1
|
Isoforms of the p53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel) 2021; 13:cancers13040916. [PMID: 33671606 PMCID: PMC7926742 DOI: 10.3390/cancers13040916] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The p53 family is a complex family of transcription factors with different cellular functions that are involved in several physiological processes. A massive amount of data has been accumulated on their critical role in the tumorigenesis and the aggressiveness of cancers of different origins. If common features are observed, there are numerous specificities that may reflect particularities of the tissues from which the cancers originated. In this regard, gastric cancer tumorigenesis is rather remarkable, as it is induced by bacterial and viral infections, various chemical carcinogens, and familial genetic alterations, which provide an example of the variety of molecular mechanisms responsible for cell transformation and how they impact the p53 family. This review summarizes the knowledge gathered from over 40 years of research on the role of the p53 family in gastric cancer, which still displays one of the most elevated mortality rates amongst all types of cancers. Abstract Gastric cancer is one of the most aggressive cancers, with a median survival of 12 months. This illustrates its complexity and the lack of therapeutic options, such as personalized therapy, because predictive markers do not exist. Thus, gastric cancer remains mostly treated with cytotoxic chemotherapies. In addition, less than 20% of patients respond to immunotherapy. TP53 mutations are particularly frequent in gastric cancer (±50% and up to 70% in metastatic) and are considered an early event in the tumorigenic process. Alterations in the expression of other members of the p53 family, i.e., p63 and p73, have also been described. In this context, the role of the members of the p53 family and their isoforms have been investigated over the years, resulting in conflicting data. For instance, whether mutations of TP53 or the dysregulation of its homologs may represent biomarkers for aggressivity or response to therapy still remains a matter of debate. This uncertainty illustrates the lack of information on the molecular pathways involving the p53 family in gastric cancer. In this review, we summarize and discuss the most relevant molecular and clinical data on the role of the p53 family in gastric cancer and enumerate potential therapeutic innovative strategies.
Collapse
|
2
|
Falcicchio M, Ward JA, Macip S, Doveston RG. Regulation of p53 by the 14-3-3 protein interaction network: new opportunities for drug discovery in cancer. Cell Death Discov 2020; 6:126. [PMID: 33298896 PMCID: PMC7669891 DOI: 10.1038/s41420-020-00362-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 01/17/2023] Open
Abstract
Most cancers evolve to disable the p53 pathway, a key tumour suppressor mechanism that prevents transformation and malignant cell growth. However, only ~50% exhibit inactivating mutations of p53, while in the rest its activity is suppressed by changes in the proteins that modulate the pathway. Therefore, restoring p53 activity in cells in which it is still wild type is a highly attractive therapeutic strategy that could be effective in many different cancer types. To this end, drugs can be used to stabilise p53 levels by modulating its regulatory pathways. However, despite the emergence of promising strategies, drug development has stalled in clinical trials. The need for alternative approaches has shifted the spotlight to the 14-3-3 family of proteins, which strongly influence p53 stability and transcriptional activity through direct and indirect interactions. Here, we present the first detailed review of how 14-3-3 proteins regulate p53, with special emphasis on the mechanisms involved in their binding to different members of the pathway. This information will be important to design new compounds that can reactivate p53 in cancer cells by influencing protein-protein interactions. The intricate relationship between the 14-3-3 isoforms and the p53 pathway suggests that many potential drug targets for p53 reactivation could be identified and exploited to design novel antineoplastic therapies with a wide range of applications.
Collapse
Affiliation(s)
- Marta Falcicchio
- Leicester Institute for Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Jake A Ward
- Leicester Institute for Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
- Mechanisms of Cancer and Ageing Lab, Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Lab, Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| | - Richard G Doveston
- Leicester Institute for Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
3
|
Lieschke E, Wang Z, Kelly GL, Strasser A. Discussion of some 'knowns' and some 'unknowns' about the tumour suppressor p53. J Mol Cell Biol 2020; 11:212-223. [PMID: 30496435 PMCID: PMC6478126 DOI: 10.1093/jmcb/mjy077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Activation of the tumour suppressor p53 upon cellular stress can induce a number of different cellular processes. The diverse actions of these processes are critical for the protective function of p53 in preventing the development of cancer. However, it is still not fully understood which process(es) activated by p53 is/are critical for tumour suppression and how this might differ depending on the type of cells undergoing neoplastic transformation and the nature of the drivers of oncogenesis. Moreover, it is not clear why upon activation of p53 some cells undergo cell cycle arrest and senescence whereas others die by apoptosis. Here we discuss some of the cellular processes that are crucial for p53-mediated tumour suppression and the factors that could impact cell fate upon p53 activation. Finally, we describe therapies aimed either at activating wild-type p53 or at changing the behaviour of mutant p53 to unleash tumour growth suppressive processes for therapeutic benefit in malignant disease.
Collapse
Affiliation(s)
- Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Zilu Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Deng H, Yue JK, Zusman BE, Nwachuku EL, Abou-Al-Shaar H, Upadhyayula PS, Okonkwo DO, Puccio AM. B-Cell Lymphoma 2 (Bcl-2) and Regulation of Apoptosis after Traumatic Brain Injury: A Clinical Perspective. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E300. [PMID: 32570722 PMCID: PMC7353854 DOI: 10.3390/medicina56060300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Background and Objectives: The injury burden after head trauma is exacerbated by secondary sequelae, which leads to further neuronal loss. B-cell lymphoma 2 (Bcl-2) is an anti-apoptotic protein and a key modulator of the programmed cell death (PCD) pathways. The current study evaluates the clinical evidence on Bcl-2 and neurological recovery in patients after traumatic brain injury (TBI). Materials and Methods: All studies in English were queried from the National Library of Medicine PubMed database using the following search terms: (B-cell lymphoma 2/Bcl-2/Bcl2) AND (brain injury/head injury/head trauma/traumatic brain injury) AND (human/patient/subject). There were 10 investigations conducted on Bcl-2 and apoptosis in TBI patients, of which 5 analyzed the pericontutional brain tissue obtained from surgical decompression, 4 studied Bcl-2 expression as a biomarker in the cerebrospinal fluid (CSF), and 1 was a prospective randomized trial. Results: Immunohistochemistry (IHC) in 94 adults with severe TBI showed upregulation of Bcl-2 in the pericontusional tissue. Bcl-2 was detected in 36-75% of TBI patients, while it was generally absent in the non-TBI controls, with Bcl-2 expression increased 2.9- to 17-fold in TBI patients. Terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick-end labeling (TUNEL) positivity for cell death was detected in 33-73% of TBI patients. CSF analysis in 113 TBI subjects (90 adults, 23 pediatric patients) showed upregulation of Bcl-2 that peaked on post-injury day 3 and subsequently declined after day 5. Increased Bcl-2 in the peritraumatic tissue, rising CSF Bcl-2 levels, and the variant allele of rs17759659 are associated with improved mortality and better outcomes on the Glasgow Outcome Score (GOS). Conclusions: Bcl-2 is upregulated in the pericontusional brain and CSF in the acute period after TBI. Bcl-2 has a neuroprotective role as a pro-survival protein in experimental models, and increased expression in patients can contribute to improvement in clinical outcomes. Its utility as a biomarker and therapeutic target to block neuronal apoptosis after TBI warrants further evaluation.
Collapse
Affiliation(s)
- Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - John K. Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA;
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Benjamin E. Zusman
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
| | - Enyinna L. Nwachuku
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
| | - Pavan S. Upadhyayula
- Department of Neurological Surgery, University of California Diego, San Diego, CA 92093, USA;
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Fountzilas G, Giannoulatou E, Alexopoulou Z, Zagouri F, Timotheadou E, Papadopoulou K, Lakis S, Bobos M, Poulios C, Sotiropoulou M, Lyberopoulou A, Gogas H, Pentheroudakis G, Pectasides D, Koutras A, Christodoulou C, Papandreou C, Samantas E, Papakostas P, Kosmidis P, Bafaloukos D, Karanikiotis C, Dimopoulos MA, Kotoula V. TP53 mutations and protein immunopositivity may predict for poor outcome but also for trastuzumab benefit in patients with early breast cancer treated in the adjuvant setting. Oncotarget 2017; 7:32731-53. [PMID: 27129168 PMCID: PMC5078047 DOI: 10.18632/oncotarget.9022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND We investigated the impact of PIK3CA and TP53 mutations and p53 protein status on the outcome of patients who had been treated with adjuvant anthracycline-taxane chemotherapy within clinical trials in the pre- and post-trastuzumab era. RESULTS TP53 and PIK3CA mutations were found in 380 (21.5%) and 458 (25.9%) cases, respectively, including 104 (5.9%) co-mutated tumors; p53 immunopositivity was observed in 848 tumors (53.5%). TP53 mutations (p < 0.001) and p53 protein positivity (p = 0.001) were more frequent in HER2-positive and triple negative (TNBC) tumors, while PIK3CA mutations were more frequent in Luminal A/B tumors (p < 0.001). TP53 mutation status and p53 protein expression but not PIK3CA mutation status interacted with trastuzumab treatment for disease-free survival; patients with tumors bearing TP53 mutations or immunopositive for p53 protein fared better when treated with trastuzumab, while among patients treated with trastuzumab those with the above characteristics fared best (interaction p = 0.017 for mutations; p = 0.015 for IHC). Upon multivariate analysis the above interactions remained significant in HER2-positive patients; in the entire cohort, TP53 mutations were unfavorable in patients with Luminal A/B (p = 0.003) and TNBC (p = 0.025); p53 immunopositivity was strongly favorable in patients treated with trastuzumab (p = 0.009). MATERIALS AND METHODS TP53 and PIK3CA mutation status was examined in 1766 paraffin tumor DNA samples with informative semiconductor sequencing results. Among these, 1585 cases were also informative for p53 protein status assessed by immunohistochemistry (IHC; 10% positivity cut-off). CONCLUSIONS TP53 mutations confer unfavorable prognosis in patients with Luminal A/B and TNBC tumors, while p53 immunopositivity may predict for trastuzumab benefit in the adjuvant setting.
