in a large variety of cellular and physiological processes that are crucial for life. Many pathological situations have been associated to this pathway. More than one isoform has been described at each level of the cascade. In this review we devoted our attention to ERK1 and ERK2, which are the effector kinases of the pathway. Whether ERK1 and ERK2 specify functional differences or are in contrast functionally redundant, constitutes an ongoing debate despite the huge amount of studies performed to date. In this review we compiled data on ERK1 vs. ERK2 gene structures, protein sequences, expression levels, structural and molecular mechanisms of activation and substrate recognition. We have also attempted to perform a rigorous analysis of studies regarding the individual roles of ERK1 and ERK2 by the means of morpholinos, siRNA, and shRNA silencing as well as gene disruption or gene replacement in mice. Finally, we comment on a recent study of gene and protein evolution of ERK isoforms as a distinct approach to address the same question. Our review permits the evaluation of the relevance of published studies in the field especially when measurements of global ERK activation are taken into account. Our analysis favors the hypothesis of ERK1 and ERK2 exhibiting functional redundancy and points to the concept of the global ERK quantity, and not isoform specificity, as being the essential determinant to achieve ERK function.
Collapse
Affiliation(s)
- Roser Buscà
- Centre National de la Recherche Scientifique UMR7284, Institut National de la Santé et de la Recherche Médicale, Centre A. Lacassagne, Institute for Research on Cancer and Ageing of Nice, University of Nice-Sophia Antipolis Nice, France
| | - Jacques Pouysségur
- Centre National de la Recherche Scientifique UMR7284, Institut National de la Santé et de la Recherche Médicale, Centre A. Lacassagne, Institute for Research on Cancer and Ageing of Nice, University of Nice-Sophia AntipolisNice, France; Centre Scientifique de MonacoMonaco, Monaco
| | - Philippe Lenormand
- Centre National de la Recherche Scientifique UMR7284, Institut National de la Santé et de la Recherche Médicale, Centre A. Lacassagne, Institute for Research on Cancer and Ageing of Nice, University of Nice-Sophia Antipolis Nice, France
| |
Collapse
|
27
|
Shindo Y, Iwamoto K, Mouri K, Hibino K, Tomita M, Kosako H, Sako Y, Takahashi K. Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling. Nat Commun 2016; 7:10485. [PMID: 26786866 PMCID: PMC4736105 DOI: 10.1038/ncomms10485] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
The phosphorylation cascade in the extracellular signal-regulated kinase (ERK) pathway is a versatile reaction network motif that can potentially act as a switch, oscillator or memory. Nevertheless, there is accumulating evidence that the phosphorylation response is mostly linear to extracellular signals in mammalian cells. Here we find that subsequent nuclear translocation gives rise to a switch-like increase in nuclear ERK concentration in response to signal input. The switch-like response disappears in the presence of ERK inhibitor, suggesting the existence of autoregulatory mechanisms for ERK nuclear translocation involved in conversion from a graded to a switch-like response. In vitro reconstruction of ERK nuclear translocation indicates that ERK-mediated phosphorylation of nucleoporins regulates ERK translocation. A mathematical model and knockdown experiments suggest a contribution of nucleoporins to regulation of the ERK nuclear translocation response. Taken together, this study provides evidence that nuclear translocation with autoregulatory mechanisms acts as a switch in ERK signalling. While ERK signalling can produce switch-like cell behaviour, phosphorylation of ERK increases linearly with extracellular signals. Here, the authors solve this seeming contradiction by showing that nuclear translocation of ERK behaves in a switch-like manner and is controlled by ERK activity.
