1
|
Wu J, Li W, Tang Y, Wu C, Li W. miR-205-3p inhibits porphyromonas gingivalis lipopolysaccharide-induced human umbilical vein endothelial cells inflammation and apoptosis by targeting PRMT5. Arch Oral Biol 2025; 175:106276. [PMID: 40319839 DOI: 10.1016/j.archoralbio.2025.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/12/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE This study aimed to investigate the regulatory mechanism of miR-205-3p in Porphyromonas gingivalis lipopolysaccharide (P.g-LPS)-induced atherosclerosis. DESIGN In an in vitro setting, human umbilical vein endothelial cells (HUVECs) were exposed to P.g-LPS to simulate the vascular endothelial damage induced by periodontitis. Subsequently, ELISA and flow cytometry were employed to assess the inflammatory response and apoptotic status of these cells.To quantify the expression levels of protein arginine methyltransferase 5 (PRMT5), BCL2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), P65 and miR-205-3p within the HUVECs, Western Blot and qPCR were respectively utilized. Moreover, small interfering RNA (siRNA) targeting PRMT5 and miR-205-3p were applied to monitor the changes in PRMT5 expression. Bioinformatics analysis was carried out to predict the potential binding sites between miR-205-3p and PRMT5. Finally, the interaction between miR-205-3p and PRMT5 was validated through the dual-luciferase reporter assay. RESULTS The results indicate that P.g-LPS intervention exacerbates damage to HUVECs and increases the expression of PRMT5. Silencing PRMT5 reduces cell inflammation and apoptosis. After stimulation with P.g-LPS, the level of miR-205-3p decreases, and its overexpression alleviates inflammation and apoptosis in the cells. Bioinformatics analysis and dual luciferase reporter assays confirm that PRMT5 is a target of miR-205-3p, and the overexpression of PRMT5 can reverse the protective effects of miR-205-3p. CONCLUSION miR-205-3p can mitigate vascular endothelial injury by decreasing PRMT5 expression, providing new insights for potential treatments.
Collapse
Affiliation(s)
- Jinsheng Wu
- Stomatology College of Jiamusi University, Jiamusi 154000, China
| | - Weiyi Li
- Stomatology College of Jiamusi University, Jiamusi 154000, China
| | - Ying Tang
- Stomatology College of Jiamusi University, Jiamusi 154000, China
| | - Chang Wu
- Stomatology College of Jiamusi University, Jiamusi 154000, China
| | - Weishan Li
- Stomatology College of Jiamusi University, Jiamusi 154000, China; Department of Periodontal and Mucosal Diseases, Jiamusi University Stomatology Hospital, Jiamusi 154000, China.
| |
Collapse
|
2
|
Giaimo BD, Ferrante F, Borggrefe T. Lysine and arginine methylation of transcription factors. Cell Mol Life Sci 2024; 82:5. [PMID: 39680066 DOI: 10.1007/s00018-024-05531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Post-translational modifications (PTMs) are implicated in many biological processes including receptor activation, signal transduction, transcriptional regulation and protein turnover. Lysine's side chain is particularly notable, as it can undergo methylation, acetylation, SUMOylation and ubiquitination. Methylation affects not only lysine but also arginine residues, both of which are implicated in epigenetic regulation. Beyond histone-tails as substrates, dynamic methylation of transcription factors has been described. The focus of this review is on these non-histone substrates providing a detailed discussion of what is currently known about methylation of hypoxia-inducible factor (HIF), P53, nuclear receptors (NRs) and RELA. The role of methylation in regulating protein stability and function by acting as docking sites for methyl-reader proteins and via their crosstalk with other PTMs is explored.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Ma N, Wu F, Liu J, Wu Z, Wang L, Li B, Liu Y, Dong X, Hu J, Fang X, Zhang H, Ai D, Zhou J, Wang X. Kindlin-2 Phase Separation in Response to Flow Controls Vascular Stability. Circ Res 2024; 135:1141-1160. [PMID: 39492718 DOI: 10.1161/circresaha.124.324773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Atheroprotective shear stress preserves endothelial barrier function, while atheroprone shear stress enhances endothelial permeability. Yet, the underlying mechanisms through which distinct flow patterns regulate EC integrity remain to be clarified. This study aimed to investigate the involvement of Kindlin-2, a key component of focal adhesion and endothelial adherens junctions crucial for regulating endothelial cell (EC) integrity and vascular stability. METHODS Mouse models of atherosclerosis in EC-specific Kindlin-2 knockout mice (Kindlin-2iΔEC) were used to study the role of Kindlin-2 in atherogenesis. Pulsatile shear (12±4 dynes/cm2) or oscillatory shear (0.5±4 dynes/cm2) were applied to culture ECs. Live-cell imaging, fluorescence recovery after photobleaching assay, and OptoDroplet assay were used to study the liquid-liquid phase separation (LLPS) of Kindlin-2. Co-immunoprecipitation, mutagenesis, proximity ligation assay, and transendothelial electrical resistance assay were used to explore the underlying mechanism of flow-regulated Kindlin-2 function. RESULTS We found that Kindlin-2 localization is altered under different flow patterns. Kindlin-2iΔEC mice showed heightened vascular permeability. Kindlin-2iΔEC were bred onto ApoE-/- mice to generate Kindlin-2iΔEC; ApoE-/- mice, which displayed a significant increase in atherosclerosis lesions. In vitro data showed that in ECs, Kindlin-2 underwent LLPS, a critical process for proper focal adhesion assembly, maturation, and junction formation. Mass spectrometry analysis revealed that oscillatory shear increased arginine methylation of Kindlin-2, catalyzed by PRMT5 (protein arginine methyltransferase 5). Functionally, arginine hypermethylation inhibits Kindlin-2 LLPS, impairing focal adhesion assembly and junction maturation. Notably, we identified R290 of Kindlin-2 as a crucial residue for LLPS and a key site for arginine methylation. Finally, pharmacologically inhibiting arginine methylation reduces EC activation and plaque formation. CONCLUSIONS Collectively, our study elucidates that mechanical force induces arginine methylation of Kindlin-2, thereby regulating vascular stability through its impact on Kindlin-2 LLPS. Targeting Kindlin-2 arginine methylation emerges as a promising hemodynamic-based strategy for treating vascular disorders and atherosclerosis.
Collapse
Affiliation(s)
- Nina Ma
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Fangfang Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Jiayu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.Z.)
| | - Ziru Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Bochuan Li
- Department of Physiology and Pathophysiology (B.L., D.A.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yuming Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Xue Dong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Junhao Hu
- Laboratory of Vascular Biology and Organ Homeostasis, Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China (J.H.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla (X.F.)
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology (H.Z.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Ding Ai
- Department of Physiology and Pathophysiology (B.L., D.A.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.Z.)
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| |
Collapse
|
4
|
Zhang Y, Wei S, Jin EJ, Jo Y, Oh CM, Bae GU, Kang JS, Ryu D. Protein Arginine Methyltransferases: Emerging Targets in Cardiovascular and Metabolic Disease. Diabetes Metab J 2024; 48:487-502. [PMID: 39043443 PMCID: PMC11307121 DOI: 10.4093/dmj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders stand as formidable challenges that significantly impact the clinical outcomes and living quality for afflicted individuals. An intricate comprehension of the underlying mechanisms is paramount for the development of efficacious therapeutic strategies. Protein arginine methyltransferases (PRMTs), a class of enzymes responsible for the precise regulation of protein methylation, have ascended to pivotal roles and emerged as crucial regulators within the intrinsic pathophysiology of these diseases. Herein, we review recent advancements in research elucidating on the multifaceted involvements of PRMTs in cardiovascular system and metabolic diseases, contributing significantly to deepen our understanding of the pathogenesis and progression of these maladies. In addition, this review provides a comprehensive analysis to unveil the distinctive roles of PRMTs across diverse cell types implicated in cardiovascular and metabolic disorders, which holds great potential to reveal novel therapeutic interventions targeting PRMTs, thus presenting promising perspectives to effectively address the substantial global burden imposed by CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Eun-Ju Jin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Gyu-Un Bae
- Muscle Physiome Institute, College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
5
|
Zhu Y, Xia T, Chen DQ, Xiong X, Shi L, Zuo Y, Xiao H, Liu L. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist Updat 2024; 72:101016. [PMID: 37980859 DOI: 10.1016/j.drup.2023.101016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Drug resistance remains a major challenge in cancer treatment, necessitating the development of novel strategies to overcome it. Protein arginine methyltransferases (PRMTs) are enzymes responsible for epigenetic arginine methylation, which regulates various biological and pathological processes, as a result, they are attractive therapeutic targets for overcoming anti-cancer drug resistance. The ongoing development of small molecules targeting PRMTs has resulted in the generation of chemical probes for modulating most PRMTs and facilitated clinical treatment for the most advanced oncology targets, including PRMT1 and PRMT5. In this review, we summarize various mechanisms underlying protein arginine methylation and the roles of specific PRMTs in driving cancer drug resistance. Furthermore, we highlight the potential clinical implications of PRMT inhibitors in decreasing cancer drug resistance. PRMTs promote the formation and maintenance of drug-tolerant cells via several mechanisms, including altered drug efflux transporters, autophagy, DNA damage repair, cancer stem cell-related function, epithelial-mesenchymal transition, and disordered tumor microenvironment. Multiple preclinical and ongoing clinical trials have demonstrated that PRMT inhibitors, particularly PRMT5 inhibitors, can sensitize cancer cells to various anti-cancer drugs, including chemotherapeutic, targeted therapeutic, and immunotherapeutic agents. Combining PRMT inhibitors with existing anti-cancer strategies will be a promising approach for overcoming anti-cancer drug resistance. Furthermore, enhanced knowledge of the complex functions of arginine methylation and PRMTs in drug resistance will guide the future development of PRMT inhibitors and may help identify new clinical indications.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Da-Qian Chen
- Department of Medicine Oncology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lihong Shi
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yueqi Zuo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
6
|
Aryal S, Lu R. HOXA9 Regulome and Pharmacological Interventions in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:405-430. [PMID: 39017854 DOI: 10.1007/978-3-031-62731-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
7
|
Kumar D, Jain S, Coulter DW, Joshi SS, Chaturvedi NK. PRMT5 as a Potential Therapeutic Target in MYC-Amplified Medulloblastoma. Cancers (Basel) 2023; 15:5855. [PMID: 38136401 PMCID: PMC10741595 DOI: 10.3390/cancers15245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
