1
|
Fechner J, Lausen J. Transcription Factor TAL1 in Erythropoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:243-258. [PMID: 39017847 DOI: 10.1007/978-3-031-62731-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.
Collapse
Affiliation(s)
- Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Jörn Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Gould KA, Bresnick EH. Sequence determinants of DNA binding by the hematopoietic helix-loop-helix transcription factor TAL1: importance of sequences flanking the E-box core. Gene Expr 2018; 7:87-101. [PMID: 9699481 PMCID: PMC6190197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
TAL1 is a helix-loop-helix transcription factor that is essential for hematopoiesis. In vitro DNA binding site selection experiments have previously identified the preferred binding site for TAL1 heterodimers as AACAGATGGT. TAL1 homodimers do not bind DNA with significant affinity. A subset of other E-box sequences is also bound by TAL1 heterodimers. Here, we present an analysis of TAL1 heterodimer DNA binding specificity, using E-boxes derived from genomic clones, which were isolated by immunoadsorption of K562 erythroleukemia cell chromatin with a TAL1 antibody. We show that TAL1 heterodimer binding to a CAGATG E-box is strongly modulated by nucleotides flanking the E-box. A 10 base pair element consisting of the CAGATG E-box and two flanking nucleotides in both the 5' and 3' direction is sufficient for high-affinity binding. Certain mutations of nucleotides in either the 5' (-1 and -2) or 3' (+1 and +2) direction strongly inhibit binding. The importance of flanking nucleotides also exists in the context of nonpreferred E-boxes recognized by TAL1 heterodimers. Although there are no known target genes for TAL1, the regulatory regions of several genes involved in hematopoiesis contain the preferred E-box CAGATG. However, based on our results, the E-boxes in these potential target genes contain flanking sequences that would be expected to significantly reduce TAL1 heterodimer binding in vitro. Thus, additional stabilizing forces, such as protein-protein interactions between TAL1 heterodimers and accessory factors, may be required to confer high-affinity TAL1 heterodimer binding to such sequences.
Collapse
Affiliation(s)
- Karen A. Gould
- University of Wisconsin Medical School Department of Pharmacology, 1300 University Avenue, Madison, WI53706
| | - Emery H. Bresnick
- Address correspondence to Emery H. Bresnick. Tel: (608) 265-6446; Fax: (608) 262-1257; E-mail:
| |
Collapse
|
3
|
Genomic Alterations of Non-Coding Regions Underlie Human Cancer: Lessons from T-ALL. Trends Mol Med 2016; 22:1035-1046. [PMID: 28240214 DOI: 10.1016/j.molmed.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
It has been appreciated for decades that somatic genomic alterations that change coding sequences of proto-oncogenes, translocate enhancers/promoters near proto-oncogenes, or create fusion oncogenes can drive cancer by inducing oncogenic activities. An explosion of genome-wide technologies over the past decade has fueled discoveries of the roles of three-dimensional chromosome structure and powerful cis-acting elements (super-enhancers) in regulating gene transcription. In recent years, studies of human T cell acute lymphoblastic leukemia (T-ALL) using genome-wide technologies have provided paradigms for how non-coding genomic region alterations can disrupt 3D chromosome architecture or establish super-enhancers to activate oncogenic transcription of proto-oncogenes. These studies raise important issues to consider with the objective of leveraging basic knowledge into new diagnostic and therapeutic opportunities for cancer patients.
Collapse
|
4
|
Stem Cell Leukemia: how a TALented actor can go awry on the hematopoietic stage. Leukemia 2016; 30:1968-1978. [DOI: 10.1038/leu.2016.169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
|
5
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW KIT tyrosine kinase receptor is essential for several tissue stem cells, especially for hematopoietic stem cells (HSCs). Moderately decreased KIT signaling is well known to cause anemia and defective HSC self-renewal, whereas gain-of-function mutations are infrequently found in leukemias. Thus, maintaining KIT signal strength is critically important for homeostasis. KIT signaling in HSCs involves effectors such as SHP2 and PTPN11. This review summarizes the recent developments on the novel mechanisms regulating or reinforcing KIT signal strength in HSCs and its perturbation in polycythemia vera. RECENT FINDINGS Stem cell leukemia (SCL) is a transcription factor that is essential for HSC development. Genetic experiments indicate that Kit, protein tyrosine phosphatase, nonreceptor type 11 (Ptpn11), or Scl control long-term HSC self-renewal, survival, and quiescence in adults. Kit is now shown to be centrally involved in two feedforward loops in HSCs, one with Ptpn11 and the other with Scl. SUMMARY Knowledge of the regulatory mechanisms that favor self-renewal divisions or a lineage determination process is central to the design of strategies to expand HSCs for the purpose of cell therapy. In addition, transcriptome and phosphoproteome analyses of erythroblasts in polycythemia vera identified lower SCL expression and hypophosphorylated KIT, suggesting that the KIT-SCL loop is relevant to the pathophysiology of human blood disorders as well.