Collapse
Affiliation(s)
- Yuki Shindo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Suita, Osaka 565-0874, Japan
| | - Kazunari Iwamoto
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Suita, Osaka 565-0874, Japan
| | - Kazunari Mouri
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Kayo Hibino
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.,Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center, Suita, Osaka 565-0874, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Koichi Takahashi
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Suita, Osaka 565-0874, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
28
|
Zhang Y, Du J, Zheng J, Liu J, Xu R, Shen T, Zhu Y, Chang J, Wang H, Zhang Z, Meng F, Wang Y, Chen Y, Xu Y, Gu L. EGF-reduced Wnt5a transcription induces epithelial-mesenchymal transition via Arf6-ERK signaling in gastric cancer cells. Oncotarget 2016; 6:7244-61. [PMID: 25779663 PMCID: PMC4466682 DOI: 10.18632/oncotarget.3133] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/11/2015] [Indexed: 12/18/2022] Open
Abstract
Wnt5a, a ligand for activating the non-canonical Wnt signaling pathway, is commonly associated with Epithelial-to-mesenchymal transition (EMT) in cancer cell metastasis. Here, we show that downregulation of Wnt5a mRNA and protein by EGF is necessary for EGF-induced EMT in gastric cancer SGC-7901 cells. To further explore the mechanisms, we investigated the effect of EGF signaling on Wnt5a expression. EGF increased Arf6 and ERK activity, while blockade of Arf6 activation repressed ERK activity, up-regulated Wnt5a expression and repressed EMT in response to EGF. We also demonstrate that EGF inactivated Wnt5a transcription by direct recruitment of ERK to the Wnt5a promoter. On the other hand, inhibition of ERK phosphorylation resulted in decreased movement of ERK from the cytoplasm to the nucleus, following rescued Wnt5a mRNA and protein expression and favored an epithelial phenotype of SGC-7901 cells. In addition, we notice that kinase-dead, nuclear-localised ERK has inhibitory effect on Wnt5a transcription. Analysis of gastric cancer specimens revealed an inverse correlation between P-ERK and Wnt5a protein levels and an association between Wnt5a expression and better prognosis. These findings indicate that Wnt5a is a potential suppressor of EMT and identify a novel Arf6/ERK signaling pathway for EGF-regulated Wnt5a expression at transcriptional level of gastric cancer cells.
Collapse
Affiliation(s)
- Yujie Zhang
- Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Du
- Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiaojing Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui Xu
- Department of Biotechnology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tian Shen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Chang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hong Wang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhihong Zhang
- Department of Pathophysiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fanqing Meng
- Department of Pathophysiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Yan Wang
- Department of Pathophysiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yongchang Chen
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Luo Gu
- Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
29
|
Giacomini C, Mahajani S, Ruffilli R, Marotta R, Gasparini L. Lamin B1 protein is required for dendrite development in primary mouse cortical neurons. Mol Biol Cell 2016; 27:35-47. [PMID: 26510501 PMCID: PMC4694760 DOI: 10.1091/mbc.e15-05-0307] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/07/2015] [Accepted: 10/23/2015] [Indexed: 01/15/2023] Open
Abstract
Lamin B1, a key component of the nuclear lamina, plays an important role in brain development and function. A duplication of the human lamin B1 (LMNB1) gene has been linked to adult-onset autosomal dominant leukodystrophy, and mouse and human loss-of-function mutations in lamin B1 are susceptibility factors for neural tube defects. In the mouse, experimental ablation of endogenous lamin B1 (Lmnb1) severely impairs embryonic corticogenesis. Here we report that in primary mouse cortical neurons, LMNB1 overexpression reduces axonal outgrowth, whereas deficiency of endogenous Lmnb1 results in aberrant dendritic development. In the absence of Lmnb1, both the length and complexity of dendrites are reduced, and their growth is unresponsive to KCl stimulation. This defective dendritic outgrowth stems from impaired ERK signaling. In Lmnb1-null neurons, ERK is correctly phosphorylated, but phospho-ERK fails to translocate to the nucleus, possibly due to delocalization of nuclear pore complexes (NPCs) at the nuclear envelope. Taken together, these data highlight a previously unrecognized role of lamin B1 in dendrite development of mouse cortical neurons through regulation of nuclear shuttling of specific signaling molecules and NPC distribution.
Collapse
Affiliation(s)
- Caterina Giacomini
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| | - Sameehan Mahajani
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| | - Roberta Ruffilli
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Roberto Marotta
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Laura Gasparini
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| |
Collapse
|
30
|
Abstract
Recent studies show that nuclear lamins, the type V intermediate filament proteins, are required for proper building of at least some organs. As the major structural components of the nuclear lamina found underneath the inner nuclear membranes, lamins are ubiquitously expressed in all animal cells. How the broadly expressed lamins support the building of specific tissues is not understood. By studying Drosophila testis, we have uncovered a mechanism by which lamin-B functions in the cyst stem cell (CySC) and its differentiated cyst cell, the cell types known to form the niche/microenvironment for the germline stem cells (GSC) and the developing germ line, to ensure testis organogenesis (1). In this extra view, we discuss some remaining questions and the implications of our findings in the understanding of how the ubiquitous nuclear lamina regulates tissue building in a context-dependent manner.