MYC amplification or overexpression is most common in Group 3 medulloblastomas and is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase 5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates oncogenes, including MYC, that are often deregulated in medulloblastomas. However, the role of PRMT5-mediated post-translational modification in the stabilization of these oncoproteins remains poorly understood. The potential impact of PRMT5 inhibition on MYC makes it an attractive target in various cancers. PRMT5 inhibitors are a promising class of anti-cancer drugs demonstrating preclinical and preliminary clinical efficacies. Here, we review the publicly available preclinical and clinical studies on PRMT5 targeting using small molecule inhibitors and discuss the prospects of using them in medulloblastoma therapy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Stuti Jain
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| | - Shantaram S. Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 69198, USA;
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| |
Collapse
|
8
|
Zhu N, Guo ZF, Kazama K, Yi B, Tongmuang N, Yao H, Yang R, Zhang C, Qin Y, Han L, Sun J. Epigenetic regulation of vascular smooth muscle cell phenotypic switch and neointimal formation by PRMT5. Cardiovasc Res 2023; 119:2244-2255. [PMID: 37486354 PMCID: PMC10578915 DOI: 10.1093/cvr/cvad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 07/25/2023] Open
Abstract
AIMS Phenotypic transition of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic state is involved in the development of cardiovascular diseases, including atherosclerosis, hypertension, and post-angioplasty restenosis. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) has been implicated in multiple cellular processes, however, its role in VSMC biology remains undetermined. The objective of this study was to determine the role of PRMTs in VSMC phenotypic switch and vascular remodelling after injury. METHODS AND RESULTS Our results show that PRMT5 is the most abundantly expressed PRMT in human aortic SMCs, and its expression is up-regulated in platelet-derived growth factor (PDGF)-stimulated VSMCs, human atherosclerotic lesions, and rat carotid arteries after injury, as determined by western blot and immunohistochemical staining. PRMT5 overexpression inhibits the expression of SMC marker genes and promotes VSMC proliferation and migration, while silencing PRMT5 exerts the opposite effects. Mechanistically, we found that PRMT5 overexpression led to histone di-methylation of H3R8 and H4R3, which in turn attenuates acetylation of H3K9 and H4, thus limiting recruitment of the SRF/myocardin complexes to the CArG boxes of SMC marker genes. Furthermore, both SMC-specific deletion of PRMT5 in mice and local delivery of lentivirus expressing shPRMT5 to rat carotid arteries significantly attenuated neointimal formation after injury. Likewise, pharmacological inhibition of PRMT5 by EPZ015666 markedly inhibited carotid artery ligation-induced neointimal formation in mice. CONCLUSIONS Our results identify PRMT5 as a novel regulator in VSMC phenotypic switch and suggest that inhibition of PRMT5 may represent an effective therapeutic strategy for proliferative vascular diseases.
Collapse
Affiliation(s)
- Ni Zhu
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Zhi-Fu Guo
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Kyosuke Kazama
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Bing Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Nopprarat Tongmuang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Huijuan Yao
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Ruifeng Yang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Chen Zhang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Yongwen Qin
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai 200433, China
| | - Lin Han
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai 200433, China
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Zheng J, Li B, Wu Y, Wu X, Wang Y. Targeting Arginine Methyltransferase PRMT5 for Cancer Therapy: Updated Progress and Novel Strategies. J Med Chem 2023. [PMID: 37366223 DOI: 10.1021/acs.jmedchem.3c00250] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
As a predominant type II protein arginine methyltransferase, PRMT5 plays critical roles in various normal cellular processes by catalyzing the mono- and symmetrical dimethylation of a wide range of histone and nonhistone substrates. Clinical studies have revealed that high expression of PRMT5 is observed in different solid tumors and hematological malignancies and is closely associated with cancer initiation and progression. Accordingly, PRMT5 is becoming a promising anticancer target and has received great attention in both the pharmaceutical industry and the academic community. In this Perspective, we comprehensively summarize recent advances in the development of first-generation PRMT5 enzymatic inhibitors and highlight novel strategies targeting PRMT5 in the past 5 years. We also discuss the challenges and opportunities of PRMT5 inhibition, with the aim of shedding light on future PRMT5 drug discovery.
Collapse
Affiliation(s)
- Jiahong Zheng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bang Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingqi Wu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoshuang Wu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
12
|
Tang L, Peng L, Tan C, Liu H, Chen P, Wang H. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Cancer Cell Int 2022; 22:349. [PMID: 36376832 PMCID: PMC9664671 DOI: 10.1186/s12935-022-02767-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
HOXA9 functioning as a transcription factor is one of the members of HOX gene family, which governs multiple cellular activities by facilitating cellular signal transduction. In addition to be a driver in AML which has been widely studied, the role of HOXA9 in solid tumor progression has also received increasing attention in recent years, where the aberrant expression of HOXA9 is closely associated with the prognosis of patient. This review details the signaling pathways, binding partners, post-transcriptional regulation of HOXA9, and possible inhibitors of HOXA9 in solid tumors, which provides a reference basis for further study on the role of HOXA9 in solid tumors.
Collapse
|
13
|
Yang R, Dong S, Zhang J, Zhu S, Miao G, Zhang B. Downregulation of PRMT5 by AMI-1 enhances therapeutic efficacy of compound kushen injection in lung carcinoma in vitro and in vivo. Mol Cell Biochem 2022; 478:1031-1044. [PMID: 36214894 DOI: 10.1007/s11010-022-04577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is overexpressed in lung carcinoma, which promotes tumor cell proliferation, survival, migration and invasion. Compound Kushen injection (CKI) is a mixture of natural compounds extracted from Kushen and Baituling, which are mainly used to stop in cancer pain and bleeding. Here we found that cell viability and colony formation were inhibited after the incubation of AMI-1. Meanwhile, AMI-1 suppressed cell migration, enhanced apoptosis, induced cell cycle arrest, inhibited PRMT5 expression and histone H3R8 and H4R3 symmetric di-methylation (H3R8me2s and H4R3me2s) accumulation, down-regulated the expression of eukaryotic translation initiation factor 4E (eIF4E) in lung carcinoma cells. Moreover, AMI-1 suppressed tumor growth, decreased H3R8me2s and H4R3me2s accumulation, down-regulated eIF4E expression and increased p53 expression in lung carcinoma xenografts of BALB/c nude mice. Of note, combined and CKI markedly enhanced the anticancer efficacy CKI in lung carcinoma. The above findings demonstrated that AMI-1 has established antineoplastic activity and this role may be associated with affecting the function of eIF4E via inhibiting PRMT5 activity or protein levels in lung carcinoma. This study highlights evidence of novel selective anticancer activity of AMI-1 in combination with CKI in lung carcinoma.
Collapse
Affiliation(s)
- Ruiying Yang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuhong Dong
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinghui Zhang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Shihao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guoliang Miao
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
14
|
Ye Q, Zhang J, Zhang C, Yi B, Kazama K, Liu W, Sun X, Liu Y, Sun J. Endothelial PRMT5 plays a crucial role in angiogenesis after acute ischemic injury. JCI Insight 2022; 7:e152481. [PMID: 35531958 PMCID: PMC9090242 DOI: 10.1172/jci.insight.152481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Arginine methylation mediated by protein arginine methyltransferases (PRMTs) has been shown to be an important posttranslational mechanism involved in various biological processes. Herein, we sought to investigate whether PRMT5, a major type II enzyme, is involved in pathological angiogenesis and, if so, to elucidate the molecular mechanism involved. Our results show that PRMT5 expression is significantly upregulated in ischemic tissues and hypoxic endothelial cells (ECs). Endothelial-specific Prmt5-KO mice were generated to define the role of PRMT5 in hindlimb ischemia-induced angiogenesis. We found that these mice exhibited impaired recovery of blood perfusion and motor function of the lower limbs, an impairment that was accompanied by decreased vascular density and increased necrosis as compared with their WT littermates. Furthermore, both pharmacological and genetic inhibition of PRMT5 significantly attenuated EC proliferation, migration, tube formation, and aortic ring sprouting. Mechanistically, we showed that inhibition of PRMT5 markedly attenuated hypoxia-induced factor 1-α (HIF-1α) protein stability and vascular endothelial growth factor-induced (VEGF-induced) signaling pathways in ECs. Our results provide compelling evidence demonstrating a crucial role of PRMT5 in hypoxia-induced angiogenesis and suggest that inhibition of PRMT5 may provide novel therapeutic strategies for the treatment of abnormal angiogenesis-related diseases, such as cancer and diabetic retinopathy.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bing Yi
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kyosuke Kazama
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wennan Liu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xiaobo Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Srour N, Khan S, Richard S. The Influence of Arginine Methylation in Immunity and Inflammation. J Inflamm Res 2022; 15:2939-2958. [PMID: 35602664 PMCID: PMC9114649 DOI: 10.2147/jir.s364190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Exploration in the field of epigenetics has revealed that protein arginine methyltransferases (PRMTs) contribute to disease, and this has given way to the development of specific small molecule compounds that inhibit arginine methylation. Protein arginine methylation is known to regulate fundamental cellular processes, such as transcription; pre-mRNA splicing and other RNA processing mechanisms; signal transduction, including the anti-viral response; and cellular metabolism. PRMTs are also implicated in the regulation of physiological processes, including embryonic development, myogenesis, and the immune system. Finally, the dysregulation of PRMTs is apparent in cancer, neurodegeneration, muscular disorders, and during inflammation. Herein, we review the functions of PRMTs in immunity and inflammation. We also discuss recent progress with PRMTs regarding the modulation of gene expression related to T and B lymphocyte differentiation, germinal center dynamics, and anti-viral signaling responses, as well as the clinical relevance of using PRMT inhibitors alone or in combination with other drugs to treat cancer, immune, and inflammatory-related diseases.