Collapse
|
7
|
Patel B, Kang Y, Cui K, Litt M, Riberio MSJ, Deng C, Salz T, Casada S, Fu X, Qiu Y, Zhao K, Huang S. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia 2014; 28:349-61. [PMID: 23698277 PMCID: PMC10921969 DOI: 10.1038/leu.2013.158] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/09/2013] [Accepted: 05/16/2013] [Indexed: 01/21/2023]
Abstract
Long-range chromatin interactions control metazoan gene transcription. However, the involvement of intra- and interchromosomal interactions in development and oncogenesis remains unclear. TAL1/SCL is a critical transcription factor required for the development of all hematopoietic lineages; yet, aberrant TAL1 transcription often occurs in T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that oncogenic TAL1 expression is regulated by different intra- and interchromosomal loops in normal hematopoietic and leukemic cells, respectively. These intra- and interchromosomal loops alter the cell-type-specific enhancers that interact with the TAL1 promoter. We show that human SET1 (hSET1)-mediated H3K4 methylations promote a long-range chromatin loop, which brings the +51 enhancer in close proximity to TAL1 promoter 1 in erythroid cells. The CCCTC-binding factor (CTCF) facilitates this long-range enhancer/promoter interaction of the TAL1 locus in erythroid cells while blocking the same enhancer/promoter interaction of the TAL1 locus in human T-cell leukemia. In human T-ALL, a T-cell-specific transcription factor c-Maf-mediated interchromosomal interaction brings the TAL1 promoter into close proximity with a T-cell-specific regulatory element located on chromosome 16, activating aberrant TAL1 oncogene expression. Thus, our study reveals a novel molecular mechanism involving changes in three-dimensional chromatin interactions that activate the TAL1 oncogene in human T-cell leukemia.
Collapse
Affiliation(s)
- B Patel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- These authors contributed equally to this work
| | - Y Kang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- College of Life Science, Jilin University, Changchun, China
- These authors contributed equally to this work
| | - K Cui
- Center for System Biology, NHLBI, National Institute of Health, Bethesda, MD, USA
| | - M Litt
- Medical Education Center, Ball State University, Muncie, IN, USA
| | - MSJ Riberio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - C Deng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - T Salz
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - S Casada
- Medical Education Center, Ball State University, Muncie, IN, USA
| | - X Fu
- College of Life Science, Jilin University, Changchun, China
| | - Y Qiu
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Shands Cancer Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - K Zhao
- Center for System Biology, NHLBI, National Institute of Health, Bethesda, MD, USA
| | - S Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Shands Cancer Center, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Retrotransposon insertion in the T-cell acute lymphocytic leukemia 1 (Tal1) gene is associated with severe renal disease and patchy alopecia in Hairpatches (Hpt) mice. PLoS One 2013; 8:e53426. [PMID: 23301070 PMCID: PMC3534690 DOI: 10.1371/journal.pone.0053426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022] Open
Abstract
“Hairpatches” (Hpt) is a naturally occurring, autosomal semi-dominant mouse mutation. Hpt/Hpt homozygotes die in utero, while Hpt/+ heterozygotes exhibit progressive renal failure accompanied by patchy alopecia. This mutation is a model for the rare human disorder “glomerulonephritis with sparse hair and telangiectases" (OMIM 137940). Fine mapping localized the Hpt locus to a 6.7 Mb region of Chromosome 4 containing 62 known genes. Quantitative real time PCR revealed differential expression for only one gene in the interval, T-cell acute lymphocytic leukemia 1 (Tal1), which was highly upregulated in the kidney and skin of Hpt/+ mice. Southern blot analysis of Hpt mutant DNA indicated a new EcoRI site in the Tal1 gene. High throughput sequencing identified an endogenous retroviral class II intracisternal A particle insertion in Tal1 intron 4. Our data suggests that the IAP insertion in Tal1 underlies the histopathological changes in the kidney by three weeks of age, and that glomerulosclerosis is a consequence of an initial developmental defect, progressing in severity over time. The Hairpatches mouse model allows an investigation into the effects of Tal1, a transcription factor characterized by complex regulation patterns, and its effects on renal disease.
Collapse
|
9
|
Panepucci RA, Oliveira LHB, Zanette DL, Viu Carrara RDC, Araujo AG, Orellana MD, Bonini de Palma PV, Menezes CCBO, Covas DT, Zago MA. Increased levels of NOTCH1, NF-kappaB, and other interconnected transcription factors characterize primitive sets of hematopoietic stem cells. Stem Cells Dev 2010; 19:321-32. [PMID: 19686049 DOI: 10.1089/scd.2008.0397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As previously shown, higher levels of NOTCH1 and increased NF-kappaB signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow (BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells (CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency (than expected by chance) of NF-kappaB-binding sites (BS), including potentially novel NF-kappaB targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappaB, and other important TFs on more primitive HSC sets.