Collapse
Affiliation(s)
- George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,The University of New South Wales, NSW, Australia
| | - Zoi Alexopoulou
- Department of Biostatistics, Health Data Specialists Ltd, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, "Alexandra" Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Eleni Timotheadou
- Department of Medical Oncology, "Papageorgiou" Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sotiris Lakis
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Poulios
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | | | - Aggeliki Lyberopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Helen Gogas
- First Department of Medicine, "Laiko" General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, "Hippokration" Hospital, Athens, Greece
| | - Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | | | - Christos Papandreou
- Department of Medical Oncology, University Hospital of Larissa, University of Thessaly School of Medicine, Larissa, Greece
| | - Epaminontas Samantas
- Third Department of Medical Oncology, "Agii Anargiri" Cancer Hospital, Athens, Greece
| | | | - Paris Kosmidis
- Second Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | | | | | | | - Vassiliki Kotoula
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| |
Collapse
|
6
|
Selt F, Hohloch J, Hielscher T, Sahm F, Capper D, Korshunov A, Usta D, Brabetz S, Ridinger J, Ecker J, Oehme I, Gronych J, Marquardt V, Pauck D, Bächli H, Stiles CD, von Deimling A, Remke M, Schuhmann MU, Pfister SM, Brummer T, Jones DTW, Witt O, Milde T. Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing. Oncotarget 2017; 8:11460-11479. [PMID: 28002790 PMCID: PMC5355278 DOI: 10.18632/oncotarget.14004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
Pilocytic astrocytoma (PA) is the most frequent pediatric brain tumor. Activation of the MAPK pathway is well established as the oncogenic driver of the disease. It is most frequently caused by KIAA1549:BRAF fusions, and leads to oncogene induced senescence (OIS). OIS is thought to be a major reason for growth arrest of PA cells in vitro and in vivo, preventing establishment of PA cultures. Hence, valid preclinical models are currently very limited, but preclinical testing of new compounds is urgently needed. We transduced the PA short-term culture DKFZ-BT66 derived from the PA of a 2-year old patient with a doxycycline-inducible system coding for Simian Vacuolating Virus 40 Large T Antigen (SV40-TAg). SV40-TAg inhibits TP53/CDKN1A and CDKN2A/RB1, two pathways critical for OIS induction and maintenance. DNA methylation array and KIAA1549:BRAF fusion analysis confirmed pilocytic astrocytoma identity of DKFZ-BT66 cells after establishment. Readouts were analyzed in proliferating as well as senescent states, including cell counts, viability, cell cycle analysis, expression of SV40-Tag, CDKN2A (p16), CDKN1A (p21), and TP53 (p53) protein, and gene-expression profiling. Selected MAPK inhibitors (MAPKi) including clinically available MEK inhibitors (MEKi) were tested in vitro. Expression of SV40-TAg enabled the cells to bypass OIS and to resume proliferation with a mean doubling time of 45h allowing for propagation and long-term culture. Withdrawal of doxycycline led to an immediate decrease of SV40-TAg expression, appearance of senescent morphology, upregulation of CDKI proteins and a subsequent G1 growth arrest in line with the re-induction of senescence. DKFZ-BT66 cells still underwent replicative senescence that was overcome by TERT expression. Testing of a set of MAPKi revealed differential responses in DKFZ-BT66. MEKi efficiently inhibited MAPK signaling at clinically achievable concentrations, while BRAF V600E- and RAF Type II inhibitors showed paradoxical activation. Taken together, we have established the first patient-derived long term expandable PA cell line expressing the KIAA1549:BRAF-fusion suitable for preclinical drug testing.
Collapse
Affiliation(s)
- Florian Selt
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Center for Individualized Pediatric Oncology (ZIPO) and Section of Pediatric Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Juliane Hohloch
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics (C060), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Diren Usta
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian Brabetz
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Johannes Ridinger
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jonas Ecker
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Center for Individualized Pediatric Oncology (ZIPO) and Section of Pediatric Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ina Oehme
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jan Gronych
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Current affiliation: AbbVie Deutschland GmbH & Co. KG, Medical Immunology, Wiesbaden, Germany
| | - Viktoria Marquardt
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Pauck
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heidi Bächli
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Charles D Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Stefan M Pfister
- Center for Individualized Pediatric Oncology (ZIPO) and Section of Pediatric Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University and University Medical Centre, Freiburg, Germany
| | - David T W Jones
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Center for Individualized Pediatric Oncology (ZIPO) and Section of Pediatric Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Till Milde
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Center for Individualized Pediatric Oncology (ZIPO) and Section of Pediatric Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Abstract
Cancer has been recognized for thousands of years. Egyptians believed that cancer occurred at the will of the gods. Hippocrates believed human disease resulted from an imbalance of the four humors: blood, phlegm, yellow bile, and black bile with cancer being caused by excess black bile. The lymph theory of cancer replaced the humoral theory and the blastema theory replaced the lymph theory. Rudolph Virchow was the first to recognize that cancer cells like all cells came from other cells and believed chronic irritation caused cancer. At the same time there was a belief that trauma caused cancer, though it never evolved after many experiments inducing trauma. The birth of virology occurred in 1892 when Dimitri Ivanofsky demonstrated that diseased tobacco plants remained infective after filtering their sap through a filter that trapped bacteria. Martinus Beijerinck would call the tiny infective agent a virus and both Dimitri Ivanofsky and Marinus Beijerinck would become the fathers of virology. Not to long thereafter, Payton Rous founded the field of tumor virology in 1911 with his discovery of a transmittable sarcoma of chickens by what would come to be called Rous sarcoma virus or RSV for short. The first identified human tumor virus was the Epstein-Barr virus (EBV), named after Tony Epstein and Yvonne Barr who visualized the virus particles in Burkitt's lymphoma cells by electron microscopy in 1965. Since that time, many viruses have been associated with carcinogenesis including the most studied, human papilloma virus associated with cervical carcinoma, many other anogenital carcinomas, and oropharyngeal carcinoma. The World Health Organization currently estimates that approximately 22% of worldwide cancers are attributable to infectious etiologies, of which viral etiologies is estimated at 15-20%. The field of tumor virology/viral carcinogenesis has not only identified viruses as etiologic agents of human cancers, but has also given molecular insights to all human cancers including the oncogene activation and tumor suppressor gene inactivation.
Collapse
Affiliation(s)
- A J Smith
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - L A Smith
- Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
8
|
Sharp AN, Heazell AEP, Baczyk D, Dunk CE, Lacey HA, Jones CJP, Perkins JE, Kingdom JCP, Baker PN, Crocker IP. Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast. PLoS One 2014; 9:e87621. [PMID: 24498154 PMCID: PMC3907567 DOI: 10.1371/journal.pone.0087621] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. METHODS Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT-α). Equally, Mdm2 was knocked-down with siRNA. RESULTS Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. CONCLUSIONS These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation.
Collapse
Affiliation(s)
- Andrew N. Sharp
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Alexander E. P. Heazell
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dora Baczyk
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Caroline E. Dunk
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Helen A. Lacey
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | | | - John C. P. Kingdom
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Philip N. Baker
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Ian P. Crocker
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
T antigen transformation reveals Tp53/RB-dependent route to PLAC1 transcription activation in primary fibroblasts. Oncogenesis 2013; 2:e67. [PMID: 23999628 PMCID: PMC3816221 DOI: 10.1038/oncsis.2013.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/22/2013] [Indexed: 01/03/2023] Open
Abstract
PLAC1 (placenta-specific 1) is a gene that is placenta specific and transcribed very little, if at all, in any somatic tissue. It is nevertheless expressed in many cancer cell lines. To understand how cancer cells may activate the gene in nonexpressing cells, we found that a model is provided by classical transformation of normal fibroblasts by SV40 T antigen. T antigen derepressed the PLAC1 P1 promoter, with Tp53 and RB exerting critical and opposing actions and nuclear receptors, retinoid X receptor and liver X receptor, sharply increasing the level of expression.
Collapse
|
10
|
Goswami M, Duvic M, Dougherty A, Ni X. Increased Twist expression in advanced stage of mycosis fungoides and Sézary syndrome. J Cutan Pathol 2012; 39:500-7. [PMID: 22515221 DOI: 10.1111/j.1600-0560.2012.01883.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mechanisms of tumor progression in mycosis fungoides (MF) and Sézary syndrome (SS) are poorly understood. Twist, a transcription factor, is thought to promote solid tumor progression by blocking p53 and inhibiting c-myc-induced apoptosis. Whether Twist expression is correlated to MF/SS stages remains unknown. METHODS Twist, c-myc and p53 proteins in 68 MF/SS lesions across all T stages were examined by immunohistochemistry, and mRNA levels in peripheral blood CD4+ T-cells from SS patients were measured by real-time quantitative polymerase chain reaction. RESULTS Positive staining for Twist was found in 12.5% (2/16) of T1 and 33.3% (7/21) of T2 early stage patches/plaques compared to 50.0% (9/18) of T3 tumors and 84.6% (11/13) of T4 erythroderma. Most T4 erythroderma were positive for Twist in dermal lymphocytes, with the strongest staining. Positive staining for c-myc was higher in T3/T4 lesions (29/31, 93.5%) than T1/T2 lesions (25/37, 67.6%, p < 0.05), with strongest staining in T3 tumors. Aberrant p53 expression was more common in T3/T4 lesions (8/31, 25.8%) than in T1/T2 lesions (2/37, 5.4%, p < 0.05). Twist mRNA was detected in all CD4+ T cells from SS patients but not in normal donors. CONCLUSIONS Increased Twist protein expression in advanced MF/SS lesions suggests that Twist expression may correlate with MF/SS stages.