Collapse
Affiliation(s)
- Nivine Srour
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Sarah Khan
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Stephane Richard
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
- Correspondence: Stephane Richard, Email
| |
Collapse
|
16
|
Liu H, Jia K, Ren Z, Sun J, Pan LL. PRMT5 critically mediates TMAO-induced inflammatory response in vascular smooth muscle cells. Cell Death Dis 2022; 13:299. [PMID: 35379776 PMCID: PMC8980010 DOI: 10.1038/s41419-022-04719-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
Abstract
A high plasma level of the choline-derived metabolite trimethylamine N-oxide (TMAO) is closely related to the development of cardiovascular disease. However, the underlying mechanism remains unclear. In the present study, we demonstrated that a positive correlation of protein arginine methyltransferase 5 (PRMT5) expression and TMAO-induced vascular inflammation, with upregulated vascular cell adhesion molecule-1 (VCAM-1) expression in primary rat and human vascular smooth muscle cells (VSMC) in vitro. Knockdown of PRMT5 suppressed VCAM-1 expression and the adhesion of primary bone marrow-derived macrophages to TMAO-stimulated VSMC. VSMC-specific PRMT5 knockout inhibited vascular inflammation with decreased expression of VCAM-1 in mice. We further identified that PRMT5 promoted VCAM-1 expression via symmetrical demethylation of Nuclear factor-κB p65 on arginine 30 (R30). Finally, we found that TMAO markedly induced the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) and production of reactive oxygen species, which contributed to PRMT5 expression and subsequent VCAM-1 expression. Collectively, our data provide novel evidence to establish a Nox4-PRMT5-VCAM-1 in mediating TMAO-induced VSMC inflammation. PRMT5 may be a potential target for the treatment of TMAO-induced vascular diseases.
Collapse
Affiliation(s)
- He Liu
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Kunpeng Jia
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Zhengnan Ren
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jia Sun
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.
| | - Li-Long Pan
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.
| |
Collapse
|
17
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
18
|
Abumustafa W, Zamer BA, Khalil BA, Hamad M, Maghazachi AA, Muhammad JS. Protein arginine N-methyltransferase 5 in colorectal carcinoma: Insights into mechanisms of pathogenesis and therapeutic strategies. Biomed Pharmacother 2022; 145:112368. [PMID: 34794114 DOI: 10.1016/j.biopha.2021.112368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Protein arginine N-methyltransferase 5 (PRMT5) enzyme is one of the eight canonical PRMTs, classified as a type II PRMT, induces arginine monomethylation and symmetric dimethylation. PRMT5 is known to be overexpressed in multiple cancer types, including colorectal cancer (CRC), where its overexpression is associated with poor survival. Recent studies have shown that upregulation of PRMT5 induces tumor growth and metastasis in CRC. Moreover, various novel PRMT5 inhibitors tested on CRC cell lines showed promising anticancer effects. Also, it was suggested that PRMT5 could be a valid biomarker for CRC diagnosis and prognosis. Hence, a deeper understanding of PRMT5-mediated CRC carcinogenesis could provide new avenues towards developing a targeted therapy. In this study, we started with in silico analysis correlating PRMT5 expression in CRC patients as a prelude to further our investigation of its role in CRC. We then carried out a comprehensive review of the scientific literature that dealt with the role(s) of PRMT5 in CRC pathogenesis, diagnosis, and prognosis. Also, we have summarized key findings from in vitro research using various therapeutic agents and strategies directly targeting PRMT5 or disrupting its function. In conclusion, PRMT5 seems to play a significant role in the pathogenesis of CRC; therefore, its prognostic and therapeutic potential merits further investigation.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
19
|
Chai X, Wu X, He L, Ding H. Protein arginine methyltransferase 5 mediates THP-1-derived macrophage activation dependent on NF-κB in endometriosis. Exp Ther Med 2021; 22:1003. [PMID: 34345285 PMCID: PMC8311241 DOI: 10.3892/etm.2021.10436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/24/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophage-induced inflammation is a major factor in the pathogenesis of endometriosis. The underlying mechanisms, however, remain largely unknown. TNF-α, IL-6, IL-10 and C-C motif chemokine 20 (CCL20) levels in endometrial extracts were determined using Luminex cytokine kits. Additionally, protein arginine methyltransferase 5 (PRMT5) levels were measured using reverse transcription-quantitative PCR and western blotting. IL-6 and IP-10 levels in cells were measured using ELISA kits. In the present study, it was revealed that PRMT5 expression at both the mRNA and protein levels in THP-1-derived macrophages was significantly decreased following treatment with serum or extracts of endometrium from patients with endometriosis in the presence of lipopolysaccharide, compared with that in control cells, suggesting a possible role for macrophage-derived PRMT5 in mediating the interaction between macrophages and endometrium in endometriosis. Mechanistically, macrophage PRMT5 expression was regulated in an NF-κB-dependent and Smad2/3-independent manner, indicating that PRMT5 is a downstream target of NF-κB. Importantly, macrophage-derived PRMT5 was required for macrophage activation in endometriosis, as evidenced by the PRMT5-dependent secretion of IL-6 and IFN-γ-induced protein 10 from THP-1-derived macrophages. The present study identified NF-κB-dependent PRMT5 as a novel regulator of macrophage activation in endometriosis. Targeting PRMT5 in macrophages may be a potential therapeutic strategy against endometriosis.
Collapse
Affiliation(s)
- Xiaoshan Chai
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xianqing Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling He
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hui Ding
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
20
|
Transcriptomic and genomic heterogeneity in blastic plasmacytoid dendritic cell neoplasms: from ontogeny to oncogenesis. Blood Adv 2021; 5:1540-1551. [PMID: 33687433 DOI: 10.1182/bloodadvances.2020003359] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Oncogenesis and ontogeny of blastic plasmacytoid dendritic cell neoplasm (BPDCN) remain uncertain, between canonical plasmacytoid dendritic cells (pDCs) and AXL+ SIGLEC6+ DCs (AS-DCs). We compared 12 BPDCN to 164 acute leukemia by Affymetrix HG-U133 Plus 2.0 arrays: BPDCN were closer to B-cell acute lymphoblastic leukemia (ALL), with enrichment in pDC, B-cell signatures, vesicular transport, deubiquitination pathways, and AS-DC signatures, but only in some cases. Importantly, 1 T-cell ALL clustered with BPDCN, with compatible morphology, immunophenotype (cCD3+ sCD3- CD123+ cTCL1+ CD304+), and genetics. Many oncogenetic pathways are deregulated in BPDCN compared with normal pDC, such as cell-cycle kinases, and importantly, the transcription factor SOX4, involved in B ontogeny, pDC ontogeny, and cancer cell invasion. High-throughput sequencing (HaloPlex) showed myeloid mutations (TET2, 62%; ASXL1, 46%; ZRSR2, 31%) associated with lymphoid mutations (IKZF1), whereas single-nucleotide polymorphism (SNP) array (Affymetrix SNP array 6.0) revealed frequent losses (mean: 9 per patient) involving key hematological oncogenes (RB1, IKZF1/2/3, ETV6, NR3C1, CDKN2A/B, TP53) and immune response genes (IFNGR, TGFB, CLEC4C, IFNA cluster). Various markers suggest an AS-DC origin, but not in all patients, and some of these abnormalities are related to the leukemogenesis process, such as the 9p deletion, leading to decreased expression of genes encoding type I interferons. In addition, the AS-DC profile is only found in a subgroup of patients. Overall, the cellular ontogenic origin of BPDCN remains to be characterized, and these results highlight the heterogeneity of BPDCN, with a risk of a diagnostic trap.