Collapse
Affiliation(s)
- Haiyang Chen
- a Department of Embryology; Carnegie Institution for Science; Baltimore, MD USA
| | | |
Collapse
|
31
|
The class II transactivator (CIITA) is regulated by post-translational modification cross-talk between ERK1/2 phosphorylation, mono-ubiquitination and Lys63 ubiquitination. Biosci Rep 2015; 35:BSR20150091. [PMID: 26181363 PMCID: PMC4613680 DOI: 10.1042/bsr20150091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/11/2015] [Indexed: 02/01/2023] Open
Abstract
The class II transactivator (CIITA) is known as the master regulator for the major histocompatibility class II (MHC II) molecules. CIITA is dynamically regulated through a series of intricate post-translational modifications (PTMs). CIITA's role is to initiate transcription of MHC II genes, which are responsible for presenting extracellular antigen to CD4(+) T-cells. In the present study, we identified extracellular signal-regulated kinase (ERK)1/2 as the kinase responsible for phosphorylating the regulatory site, Ser(280), which leads to increased levels of mono-ubiquitination and an overall increase in MHC II activity. Further, we identify that CIITA is also modified by Lys(63)-linked ubiquitination. Lys(63) ubiquitinated CIITA is concentrated in the cytoplasm and following activation of ERK1/2, CIITA phosphorylation occurs and Lys=ubiquitinated CIITA translocates to the nucleus. CIITA ubiquitination and phosphorylation perfectly demonstrates how CIITA location and activity is regulated through PTM cross-talk. Identifying CIITA PTMs and understanding how they mediate CIITA regulation is necessary due to the critical role CIITA has in the initiation of the adaptive immune response.
Collapse
|
32
|
Parker R, Vella LJ, Xavier D, Amirkhani A, Parker J, Cebon J, Molloy MP. Phosphoproteomic Analysis of Cell-Based Resistance to BRAF Inhibitor Therapy in Melanoma. Front Oncol 2015; 5:95. [PMID: 26029660 PMCID: PMC4432663 DOI: 10.3389/fonc.2015.00095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/07/2015] [Indexed: 01/01/2023] Open
Abstract
The treatment of melanoma by targeted inhibition of the mutated kinase BRAF with small molecules only temporarily suppresses metastatic disease. In the face of chemical inhibition tumor plasticity, both innate and adaptive, promotes survival through the biochemical and genetic reconfiguration of cellular pathways that can engage proliferative and migratory systems. To investigate this process, high-resolution mass spectrometry was used to characterize the phosphoproteome of this transition in vitro. A simple and accurate, label-free quantitative method was used to localize and quantitate thousands of phosphorylation events. We also correlated changes in the phosphoproteome with the proteome to more accurately determine changes in the activity of regulatory kinases determined by kinase landscape profiling. The abundance of phosphopeptides with sites that function in cytoskeletal regulation, GTP/GDP exchange, protein kinase C, IGF signaling, and melanosome maturation were highly divergent after transition to a drug resistant phenotype.
Collapse
Affiliation(s)
- Robert Parker
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Laura J Vella
- Cancer Immunology Group, Olivia Newton-John Cancer Research Institute, Ludwig Institute for Cancer Research, School of Cancer Medicine, La Trobe University , Heidelberg, VIC , Australia
| | - Dylan Xavier
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Jimmy Parker
- NHS Trust Southport and Ormskirk General Hospital , Ormskirk , UK
| | - Jonathan Cebon
- Cancer Immunology Group, Olivia Newton-John Cancer Research Institute, Ludwig Institute for Cancer Research, School of Cancer Medicine, La Trobe University , Heidelberg, VIC , Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| |
Collapse
|
33
|
Kellner M, Rohrmoser M, Forné I, Voss K, Burger K, Mühl B, Gruber-Eber A, Kremmer E, Imhof A, Eick D. DEAD-box helicase DDX27 regulates 3' end formation of ribosomal 47S RNA and stably associates with the PeBoW-complex. Exp Cell Res 2015; 334:146-59. [PMID: 25825154 DOI: 10.1016/j.yexcr.2015.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
PeBoW, a trimeric complex consisting of pescadillo (Pes1), block of proliferation (Bop1), and the WD repeat protein 12 (WDR12), is essential for processing and maturation of mammalian 5.8S and 28S ribosomal RNAs. Applying a mass spectrometric analysis, we identified the DEAD-box helicase DDX27 as stably associated factor of the PeBoW-complex. DDX27 interacts with the PeBoW-complex via an evolutionary conserved F×F motif in the N-terminal domain and is recruited to the nucleolus via its basic C-terminal domain. This recruitment is RNA-dependent and occurs independently of the PeBoW-complex. Interestingly, knockdown of DDX27, but not of Pes1, induces the accumulation of an extended form of the primary 47S rRNA. We conclude that DDX27 can interact specifically with the Pes1 and Bop1 but fulfils critical function(s) for proper 3' end formation of 47S rRNA independently of the PeBoW-complex.