Collapse
Affiliation(s)
- Meghali Goswami
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
11
|
Bhatia S, Afanasiev O, Nghiem P. Immunobiology of Merkel cell carcinoma: implications for immunotherapy of a polyomavirus-associated cancer. Curr Oncol Rep 2012; 13:488-97. [PMID: 21953511 DOI: 10.1007/s11912-011-0197-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin malignancy with a high mortality rate and an increasing incidence. The recent discovery of Merkel cell polyomavirus has revolutionized our understanding of MCC pathogenesis. Viral oncoproteins appear to play a critical role in tumor progression and are expressed in the majority of MCC tumors. Virus-specific humoral and cellular immune responses are detectable in MCC patients and are linked to the natural history of the disease. Despite persistent expression of immunogenic viral proteins, however, MCC tumors are able to evade the immune system. Understanding of the mechanisms of immune evasion employed by MCC tumors is rapidly increasing and offers opportunities for development of rational immune therapies to improve patient outcomes. Here we review recent discoveries in MCC with a special focus on the pathogenic role of Merkel cell polyomavirus and the immunobiology of this virus-associated disease.
Collapse
Affiliation(s)
- Shailender Bhatia
- Departments of Medicine/Medical Oncology, University of Washington, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, 98109, USA.
| | | | | |
Collapse
|
12
|
Heazell AEP, Sharp AN, Baker PN, Crocker IP. Intra-uterine growth restriction is associated with increased apoptosis and altered expression of proteins in the p53 pathway in villous trophoblast. Apoptosis 2011; 16:135-44. [PMID: 21052841 DOI: 10.1007/s10495-010-0551-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrauterine growth restriction (IUGR) affects 3-8% of pregnancies and is associated with altered cell turnover in the villous trophoblast, an essential functional cell type of the human placenta. The intrinsic pathway of apoptosis, particularly p53, is important in regulating placental cell turnover in response to damage. We hypothesised that expression of proteins in the p53 pathway in placental tissue would be altered in IUGR. Expression of constituents of the p53 pathway was assessed using real-time PCR, Western blotting and immunohistochemistry. p53 mRNA and protein expression was increased in IUGR, which localised to the syncytiotrophoblast. Similar changes were noted in p21 and Bax expression. There was no change in the expression of Mdm2, Bak and Bcl-2. The association between altered trophoblast cell turnover in IUGR and increased p53 expression is reminiscent of that following exposure to hypoxia. These observations provide further insight into the potential pathogenesis of IUGR. Further research is required to elicit the role and interactions of p53 and its place in the pathogenesis of IUGR.
Collapse
Affiliation(s)
- Alexander E P Heazell
- Maternal and Fetal Health Research Group, St Mary's Hospital, University of Manchester, Hathersage Road, Manchester M13 0JH, UK.
| | | | | | | |
Collapse
|
13
|
Zheltukhin AO, Chumakov PM. Constitutive and induced functions of the p53 gene. BIOCHEMISTRY (MOSCOW) 2011; 75:1692-721. [DOI: 10.1134/s0006297910130110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Rathi AV, Cantalupo PG, Sarkar SN, Pipas JM. Induction of interferon-stimulated genes by Simian virus 40 T antigens. Virology 2010; 406:202-11. [PMID: 20692676 PMCID: PMC2939315 DOI: 10.1016/j.virol.2010.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/22/2010] [Accepted: 07/09/2010] [Indexed: 12/24/2022]
Abstract
Simian virus 40 (SV40) large T antigen (TAg) is a multifunctional oncoprotein essential for productive viral infection and for cellular transformation. We have used microarray analysis to examine the global changes in cellular gene expression induced by wild-type T antigen (TAg(wt)) and TAg-mutants in mouse embryo fibroblasts (MEFs). The expression profile of approximately 800 cellular genes was altered by TAg(wt) and a truncated TAg (TAg(N136)), including many genes that influence cell cycle, DNA-replication, transcription, chromatin structure and DNA repair. Unexpectedly, we found a significant number of immune response genes upregulated by TAg(wt) including many interferon-stimulated genes (ISGs) such as ISG56, OAS, Rsad2, Ifi27 and Mx1. Additionally, we also observed activation of STAT1 by TAg(wt). Our genetic studies using several TAg-mutants reveal an unexplored function of TAg and indicate that the LXCXE motif and p53 binding are required for the upregulation of ISGs.
Collapse
Affiliation(s)
- Abhilasha V. Rathi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Paul G. Cantalupo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Saumendra N. Sarkar
- University of Pittsburgh Cancer Institute, Hillman Cancer Research Pavilion, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
15
|
Abstract
Over 50 years of polyomavirus research has produced a wealth of insights into not only general biologic processes in mammalian cells, but also, how conditions can be altered and signaling systems tweaked to produce transformation phenotypes. In the past few years three new members (KIV, WUV, and MCV) have joined two previously known (JCV and BKV) human polyomaviruses. In this review, we present updated information on general virologic features of these polyomaviruses in their natural host, concentrating on the association of MCV with human Merkel cell carcinoma. We further present a discussion on advances made in SV40 as the prototypic model, which has and will continue to inform our understanding about viruses and cancer.
Collapse
Affiliation(s)
- Ole Gjoerup
- Cancer Virology Program, Hillman Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
16
|
Ouattara DA, Abou-Jaoudé W, Kaufman M. From structure to dynamics: Frequency tuning in the p53-Mdm2 network. II. J Theor Biol 2010; 264:1177-89. [DOI: 10.1016/j.jtbi.2010.03.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/16/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
|
17
|
The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 2009; 384:285-93. [DOI: 10.1016/j.virol.2008.09.034] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/30/2008] [Indexed: 11/21/2022]
|
18
|
Álvarez-Busto I, Albers A, del Carmen Visus M, Ignacio Mayordomo J, Sanz J, Ángel Burillo M, Güemes A, Dolores García-Prats M, Moros M, De Leo A, Tres A. Detección de linfocitos T citotóxicos contra los epítopos 264-272 y 149-157 de la proteína p53 en sangre periférica de pacientes con cáncer de mama. Med Clin (Barc) 2008; 131:685-8. [DOI: 10.1157/13129112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Suad O, Rozenberg H, Brosh R, Diskin-Posner Y, Kessler N, Shimon LJW, Frolow F, Liran A, Rotter V, Shakked Z. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. J Mol Biol 2008; 385:249-65. [PMID: 18996393 DOI: 10.1016/j.jmb.2008.10.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/19/2008] [Accepted: 10/23/2008] [Indexed: 11/27/2022]
Abstract
The tumor suppressor protein p53 is mutated in more than 50% of invasive cancers. About 30% of the mutations are found in six major "hot spot" codons located in its DNA binding core domain. To gain structural insight into the deleterious effects of such mutations and their rescue by suppressor mutations, we determined the crystal structures of the p53 core domain incorporating the hot spot mutation R249S, the core domain incorporating R249S and a second-site suppressor mutation H168R (referred to as the double mutant R249S/H168R) and its sequence-specific complex with DNA and of the triple mutant R249S/H168R/T123A. The structural studies were accompanied by transactivation and apoptosis experiments. The crystal structures show that the region at the vicinity of the mutation site in the R249S mutant displays a range of conformations [wild-type (wt) and several mutant-type conformations] due to the loss of stabilizing interactions mediated by R249 in the wt protein. As a consequence, the protein surface that is critical to the formation of functional p53-DNA complexes, through protein-protein and protein-DNA interactions, is largely distorted in the mutant conformations, thus explaining the protein's "loss of function" as a transcription factor. The structure of this region is restored in both R249S/H168R and R249S/H168R/T123A and is further stabilized in the complex of R249S/H168R with DNA. Our functional data show that the introduction of H168R as a second-site suppressor mutation partially restores the transactivation capacity of the protein and that this effect is further amplified by the addition of a third-site mutation T123A. These findings together with previously reported data on wt and mutant p53 provide a structural framework for understanding p53 dysfunction as a result of oncogenic mutations and its rescue by suppressor mutations and for a potential drug design aimed at restoring wt activity to aberrant p53 proteins.
Collapse
Affiliation(s)
- Oded Suad
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Razumienko E, Ornatsky O, Kinach R, Milyavsky M, Lechman E, Baranov V, Winnik MA, Tanner SD. Element-tagged immunoassay with ICP-MS detection: evaluation and comparison to conventional immunoassays. J Immunol Methods 2008; 336:56-63. [PMID: 18456275 PMCID: PMC2583136 DOI: 10.1016/j.jim.2008.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 12/18/2022]
Abstract
We have investigated the possibility of using element-tagged antibodies for protein detection and quantification in microplate format using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and compared the results to conventional immunoassays, such as Enzyme-Linked Immunosorbent Assay (ELISA) and Western blotting. The technique was further employed to detect low levels and measure DNA-binding activity of transcription factor p53 in leukemia cell lysates through its interaction with immobilized oligonucleotides and recognition by element-tagged antibodies. The advantages of ICP-MS detection for routine performance of immunoassays include increased sensitivity, wide dynamic range, minimal interference from complex matrices, and high throughput. Our approach advances the ICP-MS technology and demonstrates its applicability to proteomic studies through the use of antibodies directly labeled with polymer tags bearing multiple atoms of lanthanides. Development of this novel methodology will enable fast and quantitative identification of multiple analytes in a single well.