Collapse
Affiliation(s)
- Rodrigo Alexandre Panepucci
- Department of Clinical Medicine of the Faculty of Medicine of Ribeirao Preto-USP, Center for Cell Therapy and Regional Blood Center, Araraquara, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ishiguro K, Rice AM, Rice KP, Sartorelli AC. Inhibition of all-trans retinoic acid-induced granulocytic differentiation of WEHI-3B D+ cells by forced expression of SCL (TAL1) and GATA-1. Leuk Res 2009; 33:1249-54. [PMID: 19230972 PMCID: PMC2780339 DOI: 10.1016/j.leukres.2009.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 12/05/2008] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
Abstract
All-trans retinoic acid (ATRA) induces granulocytic maturation of WEHI-3B D+ leukemia cells and LiCl enhances this maturation, while WEHI-3B D- cells are non-responsive to ATRA. Transfection of SCL, expressed in D- but absent in D+ cells, into D+ cells, caused resistance to ATRA, while transfection of GATA-1 into D+ cells produced resistance to the combination of ATRA and LiCl. SCL expression in D+ cells did not induce the expression of c-Kit, a putative target gene for SCL. LiCl, known to inhibit some kinases by displacing Mg2+, did not affect tyrosine kinase activity of the cytoplasmic domain of c-Kit.
Collapse
Affiliation(s)
- Kimiko Ishiguro
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Anna M. Rice
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Kevin P. Rice
- Department of Chemistry, Colby College, Waterville, ME 04901, United States
| | - Alan C. Sartorelli
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
11
|
Kim SI, Bresnick EH. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 2007; 26:6777-6794. [PMID: 17934485 DOI: 10.1038/sj.onc.1210761] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional networks orchestrate fundamental biological processes, including hematopoiesis, in which hematopoietic stem cells progressively differentiate into specific progenitors cells, which in turn give rise to the diverse blood cell types. Whereas transcription factors recruit coregulators to chromatin, leading to targeted chromatin modification and recruitment of the transcriptional machinery, many questions remain unanswered regarding the underlying molecular mechanisms. Furthermore, how diverse cell type-specific transcription factors function cooperatively or antagonistically in distinct cellular contexts is poorly understood, especially since genes in higher eukaryotes commonly encompass broad chromosomal regions (100 kb and more) and are littered with dispersed regulatory sequences. In this article, we describe an important set of transcription factors and coregulators that control erythropoiesis and highlight emerging transcriptional mechanisms and principles. It is not our intent to comprehensively survey all factors implicated in the transcriptional control of erythropoiesis, but rather to underscore specific mechanisms, which have potential to be broadly relevant to transcriptional control in diverse systems.
Collapse
Affiliation(s)
- S-I Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI 53706, USA
| | | |
Collapse
|
12
|
Cheng Y, Zhang Z, Slape C, Aplan PD. Cre-loxP-mediated recombination between the SIL and SCL genes leads to a block in T-cell development at the CD4- CD8- to CD4+ CD8+ transition. Neoplasia 2007; 9:315-21. [PMID: 17460775 PMCID: PMC1854848 DOI: 10.1593/neo.07148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 11/18/2022]
Abstract
In the most common form of stem cell leukemia (SCL) gene rearrangement, an interstitial deletion of 82 kb brings SCL under the control of regulatory elements that normally govern expression of the ubiquitously expressed SCL interrupting locus (SIL) gene, which is located directly upstream of SCL. To investigate the effect of this fusion in a mouse model, a bacterial artificial chromosome (BAC) clone containing both human SIL and SCL genes was isolated, and loxP sites were inserted into intron 1 of both the SIL and SCL genes, corresponding to the sites at which recombination occurs in human T-cell acute lymphocytic leukemia patients. This BAC clone was used to generate transgenic SILloxloxSCL mice. These transgenic mice were subsequently bred to Lck-Cre mice that express the Cre recombinase specifically in the thymus. The BAC transgene was recombined between the two loxP sites in over 50% of the thymocytes from SILloxloxSCL/Cre double-transgenic mice, bringing the SCL gene under the direct control of SIL regulatory elements. Aberrant SCL gene expression in the thymus was verified by reverse transcription-polymerase chain reaction. Using FACS analysis, we found that mice carrying both SILloxloxSCL and Cre transgenes have increased CD4-/CD8- thymocytes compared with transgene-negative mice. In the spleen, these transgenic mice show a marked reduction in the number of mature CD4+ or CD8+ cells. These results demonstrate that conditional activation of SCL under control of SIL regulatory elements can impair normal T-cell development.
Collapse
Affiliation(s)
- Yue Cheng
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Naval Medical Center, Building 8, Room 5101, 8901 Wisconsin Avenue, Bethesda, MD 20889-5105, USA
| | | | | | | |
Collapse
|
13
|
Zhu H, Traver D, Davidson AJ, Dibiase A, Thisse C, Thisse B, Nimer S, Zon LI. Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish. Dev Biol 2006; 281:256-69. [PMID: 15893977 DOI: 10.1016/j.ydbio.2005.01.034] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 01/04/2005] [Accepted: 01/05/2005] [Indexed: 01/01/2023]
Abstract
The Lmo2 transcription factor, a T-cell oncoprotein, is required for both hematopoiesis and angiogenesis. To investigate the fate of lmo2-expressing cells and the transcriptional regulation of lmo2 in vivo, we generated stable transgenic zebrafish that express green fluorescent protein (EGFP) or DsRed under the control of an lmo2 promoter. A 2.5-kb fragment contains the cis-regulatory elements required to recapitulate endogenous lmo2 expression in embryonic hematopoietic and vascular tissues. We further characterized embryonic Lmo2+ cells through transplantation into vlad tepes (vlt), an erythropoietic mutant. These Lmo2+ primitive wave donor cells differentiated into circulating hematopoietic cells and extended the life span of vlt recipients, but did not demonstrate long-term repopulation of the erythroid lineage. Promoter analysis identified a 174-bp proximal promoter that was sufficient to recapitulate lmo2 expression. This element contains critical ETS-binding sites conserved between zebrafish and pufferfish. Furthermore, we show that ets1 is coexpressed with lmo2, and overexpression experiments indicate that ets1 can activate the lmo2 promoter through this element. Our studies elucidate the transcriptional regulation of this key transcription factor, and provide a transgenic system for the functional analysis of blood and blood vessels in zebrafish.