Collapse
Affiliation(s)
- Markus Kellner
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Michaela Rohrmoser
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Ignasi Forné
- Adolf Butenandt Institute, Ludwig Maximilians University of Munich, Center for Integrated Protein Science Munich (CIPSM), Schillerstr. 44, Munich 80336, Germany
| | - Kirsten Voss
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Kaspar Burger
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Bastian Mühl
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Anita Gruber-Eber
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistr. 25, Munich 81377, Germany
| | - Axel Imhof
- Adolf Butenandt Institute, Ludwig Maximilians University of Munich, Center for Integrated Protein Science Munich (CIPSM), Schillerstr. 44, Munich 80336, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany.
| |
Collapse
|
34
|
Xue L, Wang P, Cao P, Zhu JK, Tao WA. Identification of extracellular signal-regulated kinase 1 (ERK1) direct substrates using stable isotope labeled kinase assay-linked phosphoproteomics. Mol Cell Proteomics 2014; 13:3199-210. [PMID: 25022875 DOI: 10.1074/mcp.o114.038588] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Kinase mediated phosphorylation signaling is extensively involved in cellular functions and human diseases, and unraveling phosphorylation networks requires the identification of substrates targeted by kinases, which has remained challenging. We report here a novel proteomic strategy to identify the specificity and direct substrates of kinases by coupling phosphoproteomics with a sensitive stable isotope labeled kinase reaction. A whole cell extract was moderately dephosphorylated and subjected to in vitro kinase reaction under the condition in which (18)O-ATP is the phosphate donor. The phosphorylated proteins are then isolated and identified by mass spectrometry, in which the heavy phosphate (+85.979 Da) labeled phosphopeptides reveal the kinase specificity. The in vitro phosphorylated proteins with heavy phosphates are further overlapped with in vivo kinase-dependent phosphoproteins for the identification of direct substrates with high confidence. The strategy allowed us to identify 46 phosphorylation sites on 38 direct substrates of extracellular signal-regulated kinase 1, including multiple known substrates and novel substrates, highlighting the ability of this high throughput method for direct kinase substrate screening.
Collapse
Affiliation(s)
- Liang Xue
- From the ‡Departments of Biochemistry
| | | | | | - Jian-Kang Zhu
- From the ‡Departments of Biochemistry, §Horticulture and Landscape Architecture
| | - W Andy Tao
- From the ‡Departments of Biochemistry, ‖Medicinal Chemistry and Molecular Pharmacology, **Chemistry, and ‡‡Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
35
|
Rajanala K, Sarkar A, Jhingan GD, Priyadarshini R, Jalan M, Sengupta S, Nandicoori VK. Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function. J Cell Sci 2014; 127:3505-20. [PMID: 24938596 DOI: 10.1242/jcs.149112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A major constituent of the nuclear basket region of the nuclear pore complex (NPC), nucleoporin Tpr, plays roles in regulating multiple important processes. We have previously established that Tpr is phosphorylated in both a MAP-kinase-dependent and MAP-kinase-independent manner, and that Tpr acts as both a substrate and as a scaffold for ERK2 (also known as MAPK1). Here, we report the identification of S2059 and S2094 as the major novel ERK-independent phosphorylation sites and T1677, S2020, S2023 and S2034 as additional ERK-independent phosphorylation sites found in the Tpr protein in vivo. Our results suggest that protein kinase A phosphorylates the S2094 residue and that the site is hyperphosphorylated during mitosis. Furthermore, we find that Tpr is phosphorylated at the S2059 residue by CDK1 and the phosphorylated form distinctly localizes with chromatin during telophase. Abrogation of S2059 phosphorylation abolishes the interaction of Tpr with Mad1, thus compromising the localization of both Mad1 and Mad2 proteins, resulting in cell cycle defects. The identification of novel phosphorylation sites on Tpr and the observations presented in this study allow better understanding of Tpr functions.