Collapse
Affiliation(s)
- Eva Razumienko
- Chemistry Department, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Olga Ornatsky
- Chemistry Department, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Robert Kinach
- Chemistry Department, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Michael Milyavsky
- Division of Cellular and Molecular Biology, University Health Network, Toronto, Ontario M5G2M9, Canada
| | - Eric Lechman
- Division of Cellular and Molecular Biology, University Health Network, Toronto, Ontario M5G2M9, Canada
| | - Vladimir Baranov
- Division of Cellular and Molecular Biology, University Health Network, Toronto, Ontario M5G2M9, Canada
| | - Mitchell A. Winnik
- Chemistry Department, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Scott D. Tanner
- Chemistry Department, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
21
|
Tamm C, Zhivotovsky B, Ceccatelli S. Caspase-2 activation in neural stem cells undergoing oxidative stress-induced apoptosis. Apoptosis 2008; 13:354-63. [PMID: 18181021 DOI: 10.1007/s10495-007-0172-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidative stress occurs as a consequence of disturbance in the balance between the generation of reactive oxygen species (ROS) and the antioxidant defence mechanisms. The interaction of ROS with DNA can cause single-, or double-strand breaks that subsequently can lead to the activation of p53, which is central for the regulation of cellular response, e.g. apoptosis, to a range of environmental and intracellular stresses. Previous reports have suggested a regulatory role of p53 in the early activation of caspase-2, upstream of mitochondrial apoptotic signaling. Here we show that excessive ROS formation, induced by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) exposure, induces apoptosis in primary cultured neural stem cells (NSCs) from cortices of E15 rat embryos. Following DMNQ exposure cells exhibited apoptotic hallmarks such as Bax oligomerization and activation, cytochrome c release, caspase activation and chromatin condensation. Additionally, we could show early p53 accumulation and a subsequent activation of caspase-2. The attenuation of caspase-2 activity with selective inhibitors could antagonize the mitochondrial signaling pathway and cell death. Overall, our results strongly suggest that DMNQ-induced oxidative stress causes p53 accumulation and consequently caspase-2 activation, which in turn initiates apoptotic cell death via the mitochondria-mediated caspase-dependent pathway in NSCs.
Collapse
Affiliation(s)
- Christoffer Tamm
- Division of Toxicology and Neurotoxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
22
|
McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:127-50. [PMID: 18201576 PMCID: PMC2267909 DOI: 10.1016/j.bbadis.2007.12.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/13/2007] [Accepted: 12/18/2007] [Indexed: 02/07/2023]
Abstract
It is estimated that viral infections contribute to 15-20% of all human cancers. As obligatory intracellular parasites, viruses encode proteins that reprogram host cellular signaling pathways that control proliferation, differentiation, cell death, genomic integrity, and recognition by the immune system. These cellular processes are governed by complex and redundant regulatory networks and are surveyed by sentinel mechanisms that ensure that aberrant cells are removed from the proliferative pool. Given that the genome size of a virus is highly restricted to ensure packaging within an infectious structure, viruses must target cellular regulatory nodes with limited redundancy and need to inactivate surveillance mechanisms that would normally recognize and extinguish such abnormal cells. In many cases, key proteins in these same regulatory networks are subject to mutation in non-virally associated diseases and cancers. Oncogenic viruses have thus served as important experimental models to identify and molecularly investigate such cellular networks. These include the discovery of oncogenes and tumor suppressors, identification of regulatory networks that are critical for maintenance of genomic integrity, and processes that govern immune surveillance.
Collapse
Affiliation(s)
- Margaret E McLaughlin-Drubin
- The Channing Laboratory, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, 8th Floor, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
23
|
George B, Datar RH, Wu L, Cai J, Patten N, Beil SJ, Groshen S, Stein J, Skinner D, Jones PA, Cote RJ. p53Gene and Protein Status: The Role ofp53Alterations in Predicting Outcome in Patients With Bladder Cancer. J Clin Oncol 2007; 25:5352-8. [DOI: 10.1200/jco.2006.10.4125] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PurposeThe p53 gene status (mutation) and protein alterations (nuclear accumulation detectable by immunohistochemistry; p53 protein status) are associated with bladder cancer progression. Substantial discordance is documented between the p53 protein and gene status, yet no studies have examined the relationship between the gene-protein status and clinical outcome. This study evaluated the clinical relationship of the p53 gene and protein statuses.Materials and MethodsThe complete coding region of the p53 gene was queried using DNA from paraffin-embedded tissues and employing a p53 gene–sequencing chip. We compared p53 gene status, mutation site, and protein status with time to recurrence.ResultsThe p53 gene and protein statuses show significant concordance, yet 35% of cases showed discordance. Exon 5 mutations demonstrated a wild-type protein status in 18 of 22 samples. Both the p53 gene and protein statuses were significantly associated with stage and clinical outcome. Specific mutation sites were associated with clinical outcome; tumors with exon 5 mutations showed the same outcome as those with the wild-type gene. Combining the p53 gene and protein statuses stratifies patients into three distinct groups, based on recurrence-free intervals: patients showing the best outcome (wild-type gene and unaltered protein), an intermediate outcome (either a mutated gene or an altered protein) and the worst outcome (a mutated gene and an altered protein).ConclusionWe show that evaluation of both the p53 gene and protein statuses provides information in assessing the clinical recurrence risk in bladder cancer and that the specific mutation site may be important in assessing recurrence risk. These findings may substantially impact the assessment of p53 alterations and the management of bladder cancer.
Collapse
Affiliation(s)
- Ben George
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| | - Ram H. Datar
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| | - Lin Wu
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| | - Jie Cai
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| | - Nancy Patten
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| | - Stephen J. Beil
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| | - Susan Groshen
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| | - John Stein
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| | - Donald Skinner
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| | - Peter A. Jones
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| | - Richard J. Cote
- From the Departments of Pathology, Urology, Preventive Medicine, and Biochemistry, University of Southern California, Keck School of Medicine, Los Angeles; and Roche Molecular Systems, Pleasanton, CA
| |
Collapse
|
24
|
Yian C, Moon SK, Jin S, Webster P, Rhim JS, Andalibi A, Lim DJ. Characterization of rat spiral ligament cell line immortalized by adenovirus 12-simian virus 40 hybrid virus. Ann Otol Rhinol Laryngol 2007; 115:930-8. [PMID: 17214269 DOI: 10.1177/000348940611501213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Spiral ligament fibrocytes play an important role in inner ear ion homeostasis and are classified into several subtypes according to expression of specific enzymes such as Na+, K+ -ATPase, Ca++ -ATPase, and carbonic anhydrase. Although our understanding of the cell and molecular biology of spiral ligament fibrocytes has increased over time, access to these cells still remains a significant hurdle hindering future studies. In this study, we aimed to establish a rat spiral ligament cell line with minimal disruption of the original characteristics. METHODS The primary spiral ligament fibrocytes were exposed to adenovirus 12-simian virus 40 hybrid virus for immortalization. Karyotypic analysis was performed after stabilization of the infected cells, and the population doubling time was compared to that of the primary cell. The cell line was characterized by immunolabeling and electron microscopy. RESULTS We describe the establishment and characterization of a line of type I spiral ligament fibrocytes immortalized with an adenovirus 12-simian virus 40 hybrid virus. CONCLUSIONS This cell line can be a useful research tool for investigating the role of spiral ligament fibrocytes in homeostasis and inflammation of the inner ear.
Collapse
Affiliation(s)
- Christopher Yian
- Laboratory of Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Li G, Ho V, Trotter M, Horsman D, Tron V. p53 mutation in metastatic melanomas and primary melanomas from sun-exposed and sun-protected sites. J Eur Acad Dermatol Venereol 2006. [DOI: 10.1111/j.1468-3083.1995.tb00284.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Ahuja D, Sáenz-Robles MT, Pipas JM. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 2005; 24:7729-45. [PMID: 16299533 DOI: 10.1038/sj.onc.1209046] [Citation(s) in RCA: 417] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA tumor viruses such as simian virus 40 (SV40) express dominant acting oncoproteins that exert their effects by associating with key cellular targets and altering the signaling pathways they govern. Thus, tumor viruses have proved to be invaluable aids in identifying proteins that participate in tumorigenesis, and in understanding the molecular basis for the transformed phenotype. The roles played by the SV40-encoded 708 amino-acid large T antigen (T antigen), and 174 amino acid small T antigen (t antigen), in transformation have been examined extensively. These studies have firmly established that large T antigen's inhibition of the p53 and Rb-family of tumor suppressors and small T antigen's action on the pp2A phosphatase, are important for SV40-induced transformation. It is not yet clear if the Rb, p53 and pp2A proteins are the only targets through which SV40 transforms cells, or whether additional targets await discovery. Finally, expression of SV40 oncoproteins in transgenic mice results in effects ranging from hyperplasia to invasive carcinoma accompanied by metastasis, depending on the tissue in which they are expressed. Thus, the consequences of SV40 action on these targets depend on the cell type being studied. The identification of additional cellular targets important for transformation, and understanding the molecular basis for the cell type-specific action of the viral T antigens are two important areas through which SV40 will continue to contribute to our understanding of cancer.
Collapse
Affiliation(s)
- Deepika Ahuja
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
27
|
Abstract
Although the small DNA tumor virus SV40 (simian virus 40) fails to replicate in human cells, understanding how SV40 transforms human and murine cells has and continues to provide important insights into cancer initiation and maintenance. The early region of SV40 encodes two oncoproteins: the large T (LT) and small t (ST) antigens. SV40 LT contributes to murine and human cell transformation in part by inactivating the p53 and retinoblastoma protein tumor suppressor proteins. SV40 ST inhibits the activity of the protein phosphatase 2A (PP2A) family of serine-threonine phosphatases, and this interaction is required for SV40-mediated transformation of human cells. PP2A regulates multiple signaling pathways, suggesting many possible targets important for viral replication and cell transformation. Genetic manipulation of particular PP2A subunits has confirmed a role for specific complexes in transformation, and recent work implicates the perturbation of the phosphatidylinositol 3-kinase/Akt pathway and c-Myc stability in transformation by ST and PP2A. Mutations in PP2A subunits occur at low frequency in human tumors, suggesting that alterations of PP2A signaling play a role in both experimentally induced and spontaneously arising cancers. Unraveling the complexity of PP2A signaling will not only provide further insights into cancer development but may identify novel targets with promise for therapeutic manipulation.