Collapse
|
21
|
Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med 2021; 53:788-808. [PMID: 34006904 PMCID: PMC8178397 DOI: 10.1038/s12276-021-00613-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Protein methylation, a post-translational modification (PTM), is observed in a wide variety of cell types from prokaryotes to eukaryotes. With recent and rapid advancements in epigenetic research, the importance of protein methylation has been highlighted. The methylation of histone proteins that contributes to the epigenetic histone code is not only dynamic but is also finely controlled by histone methyltransferases and demethylases, which are essential for the transcriptional regulation of genes. In addition, many nonhistone proteins are methylated, and these modifications govern a variety of cellular functions, including RNA processing, translation, signal transduction, DNA damage response, and the cell cycle. Recently, the importance of protein arginine methylation, especially in cell cycle regulation and DNA repair processes, has been noted. Since the dysregulation of protein arginine methylation is closely associated with cancer development, protein arginine methyltransferases (PRMTs) have garnered significant interest as novel targets for anticancer drug development. Indeed, several PRMT inhibitors are in phase 1/2 clinical trials. In this review, we discuss the biological functions of PRMTs in cancer and the current development status of PRMT inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jee Won Hwang
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Yena Cho
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Gyu-Un Bae
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Su-Nam Kim
- grid.35541.360000000121053345Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451 Republic of Korea
| | - Yong Kee Kim
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
22
|
Mi W, Qiao S, Zhang X, Wu D, Zhou L, Lai H. PRMT5 inhibition modulates murine dendritic cells activation by inhibiting the metabolism switch: a new therapeutic target in periodontitis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:755. [PMID: 34268368 PMCID: PMC8246170 DOI: 10.21037/atm-20-7362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Background Protein arginine methyltransferase 5 (PRMT5) catalyzes the methylation of arginine residues in multiple proteins. Recent reports have highlighted the anti-inflammatory role of PRMT5. Dendritic cells (DCs) are well-known professional antigen-presenting cells that are crucial for immune response initiation. However, whether PRMT5 participates in DC immunity processes is unknown. Methods In an in vitro experiment, a PRMT5 inhibitor (EPZ015666) was used to inhibit PRMT5 expression, and lipopolysaccharide (LPS) stimulation was applied to mimic the inflammation context. Proinflammatory cytokine production, interferon-stimulated genes (ISGs), costimulatory molecules, major histocompatibility complex (MHC) expression and DC metabolism were measured following PRMT5 inhibition and LPS stimulation. In an in vivo study, we first tested PRMT5 mRNA and protein expression in a BALB/c mouse ligature-induced periodontitis model. Then, we evaluated changes in periodontal tissue and DC migration to cervical lymph nodes after local treatment with the PRMT5 inhibitor. Results The in vitro results revealed that PRMT5 inhibition attenuated DC activation and maturation by inhibiting the expression of proinflammatory cytokines, ISGs, costimulatory molecules, and MHC induced by LPS stimulation. We also found that inhibition of PRMT5 blocked the DC metabolic switch to glycolysis. In the in vivo study, we found that PRMT5 inhibition reversed the severity of the lesions and slowed the migration of DCs to cervical lymph nodes. Conclusions The results show a critical role of PRMT5 in the control of DC activation through inhibition of the metabolic switch and indicate that PRMT5 is a promising therapeutic target in periodontitis.
Collapse
Affiliation(s)
- Wenxiang Mi
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiaomeng Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dongle Wu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Linyi Zhou
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongchang Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
23
|
Chakrapani B, Khan MIK, Kadumuri RV, Gupta S, Verma M, Awasthi S, Govindaraju G, Mahesh A, Rajavelu A, Chavali S, Dhayalan A. The uncharacterized protein FAM47E interacts with PRMT5 and regulates its functions. Life Sci Alliance 2021; 4:e202000699. [PMID: 33376131 PMCID: PMC7772775 DOI: 10.26508/lsa.202000699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues in various proteins affecting diverse cellular processes such as transcriptional regulation, splicing, DNA repair, differentiation, and cell cycle. Elevated levels of PRMT5 are observed in several types of cancers and are associated with poor clinical outcomes, making PRMT5 an important diagnostic marker and/or therapeutic target for cancers. Here, using yeast two-hybrid screening, followed by immunoprecipitation and pull-down assays, we identify a previously uncharacterized protein, FAM47E, as an interaction partner of PRMT5. We report that FAM47E regulates steady-state levels of PRMT5 by affecting its stability through inhibition of its proteasomal degradation. Importantly, FAM47E enhances the chromatin association and histone methylation activity of PRMT5. The PRMT5-FAM47E interaction affects the regulation of PRMT5 target genes expression and colony-forming capacity of the cells. Taken together, we identify FAM47E as a protein regulator of PRMT5, which promotes the functions of this versatile enzyme. These findings imply that disruption of PRMT5-FAM47E interaction by small molecules might be an alternative strategy to attenuate the oncogenic function(s) of PRMT5.
Collapse
Affiliation(s)
- Baskar Chakrapani
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Somlee Gupta
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Mamta Verma
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Gayathri Govindaraju
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Arumugam Rajavelu
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | | |
Collapse
|
24
|
Cai S, Liu R, Wang P, Li J, Xie T, Wang M, Cao Y, Li Z, Liu P. PRMT5 Prevents Cardiomyocyte Hypertrophy via Symmetric Dimethylating HoxA9 and Repressing HoxA9 Expression. Front Pharmacol 2020; 11:600627. [PMID: 33424610 PMCID: PMC7793800 DOI: 10.3389/fphar.2020.600627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
The present study reveals a link between protein arginine methyltransferase 5 (PRMT5) and Homebox A9 (HoxA9) in the regulation of cardiomyocyte hypertrophy. In cardiomyocyte hypertrophy induced by β-adrenergic receptor agonist isoprenaline (ISO), PRMT5 expression was decreased while HoxA9 was upregulated. Silencing of PRMT5 or inhibition of PRMT5 by its pharmacological inhibitor EPZ augmented the expressions of cardiomyocyte hypertrophic genes brain natriuretic peptide (BNP) and β-Myosin Heavy Chain (β-MHC), whereas overexpression of PRMT5 inhibited ISO-induced cardiomyocyte hypertrophy, suggesting that PRMT5 ameliorates cardiomyocyte hypertrophy. On the contrary, HoxA9 promoted cardiomyocyte hypertrophy, as implied by the gain-of-function and loss-of-function experiments. HoxA9 was involved in the regulation of PRMT5 in cardiomyocyte hypertrophy, since HoxA9 knockdown prevented si-RPMT5-induced cardiomyocyte hypertrophy, and HoxA9 expression impaired the anti-hypertrophic effect of PRMT5. Co-immunoprecipitation experiments revealed that there were physical interactions between PRMT5 and HoxA9. The symmetric dimethylation level of HoxA9 was decreased by ISO or EPZ treatment, suggesting that HoxA9 is methylated by PRMT5. Additionally, PRMT5 repressed the expression of HoxA9. Chromatin immunoprecipitation (ChIP) assay demonstrated that HoxA9 could bind to the promoter of BNP, and that this binding affinity was further enhanced by ISO or EPZ. In conclusion, this study suggests that PRMT5 symmetric dimethylates HoxA9 and represses HoxA9 expression, thus impairing its binding to BNP promoter and ultimately protecting against cardiomyocyte hypertrophy. These findings provide a novel insight of the mechanism underlying the cardiac protective effect of PRMT5, and suggest potential therapeutic strategies of PRMT5 activation or HoxA9 inhibition in treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Sidong Cai
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Higher Education Mega Center, Sun Yat-Sen University, Guangzhou, China
| | - Rong Liu
- Obstetrical Department, Guangzhou Clifford Hospital, Guangzhou, China
| | - Panxia Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Higher Education Mega Center, Sun Yat-Sen University, Guangzhou, China
| | - Jingyan Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Xie
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghui Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Higher Education Mega Center, Sun Yat-Sen University, Guangzhou, China
| | - Yanjun Cao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Higher Education Mega Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Higher Education Mega Center, Sun Yat-Sen University, Guangzhou, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Higher Education Mega Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Fan Z, He L, Li M, Cao R, Deng M, Ping F, Liang X, He Y, Wu T, Tao X, Xu J, Cheng B, Xia J. Targeting methyltransferase PRMT5 retards the carcinogenesis and metastasis of HNSCC via epigenetically inhibiting Twist1 transcription. Neoplasia 2020; 22:617-629. [PMID: 33045527 PMCID: PMC7557877 DOI: 10.1016/j.neo.2020.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is an important type II arginine methyltransferase that can play roles in cancers in a highly tissue-specific manner, but its role in the carcinogenesis and metastasis of head and neck squamous cell carcinoma (HNSCC) remains unclear. Here, we detected PRMT5 expression in HNSCC tissues and performed series of in vivo and in vitro assays to investigate the function and mechanism of PRMT5 in HNSCC. We found that PRMT5 was overexpressed in dysplastic and cancer tissues, and associated with lymph node metastasis and worse patient survival. PRMT5 knockdown repressed the malignant phenotype of HNSCC cells in vitro and in vivo. PRMT5 specific inhibitor blocked the formation of precancerous lesion and HNSCC in 4NQO-induced tongue carcinogenesis model, prevented lymph node metastasis in tongue orthotopic xenograft model and inhibited cancer development in subcutaneous xenograft model and Patient-Derived tumor Xenograft (PDX) model. Mechanistically, PRMT5-catalyzed H3R2me2s promotes the enrichment of H3K4me3 in the Twist1 promoter region by recruiting WDR5, and subsequently activates the transcription of Twist1. The rescue experiments indicated that overexpressed Twist1 abrogated the inhibition of cell invasion induced by PRMT5 inhibitor. In summary, this study elucidates that PRMT5 inhibition could reduce H3K4me3-mediated Twist1 transcription and retard the carcinogenesis and metastasis of HNSCC.