Collapse
Affiliation(s)
- Hao Zhu
- Division of Hematology/Oncology, Children's Hospital of Boston, Department of Pediatrics, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bockamp E, Antunes C, Maringer M, Heck R, Presser K, Beilke S, Ohngemach S, Alt R, Cross M, Sprengel R, Hartwig U, Kaina B, Schmitt S, Eshkind L. Tetracycline-controlled transgenic targeting from the SCL locus directs conditional expression to erythrocytes, megakaryocytes, granulocytes, and c-kit-expressing lineage-negative hematopoietic cells. Blood 2006; 108:1533-41. [PMID: 16675709 DOI: 10.1182/blood-2005-12-012104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The stem cell leukemia gene SCL, also known as TAL-1, encodes a basic helix-loop-helix transcription factor expressed in erythroid, myeloid, megakaryocytic, and hematopoietic stem cells. To be able to make use of the unique tissue-restricted and spatio-temporal expression pattern of the SCL gene, we have generated a knock-in mouse line containing the tTA-2S tetracycline transactivator under the control of SCL regulatory elements. Analysis of this mouse using different tetracycline-dependent reporter strains demonstrated that switchable transgene expression was restricted to erythrocytes, megakaryocytes, granulocytes, and, importantly, to the c-kit-expressing and lineage-negative cell fraction of the bone marrow. In addition, conditional transgene activation also was detected in a very minor population of endothelial cells and in the kidney. However, no activation of the reporter transgene was found in the brain of adult mice. These findings suggested that the expression of tetracycline-responsive reporter genes recapitulated the known endogenous expression pattern of SCL. Our data therefore demonstrate that exogenously inducible and reversible expression of selected transgenes in myeloid, megakaryocytic, erythroid, and c-kit-expressing lineage-negative bone marrow cells can be directed through SCL regulatory elements. The SCL knock-in mouse presented here represents a powerful tool for studying normal and malignant hematopoiesis in vivo.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Institute of Toxicology/Mouse Genetics, Johannes Gutenberg-Universität Mainz, Obere Zahlbacher Str 67, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Beltran AC, Dawson PE, Gottesfeld JM. Role of DNA Sequence in the Binding Specificity of Synthetic Basic-Helix-Loop-Helix Domains. Chembiochem 2004; 6:104-13. [PMID: 15593070 DOI: 10.1002/cbic.200400184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The basic helix-loop-helix (bHLH) domain defines a class of transcription factors that are essential for the regulation of many genes involved in cell differentiation and development. To determine the role of the DNA sequence in driving dimerization specificity of bHLH transcription factors, we analyzed the DNA sequence in and around a consensus hexanucleotide binding site (E-box). The bHLH domains of two transcription factors, E12 and TAL1, were chemically synthesized. The minimal DNA binding domain for both the E12 homodimer and the E12-TAL1 heterodimer was determined, thereby extending the E-box by two base pairs. Additional studies indicate that the presence of a thymine in the first flanking position 5' to the E-box prevents DNA binding of both dimer complexes. The presence of a thymine or cytosine in a flanking position two bases 5' to the E-box decreases the affinity for the E12 homodimer twofold but completely inactivates DNA binding for the E12-TAL1 heterodimer. Access to synthetic DNA and protein enabled the analysis of specific interactions between a conserved arginine residue in the basic helix of each bHLH domain and adenine in a flanking position two bases 5' to the E-box. Our results indicate a key role of the DNA sequence in driving dimerization specificity among bHLH transcription factors.
Collapse
Affiliation(s)
- Amy C Beltran
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
16
|
Lazrak M, Deleuze V, Noel D, Haouzi D, Chalhoub E, Dohet C, Robbins I, Mathieu D. The bHLH TAL-1/SCL regulates endothelial cell migration and morphogenesis. J Cell Sci 2004; 117:1161-71. [PMID: 14970264 DOI: 10.1242/jcs.00969] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic helix-loop-helix tal-1 gene (or scl), known for its fundamental role in embryonic and adult hematopoiesis in vertebrates, is also required for embryonic vascular remodeling. In adults, TAL-1 protein is undetectable in quiescent endothelium but it is present in newly formed vessels including tumoral vasculature, indicating its involvement in angiogenesis. Here, we demonstrate that TAL-1 expression is tightly regulated during in vitro angiogenesis: it is low during the initial step of migration and is upregulated during formation of capillary-like structures. We investigated whether ectopic expression of either wild-type TAL-1 or a dominant-negative mutant lacking the DNA-binding domain (Delta-bas) modulates the activity of human primary endothelial cells in the angiogenic processes of migration, proliferation and cell morphogenesis. Overexpression of either wild-type or Delta-bas TAL-1 affected chemotactic migration of primary endothelial cells without modifying their proliferative properties. Ectopic expression of wild-type TAL-1 accelerated the formation of capillary-like structures in vitro and, in vivo, enhanced vascularisation in mice (Matrigel implants) associated with a general enlargement of capillary lumens. Importantly, transduction of the mutant Delta-bas completely impaired in vitro angiogenesis and strongly inhibited vascularisation in mice. Taken together, our data show that TAL-1 modulates the angiogenic response of endothelial cells by stimulating cell morphogenesis and by influencing their behavior in migration. This study highlights the importance of TAL-1 regulation in postnatal vascular remodeling and provides the first physiological evidence that links TAL-1 activity to endothelial cell morphogenic processes.