Collapse
Affiliation(s)
- Jason D Arroyo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Fukuda A, Fukuda H, Jönsson M, Swanpalmer J, Hertzman S, Lannering B, Björk-Eriksson T, Màrky I, Blomgren K. Progenitor cell injury after irradiation to the developing brain can be modulated by mild hypothermia or hyperthermia. J Neurochem 2005; 94:1604-19. [PMID: 16086699 DOI: 10.1111/j.1471-4159.2005.03313.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ionizing radiation induced acute cell death in the dentate gyrus subgranular zone (SGZ) and the subventricular zone (SVZ). Hypomyelination was also observed. The effects of mild hypothermia and hyperthermia for 4 h after irradiation (IR) were studied in postnatal day 9 rats. One hemisphere was irradiated with a single dose of 8 Gy and animals were randomized to normothermia (rectal temperature 36 degrees C for 4 h), hypothermia (32 degrees C for 4 h) or hyperthermia (39 degrees C for 4 h). Cellular injury, e.g. chromatin condensation and nitrotyrosine formation, appeared to proceed faster when the body temperature was higher. Caspase-3 activation was more pronounced in the hyperthermia group and nuclear translocation of p53 was less pronounced in the hypothermia group 6 h after IR. In the SVZ the loss of nestin-positive progenitors was more pronounced (48%) and the size was smaller (45%) in the hyperthermia group 7 days post-IR. Myelination was not different after hypo- or hyperthermia. This is the first report to demonstrate that hypothermia may be beneficial and that hyperthermia may aggravate the adverse side-effects after radiation therapy to the developing brain.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/physiology
- Apoptosis/radiation effects
- Body Temperature/physiology
- Brain/growth & development
- Brain/physiopathology
- Brain/radiation effects
- Brain Damage, Chronic/physiopathology
- Brain Damage, Chronic/prevention & control
- Brain Damage, Chronic/therapy
- Caspase 3
- Caspases/metabolism
- Dentate Gyrus/growth & development
- Dentate Gyrus/physiopathology
- Dentate Gyrus/radiation effects
- Female
- Hyperthermia, Induced/adverse effects
- Hypothermia, Induced
- Intermediate Filament Proteins/metabolism
- Male
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Nerve Degeneration/therapy
- Nerve Tissue Proteins/metabolism
- Nestin
- Neurons/physiology
- Neurons/radiation effects
- Radiation Injuries, Experimental/physiopathology
- Radiation Injuries, Experimental/prevention & control
- Radiation Injuries, Experimental/therapy
- Radiation, Ionizing
- Rats
- Rats, Wistar
- Stem Cells/physiology
- Stem Cells/radiation effects
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Aya Fukuda
- The Arvid Carlsson Institute of Neuroscience at the Institute of Clinical Neuroscience, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsurushima H, Yoshii Y, Leong KW, Ohno T. Targeted tumor cell death induced by autologous tumor-specific T lymphocyte recognition of wild-type p53-derived peptides. J Neurooncol 2005; 76:99-104. [PMID: 16132498 DOI: 10.1007/s11060-005-4172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Autologous tumor-specific T lymphocyte (ATTL) lines were derived from the peripheral blood mononuclear cells (PBMC) of a healthy volunteer with human leukocyte antigen (HLA) -A*0201. These lines were achieved using interleukins -1beta, -2, -4, and -6 and the p53-based peptide from the 264-272 sequence of the wild-type p53 protein with a strong affinity against HLA-A*0201.;The frequencies of CD3+, CD4+, and CD8+ lymphocytes were 94-96%, 30-34%, and 69-74%, respectively. ATTLs killed most of the T2 cells pulsed with p53-derived peptide, but not against the T2 cells non-pulsed or pulsed with an irrelevant peptide. ATTLs also killed TKB-14 cells, which have been derived from human glioblastoma multiforme, and exhibited HLA-A*0201 molecule and immunohistochemical accumulation of p53 protein. These cytotoxic activities were inhibited by anti-CD3, anti-CD8, and anti-class I antibodies. These findings suggested that these ATTL lines might include CTL populations, which could recognize p53-derived peptide on HLA-A*0201 and the p53-based peptide may play as an antigen on HLA-A*0201. When tumor antigens would be more analyzed in the future, ATTL could be induced without the primary-cultured cells from tumor tissue and could be applied for cancer therapy.
Collapse
Affiliation(s)
- Hideo Tsurushima
- Faculty of Medicine, Department of Neuro Surgery, University of the Ryukyus, Okinawa, Japan.
| | | | | | | |
Collapse
|
30
|
Gomez-Lazaro M, Fernandez-Gomez FJ, Jordán J. p53: Twenty five years understanding the mechanism of genome protection. J Physiol Biochem 2004; 60:287-307. [PMID: 15957248 DOI: 10.1007/bf03167075] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This year the p53 protein, also known as "guardian of the genome", turns twenty five years old. During this period the p53 knowledge have changed from an initial pro-oncogene activity to the tumorsupressor p53 function. p53 is activated upon stress signals, such as gamma irradiation, UV, hypoxia, virus infection, and DNA damage, leading to protection of cells by inducing target genes. The molecules activated by p53 induce cell cycle arrest, DNA repair to conserve the genome and apoptosis. The regulation of p53 functions is tightly controlled through several mechanisms including p53 transcription and translation, protein stability, post-translational modifications, and subcellular localization. In fact, mutations in p53 are the most frequent molecular alterations detected in human tumours. Furthermore, in some degenerative processes, fragmentation and oxidative damage in DNA take place, and in these situations p53 is involved. So, p53 is considered a pharmacological target, p53 overexpression induces apoptosis in cancer and its expression blockage protects cells against lethal insults.
Collapse
Affiliation(s)
- M Gomez-Lazaro
- Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Avda. Almansa, 02006 Albacete, Spain
| | | | | |
Collapse
|
31
|
Oh SH, Lee BH, Lim SC. Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway. Biochem Pharmacol 2004; 68:1845-1855. [PMID: 15450950 DOI: 10.1016/j.bcp.2004.06.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Accepted: 06/07/2004] [Indexed: 02/07/2023]
Abstract
Previous reports have demonstrated that cadmium (Cd) may induce cell death via apoptosis, but the mechanism responsible for cellular death is not clear. In this study, we investigated the signaling pathways implicated in Cd-induced apoptosis in lung epithelial fibroblast (WI 38) cells. Apoptotic features were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, propidium iodide staining and DNA laddering. A treatment of cadmium caused the caspase-8-dependent Bid cleavage, the release of cytochrome c (Cyt c), activation of caspase-9 and -3, and PARP cleavage. A caspase-8 specific inhibitor prevented the Bid cleavage, caspase-3 activation and cell death. Alternatively, we observed that full-length Bax was cleaved into 18-kDa fragment (p18/Bax); this was initiated after 12 h and by 36 h the full-length Bax protein was totally cleaved to the p18/Bax, which caused a drastic release of Cyt c from mitochondria. The p18/Bax was detected exclusively in the mitochondrial fraction, and it originated from mitochondrial full-length Bax, but not from the cytosol full-length Bax. Cd also induced the activation of the mitochondrial 30-kDa small subunit of calpain that was preceded by Bax cleavage. Cd induced the upregulation of Bcl-2 and the degradation of p53 protein. N-acetyl cysteine effectively inhibited the Cd-induced DeltaPsim reduction, indicating ROS acts upstream of mitochondrial membrane depolarization. Taken together, our results suggest that Cd-induced apoptosis was thought to be mediated at least two pathways; caspase-dependent Bid cleavage, and the other is calpain-mediated mitochondrial Bax cleavage. Moreover, we found that the function of Bid and Bax was not dependent of Bcl-2, and that ROS can also contribute in the Cd-induced cell death.
Collapse
Affiliation(s)
- Seon-Hee Oh
- Research Center for Resistant Cells, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea.
| | | | | |
Collapse
|
32
|
Bakhanashvili M, Novitsky E, Lilling G, Rahav G. P53 in cytoplasm may enhance the accuracy of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene 2004; 23:6890-9. [PMID: 15286711 DOI: 10.1038/sj.onc.1207846] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor suppressor protein p53 displays 3' --> 5' exonuclease activity and can provide a proofreading function for DNA polymerases. Reverse transcriptase (RT) of human immunodeficiency virus (HIV)-1 is responsible for the conversion of the viral genomic ssRNA into the proviral DNA in the cytoplasm. The relatively low fidelity of HIV-1 RT was implicated as a dominant factor contributing to the genetic variability of the virus. The lack of intrinsic 3' --> 5' exonuclease activity, the formation of 3'-mispaired DNA and the subsequent extension of this DNA were shown to be determinants for the low fidelity of HIV-1 RT. It was of interest to analyse whether the cytoplasmic proteins may affect the accuracy of DNA synthesis by RT. We investigated the fidelity of DNA synthesis by HIV-1 RT with and without exonucleolytic proofreading provided by cytoplasmic fraction of LCC2 cells expressing high level of wild-type functional p53. Two basic features related to fidelity of DNA synthesis were studied: the misinsertion and mispair extension. The misincorporation of noncomplementary deoxynucleotides into nascent DNA and subsequent mispair extension by HIV-1 RT were substantially decreased in the presence of cytoplasmic fraction of LCC2 cells with both RNA/DNA and DNA/DNA template-primers with the same target sequence. The mispair extension frequencies obtained with the HIV-1 RT in the presence of cytoplasmic fraction of LCC2 cells were significantly lower (about 2.8-15-fold) than those detected with the purified enzyme. In addition, the productive interaction between polymerization (by HIV-1 RT) and exonuclease (by p53 in cytoplasm) activities was observed; p53 preferentially hydrolyses mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by HIV-1 RT. The data suggest that p53 in cytoplasm may affect the accuracy of DNA replication and the mutation spectra of HIV-1 RT by acting as an external proofreader. Furthermore, the decrease in error-prone DNA synthesis with RT in the presence of external exonuclease, provided by cytoplasmic p53, may partially account for lower mutation rate of HIV-1 observed in vivo.