Collapse
Affiliation(s)
- Zhaona Fan
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Lihong He
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Mianxiang Li
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Ruoyan Cao
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Miao Deng
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Fan Ping
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Xueyi Liang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yuan He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tong Wu
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoan Tao
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Bin Cheng
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| | - Juan Xia
- Hostpital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
26
|
Dong Y, Wang P, Yang Y, Huang J, Dai Z, Zheng W, Li Z, Yao Z, Zhang H, Zheng J. PRMT5 inhibition attenuates cartilage degradation by reducing MAPK and NF-κB signaling. Arthritis Res Ther 2020; 22:201. [PMID: 32887644 PMCID: PMC7650297 DOI: 10.1186/s13075-020-02304-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES A role for the type II arginine methyltransferase PRMT5 in various human diseases has been identified. In this study, the potential mechanism underlying the involvement of PRMT5 in the pathological process leading to osteoarthritis (OA) was investigated. METHODS PRMT5 expression in cartilage tissues from patients with OA and control individuals was assessed by immunohistochemical staining. The regulatory and functional roles of PRMT5 in the chondrocytes of patients with OA and control individuals were determined by western blotting and reverse transcription polymerase chain reaction. The effects of the PRMT5 inhibitor EPZ on interleukin-1β-induced inflammation were examined in the chondrocytes of patients with OA and in the destabilized medial meniscus (DMM) of a mouse model of OA. RESULTS PRMT5 was specifically upregulated in the cartilage of patients with OA. Moreover, adenovirus-mediated overexpression of PRMT5 in human chondrocytes caused cartilage degeneration. This degeneration was induced by elevated expression levels of matrix-degrading enzymes (matrix metalloproteinase-3 (MMP-3) and matrix metalloproteinase-13 (MMP-13)) in chondrocytes. The activation of the MAPK and nuclear factor κB signaling pathways was evidenced by elevated levels of p-p65, p-p38, and p-JNK. These effects were attenuated by inhibiting the expression of PRMT5. In the mouse model, EPZ inhibited PRMT5 expression, thus protecting mouse cartilage from DMM-induced OA. CONCLUSIONS Our results demonstrate that PRMT5 is a crucial regulator of OA pathogenesis, implying that EPZ has therapeutic value in the treatment of this cartilage-destroying disease.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Ping Wang
- Department of pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yongguang Yang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Jincheng Huang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Zhipeng Dai
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Wendi Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Zhen Li
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Zheng Yao
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Hongjun Zhang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
27
|
Krzystek-Korpacka M, G. Fleszar M, Bednarz-Misa I, Lewandowski Ł, Szczuka I, Kempiński R, Neubauer K. Transcriptional and Metabolomic Analysis of L-Arginine/Nitric Oxide Pathway in Inflammatory Bowel Disease and Its Association with Local Inflammatory and Angiogenic Response: Preliminary Findings. Int J Mol Sci 2020; 21:ijms21051641. [PMID: 32121248 PMCID: PMC7084352 DOI: 10.3390/ijms21051641] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
L-arginine/nitric oxide pathway in Crohn's disease (CD) and ulcerative colitis (UC) is poorly investigated. The aim of current study is to quantify pathway serum metabolites in 52 CD (40 active), 48 UC (33 active), and 18 irritable bowel syndrome patients and 40 controls using mass spectrometry and at determining mRNA expression of pathway-associated enzymes in 91 bowel samples. Arginine and symmetric dimethylarginine decreased (p < 0.05) in active-CD (129 and 0.437 µM) compared to controls (157 and 0.494 µM) and active-UC (164 and 0.52 µM). Citrulline and dimethylamine increased (p < 0.05) in active-CD (68.7 and 70.9 µM) and active-UC (65.9 and 73.9 µM) compared to controls (42.7 and 50.4 µM). Compared to normal, CD-inflamed small bowel had downregulated (p < 0.05) arginase-2 by 2.4-fold and upregulated dimethylarginine dimethylaminohydrolase (DDAH)-2 (1.5-fold) and arginine N-methyltransferase (PRMT)-2 (1.6-fold). Quiescent-CD small bowel had upregulated (p < 0.05) arginase-2 (1.8-fold), DDAH1 (2.9-fold), DDAH2 (1.5-fold), PRMT1 (1.5-fold), PRMT2 (1.7-fold), and PRMT5 (1.4-fold). Pathway enzymes were upregulated in CD-inflamed/quiescent and UC-inflamed colon as compared to normal. Compared to inflamed, quiescent CD-colon had upregulated DDAH1 (5.7-fold) and ornithine decarboxylase (1.6-fold). Concluding, the pathway is deregulated in CD and UC, also in quiescent bowel, reflecting inflammation severity and angiogenic potential. Functional analysis of PRMTs and DDAHs as potential targets for therapy is warranted.
Collapse
Affiliation(s)
- Małgorzata Krzystek-Korpacka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
- Correspondence: ; Tel.: +48-71-784-1375
| | - Mariusz G. Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Izabela Szczuka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Radosław Kempiński
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland; (R.K.); (K.N.)
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland; (R.K.); (K.N.)
| |
Collapse
|
28
|
Yu M, Zhan J, Zhang H. HOX family transcription factors: Related signaling pathways and post-translational modifications in cancer. Cell Signal 2019; 66:109469. [PMID: 31733300 DOI: 10.1016/j.cellsig.2019.109469] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
HOX family transcription factors belong to a highly conserved subgroup of the homeobox superfamily that determines cellular fates in embryonic morphogenesis and the maintenance of adult tissue architecture. HOX family transcription factors play key roles in numerous cellular processes including cell growth, differentiation, apoptosis, motility, and angiogenesis. As tumor promoters or suppressors HOX family members have been reported to be closely related with a variety of cancers. They closely regulate tumor initiation and growth, invasion and metastasis, angiogenesis, anti-cancer drug resistance and stem cell origin. Here, we firstly described the pivotal roles of HOX transcription factors in tumorigenesis. Then, we summarized the main signaling pathways regulated by HOX transcription factors, including Wnt/β-catenin, transforming growth factor β, mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and nuclear factor-κB signalings. Finally, we outlined the important post-translational modifications of HOX transcription factors and their regulation in cancers. Future research directions on the HOX transcription factors are also discussed.
Collapse
Affiliation(s)
- Miao Yu
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Jun Zhan
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| | - Hongquan Zhang
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
29
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
30
|
Lo Piccolo L, Mochizuki H, Nagai Y. The lncRNA hsrω regulates arginine dimethylation of human FUS to cause its proteasomal degradation in Drosophila. J Cell Sci 2019; 132:jcs.236836. [PMID: 31519807 PMCID: PMC6826006 DOI: 10.1242/jcs.236836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have structural and regulatory effects on RNA-binding proteins (RBPs). However, the mechanisms by which lncRNAs regulate the neurodegenerative-causative RBP like FUS protein remain poorly understood. Here, we show that knockdown of the Drosophila lncRNA hsrω causes a shift in the methylation status of human FUS from mono- (MMA) to di-methylated (DMA) arginine via upregulation of the arginine methyltransferase 5 (PRMT5, known as ART5 in flies). We found this novel regulatory role to be critical for FUS toxicity since the PRMT5-dependent dimethylation of FUS is required for its proteasomal degradation and causes a reduction of high levels of FUS. Moreover, we show that an increase of FUS causes a decline of both PRMT1 (known as ART1 in flies) and PRMT5 transcripts, leading to an accumulation of neurotoxic MMA-FUS. Therefore, overexpression of either PRMT1 or PRMT5 is able to rescue the FUS toxicity. These results highlight a novel role of lncRNAs in post-translation modification (PTM) of FUS and suggest a causal relationship between lncRNAs and dysfunctional PRMTs in the pathogenesis of FUSopathies. Summary: The lncRNA hsrω regulates the arginine methyltransferases type I and II to modify the human FUS RNA-binding protein, recombinantly expressed in flies, in a fashion that controls both its cellular localization and homeostasis.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan .,Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Zhu F, Rui L. PRMT5 in gene regulation and hematologic malignancies. Genes Dis 2019; 6:247-257. [PMID: 32042864 PMCID: PMC6997592 DOI: 10.1016/j.gendis.2019.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022] Open
Abstract
Arginine methylation is a common posttranslational modification that governs important cellular processes and impacts development, cell growth, proliferation, and differentiation. Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs), which are classified as type I and type II enzymes responsible for the formation of asymmetric and symmetric dimethylarginine, respectively. PRMT5 is the main type II enzyme that catalyzes symmetric dimethylarginine of histone proteins to induce gene silencing by generating repressive histone marks, including H2AR3me2s, H3R8me2s, and H4R3me2s. PRMT5 can also methylate nonhistone proteins such as the transcription factors p53, E2F1 and p65. Modifications of these proteins by PRMT5 are involved in diverse cellular processes, including transcription, translation, DNA repair, RNA processing, and metabolism. A growing literature demonstrates that PRMT5 expression is upregulated in hematologic malignancies, including leukemia and lymphoma, where PRMT5 regulates gene expression to promote cancer cell proliferation. Targeting PRMT5 by specific inhibitors has emerged as a potential therapeutic strategy to treat these diseases.
Collapse
Affiliation(s)
| | - Lixin Rui
- Department of Medicine and Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| |
Collapse
|
32
|
Chatterjee B, Ghosh K, Suresh L, Kanade SR. Curcumin ameliorates PRMT5-MEP50 arginine methyltransferase expression by decreasing the Sp1 and NF-YA transcription factors in the A549 and MCF-7 cells. Mol Cell Biochem 2019; 455:73-90. [PMID: 30392062 DOI: 10.1007/s11010-018-3471-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022]
Abstract
The protein arginine methyltransferase 5 (PRMT5) and its catalytic partner methylosome protein MEP50 (WDR77) catalyse the mono- and symmetric di-methylation of selective arginines in various histones and non-histone target proteins. It has emerged as a crucial epigenetic regulator in cell proliferation and differentiation; which also reported to be overexpressed in many forms of cancers in humans. In this study, we aimed to assess the modulations in the expression of this enzyme upon exposure to the well-studied natural compound from the spice turmeric, curcumin. We exposed the lung and breast cancer cell lines (A549 and MCF-7) to curcumin (2 and 20 μM) and observed a highly significant inhibitory effect on the expression of both PRMT5 and MEP50. The level of symmetrical dimethylarginine (SDMA) in multiple proteins, and more specifically, the H4R3me2s mark (which predominates in GC-rich motifs in nucleosomal DNA) was also diminished significantly. We also found that curcumin significantly reduced the level and enrichment of the transcription factors Sp1 and NF-YA which shares their binding sites within the GC-rich region of the PRMT5 proximal promoter. Furthermore, the involvement of both PKC-p38-ERK-cFos and AKT-mTOR signalling was observed in reducing the Sp1 and NF-YA expression by curcumin. Therefore, we propose curcumin decreased the expression of PRMT5 in these cells by affecting at least these two transcription factors. Altogether, we report a new molecular target of curcumin and further elucidation of this proposed mechanism through which curcumin affects the PRMT5-MEP50 methyltransferase expression might be explored for its therapeutic application.