Collapse
Affiliation(s)
- Kalpana Rajanala
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Anshuk Sarkar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Gagan Deep Jhingan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Raina Priyadarshini
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Manisha Jalan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
36
|
Parker R, Clifton-Bligh R, Molloy MP. Phosphoproteomics of MAPK Inhibition in BRAF-Mutated Cells and a Role for the Lethal Synergism of Dual BRAF and CK2 Inhibition. Mol Cancer Ther 2014; 13:1894-906. [DOI: 10.1158/1535-7163.mct-13-0938] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Intracellular mobility and nuclear trafficking of the stress-activated kinase JNK1 are impeded by hyperosmotic stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:253-64. [DOI: 10.1016/j.bbamcr.2013.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 12/22/2022]
|
38
|
The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling. Cell Stem Cell 2014; 13:73-86. [PMID: 23827710 DOI: 10.1016/j.stem.2013.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/24/2013] [Accepted: 05/06/2013] [Indexed: 02/08/2023]
Abstract
Stem cell niche interactions have been studied extensively with regard to cell polarity and extracellular signaling. Less is known about the way in which signals and polarity cues integrate with intracellular structures to ensure appropriate niche organization and function. Here, we report that nuclear lamins function in the cyst stem cells (CySCs) of Drosophila testes to control the interaction of CySCs with the hub. This interaction is important for regulation of CySC differentiation and organization of the niche that supports the germline stem cells (GSCs). Lamin promotes nuclear retention of phosphorylated ERK in the CySC lineage by regulating the distribution of specific nucleoporins within the nuclear pores. Lamin-regulated nuclear epidermal growth factor (EGF) receptor signaling in the CySC lineage is essential for proliferation and differentiation of the GSCs and the transient amplifying germ cells. Thus, we have uncovered a role for the nuclear lamina in the integration of EGF signaling to regulate stem cell niche function.
Collapse
|
39
|
Roles of the Nucleoporin Tpr in Cancer and Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:309-22. [DOI: 10.1007/978-1-4899-8032-8_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Kapadia B, Viswakarma N, Parsa KVL, Kain V, Behera S, Suraj SK, Babu PP, Kar A, Panda S, Zhu YJ, Jia Y, Thimmapaya B, Reddy JK, Misra P. ERK2-mediated phosphorylation of transcriptional coactivator binding protein PIMT/NCoA6IP at Ser298 augments hepatic gluconeogenesis. PLoS One 2013; 8:e83787. [PMID: 24358311 PMCID: PMC3866170 DOI: 10.1371/journal.pone.0083787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022] Open
Abstract
PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser(298) and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMT(S298D)) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMT(S298D) but not PIMT(S298A) augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser(298) phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser(298) is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia.
Collapse
Affiliation(s)
- Bandish Kapadia
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Navin Viswakarma
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Kishore V. L. Parsa
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Vasundhara Kain
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Soma Behera
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Sashidhara Kaimal Suraj
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Phanithi Prakash Babu
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Anand Kar
- Department of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Sunanda Panda
- Department of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Yi-jun Zhu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Janardan K. Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (PM); (JKR)
| | - Parimal Misra
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
- * E-mail: (PM); (JKR)
| |
Collapse
|
41
|
Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013; 14:4854-84. [PMID: 23455463 PMCID: PMC3634400 DOI: 10.3390/ijms14034854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.
Collapse
Affiliation(s)
- Melanie Meister
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ana Tomasovic
- Department of Molecular Hematology, University of Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; E-Mail:
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-9947-420; Fax: +49-641-9947-429
| |
Collapse
|
42
|
EGFR Tyrosine 845 Phosphorylation-Dependent Proliferation and Transformation of Breast Cancer Cells Require Activation of p38 MAPK. Transl Oncol 2012; 5:327-34. [PMID: 23066441 DOI: 10.1593/tlo.12163] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 03/12/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023] Open
Abstract
Phosphorylation of epidermal growth factor receptor (EGFR) on tyrosine 845 by c-Src has been shown to be important for cell proliferation and migration in several model systems. This cross talk between EGFR and Src family kinases (SFKs) is one mechanism for resistance to EGFR inhibitors both in cell models and in the clinic. Here, we show that phosphorylation of tyrosine 845 on EGFR is required for proliferation and transformation using several cell models of breast cancer. Overexpression of EGFR-Y845F or treating cells with the SFK inhibitor dasatinib abrogated tyrosine 845 phosphorylation, yet had little to no effect on other EGFR phosphorylation sites or EGFR kinase activity. Abrogation of Y845 phosphorylation inhibited cell proliferation and transformation, even though extracellular signal-regulated kinase (ERK) and Akt remained active under these conditions. Importantly, cotransfection of mitogen-activated protein kinase (MAPK) kinase 3 and p38 MAPK restored cell proliferation in the absence of EGFR tyrosine 845 phosphorylation. Taken together, these data demonstrate a novel role for p38 MAPK signaling downstream of EGFR tyrosine 845 phosphorylation in the regulation of breast cancer cell proliferation and transformation and implicate SFK inhibitors as a potential therapeutic mechanism for overcoming EGFR tyrosine kinase inhibitor resistance in breast cancer.