Collapse
Affiliation(s)
- Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 52621, Israel.
| | | | | | | |
Collapse
|
33
|
Nathoo N, Narotam PK, Agrawal DK, Connolly CA, van Dellen JR, Barnett GH, Chetty R. Influence of apoptosis on neurological outcome following traumatic cerebral contusion. J Neurosurg 2004; 101:233-40. [PMID: 15309913 DOI: 10.3171/jns.2004.101.2.0233] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. Apoptosis has increasingly been implicated in the pathobiology of traumatic brain injury (TBI). The present study was undertaken to confirm the presence of apoptosis in the periischemic zone (PIZ) of traumatic cerebral contusions and to determine the role of apoptosis, if any, in neurological outcome.
Methods. Brain tissue harvested at Wentworth Hospital from the PIZ in 29 patients with traumatic supratentorial contusions was compared with brain tissue resected in patients with epilepsy. Immunohistochemical analyses were performed on the tissues to see if they contained the apoptosis-related proteins p53, bcl-2, bax, and caspase-3. The findings were then correlated to demographic, clinical, surgical, neuroimaging, and outcome data.
In the PIZ significant increases of bax (18-fold; p < 0.005) and caspase-3 (20-fold; p < 0.005) were recorded, whereas bcl-2 was upregulated in only 14 patients (48.3%; 2.9-fold increase) compared with control tissue. Patients in the bcl-2—positive group exhibited improved outcomes at the 18-month follow-up examination despite an older mean age and lower mean admission Glasgow Coma Scale score (p < 0.03). Caspase-3 immunostaining was increased in those patients who died (Glasgow Outcome Scale [GOS] Score 1, 12 patients) when compared with those who experienced a good outcome (GOS Score 4 or 5, 17 patients) (p < 0.005). Regression analysis identified bcl-2—negative status (p < 0.04, odds ratio [OR] 5.5; 95% confidence interval [CI] 1.1–28.4) and caspase-3—positive status (p < 0.01, OR 1.4, 95% CI 1.1—1.8) as independent predictors of poor outcome. No immunostaining for p53 was recorded in the TBI specimens.
Conclusions. The present findings confirm apoptosis in the PIZ of traumatic cerebral contusions and indicate that this form of cell death can influence neurological outcome following a TBI.
Collapse
Affiliation(s)
- Narendra Nathoo
- Department of Neurosurgery and Wentworth Hospital, Nelson R. Mandela School of Medicine, Durban, South Africa.
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhang X, Turnell AS, Gorbea C, Mymryk JS, Gallimore PH, Grand RJA. The targeting of the proteasomal regulatory subunit S2 by adenovirus E1A causes inhibition of proteasomal activity and increased p53 expression. J Biol Chem 2004; 279:25122-33. [PMID: 15056666 DOI: 10.1074/jbc.m403287200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although adenovirus early region 1A (AdE1A) can modulate protein expression through its interaction with transcriptional regulators it can also influence the ability of the cell to degrade proteins by binding to components of the 26 S proteasome. We demonstrate here that AdE1A interacts with the S2 subunit of the 19 S regulatory complex in addition to the ATPase subunits S4 and S8 previously identified. S2 forms complexes with both the 13 and 12 S AdE1A proteins both in vivo and in vitro. Mutational analysis has shown direct binding through a short sequence toward the N terminus of conserved region 2 of AdE1A, which encompasses the LXCXE motif, involved in interaction with the pRb family of proteins. In vivo, additional contacts are made between AdE1A and proteasomal components, as well as within the proteasome, such that deletion of the N-terminal region of E1A as well as part of conserved region 2 is required to completely disrupt S2 binding. Mutation of AdE1A, which disrupts complex formation with S2, results in the loss of its ability to stabilize the p53 protein. Similarly down-regulation of S2 expression using small interfering RNAs leads to the inhibition of p53 degradation. These effects were observed in normally growing cells and those subjected to UV irradiation. Furthermore, AdE1A had no effect on the Mdm2-mediated ubiquitination of p53. We suggest therefore that interaction of AdE1A with S2, as well as with the ATPases S4 and S8, directly causes inhibition of proteasomal activity and consequent increase in the protein levels of p53.
Collapse
Affiliation(s)
- Xian Zhang
- Cancer Research United Kingdom Institute for Cancer Studies, The Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
p53 mutation is the most common genetic abnormality found so far in human cancer, and in breast cancer p53 mutation/alteration is seen in up to 50% of primary carcinomas. Together with the increasing knowledge of the characteristics and understanding of the role of p53 over the last two decades, attention in recent years has been focused on how this knowledge can be used in clinical settings for patient care and management in terms of analyzing p53 as a potential marker for studying the relationship between p53 expression and tumour development, progression and outcome; and designing alternative treatment strategies specifically aimed at restoring normal p53 function.
Collapse
Affiliation(s)
- D Ziyaie
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | | | | |
Collapse
|
36
|
Fu Y, Deng W, Kawarada Y, Kawagoe M, Ma YZ, Li X, Guo N, Kameda T, Terada K, Sugiyama T. Mutation and expression of the p53 gene during chemical hepatocarcinogenesis in F344 rats. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:40-9. [PMID: 12850271 DOI: 10.1016/s0167-4781(03)00113-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inactivation of the p53 gene is one of the most frequent genetic alterations in carcinogenesis. We studied gene mutations, the mRNA expression of p53, and the accumulation of p53 protein in chemical hepatocarcinogenesis in rats. Samples consisting of 44 precancerous foci and 18 cancerous foci were collected by laser capture microdissection (LCM), and analyzed for mutations in rat p53 gene exons 5-8 by PCR-single-strand conformational polymorphism (PCR-SSCP). We found that 25 PCR-SSCP bands of exons 6/7 and 8 were altered in 22/62 (35.4%) LCM samples. Direct p53 gene sequencing showed that 20/62 (9 precancer, 11 cancer) (32.3%) LCM samples exhibited 34 point mutations. Ten LCM samples exhibited double or triple mutations in exons 6/7 and 8 simultaneously. A quantitative analysis of p53 mRNA showed that p53 mRNA peaked at an early stage (week 6) in the precancerous lesion, 20 times that of adjacent normal tissue, and returned to normal by week 23. Similar to precancer, p53 mRNA in cancer was five times as high as that of adjacent normal tissue at week 12, and was closer to normal at week 23. When p53 mRNA declined from a high to low, positive immunostaining for the p53 protein began to be seen in precancerous and cancerous foci, suggesting that the p53 protein had accumulated in these foci. Results show that p53 gene mutation is present in initial chemical hepatocarcinogenesis and p53 mRNA concentration is clearly elevated before gene mutation. Once the p53 gene has mutated, mRNA concentration progressively declines, suggesting that mutation leads to inactivation of the p53 gene.
Collapse
Affiliation(s)
- Yan Fu
- Department of Biochemistry, Akita University School of Medicine, 1-1-1 Hondo, 010-8543, Akita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kamel S, Zeiger S, Zalles C, Tawfik O, Kimler BF, Fabian CJ. p53 Immunopositivity and Gene Mutation in a Group of Women at High Risk for Breast Cancer. Breast J 2003. [DOI: 10.1046/j.1524-4741.1998.450396.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Chaudhry S, Freebern WJ, Smith JL, Butscher WG, Haggerty CM, Gardner K. Cross-regulation of T cell growth factor expression by p53 and the Tax oncogene. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6767-78. [PMID: 12471108 DOI: 10.4049/jimmunol.169.12.6767] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we demonstrate that p53 directly inhibits expression of the T cell growth factor (IL-2) in activated T cells. This repression is independent of the intrinsic transcriptional activity of p53 and is mediated by the Tax-responsive CD28RE-3'-12-O-tetradecanoylphorbol-13-acetate response element (AP1) element of the IL-2 promoter. Coexpression of the Tax oncogene causes full reversal of this repression through coordinate targeting of p300, CREB, and the NF-kappaB pathways. Paradoxically, IL-2 repression by p53 is not reversed by mdm2. Instead, mdm2 represses the IL-2 promoter by a mechanism that is synergistic with p53 and resistant to Tax reversal. The p300 structure-function studies show that these effects are linked to competitive associations among p53, Tax, and mdm2 with multiple domains of p300. The functional outcome of these antagonistic associations is revealed further by the observation that Tax and p53 induce apoptosis in activated T cells through separate and mutually exclusive pathways. Interestingly, both pathways are abrogated by mdm2. These results provide evidence that a dynamic interplay, between Tax and specific elements of the p53 network, mediates growth factor expression and programmed cell death in activated T cells.
Collapse
Affiliation(s)
- Sohail Chaudhry
- Laboratory of Receptor Biology and Gene Expression, Advanced Technology Center, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4605, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The high risk HPVs (such as HPV-16 and HPV-18) that are associated with specific anogenital cancers encode two oncoproteins E6 and E7, which are expressed in the HPV positive cancers. The E7 protein functions in cellular transformation, at least in part, through interactions with pRB and the other pRB related 'pocket proteins'. The major target of the E6 oncoprotein encoded by the genital tract, cancer associated human papillomaviruses is p53. Several lines of evidence suggest that E6 and E7 have additional targets important to the oncogenic potential of the virus. Work from a number of laboratories has focused on determining other activities of HPV relevant to carcinogenesis and identifying additional cellular targets of E6 and E7. This paper will review the state of the field at the time of the 19th International Papillomavirus Workshop in September 2001 with respect to the HPV encoded oncoproteins.