Collapse
Affiliation(s)
- Monia Lazrak
- UMR 5535, Institut de Génétique Moléculaire, IFR122, 1919 Route de Mende, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Steunou V, Le Bousse-Kerdilès MC, Colin-Micouin A, Clay D, Chevillard S, Martyré MC. Altered transcription of the stem cell leukemia gene in myelofibrosis with myeloid metaplasia. Leukemia 2003; 17:1998-2006. [PMID: 14513050 DOI: 10.1038/sj.leu.2403089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An increased number of circulating CD34+ hematopoietic progenitors with a prominent proliferation of the megakaryocytic (MK) population are the hallmarks of the myeloproliferation in myelofibrosis with myeloid metaplasia (MMM). Analyzing the potential contribution of the stem cell leukemia (SCL) gene in MMM myeloproliferation was doubly interesting for SCL is expressed both in primitive-uncommitted progenitor cells and erythroid/MK cells, its transcription differentially initiating from promoter 1b and 1a, respectively. Our results show that: (i) the expression of SCL transcript is increased in peripheral blood mononuclear cells (PBMCs) from patients; (ii) SCL gene transcription is altered in MMM CD34+ progenitor cells sorted into CD34+CD41+ and CD34+CD41- subpopulations. Actually, in patients, SCL transcription initiated at promoter 1b is restricted to primitive CD34+CD41- progenitor cells, while it is detectable in both cell subsets from healthy subjects; (iii) the full-length isoform of SCL protein is present in patients' CD34+ cells and in PBMC; in the latter the SCL-expressing cells mainly belong to the MK lineage in which its sublocalization is both nuclear and cytoplasmic, which contrasts with the sole nuclear staining observed in normal MK cells. Our demonstration of altered expression and transcription of SCL in patients' hematopoietic cells emphasizes the possible contribution of this regulatory nuclear factor to the hematopoietic dysregulation, which is a feature of myelofibrosis with myeloid metaplasia.
Collapse
Affiliation(s)
- V Steunou
- INSERM U365, Institut Curie, Paris Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Carlotti E, Pettenella F, Amaru R, Slater S, Lister TA, Barbui T, Basso G, Cazzaniga G, Rambaldi A, Biondi A. Molecular characterization of a new recombination of the SIL/TAL-1 locus in a child with T-cell acute lymphoblastic leukaemia. Br J Haematol 2002; 118:1011-8. [PMID: 12199779 DOI: 10.1046/j.1365-2141.2002.03747.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deletions involving the SIL-TAL-1 locus are seen in 15% of T-acute lymphoblastic leukaemias (T-ALL). To date, seven deletions have been described, spreading over 90 kb of chromosome 1, fusing SIL to the TAL-1 gene and resulting in over expression of TAL-1. During the diagnostic screening of the TAL-1 deletion in 176 T-ALL patients, we identified one case showing a new SIL rearrangement. A novel fusion transcript was identified between the SIL exon 1a and an unknown sequence (633-cDNA). Polymerase chain reaction (PCR) screening of a human cDNA library confirmed the existence of this transcript. Using long-distance PCR on patient DNA, we obtained a genomic fragment containing SIL exon 1b, a portion of intron 1b, an unknown sequence and the 633 sequence. Using DNA from healthy donors, a partial genomic map of 633-DNA was found to be identical to the restriction map of the PCR fragment amplified from patient DNA. To define the chromosomal origin of 633-DNA, a YAC human genomic library was screened. Two clones containing 633-DNA were found, mapping to chromosomal region 1p32 and both contained SIL and TAL-1 sequences. By searching GenBank, we identified PAC RP1-18D14 which contains SIL, TAL-1 and 633-DNA, confirming this novel rearrangement as a new deletion of the SIL/TAL-1 locus.