Collapse
Affiliation(s)
- Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India
| | - Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India
| | - Lavanya Suresh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India.
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Telangana, 500046, India.
| |
Collapse
|
33
|
Tan B, Liu Q, Yang L, Yang Y, Liu D, Liu L, Meng F. Low expression of PRMT5 in peripheral blood may serve as a potential independent risk factor in assessments of the risk of stable CAD and AMI. BMC Cardiovasc Disord 2019; 19:31. [PMID: 30704408 PMCID: PMC6357489 DOI: 10.1186/s12872-019-1008-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Protein arginine methyltransferases (PRMTs) can catalyse the methylation of arginine and participate in many important cellular reaction processes. The purpose of this research is to determine whether the expression levels of the PRMT5 gene in peripheral blood can be used as a biomarker for predicting the risk of Acute Myocardial Infarction (AMI). METHODS In this research, peripheral blood was collected from 91 patients with AMI and 87 patients with stable coronary artery disease (CAD). Real-time fluorescent quantitative PCR was performed to measure the expression levels of the PRMT5 gene at the mRNA level, and a western blot analysis was performed to measure the expression levels of the PRMT5 gene at the protein level. RESULTS The results indicate that at both the RNA and protein levels, the expression levels of the PRMT5 gene in peripheral blood from patients with AMI are significantly lower than those in peripheral blood from patients with stable CAD (Z = - 4.813, P = 0.000). The low expression of the PRMT5 gene is relevant to the Gensini score of the coronary artery (rs = - 0.205, P = 0.015) but is irrelevant to the serum level of blood lipids, level of cardiac troponin (rs = - 0.125, P = 0.413) and time intervals of occurrence (rs = - 0.146, P = 0.211). Patients who have a low PRMT5 expression in the peripheral blood are 5.472 times more likely to suffer from AMI than other patients. CONCLUSION Compared to stable CAD patients, AMI patients have a lower expression of the PRMT5 gene in their peripheral blood. Patients who have low PRMT5 gene expression in the peripheral blood are more likely to suffer from AMI than those with stable CAD. A low expression of the PRMT5 gene serves as an independent risk factor for the occurrence of AMI.
Collapse
Affiliation(s)
- Buchuan Tan
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Liu
- First Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Liping Yang
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Yushuang Yang
- Cardiology Department of the China-Japan Union Hospital of Jilin University, 126, Xiantai Street, Changchun City, 130033 NO China
| | - Dongna Liu
- Cardiology Department of the China-Japan Union Hospital of Jilin University, 126, Xiantai Street, Changchun City, 130033 NO China
| | - Long Liu
- Cardiology Department of the China-Japan Union Hospital of Jilin University, 126, Xiantai Street, Changchun City, 130033 NO China
| | - Fanbo Meng
- Cardiology Department of the China-Japan Union Hospital of Jilin University, 126, Xiantai Street, Changchun City, 130033 NO China
| |
Collapse
|
34
|
Paul C, Delpech H, Haouzi D, Hamamah S, Sardet C, Fabbrizio E. Coprs inactivation leads to a derepression of LINE1 transposons in spermatocytes. FEBS Open Bio 2019; 9:159-168. [PMID: 30652083 PMCID: PMC6325579 DOI: 10.1002/2211-5463.12562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Repression of retrotransposons is essential for genome integrity during germ cell development and is tightly controlled through epigenetic mechanisms. In primordial germ cells, protein arginine N‐methyltransferase (Prmt5) is involved in retrotransposon repression by methylating Piwi proteins, which is part of the piRNA pathway. Here, we show that in mice, genetic inactivation of coprs (which is highly expressed in testis and encodes a histone‐binding protein required for the targeting of Prmt5 activity) affects the maturation of spermatogonia to spermatids. Mass spectrometry analysis revealed the presence of Miwi in testis protein lysates immunoprecipitated with an anti‐Coprs antibody. The observed deregulation of Miwi and pachytene pre‐piRNAs levels and the derepression of LINE1 repetitive sequences observed in coprs‐/‐ mice suggest that Coprs is implicated in genome surveillance mechanisms.
Collapse
Affiliation(s)
- Conception Paul
- Institut de Génétique Moléculaire de Montpellier UMR5535, CNRS, Montpellier University, France
| | - Hélène Delpech
- Institut de Recherche en Cancérologie de Montpellier U1194, Inserm, ICM, CNRS, Montpellier University, Montpellier Cedex 5, France
| | - Delphine Haouzi
- ART-PGD Department, Institute of Regenerative Medicine and Biotherapy, CHU Montpellier, Inserm U1203, UFR of Medicine, Saint-Eloi Hospital, Montpellier University, France
| | - Samir Hamamah
- ART-PGD Department, Institute of Regenerative Medicine and Biotherapy, CHU Montpellier, Inserm U1203, UFR of Medicine, Saint-Eloi Hospital, Montpellier University, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier U1194, Inserm, ICM, CNRS, Montpellier University, Montpellier Cedex 5, France
| | - Eric Fabbrizio
- Institut de Recherche en Cancérologie de Montpellier U1194, Inserm, ICM, CNRS, Montpellier University, Montpellier Cedex 5, France
| |
Collapse
|
35
|
Shailesh H, Zakaria ZZ, Baiocchi R, Sif S. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget 2018; 9:36705-36718. [PMID: 30613353 PMCID: PMC6291173 DOI: 10.18632/oncotarget.26404] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/16/2018] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are known for their ability to catalyze methylation of specific arginine residues in a wide variety of cellular proteins, which are involved in a plethora of processes including signal transduction, transcription, and more recently DNA recombination. All members of the PRMT family can be grouped into three main classes depending on the type of methylation they catalyze. Type I PRMTs induce monomethylation and asymmetric dimethylation, while type II PRMTs catalyze monomethylation and symmetric dimethylation of specific arginine residues. In contrast, type III PRMTs carry out only monomethylation of arginine residues. In this review, we will focus on PRMT5, a type II PRMT essential for viability and normal development, which has been shown to be overexpressed in a wide variety of cancer cell types, owing it to the crucial role it plays in controlling key growth regulatory pathways. Furthermore, the role of PRMT5 in regulating expression and stability of key transcription factors that control normal stem cell function as well as cancer stem cell renewal will be discussed. We will review recent work that shows that through its ability to methylate various cellular proteins, PRMT5 functions as a master epigenetic regulator essential for growth and development, and we will highlight studies that have examined its dysregulation and the effects of its inhibition on cancer cell growth.
Collapse
Affiliation(s)
- Harshita Shailesh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Zain Z Zakaria
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Robert Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
36
|
Smith E, Zhou W, Shindiapina P, Sif S, Li C, Baiocchi RA. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opin Ther Targets 2018; 22:527-545. [PMID: 29781349 PMCID: PMC6311705 DOI: 10.1080/14728222.2018.1474203] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Exploration in the field of epigenetics has revealed the diverse roles of the protein arginine methyltransferase (PRMT) family of proteins in multiple disease states. These findings have led to the development of specific inhibitors and discovery of several new classes of drugs with potential to treat both benign and malignant conditions. Areas covered: We provide an overview on the role of PRMT enzymes in healthy and malignant cells, highlighting the role of arginine methylation in specific pathways relevant to cancer pathogenesis. Additionally, we describe structure and catalytic activity of PRMT and discuss the mechanisms of action of novel small molecule inhibitors of specific members of the arginine methyltransferase family. Expert opinion: As the field of PRMT biology advances, it's becoming clear that this class of enzymes is highly relevant to maintaining normal physiologic processes as well and disease pathogenesis. We discuss the potential impact of PRMT inhibitors as a broad class of drugs, including the pleiotropic effects, off target effects the need for more detailed PRMT-centric interactomes, and finally, the potential for targeting this class of enzymes in clinical development of experimental therapeutics for cancer.
Collapse
Affiliation(s)
- Emily Smith
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Polina Shindiapina
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Said Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Chenglong Li
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Robert A. Baiocchi
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Ye F, Zhang W, Ye X, Jin J, Lv Z, Luo C. Identification of Selective, Cell Active Inhibitors of Protein Arginine Methyltransferase 5 through Structure-Based Virtual Screening and Biological Assays. J Chem Inf Model 2018; 58:1066-1073. [PMID: 29672052 DOI: 10.1021/acs.jcim.8b00050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5), a type II PRMT enzyme, is reported as an important therapeutic target in leukemia and lymphoma. In the present study, based on the combination of virtual screening and biochemical validations, we discovered a series of small-molecule inhibitors targeting PRMT5. Among those, DC_Y134 exhibited the most potent activity with IC50 value of 1.7 μM and displayed good selectivity against other methyltransferases. Further treatment with DC_Y134 inhibited the proliferation of several hematological malignancy cell lines by causing cell cycle arrest and apoptosis. Western blot assays indicated that DC_Y134 reduced the cellular symmetrically dimethylated levels. In addition, we analyzed the binding mode of DC_Y134 through molecular docking, which revealed that DC_Y134 occupies the binding site of substrate arginine and explained the selectivity of this inhibitor. Taken together, compound DC_Y134 could be used to elucidate the biological roles of PRMT5 and serve as a lead compound for treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Fei Ye
- College of Life Sciences , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Weiyao Zhang
- College of Life Sciences , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Xiaoqing Ye
- College of Life Sciences , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Jia Jin
- College of Life Sciences , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Zhengbing Lv
- College of Life Sciences , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| |
Collapse
|
38
|
Draime A, Bridoux L, Belpaire M, Pringels T, Degand H, Morsomme P, Rezsohazy R. The O-GlcNAc transferase OGT interacts with and post-translationally modifies the transcription factor HOXA1. FEBS Lett 2018; 592:1185-1201. [PMID: 29465778 DOI: 10.1002/1873-3468.13015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 11/06/2022]
Abstract
HOXA1 belongs to the HOX family of transcription factors which are key regulators of animal development. Little is known about the molecular pathways controlling HOXA1. Recent data from our group revealed distinct partner proteins interacting with HOXA1. Among them, OGT is an O-linked N-acetylglucosamine (O-GlcNAc) transferase modifying a variety of proteins involved in different cellular processes including transcription. Here, we confirm OGT as a HOXA1 interactor, we characterise which domains of HOXA1 and OGT are required for the interaction, and we provide evidence that OGT post-translationally modifies HOXA1. Mass spectrometry experiments indeed reveal that HOXA1 can be phosphorylated on the AGGTVGSPQYIHHSY peptide and that upon OGT expression, the phosphate adduct is replaced by an O-GlcNAc group.