Collapse
|
43
|
Caunt CJ, Perett RM, Fowkes RC, McArdle CA. Mechanisms of GnRH-induced extracellular signal-regulated kinase nuclear localization. PLoS One 2012; 7:e40077. [PMID: 22808094 PMCID: PMC3395631 DOI: 10.1371/journal.pone.0040077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/05/2012] [Indexed: 12/11/2022] Open
Abstract
Gonadotropin-releasing hormone receptors (GnRHR) mediate activation and nuclear translocation of the extracellular signal regulated kinases 1 and 2 (ERK) by phosphorylation on the TEY motif. This is necessary for GnRH to initiate transcriptional programmes controlling fertility, but mechanisms that govern ERK targeting are unclear. Using automated microscopy to explore ERK regulation in single cells, we find that GnRHR activation induces marked redistribution of ERK to the nucleus and that this effect can be uncoupled from the level of TEY phosphorylation of ERK. Thus, 5 min stimulation with 100 nM GnRH increased phospho-ERK levels (from 89 ± 34 to 555 ± 45 arbitrary fluorescence units) and increased the nuclear:cytoplasmic (N:C) ERK ratio (from 1.36 ± 0.06 to 2.16 ± 0.05) in the whole cell population, but it also significantly increased N:C ERK in cells binned according to phospho-ERK levels. This phosphorylation unattributable component of the ERK translocation response occurs at a broad range of GnRHR expression levels, in the presence of tyrosine phosphatase and protein synthesis inhibitors, and in ERK mutants unable to undergo catalytic activation. It also occurred in mutants incapable of binding the DEF (docking site for ERK, F/Y-X-F/Y-P) domains found in many ERK binding partners. It was however, reduced by MEK or PKC inhibition and by mutations preventing TEY phosphorylation or that abrogate ERK binding to D (docking) domain partners. We therefore show that TEY phosphorylation of ERK is necessary, but not sufficient for the full nuclear localization response. We further show that this "phosphorylation unattributable" component of GnRH-mediated ERK nuclear translocation requires both PKC activity and association with partner proteins via the D-domain.
Collapse
Affiliation(s)
- Christopher J. Caunt
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rebecca M. Perett
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Robert C. Fowkes
- Endocrine Signaling Group, Royal Veterinary College, London, United Kingdom
| | - Craig A. McArdle
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
44
|
Abstract
Because of the association between aberrant nuclear structure and tumour grade, nuclear morphology is an indispensible criterion in the current pathological assessment of cancer. Components of the nuclear envelope environment have central roles in many aspects of cell function that affect tumour development and progression. As the roles of the nuclear envelope components, including nuclear pore complexes and nuclear lamina, are being deciphered in molecular detail there are opportunities to harness this knowledge for cancer therapeutics and biomarker development. In this Review, we summarize the progress that has been made in our understanding of the nuclear envelope and the implications of changes in this environment for cancer biology.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
45
|
Rajanala K, Nandicoori VK. Localization of nucleoporin Tpr to the nuclear pore complex is essential for Tpr mediated regulation of the export of unspliced RNA. PLoS One 2012; 7:e29921. [PMID: 22253824 PMCID: PMC3258255 DOI: 10.1371/journal.pone.0029921] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/06/2011] [Indexed: 01/12/2023] Open
Abstract
Nucleoporin Tpr is a component of the nuclear pore complex (NPC) that localizes exclusively to intranuclear filaments. Tpr functions as a scaffolding element in the nuclear phase of the NPC and plays a role in mitotic spindle checkpoint signalling. Export of intron-containing mRNA in Mason Pfizer Monkey Virus is regulated by direct interaction of cellular proteins with the cis-acting Constitutive Transport Element (CTE). In mammalian cells, the transport of Gag/Pol-CTE reporter construct is not very efficient, suggesting a regulatory mechanism to retain this unspliced RNA. Here we report that the knockdown of Tpr in mammalian cells leads to a drastic enhancement in the levels of Gag proteins (p24) in the cytoplasm, which is rescued by siRNA resistant Tpr. Tpr's role in the retention of unspliced RNA is independent of the functions of Sam68 and Tap/Nxf1 proteins, which are reported to promote CTE dependent export. Further, we investigated the possible role for nucleoporins that are known to function in nucleocytoplasmic transport in modulating unspliced RNA export. Results show that depletion of Nup153, a nucleoporin required for NPC anchoring of Tpr, plays a role in regulating the export, while depletion of other FG repeat-containing nucleoporins did not alter the unspliced RNA export. Results suggest that Tpr and Nup153 both regulate the export of unspliced RNA and they are most likely functioning through the same pathway. Importantly, we find that localization of Tpr to the NPC is necessary for Tpr mediated regulation of unspliced RNA export. Collectively, the data indicates that perinuclear localization of Tpr at the nucleopore complex is crucial for regulating intron containing mRNA export by directly or indirectly participating in the processing and degradation of aberrant mRNA transcripts.