Collapse
Affiliation(s)
- Emanuela Carlotti
- Divisione di Ematologia, Ospedali Riuniti Bergamo, Clinica paediatrica, Università di Milano-Bicocca, Ospedale S. Gerardo, Monza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sinclair AM, Bench AJ, Bloor AJC, Li J, Göttgens B, Stanley ML, Miller J, Piltz S, Hunter S, Nacheva EP, Sanchez MJ, Green AR. Rescue of the lethal scl(-/-) phenotype by the human SCL locus. Blood 2002; 99:3931-8. [PMID: 12010791 DOI: 10.1182/blood.v99.11.3931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The stem cell leukemia (SCL) gene encodes a basic helix-loop-helix transcription factor with a critical role in the development of both blood and endothelium. Loss-of-function studies have shown that SCL is essential for the formation of hematopoietic stem cells, for subsequent erythroid development and for yolk sac angiogenesis. SCL exhibits a highly conserved pattern of expression from mammals to teleost fish. Several murine SCL enhancers have been identified, each of which directs reporter gene expression in vivo to a subdomain of the normal SCL expression pattern. However, regulatory elements necessary for SCL expression in erythroid cells remain to be identified and the size of the chromosomal domain needed to support appropriate SCL transcription is unknown. Here we demonstrate that a 130-kilobase (kb) yeast artificial chromosome (YAC) containing the human SCL locus completely rescued the embryonic lethal phenotype of scl(-/-) mice. Rescued YAC(+) scl(-/-) mice were born in appropriate Mendelian ratios, were healthy and fertile, and exhibited no detectable abnormality of yolk sac, fetal liver, or adult hematopoiesis. The human SCL protein can therefore substitute for its murine homologue. In addition, our results demonstrate that the human SCL YAC contains the chromosomal domain necessary to direct expression to the erythroid lineage and to all other tissues in which SCL performs a nonredundant essential function.
Collapse
Affiliation(s)
- Angus M Sinclair
- University of Cambridge, Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tang T, Arbiser JL, Brandt SJ. Phosphorylation by mitogen-activated protein kinase mediates the hypoxia-induced turnover of the TAL1/SCL transcription factor in endothelial cells. J Biol Chem 2002; 277:18365-72. [PMID: 11904294 DOI: 10.1074/jbc.m109812200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix transcription factor TAL1 (or SCL), originally identified from its involvement by a chromosomal rearrangement in T-cell acute lymphoblastic leukemia, is required for hematopoietic development. TAL1 also has a critical role in embryonic vascular remodeling and is expressed in endothelial cells postnatally, although little is known about its function or regulation in this cell type. We report here that the important proangiogenic stimulus hypoxia stimulates phosphorylation, ubiquitination, and proteasomal breakdown of TAL1 in endothelial cells. Tryptic phosphopeptide mapping and chemical inhibitor studies showed that hypoxia induced the mitogen-activated protein kinase-mediated phosphorylation of a single serine residue, Ser(122), in the protein, and site-directed mutagenesis demonstrated that Ser(122) phosphorylation was necessary for hypoxic acceleration of TAL1 turnover in an immortalized murine endothelial cell line. Finally, whereas TAL1 expression was detected in endothelial cells from both large and small vessels, hypoxia-induced TAL1 turnover was observed only in microvascular endothelial cells. Besides their implications for TAL1 function in angiogenic processes, these results demonstrate that a protein kinase(s) important for mitogenic signaling is also utilized in hypoxic endothelial cells to target a transcription factor for destruction.
Collapse
Affiliation(s)
- Tong Tang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
21
|
Bloor AJC, Sánchez MJ, Green AR, Göttgens B. The role of the stem cell leukemia (SCL) gene in hematopoietic and endothelial lineage specification. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:195-206. [PMID: 11983093 DOI: 10.1089/152581602753658402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anatomical observations made at the beginning of the twentieth century revealed an intimate association between the ontogeny of blood and endothelium and led to the hypothesis of a common cell of origin termed the hemangioblast. However, the precise nature of the cellular intermediates involved in the development of both lineages from uncommitted precursors to mature cell types is still the subject of ongoing studies, as are the molecular mechanisms driving this process. There is clear evidence that lineage-restricted transcription factors play a central role in the genesis of mature lineage committed cells from multipotent progenitors. Amongst these, the basic helix-loop-helix (bHLH) family is of key importance for cell fate determination in the development of the hematopoietic system and beyond. This article will review the current evidence for the common origin of blood and endothelium, focusing on the function of the bHLH protein encoded by the stem cell leukemia (SCL) gene, and its role as a pivotal regulator of hematopoiesis and vasculogenesis.