Collapse
Affiliation(s)
- Amandine Draime
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Magali Belpaire
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Molecular Physiology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Molecular Physiology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
39
|
Zakrzewicz D, Didiasova M, Krüger M, Giaimo BD, Borggrefe T, Mieth M, Hocke AC, Zakrzewicz A, Schaefer L, Preissner KT, Wygrecka M. Protein arginine methyltransferase 5 mediates enolase-1 cell surface trafficking in human lung adenocarcinoma cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1816-1827. [PMID: 29501774 DOI: 10.1016/j.bbadis.2018.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/12/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Enolase-1-dependent cell surface proteolysis plays an important role in cell invasion. Although enolase-1 (Eno-1), a glycolytic enzyme, has been found on the surface of various cells, the mechanism responsible for its exteriorization remains elusive. Here, we investigated the involvement of post-translational modifications (PTMs) of Eno-1 in its lipopolysaccharide (LPS)-triggered trafficking to the cell surface. RESULTS We found that stimulation of human lung adenocarcinoma cells with LPS triggered the monomethylation of arginine 50 (R50me) within Eno-1. The Eno-1R50me was confirmed by its interaction with the tudor domain (TD) from TD-containing 3 (TDRD3) protein recognizing methylarginines. Substitution of R50 with lysine (R50K) reduced Eno-1 association with epithelial caveolar domains, thereby diminishing its exteriorization. Similar effects were observed when pharmacological inhibitors of arginine methyltransferases were applied. Protein arginine methyltransferase 5 (PRMT5) was identified to be responsible for Eno-1 methylation. Overexpression of PRMT5 and caveolin-1 enhanced levels of membrane-bound extracellular Eno-1 and, conversely, pharmacological inhibition of PRMT5 attenuated Eno-1 cell-surface localization. Importantly, Eno-1R50me was essential for cancer cell motility since the replacement of Eno-1 R50 by lysine or the suppression of PRMT 5 activity diminished Eno-1-triggered cell invasion. CONCLUSIONS LPS-triggered Eno-1R50me enhances Eno-1 cell surface levels and thus potentiates the invasive properties of cancer cells. Strategies to target Eno-1R50me may offer novel therapeutic approaches to attenuate tumor metastasis in cancer patients.
Collapse
Affiliation(s)
- Dariusz Zakrzewicz
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Miroslava Didiasova
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Marcus Krüger
- Center for Molecular Medicine, University of Cologne, Germany
| | - Benedetto Daniele Giaimo
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Maren Mieth
- Department of Internal Medicine, Infectious Diseases and Pulmonary Medicine, Charité-University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine, Infectious Diseases and Pulmonary Medicine, Charité-University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, Feulgenstrasse 10-12, 35385 Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany; Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
40
|
Poulard C, Corbo L, Le Romancer M. Protein arginine methylation/demethylation and cancer. Oncotarget 2018; 7:67532-67550. [PMID: 27556302 PMCID: PMC5341895 DOI: 10.18632/oncotarget.11376] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification involved in numerous cellular processes including transcription, DNA repair, mRNA splicing and signal transduction. Currently, there are nine known members of the protein arginine methyltransferase (PRMT) family, but only one arginine demethylase has been identified, namely the Jumonji domain-containing 6 (JMJD6). Although its demethylase activity was initially challenged, its dual activity as an arginine demethylase and a lysine hydroxylase is now recognized. Interestingly, a growing number of substrates for arginine methylation and demethylation play key roles in tumorigenesis. Though alterations in the sequence of these enzymes have not been identified in cancer, their overexpression is associated with various cancers, suggesting that they could constitute targets for therapeutic strategies. In this review, we present the recent knowledge of the involvement of PRMTs and JMJD6 in tumorigenesis.
Collapse
Affiliation(s)
- Coralie Poulard
- Department of Biochemistry and Molecular Biology, University of Southern California Norris Comprehensive Cancer Center, University of Southern California Los Angeles, Los Angeles, CA, USA.,Université de Lyon, F-69000 Lyon, France.,Université Lyon 1, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,Equipe Labellisée, La Ligue Contre le Cancer, 75013 Paris, France
| | - Laura Corbo
- Université de Lyon, F-69000 Lyon, France.,Université Lyon 1, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,Equipe Labellisée, La Ligue Contre le Cancer, 75013 Paris, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Université Lyon 1, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,Equipe Labellisée, La Ligue Contre le Cancer, 75013 Paris, France
| |
Collapse
|
41
|
Interaction assessments of the first S-adenosylmethionine competitive inhibitor and the essential interacting partner methylosome protein 50 with protein arginine methyltransferase 5 by combined computational methods. Biochem Biophys Res Commun 2017; 495:721-727. [PMID: 29154828 DOI: 10.1016/j.bbrc.2017.11.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is the most promising anticancer target in PRMT family. In this study, based on the first S-adenosylmethionine (SAM) competitive small molecule inhibitor (17, compound number is from original paper) of PRMT5 reported in our recent paper, we determined the molecular mechanism of 17 interacting with PRMT5 by computational methods. Previously reported CMP5 was also thought of as a SAM competitive inhibitor of PRMT5, but the direct inhibition activity against PRMT5 at enzymatic level was not provided. Therefore, we tested the half-maximal inhibitory concentration (IC50) of CMP5 against PRMT5 at enzymatic level for the purpose of summarizing the interaction characteristics of SAM binding site inhibitors with PRMT5. Additionally, as the essential interacting partner of PRMT5, the binding attributes of the WD-repeat-containing protein MEP50 (methylosome protein 50) was investigated, and nine key residues that contribute most to PRMT5:MEP50 interaction were identified. These results could be helpful in discovering new potent and specific inhibitors of PRMT5, as well as in designing mutant residue assay to modulate the catalytic activity of PRMT5.
Collapse
|
42
|
Abstract
PRMT5 catalyzes the mono- and symmetric dimethylation of the arginine N-guanidine group of a wide variety of target proteins including histones, transcriptional elongation factors, kinases and tumor suppressors by utilizing the essential co-factor S-adenosylmethionine as methyl source. PRMT5 overexpression has been linked to the progression of various diseases, including cancer, and is oftentimes associated with a poor prognosis. Therefore, PRMT5 is promoted as a valuable target for drug discovery approaches and was a subject matter in recent endeavors aiming for the development of specific PRMT5 inhibitors. This review will embrace the significance of PRMT5 as therapeutic target with respect to its molecular interdependencies in disease states as well as its implication in drug development approaches.
Collapse
|
43
|
Kumar B, Yadav A, Brown NV, Zhao S, Cipolla MJ, Wakely PE, Schmitt AC, Baiocchi RA, Teknos TN, Old M, Kumar P. Nuclear PRMT5, cyclin D1 and IL-6 are associated with poor outcome in oropharyngeal squamous cell carcinoma patients and is inversely associated with p16-status. Oncotarget 2017; 8:14847-14859. [PMID: 28107179 PMCID: PMC5362449 DOI: 10.18632/oncotarget.14682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022] Open
Abstract
Protein arginine methyltransferase-5 (PRMT5) plays an important role in cancer progression by repressing the expression of key tumor suppressor genes via the methylation of transcriptional factors and chromatin-associated proteins. However, very little is known about the expression and biological role of PRMT5 in head and neck cancer. In this study, we examined expression profile of PRMT5 at subcellular levels in oropharyngeal squamous cell carcinoma (OPSCC) and assessed its correlation with disease progression and patient outcome. Our results show that nuclear PRMT5 was associated with poor overall survival (p < 0.012) and these patients had 1.732 times higher hazard of death (95% CI: 1.127–2.661) as compared to patients in whom PRMT5 was not present in the nucleus of the tumors. Nuclear PRMT5 expression was inversely correlated with p16-status (p < 0.001) and was significantly higher in tumor samples from patients who smoked > 10 pack-years (p = 0.013). In addition, nuclear PRMT5 was directly correlated with cyclin D1 (p = 0.0101) and IL-6 expression (p < 0.001). In a subgroup survival analysis, nuclear PRMT5-positive/IL-6-positive group had worst survival, whereas nuclear PRMT5-negative/IL-6-negative group had the best survival. Similarly, patients with p16-negative/nuclear PRMT5-positive tumors had worse survival compared to patients with p16-positive/nuclear PRMT5-negative tumors. Our mechanistic results suggest that IL-6 promotes nuclear translocation of PRMT5. Taken together, our results demonstrate for the first time that nuclear PRMT5 expression is associated with poor clinical outcome in OPSCC patients and IL-6 plays a role in the nuclear translocation of PRMT5.