Collapse
Affiliation(s)
- Karl Münger
- Department of Pathology, Harvard Medical School, Armenise Building 544, 200 Longwood Avenue, Boston, MA 02115-5701, USA.
| | | |
Collapse
|
40
|
Guan J, Stavridi E, Leeper DB, Iliakis G. Effects of hyperthermia on p53 protein expression and activity. J Cell Physiol 2002; 190:365-74. [PMID: 11857452 DOI: 10.1002/jcp.10069] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although p53 responses after DNA damage have been investigated extensively, p53 responses after heat shock, which exerts cytotoxic action by mechanisms other than direct induction of DNA damage, are less well characterized. We investigated, therefore, the effect of hyperthermic exposures on the levels and DNA-binding activity of p53. Experiments were carried out with U2OS and ML-1 cells, known to express wild-type p53 protein. Although heating at 41 degrees C for up to 6 h had only a small effect on p53 levels or DNA binding activity, exposure to temperatures between 42.5 and 45.5 degrees C caused an immediate decrease in protein levels that was associated with a reduction in DNA binding activity. This observation is compatible with a high lability of p53 to heat shock, or heat sensitivity of the pathway regulating p53 levels in non-stressed cells. When cells were heated to 42.5 degrees C and returned to normal temperatures, a strong p53 response associated with an increase in protein levels and DNA binding activity was observed, suggesting the production of p53-inducing cellular damage. At higher temperatures, however, this response was compromised in an exposure-time-dependent manner. The increase in DNA binding activity was more heat sensitive than the increase in p53 levels and was inhibited at lower temperatures and shorter exposure times. Thus, the pathway of p53 activation is itself heat sensitive and compromised at high levels of exposure. Compared to p53 activation after exposure to ionizing radiation, heat-induced activation is rapid and short lived. When cells were exposed to combined heat and radiation, the response observed approximated that of cells exposed to heat alone. Wortmannin at 10 microM inhibited p53 activation for up to 2 h after heat shock suggesting the involvement of wortmannin-sensitive kinases, such as DNA-PK and ATM. Heat shock causes phosphorylation of p53 at Serine-15, but there is no correlation between phosphorylation at this site and activation of the protein. The results in aggregate indicate p53 activation in the absence of DNA damage by a heat-sensitive mechanism operating with faster kinetics than radiation-induced p53 activation. The former response may induce pathways preventing other stimuli from activating p53, as heat-induced activation of p53 is dominant over activation of p53 by DNA damage in combined-treatment experiments. These observations suggest means for abrogating p53 induction after DNA damage with the purpose of potentiating response and enhancing cell killing.
Collapse
Affiliation(s)
- Jun Guan
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
41
|
Khlgatian MK, Hadshiew IM, Asawanonda P, Yaar M, Eller MS, Fujita M, Norris DA, Gilchrest BA. Tyrosinase gene expression is regulated by p53. J Invest Dermatol 2002; 118:126-32. [PMID: 11851885 DOI: 10.1046/j.0022-202x.2001.01667.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosinase, the rate-limiting enzyme for melanin synthesis, is induced after ultraviolet irradiation as part of the tanning response, the major recognized photoprotective response of human skin. Other DNA-damaging agents and DNA fragments such as thymidine dinucleotides also induce tyrosinase gene expression. Moreover, like ultraviolet light they also activate p53. To determine whether p53 activation is required for this increased tyrosinase expression, we employed two experimental systems: (i) a human melanoma line (WM35) known to express wild-type p53 versus WM35 cells engineered to express a transcriptionally inactive dominant-negative p53 (WM35-p53DN) or the empty vector alone (WM35-pCMV7) and (ii) mice with wild-type p53 versus p53 knockout mice. In WM35-p53DN cells, the baseline p53 protein level was higher than in WM35 or WM35-pCMV7 cells, and tyrosinase transcripts were lower. After ultraviolet irradiation, in all cell lines the p53 protein level increased within the first 24 h, as expected; and at 24 h tyrosinase mRNA levels were decreased. Consistent with the literature, these data in combination suggest that increased p53 protein level downregulates tyrosinase mRNA. In WM35 and WM35-pCMV7 cells at 48 and 72 h, however, whereas p53 levels remained elevated, tyrosinase mRNA levels compared to pre-irradiation levels tripled, whereas in WM35-p53DN cells levels remained below baseline. In thymidine-dinucleotide-treated WM35 and WM35-pCMV7 cells there was a comparable upregulation of tyrosinase mRNA within 24 h that persisted through 72 h, but there was no upregulation of tyrosinase mRNA in WM35-p53DN cells any time after ultraviolet irradiation or thymidine dinucleotide treatment. In ear skin of p53 wild-type mice, topical application of thymidine dinucleotide induced a 4-5-fold increase in epidermal melanin content after 3 wk, but in p53 knockout mice thymidine dinucleotide application caused no detectable increase in melanin. Together, these data demonstrate that p53 activation increases tyrosinase mRNA level and subsequently pigmentation. The data further suggest that tanning is part of a p53-mediated adaptive response of mammalian skin to DNA damage from ultraviolet irradiation.
Collapse
Affiliation(s)
- Mary K Khlgatian
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sladek TL, Laffin J, Lehman JM, Jacobberger JW. A subset of cells expressing SV40 large T antigen contain elevated p53 levels and have an altered cell cycle phenotype. Cell Prolif 2001; 33:115-25. [PMID: 10845255 PMCID: PMC6496574 DOI: 10.1046/j.1365-2184.2000.00168.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells transformed by the simian virus 40 (SV40) large T antigen (Tag) contain elevated levels of cellular p53 protein. To quantify this relationship, levels of p53 were measured in NIH 3T3 cells that expressed different concentrations of Tag. Using immunoblotting, average p53 levels were shown to increase linearly with Tag concentrations in these cell lines. Single-cell measurements were also performed using flow cytometry to measure p53 immunofluorescence. Surprisingly, the flow cytometry experiments showed that two distinct cell populations, based on p53 content, were present in cells expressing high levels of Tag. One cell population contained elevated p53 levels. A second population did not contain elevated p53, even though high concentrations of Tag were present in the cells. This latter cell population did not appear to arise because of mutations in either Tag or p53. The two cell populations also had phenotypic differences. In exponentially growing cells, Tag alters the cell cycle distribution (decreases the percentage of G1 phase cells and increases the percentages of S and G2 + M phase cells). This phenotype was maximum in the cell population containing elevated p53. A lesser phenotype was found in the cell population that did not contain elevated p53. These data show, firstly, that cells can express significant levels of Tag and not contain elevated levels of p53 and, secondly, that elevated p53 correlates with the altered cell cycle distribution produced by Tag in growing cells.
Collapse
Affiliation(s)
- T L Sladek
- Department of Microbiology and Immunology, Finch University of Health Sciences, The Chicago Medical School, North Chicago, IL 60064, USA.
| | | | | | | |
Collapse
|
43
|
Bakhanashvili M. p53 enhances the fidelity of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene 2001; 20:7635-44. [PMID: 11753641 DOI: 10.1038/sj.onc.1204956] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2001] [Revised: 08/31/2001] [Accepted: 09/04/2001] [Indexed: 11/08/2022]
Abstract
The tumor suppressor protein p53 plays a critical role in the maintenance of genetic integrity. p53 possesses 3'-->5' exonuclease activity, however, the significance of this function in DNA replication process remains elusive. It was suggested that 3'-->5' exonuclease activity of p53 may provide a proofreading function for DNA polymerases. In order to better understand the significance of this activity, the purified wild-type recombinant p53 was further evaluated for substrate specificity and for contribution to the accuracy of DNA synthesis. p53-associated 3'-->5' exonuclease displays 3' terminal nucleotide excision from RNA/DNA template-primer using ribosomal RNA as a template. The data demonstrate that p53 is highly efficient in removing a terminal mispair. Analysis of mispair excision opposite the template adenine residue shows that p53 catalyzes 3' terminal mismatch excision with a specificity of A : G>A : A>A : C. Hence, the observed specificity of mismatch excision indicates that p53 exonucleolytic proofreading preferentially repairs transversion mutations. The influence of the p53 on the accuracy of DNA synthesis was determined with exonuclease-deficient human immunodeficiency virus-1 (HIV-1) reverse transcriptase (RT), a key enzyme in the life cycle of the virus, that contributes significantly to the low accuracy of proviral DNA synthesis. Using an in vitro biochemical assay with recombinant purified HIV-1 RT, p53 and defined RNA/DNA or DNA/DNA template-primers, two basic features related to fidelity of DNA synthesis were studied: the misinsertion and mispair extension. The misincorporation of non-complementary deoxynucleotides into nascent DNA and subsequent mispair extension by HIV-1 RT were substantially decreased in the presence of p53 with both RNA/DNA and DNA/DNA template-primers. In addition, the productive interaction between polymerization (by HIV-1 RT) and exonuclease (by p53) activities was observed; p53 preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by HIV-1 RT. Taken together the data demonstrate that preferential excision of mismatched nucleotides by 3'-->5' exonuclease activity of wild-type p53 enhances the fidelity of DNA synthesis by HIV-1 RT in vitro, thus providing a biochemical mechanism to reduce mutations caused by incorporation of mismatched nucleotides. The fact that p53 is reactive with both RNA/DNA and DNA/DNA template-primers raises an interesting possibility of the existence of functional cooperation between p53 and HIV-1 RT in cytoplasm during the reverse transcription process, which may be important for maintaining HIV genomic integrity.
Collapse
Affiliation(s)
- M Bakhanashvili
- Infectious Diseases Unit, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel.
| |
Collapse
|
44
|
Abstract
To fulfill their role in host-defense, granulocytes secrete chemically reactive oxidants, radicals, and electrophilic mediators. While this is an effective way to eradicate pathogenic microbes or parasites, it inevitably exposes epithelium and connective tissue to certain endogenous genotoxic agents. In ordinary circumstances, cells have adequate mechanisms to reduce the genotoxic burden imposed by these agents to a negligible level. However, inflammation persisting for a decade eventually elevates the risk of cancer sufficiently that it is discernible in case control epidemiological studies. Advances in our understanding of tumor suppressors and inflammatory mediators offer an opportunity to assess the molecular and cellular models used to guide laboratory investigations of this phenomenon. Disappointing results from recent clinical trials with anti-oxidant interventions raise questions about the risks from specific endogenous agents such as hydrogen peroxide and oxy radicals. Simultaneously, the results from the anti-oxidant trials draw attention to an alternate hypothesis, favoring epigenetic inactivation of key tumor suppressors, such as p53, and the consequent liability this places on genomic integrity.