Collapse
Affiliation(s)
- Adrian J C Bloor
- Cambridge University Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 2XY, UK
| | | | | | | |
Collapse
|
22
|
Ballinger SW, Judice SA, Nicklas JA, Albertini RJ, O'Neill JP. DNA sequence analysis of interlocus recombination between the human T-cell receptor gamma variable (GV) and beta diversity-joining (BD/BJ) sequences on chromosome 7 (inversion 7). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 40:85-92. [PMID: 12203400 DOI: 10.1002/em.10099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
V(D)J recombinase-mediated recombination between the T-cell receptor (TCR) gamma variable (GV) genes at chromosome 7p15 and the TCR beta joining (BJ) genes at 7q35 leads to the formation of a hybrid TCR gene. These TCR gamma/beta interlocus rearrangements occur at classic V(D)J recombination signal sequences (RSS) and, because the loci are in an inverted orientation, result in inversion events that are detectable in the chromosome structure as inv(7)(p15;q35). Similar rearrangements involving oncogenes and either TCR or immunoglobulin genes mediated by the V(D)J recombinase are found in lymphoid malignancies. Oligonucleotide primers that allow polymerase chain reaction (PCR) amplification across the inv(7) genomic recombination junction sequence have been described. Southern blot analysis has been primarily used to confirm the GV/BJ hybrid nature of the product, with limited information on the DNA sequence of these recombinations. We have modified this PCR method using total genomic DNA from the mononuclear cells in peripheral blood samples to increase specificity and to allow direct sequencing of the translocation junction that results from the recombination between the GV1 and BJ1 families of TCR genes in 25 examples from 11 individuals (three adults, one child, six newborns, and one ataxia telangiectasia (AT) patient). We focused on samples from newborns based on previous studies indicating that the predominant hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutations in newborns are V(D)J recombinase-mediated deletion events and that the frequency of these mutations decreases with increasing age. Although the dilution series-based PCR assay utilized does not yield sharply defined quantitative endpoints, results of this study strongly suggest that inv(7) recombinations in newborns occur at equal or lower frequencies than those seen in adults. Consistent with the PCR primer pairs, all sequenced products contain a GV1 and a BJ1 segment and most also contain a BD1 segment. GV1s2 and 1s4 were the most frequently found GV1 genes (8 and 9 examples, respectively) and BJ1s5 and 1s6 were the most frequently found BJ1 genes (9 and 10 examples, respectively). These results demonstrate the effectiveness of this methodology for assessing GV/BJ interlocus rearrangements mediated by V(D)J recombinase.
Collapse
|
23
|
Mead PE, Deconinck AE, Huber TL, Orkin SH, Zon LI. Primitive erythropoiesis in theXenopusembryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. Development 2001; 128:2301-8. [PMID: 11493549 DOI: 10.1242/dev.128.12.2301] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hematopoietic stem cells are derived from ventral mesoderm during vertebrate development. Gene targeting experiments in the mouse have demonstrated key roles for the basic helix-loop-helix transcription factor SCL and the GATA-binding protein GATA-1 in hematopoiesis. When overexpressed in Xenopus animal cap explants, SCL and GATA-1 are each capable of specifying mesoderm to become blood. Forced expression of either factor in whole embryos, however, does not lead to ectopic blood formation. This apparent paradox between animal cap assays and whole embryo phenotype has led to the hypothesis that additional factors are involved in specifying hematopoietic mesoderm. SCL and GATA-1 interact in a transcriptional complex with the LIM domain protein LMO-2. We have cloned the Xenopus homolog of LMO-2 and show that it is expressed in a similar pattern to SCL during development. LMO-2 can specify hematopoietic mesoderm in animal cap assays. SCL and LMO-2 act synergistically to expand the blood island when overexpressed in whole embryos. Furthermore, co-expression of GATA-1 with SCL and LMO-2 leads to embryos that are ventralized and have blood throughout the dorsal-ventral axis. The synergistic effect of SCL, LMO-2 and GATA-1, taken together with the findings that these factors can form a complex in vitro, suggests that this complex specifies mesoderm to become blood during embryogenesis.
Collapse
Affiliation(s)
- P E Mead
- Division of Hematology/Oncology, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Chervinsky DS, Lam DH, Zhao XF, Melman MP, Aplan PD. Development and characterization of T cell leukemia cell lines established from SCL/LMO1 double transgenic mice. Leukemia 2001; 15:141-7. [PMID: 11243382 DOI: 10.1038/sj.leu.2401997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have established a panel of nine immortal cell lines from T cell malignancies which arose in mice transgenic for the SCL and LMO1 genes. Cells from the primary malignancies initially grew very slowly in vitro, loosely attached to a stromal layer, before gaining the ability to proliferate independently. Upon gaining the ability to proliferate in the absence of a stromal layer, these cell lines grew rapidly, doubling every 14-23 h, to a very high density, approaching 10(7) cells/ml. Whereas the tumors which arise in SCL/LMO1 double transgenic mice are typically diploid or pseudodiploid, the cell lines were all grossly aneuploid, suggesting the possibility that additional genetic events were selected for in vitro. Given that SCL and LMO1 gene activation are both commonly seen in human patients with T cell acute lymphoblastic leukemia, these cell lines may be a useful in vitro model for the human disease.
Collapse
Affiliation(s)
- D S Chervinsky
- Department of Cancer Genetics, Roswell Park Cancer Institute, USA
| | | | | | | | | |
Collapse
|
25
|
Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 2000; 1:138-44. [PMID: 11248806 DOI: 10.1038/77819] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cooperation between the stem cell leukemia (SCL) transcription factor and its nuclear partners LMO1 or LMO2 induces aggressive T cell acute lymphoblastic leukemia when inappropriately expressed in T cells. This study examined the cellular and molecular targets of the SCL-LMO complex at the preleukemic stage. We show that SCL and its partners are coexpressed in the most primitive thymocytes. Maturation to the pre-T cell stage is associated with a down-regulation of SCL and LMO1 and LMO2, and a concomitant up-regulation of E2A and HEB expression. Moreover, enforced expression of SCL-LMO1 inhibits T cell differentiation and recapitulates a loss of HEB function, causing a deregulation of the transition checkpoint from the CD4-CD8- to CD4+CD8+ stages. Finally, we identify the gene encoding pT alpha as a downstream target of HEB that is specifically repressed by the SCL-LMO complex.