Collapse
Affiliation(s)
- Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Arti Yadav
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Nicole V Brown
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Songzhu Zhao
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Michael J Cipolla
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Paul E Wakely
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Alessandra C Schmitt
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30303, USA
| | - Robert A Baiocchi
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Theodoros N Teknos
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210 USA
| | - Matthew Old
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Pawan Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
44
|
Feng Z, Ma J, Hua X. Epigenetic regulation by the menin pathway. Endocr Relat Cancer 2017; 24:T147-T159. [PMID: 28811300 PMCID: PMC5612327 DOI: 10.1530/erc-17-0298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.
Collapse
Affiliation(s)
- Zijie Feng
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Ma
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xianxin Hua
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia. Oncogene 2017; 37:450-460. [PMID: 28945229 PMCID: PMC5785415 DOI: 10.1038/onc.2017.337] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a disease associated with epigenetic dysregulation. 11q23 translocations involving the H3K4 methyltransferase MLL1 (KMT2A) generate oncogenic fusion proteins with deregulated transcriptional potential. The Polymerase Associated Factor complex (PAFc) is an epigenetic co-activator complex that makes direct contact with MLL fusion proteins and is involved in AML, however its functions are not well understood. Here, we explored the transcriptional targets regulated by the PAFc that facilitate leukemia by performing RNA-sequencing after conditional loss of the PAFc subunit Cdc73. We found Cdc73 promotes expression of an early hematopoietic progenitor gene program that prevents differentiation. Among the target genes, we confirmed the protein arginine methyltransferase Prmt5 is a direct target that is positively regulated by a transcriptional unit that includes the PAFc, MLL1, HOXA9 and STAT5 in leukemic cells. We observed reduced PRMT5-mediated H4R3me2s following excision of Cdc73 placing this histone modification downstream of the PAFc and revealing a novel mechanism between the PAFc and Prmt5. Knock down or pharmacologic inhibition of Prmt5 causes a G1 arrest and reduced proliferation resulting in extended leukemic disease latency in vivo. Overall, we demonstrate the PAFc regulates Prmt5 to facilitate leukemic progression and is a potential therapeutic target for AMLs.
Collapse
|
46
|
Dong Y, Song C, Wang Y, Lei Z, Xu F, Guan H, Chen A, Li F. Inhibition of PRMT5 suppresses osteoclast differentiation and partially protects against ovariectomy-induced bone loss through downregulation of CXCL10 and RSAD2. Cell Signal 2017; 34:55-65. [PMID: 28302565 DOI: 10.1016/j.cellsig.2017.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/25/2017] [Accepted: 03/11/2017] [Indexed: 02/07/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is an arginine methylation methyltransferase that regulates various physiological processes. Abnormal PRMT5 activity has been reported in inflammation and various types of cancers. Because osteoclast differentiation is characterized by the activation of inflammation-related pathways, we speculated that PRMT5 may play a role in this process. In the present study, we found that PRMT5 was upregulated during osteoclast differentiation. Knockdown of PRMT5 with siRNA in bone marrow mononuclear cells (BMMs) resulted in inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Consistent with the PRMT5 knockdown results, the PRMT5 inhibitor EPZ015666 (EPZ) suppressed osteoclast differentiation and bone resorption. Intraperitoneal administration of EPZ prevented ovariectomy-induced bone loss. Moreover, RANKL-induced NF-κB and MAPK activation was inhibited by EPZ. Expression microarrays showed that the expression of several osteoclast formation-related genes was altered by EPZ treatment, including chemokine C-X-C motif ligand 10 (CXCL10). Administration of recombinant CXCL10 partially reversed the osteoclastogenesis inhibition effect of the PRMT5 inhibitor. Intriguingly, RSAD2, which is a reported antiviral protein, was apparently suppressed when PRMT5 was inhibited. Knockdown of RSAD2 with siRNA in BMMs led to inhibition of osteoclast differentiation. Subsequent ChIP-qPCR identified that both PRMT5 inhibition and knockdown resulted in decreased H3R8 or/and H4R3 methylation at CXCL10 and RSAD2 promotors. In conclusion, our study found that PRMT5 is an activator of osteoclast differentiation and inhibition of PRMT5 partially suppressed osteoclastogenesis through downregulation of CXCL10 and RSAD2.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Song
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuting Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zuowei Lei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hanfeng Guan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Biological Engineering and Regenerative Medicine Center, Department of Orthopedics, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, Hubei, China.
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Biological Engineering and Regenerative Medicine Center, Department of Orthopedics, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
47
|
Abstract
Protein arginine methyltransferase 5 (PRMT5) plays multiple roles in cellular processes at different stages of the cell cycle in a tissue specific manner. PRMT5 in complex with MEP50/p44/WDR77 associates with a plethora of partner proteins to symmetrically dimethylate arginine residues on target proteins in both the nucleus and the cytoplasm. Overexpression of PRMT5 has been observed in several cancers, making it an attractive drug target. The structure of the 453 kDa heterooctameric PRMT5:MEP50 complex bound to an S-adenosylmethionine analog and a substrate peptide provides valuable insights into this intriguing target.
Collapse
Affiliation(s)
- Stephen Antonysamy
- Structural Biology, Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
48
|
Chen D, Zeng S, Huang M, Xu H, Liang L, Yang X. Role of protein arginine methyltransferase 5 in inflammation and migration of fibroblast-like synoviocytes in rheumatoid arthritis. J Cell Mol Med 2016; 21:781-790. [PMID: 27860244 PMCID: PMC5345686 DOI: 10.1111/jcmm.13020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/24/2016] [Indexed: 12/29/2022] Open
Abstract
To probe the role of protein arginine methyltransferase 5 (PRMT5) in regulating inflammation, cell proliferation, migration and invasion of fibroblast‐like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA). FLSs were separated from synovial tissues (STs) from patients with RA and osteoarthritis (OA). An inhibitor of PRMT5 (EPZ015666) and short interference RNA (siRNA) against PRMT5 were used to inhibit PRMT5 expression. The standard of protein was measured by Western blot or immunofluorescence. The excretion and genetic expression of inflammatory factors were, respectively, estimated by enzyme‐linked immunosorbent assay (ELISA) and real‐time polymerase chain reaction (PCR). Migration and invasion in vitro were detected by Boyden chamber assay. FLSs proliferation was detected by BrdU incorporation. Increased PRMT5 was discovered in STs and FLSs from patients with RA. In RA FLSs, the level of PRMT5 was up‐regulated by stimulation with IL‐1β and TNF‐α. Inhibition of PRMT5 by EPZ015666 and siRNA‐mediated knockdown reduced IL‐6 and IL‐8 production, and proliferation of RA FLSs. In addition, inhibition of PRMT5 decreased in vitro migration and invasion of RA FLSs. Furthermore, EPZ015666 restrained the phosphorylation of IκB kinaseβ and IκBα, as well as nucleus transsituation of p65 as well as AKT in FLSs. PRMT5 regulated the production of inflammatory factors, cell proliferation, migration and invasion of RA FLS, which was mediated by the NF‐κB and AKT pathways. Our data suggested that targeting PRMT5 to prevent synovial inflammation and destruction might be a promising therapy for RA.
Collapse
Affiliation(s)
- Dongying Chen
- Department of Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingcheng Huang
- Department of Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liuqin Liang
- Department of Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiuyan Yang
- Department of Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Ji S, Ma S, Wang WJ, Huang SZ, Wang TQ, Xiang R, Hu YG, Chen Q, Li LL, Yang SY. Discovery of selective protein arginine methyltransferase 5 inhibitors and biological evaluations. Chem Biol Drug Des 2016; 89:585-598. [PMID: 27714957 DOI: 10.1111/cbdd.12881] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/21/2016] [Accepted: 09/23/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Sen Ji
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan China
| | - Shuang Ma
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan China
| | - Wen-Jing Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan China
| | - Shen-Zhen Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan China
| | - Tian-qi Wang
- Department of Clinical Medicine; School of Medicine; Nankai University; Tianjin China
| | - Rong Xiang
- Department of Clinical Medicine; School of Medicine; Nankai University; Tianjin China
| | - Yi-Guo Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan China
| | - Qiang Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan China
| | - Lin-Li Li
- West China School of Pharmacy; Sichuan University; Chengdu Sichuan China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan China
| |
Collapse
|
50
|
Greenblatt SM, Liu F, Nimer SD. Arginine methyltransferases in normal and malignant hematopoiesis. Exp Hematol 2016; 44:435-41. [PMID: 27026282 DOI: 10.1016/j.exphem.2016.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 02/02/2023]
Abstract
Arginine methylation is an abundant covalent modification that regulates diverse cellular processes, including transcription, translation, DNA repair, and RNA processing. The enzymes that catalyze these marks are known as the protein arginine methyltransferases (PRMTs), and they can generate asymmetric dimethyl arginine (type I arginine methyltransferases), symmetric dimethylarginine (type II arginine methyltransferases), or monomethyarginine (type III arginine methyltransferases). The PRMTs are capable of modifying diverse substrates, from histone components to specific nuclear and cytoplasmic proteins. Additionally, the PRMTs can orchestrate chromatin remodeling by blocking the docking of other epigenetic modifying enzymes or by recruiting them to specific gene loci. In the hematopoietic system, PRMTs can regulate cell behavior, including the critical balance between stem cell self-renewal and differentiation, in at least two critical ways, via (i) the covalent modification of transcription factors and (ii) the regulation of histone modifications at promoters critical to cell fate determination. Given these important functions, it is not surprising that these processes are altered in hematopoietic malignancies, such as acute myeloid leukemia, where they promote increased self-renewal and impair hematopoietic stem and progenitor cell differentiation.
Collapse
Affiliation(s)
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL.
| |
Collapse
|