Collapse
Affiliation(s)
- Kalpana Rajanala
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
46
|
Lee S, Warthaka M, Yan C, Kaoud TS, Ren P, Dalby KN. Examining docking interactions on ERK2 with modular peptide substrates. Biochemistry 2011; 50:9500-10. [PMID: 21955038 DOI: 10.1021/bi201103b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ERK2 primarily recognizes substrates through two recruitment sites, which lie outside the active site cleft of the kinase. These recruitment sites bind modular-docking sequences called docking sites and are potentially attractive sites for the development of non-ATP competitive inhibitors. The D-recruitment site (DRS) and the F-recruitment site (FRS) bind D-sites and F-sites, respectively. For example, peptides that target the FRS have been proposed to inhibit all ERK2 activity (Galanis, A., Yang, S. H., and Sharrocks, A. D. (2001) J. Biol. Chem. 276, 965-973); however, it has not been established whether this inhibition is steric or allosteric in origin. To facilitate inhibitor design and to examine potential coupling of recruitment sites to other ligand recognition sites within ERK2, energetic coupling within ERK2 was investigated using two new modular peptide substrates for ERK2. Modeling shows that one peptide (Sub-D) recognizes the DRS, while the other peptide (Sub-F) binds the FRS. A steady-state kinetic analysis reveals little evidence of thermodynamic linkage between the peptide substrate and ATP. Both peptides are phosphorylated through a random-order sequential mechanism with a k(cat)/K(m) comparable to Ets-1, a bona fide ERK2 substrate. Occupancy of the FRS with a peptide containing a modular docking sequence has no effect on the intrinsic ability of ERK2 to phosphorylate Sub-D. Occupancy of the DRS with a peptide containing a modular docking sequence has a slight effect (1.3 ± 0.1-fold increase in k(cat)) on the intrinsic ability of ERK2 to phosphorylate Sub-F. These data suggest that while docking interactions at the DRS and the FRS are energetically uncoupled, the DRS can exhibit weak communication to the active site. In addition, they suggest that peptides bound to the FRS inhibit the phosphorylation of protein substrates through a steric mechanism. The modeling and kinetic data suggest that the recruitment of ERK2 to cellular locations via its DRS may facilitate the formation of F-site selective ERK2 signaling complexes, while recruitment via the FRS will likely inhibit ERK2 through a steric mechanism of inhibition. Such recruitment may serve as an additional level of ERK2 regulation.
Collapse
Affiliation(s)
- Sunbae Lee
- Division of Medicinal Chemistry, University of Texas at Austin, Texas 78712, United States
| | | | | | | | | | | |
Collapse
|
47
|
David-Watine B. Silencing nuclear pore protein Tpr elicits a senescent-like phenotype in cancer cells. PLoS One 2011; 6:e22423. [PMID: 21811608 PMCID: PMC3139644 DOI: 10.1371/journal.pone.0022423] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tpr is a large coiled-coil protein located in the nuclear basket of the nuclear pore complex for which many different functions were proposed from yeast to human. METHODOLOGY/PRINCIPAL FINDINGS Here we show that depletion of Tpr by RNA interference triggers G0-G1 arrest and ultimately induces a senescent-like phenotype dependent on the presence of p53. We also found that Tpr depletion impairs the NES [nuclear export sequence]-dependent nuclear export of proteins and causes partial co-depletion of Nup153. In addition Tpr depletion impacts on level and function of the SUMO-protease SENP2 thus affecting SUMOylation regulation at the nuclear pore and overall SUMOylation in the cell. CONCLUSIONS Our data for the first time provide evidence that a nuclear pore component plays a role in controlling cellular senescence. Our findings also point to new roles for Tpr in the regulation of SUMO-1 conjugation at the nuclear pore and directly confirm Tpr involvement in the nuclear export of NES-proteins.