Collapse
Affiliation(s)
- F A Fitzpatrick
- Huntsman Cancer Institute, University of Utah, Salt Lake City 84112-5550, USA.
| |
Collapse
|
45
|
Gajdusek C, Onoda K, London S, Johnson M, Morrison R, Mayberg M. Early molecular changes in irradiated aortic endothelium. J Cell Physiol 2001; 188:8-23. [PMID: 11382918 DOI: 10.1002/jcp.1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Irradiated aortic endothelial cells (EC) exhibit distinct morphological, functional, and physiological responses to ionizing radiation (IR). However, the molecular basis for these responses has not been fully characterized. Cultured bovine and rat aortic endothelial cells were exposed to single fraction doses (0-30 Gy) of gamma radiation. IR caused dose-dependent DNA strand breaks which were repaired to near baseline levels within 30 min. A dose-dependent inhibition of cell growth was noted for IR greater than 1 Gy. At doses greater than 2.5 Gy, morphologic changes consistent with apoptosis and loss of cell viability were present beginning 12-16 h after radiation, with subsequent detachment of EC from the cell monolayer. By Western blot analysis, expression of p53, gadd45, p21, and bax protein increased in a time-and dose-dependent manner; p53 expression was maximal at 3 h after IR, and gadd45, bax and p21 levels peaked at 6 h. By Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), levels of p53 mRNA were not significantly increased after IR, whereas gadd45 exhibited time- and dose-dependent increase in mRNA synthesis after IR. Activation of intracellular caspases, manifest by proteolytic poly (ADP-ribose) polymerase (PARP) and lamin B cleavage, was maximal at 15 h after IR, concident with other indices of EC apoptosis, including oligonucleosomal DNA degradation, TUNEL immunostaining, and morphologic changes. The tripeptide protease inhibitor z-Val-Ala-Asp (zVAD) prevented PARP and lamin cleavage, DNA fragmentation, morphological changes, and cell detachment in irradiated EC. The combined data suggested that gamma radiation induces a dose- and time-dependent sequence of early events in cultured EC with modulate growth arrest, apoptosis, and possibly premature senescence in surviving cells.
Collapse
Affiliation(s)
- C Gajdusek
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Nasierowska-Guttmejer A, Trzeciak L, Nowacki MP, Ostrowski J. p53 protein accumulation and p53 gene mutation in colorectal cancer. Pathol Oncol Res 2001; 6:275-9. [PMID: 11173660 DOI: 10.1007/bf03187331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparison of immunohistochemical methods for detection of protein p53 accumulation and molecular techniques for analysis p53 gene mutation in colorectal cancer is presented. Thirty eight patients were included: all underwent surgery without preoperative treatment. Sex of patients, tumor localisation, macro and microscopic type of cancer and staging according to Astler-Coller and Jass classifications were evaluated. Protein p53 accumulation was detected by the streptavidin-biotin method using DO-7 (Dako) antibody. The number of cells stained were classified semiquanititatively according to a scoring system: (-)no positive cells, (+) : 10-30% positive cells, (++) : 40-70% positive cells, (+++) : >70% positive cells. For all cancer samples, exons 5 to 9 of p53 gene were amplified from isolated genomic DNA. PCR products were subjected to single standed conformational polymorphism analysis. All product were also directly sequenced on ABI PRISM 377 apparatus using fluorescent dideoxyterminators chemistry. The protein p53 accumulation was detected in 53% (20/38), whereas p53 gene mutation was seen in 55% (21/38). Among them, 15 patients (39%) with overexpression showed mutation in exon 5-8 gene p53. Discrepancies between results were noted in 29%. In conclusion, the necessity of both methods immunohistochemical and molecular is indicated for the objective evaluation of functional and structural status of p53 gene and protein.
Collapse
Affiliation(s)
- A Nasierowska-Guttmejer
- Department of Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena str. 5, Warsaw, 02-971, Poland
| | | | | | | |
Collapse
|
47
|
Ebina M, Martínez A, Birrer MJ, Ilona Linnoila R. In situ detection of unexpected patterns of mutant p53 gene expression in non-small cell lung cancers. Oncogene 2001; 20:2579-86. [PMID: 11420668 DOI: 10.1038/sj.onc.1204351] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2000] [Revised: 02/01/2001] [Accepted: 02/05/2001] [Indexed: 11/09/2022]
Abstract
Many solid tumors, including non-small cell lung cancers (NSCLCs), are characterized by heterogenous expression of p53 protein in the neoplastic cells. To analyse the molecular implications of this finding, we examined topographic distribution of p53 mutations using in situ polymerase chain reaction (PCR) in primary NSCLCs, showing distinct patterns of variable p53 overexpression by immunohistochemistry. Unique sets of primers for each mutation were designed, and optimal PCR conditions were determined by standard PCR using DNA from cloned mutants or cell lines established from these tumors. All tumor cell nuclei, regardless of the status of p53 overexpression, demonstrated homogeneous distribution of mutant p53 with specific primers, indicating that only subgroups of the mutated cells overexpressed p53 protein. In situ reverse transcription (RT)-PCR was applied to detect mutant mRNA in the individual tumor cells using specific primers. We found that in each case the distribution of mutant p53 mRNA coincided with that of immunohistochemical overexpression of p53 protein. Our results suggest that the regulation of mutant p53 expression, but not the genotype, is heterogeneous in the neoplastic cells. The topographic genomapping of p53 in NSCLC using in situ PCR provides a novel approach to view molecular mechanisms of lung carcinogenesis.
Collapse
Affiliation(s)
- M Ebina
- Department of Cell and Cancer Biology, Medicine Branch, National Cancer Institute, National Institute of Health, USA
| | | | | | | |
Collapse
|
48
|
Rodríguez-Campos A, Ruiz-Enríquez P, Faraudo S, Badimon L. Mitogen-induced p53 downregulation precedes vascular smooth muscle cell migration from healthy tunica media and proliferation. Arterioscler Thromb Vasc Biol 2001; 21:214-9. [PMID: 11156855 DOI: 10.1161/01.atv.21.2.214] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor protein p53 plays an important role in the cell-cycle G(1) and G(2) checkpoints. In response to DNA damage, p53 can induce the transcription of p21, which inhibits the activation of various G(1) cyclin/cyclin-dependent kinase complexes. It is not known whether p53 plays a role in the initial migration of vascular smooth muscle cells from the arterial tunica media (mVSMCs). In this study, we have investigated whether mVSMC migration from healthy tunica media of young pigs and proliferation are regulated by p53. After 6 hours of incubation in mitogen-rich medium, explanted porcine tunica media tissue showed complete downregulation of p53 protein and p53 mRNA. The blockage of gene activity was not due to DNA methylation at the 5' control region of the gene. The mVSMC outgrowth did not show p53 expression. Mitogen-depletion of cultured p53(-)/mVSMCs did not restore p53 expression. Incubation of explanted porcine tunica media tissue in mitogen-deprived medium increased p53 protein content and blocked mVSMC outgrowth from the explant. As in p53-deficient rodent cells, mVSMCs incubated with colcemid overrode the spindle-dependent checkpoint, giving polyploidy and chromosomal pairing. UV-induced DNA damage in mVSMCs incubated with mitogen-free medium induced p53 expression and apoptotic cell death showing DNA nucleosomal laddering. However, UV-irradiated mVSMCs incubated in mitogen-rich medium did not express p53 and did not show cell death. In conclusion, our results demonstrate that early mVSMC migration from the tunica media requires mitogen-induced suppression of p53 that is highly expressed in contractile mVSMCs residing in the healthy vessel wall.
Collapse
|
49
|
Ali SH, DeCaprio JA. Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 2001; 11:15-23. [PMID: 11243895 DOI: 10.1006/scbi.2000.0342] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SV40 large T antigen (TAg) is a powerful oncoprotein capable of transforming a variety of cell types. The transforming activity of TAg is due in large part to its perturbation of the retinoblastoma (pRB) and p53 tumor suppressor proteins. In addition, TAg binds to several other cellular factors, including the transcriptional co-activators p300 and CBP, which may contribute to its transformation function. Several other features of TAg that appear to contribute to its full transformation potential are yet to be completely understood. Study of TAg therefore continues to provide new insights into the mechanism of cellular transformation.
Collapse
Affiliation(s)
- S H Ali
- Department of Adult Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
50
|
Kawaki J, Miyazaki M, Ito H, Nakagawa K, Shimizu H, Yoshidome H, Uzawa K, Tanzawa H, Nakajima N. Allelic loss in human intrahepatic cholangiocarcinoma: correlation between chromosome 8p22 and tumor progression. Int J Cancer 2000; 88:228-31. [PMID: 11004673 DOI: 10.1002/1097-0215(20001015)88:2<228::aid-ijc13>3.0.co;2-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common malignant primary tumor of the liver in Japan. Despite progress in operative techniques and adjuvant therapy, the prognosis of ICC remains very poor. Therefore, it is important to investigate the mechanism of carcinogenesis and progression of ICC. We screened allelic losses at 6 loci, including that of novel tumor-suppressor gene FEZ1 on chromosome 8p, and at 5 microsatellite loci to define the association with tumor-suppressor genes (HNPCC, APC, RB1, p53, DCC) in tumors from 18 unrelated ICC patients by PCR-loss of heterozygosity (LOH) assay and correlated the alterations with clinicopathological parameters. As a result, 61.1% (11 of 18) of patients showed LOH at 1 of the loci at least, and microsatellite instability was observed in 16.7% (3 of 18). At locus D8S258, relatively frequent LOH was detected (17.6%) compared with other loci on chromosome 8p. Among the other 5 chromosomal arms tested, the highest frequency of LOH (23.5%) was observed at D17S153. Fifty percent of cases with the mass-forming + periductal infiltrating type were frequently detected by LOH at D8S258 compared to cases of the mass-forming or intraductal growth type. In conclusion, we show that 1 putative tumor-suppressor gene on 8p22 may relate to progression of ICC and suggest that the p53 tumor-suppressor gene may be associated with carcinogenesis of ICC.
Collapse
Affiliation(s)
- J Kawaki
- First Department of Surgery, Chiba University School of Medicine, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|