Collapse
Affiliation(s)
- Brigitte David-Watine
- Institut Pasteur, CNRS URA2582, Groupe E3 Biologie Cellulaire du Noyau, Paris, France.
| |
Collapse
|
48
|
Coyle JH, Bor YC, Rekosh D, Hammarskjold ML. The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway. RNA (NEW YORK, N.Y.) 2011; 17:1344-56. [PMID: 21613532 PMCID: PMC3138570 DOI: 10.1261/rna.2616111] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/18/2011] [Indexed: 05/22/2023]
Abstract
Post-transcriptional regulation of mRNA includes restriction mechanisms to prevent export and expression of mRNAs that are incompletely spliced. Here we present evidence that the mammalian protein Tpr is involved in this restriction. To study the role of Tpr in export of mRNA with retained introns, we used reporters in which the mRNA was exported either via the Nxf1/Nxt1 pathway using a CTE or via the Crm1 pathway using Rev/RRE. Our data show that even modest knockdown of Tpr using RNAi leads to a significant increase in export and translation from the mRNA containing the CTE. In contrast, Tpr perturbation has no effect on export of mRNA containing the RRE, either in the absence or presence of Rev. Also, no effects were observed on export of a completely spliced mRNA. Taken together, our results indicate that Tpr plays an important role in quality control of mRNA trafficked on the Nxf1 pathway.
Collapse
Affiliation(s)
- John H. Coyle
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Yeou-Cherng Bor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Corresponding author.E-mail .
| |
Collapse
|
49
|
Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1619-33. [PMID: 21167873 DOI: 10.1016/j.bbamcr.2010.12.012] [Citation(s) in RCA: 670] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022]
Abstract
The MAPK cascades are central signaling pathways that regulate a wide variety of stimulated cellular processes, including proliferation, differentiation, apoptosis and stress response. Therefore, dysregulation, or improper functioning of these cascades, is involved in the induction and progression of diseases such as cancer, diabetes, autoimmune diseases, and developmental abnormalities. Many of these physiological, and pathological functions are mediated by MAPK-dependent transcription of various regulatory genes. In order to induce transcription and the consequent functions, the signals transmitted via the cascades need to enter the nucleus, where they may modulate the activity of transcription factors and chromatin remodeling enzymes. In this review, we briefly cover the composition of the MAPK cascades, as well as their physiological and pathological functions. We describe, in more detail, many of the important nuclear activities of the MAPK cascades, and we elaborate on the mechanisms of ERK1/2 translocation into the nucleus, including the identification of their nuclear translocation sequence (NTS) binding to the shuttling protein importin7. Overall, the nuclear translocation of signaling components may emerge as an important regulatory layer in the induction of cellular processes, and therefore, may serve as targets for therapeutic intervention in signaling-related diseases such as cancer and diabetes. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Alexander Plotnikov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Isreal
| | | | | | | |
Collapse
|
50
|
The mitogen-activated protein kinase Slt2 regulates nuclear retention of non-heat shock mRNAs during heat shock-induced stress. Mol Cell Biol 2010; 30:5168-79. [PMID: 20823268 DOI: 10.1128/mcb.00735-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cellular adaptation to environmental stress conditions requires rapid and specific changes in gene expression. During heat shock, most polyadenylated mRNAs are retained in the nucleus, whereas the export of heat shock-induced mRNAs is allowed. Although essential mRNA export factors are known, the precise mechanism for regulating transport is not fully understood. Here we find that during heat shock in Saccharomyces cerevisiae, the mRNA-binding protein Nab2 is phosphorylated on threonine 178 and serine 180 by the mitogen-activated protein (MAP) kinase Slt2/Mpk1. Slt2 is required for nuclear poly(A(+)) mRNA accumulation upon heat shock, and thermotolerance is decreased in a nup42 nab2-T178A/S180A mutant. Coincident with phosphorylation, Nab2 and Yra1 colocalize in nuclear foci with Mlp1, a protein involved in mRNA retention. Nab2 nuclear focus formation and Nab2 phosphorylation are independent, suggesting that heat shock induces multiple cellular alterations that impinge upon transport efficiency. Under normal conditions, we find that the mRNA export receptor Mex67 and Nab2 directly interact. However, upon heat shock stress, Mex67 does not localize to the Mlp1 nuclear foci, and its association with Nab2 complexes is reduced. These results reveal a novel mechanism by which the MAP kinase Slt2 and Mlp1 control mRNA export factors during heat shock stress.
Collapse
|