Collapse
Affiliation(s)
- S Herblot
- Clinical Research Institute of Montréal, Montréal, Québec, Canada H2W1R7
| | | | | | | | | |
Collapse
|
26
|
Göttgens B, Barton LM, Gilbert JG, Bench AJ, Sanchez MJ, Bahn S, Mistry S, Grafham D, McMurray A, Vaudin M, Amaya E, Bentley DR, Green AR, Sinclair AM. Analysis of vertebrate SCL loci identifies conserved enhancers. Nat Biotechnol 2000; 18:181-6. [PMID: 10657125 DOI: 10.1038/72635] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The SCL gene encodes a highly conserved bHLH transcription factor with a pivotal role in hemopoiesis and vasculogenesis. We have sequenced and analyzed 320 kb of genomic DNA composing the SCL loci from human, mouse, and chicken. Long-range sequence comparisons demonstrated multiple peaks of human/mouse homology, a subset of which corresponded precisely with known SCL enhancers. Comparisons between mammalian and chicken sequences identified some, but not all, SCL enhancers. Moreover, one peak of human/mouse homology (+23 region), which did not correspond to a known enhancer, showed significant homology to an analogous region of the chicken SCL locus. A transgenic Xenopus reporter assay was established and demonstrated that the +23 region contained a new neural enhancer. This combination of long-range comparative sequence analysis with a high-throughput transgenic bioassay provides a powerful strategy for identifying and characterizing developmentally important enhancers.
Collapse
Affiliation(s)
- B Göttgens
- University of Cambridge, Department of Haematology, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Courtes C, Lecointe N, Le Cam L, Baudoin F, Sardet C, Mathieu-Mahul D. Erythroid-specific inhibition of the tal-1 intragenic promoter is due to binding of a repressor to a novel silencer. J Biol Chem 2000; 275:949-58. [PMID: 10625632 DOI: 10.1074/jbc.275.2.949] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix tal-1 gene plays a key role in hematopoiesis, and its expression is tightly controlled through alternative promoters and complex interactions of cis-acting regulatory elements. tal-1 is not expressed in normal T cells, but its transcription is constitutive in a large proportion of human T cell leukemias. We have previously described a downstream initiation of tal-1 transcription specifically associated with a subset of T cell leukemias that leads to the production of NH(2)-truncated TAL-1 proteins. In this study, we characterize the human promoter (promoter IV), embedded within a GC-rich region in exon IV, responsible for this transcriptional activity. The restriction of promoter IV usage is assured by a novel silencer element in the 3'-untranslated region of the human gene that represses its activity in erythroid but not in T cells. The silencer activity is mediated through binding of a tissue-specific nuclear factor to a novel protein recognition motif (designated tal-RE) in the silencer. Mutation of a single residue within the tal-RE abolishes both specific protein binding and silencing activity. Altogether, our results demonstrate that the tal-1 promoter IV is actively repressed in cells of the erythro-megakaryocytic lineage and that this repression is released in leukemic T cells, resulting in the expression of the tal-1 truncated transcript.
Collapse
Affiliation(s)
- C Courtes
- Institut de Génétique Moléculaire, UMR 5535, IFR 24, 1919 Route de Mende, F 34293, Montpellier, France
| | | | | | | | | | | |
Collapse
|
28
|
Barton LM, Göttgens B, Green AR. The stem cell leukaemia (SCL) gene: a critical regulator of haemopoietic and vascular development. Int J Biochem Cell Biol 1999; 31:1193-207. [PMID: 10582347 DOI: 10.1016/s1357-2725(99)00082-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- L M Barton
- Department of Haematology, University of Cambridge, MRC Centre, UK
| | | | | |
Collapse
|
29
|
Sánchez M, Göttgens B, Sinclair AM, Stanley M, Begley CG, Hunter S, Green AR. An SCL 3′ enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors. Development 1999; 126:3891-904. [PMID: 10433917 DOI: 10.1242/dev.126.17.3891] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The SCL gene encodes a basic helix-loop-helix transcription factor which is expressed in early haematopoietic progenitors throughout ontogeny and is essential for the normal development of blood and blood vessels. Transgenic studies have characterised spatially distinct 5′ enhancers which direct lacZ expression to subdomains of the normal SCL expression pattern, but the same elements failed to produce appropriate haematopoietic expression. We now describe an SCL 3′ enhancer with unique properties. It directed lacZ expression in transgenic mice to extra-embryonic mesoderm and subsequently to both endothelial cells and to a subset of blood cells at multiple sites of embryonic haematopoiesis including the yolk sac, para-aortic splanchnopleura and AGM region. The 3′ enhancer also targeted expression to haematopoietic progenitors in both foetal liver and adult bone marrow. Purified lacZ(+)cells were highly enriched for clonogenic myeloid and erythroid progenitors as well as day-12 spleen colony forming units (CFU-S). Within the total gated population from bone marrow, 95% of the myeloid and 90% of the erythroid colony-forming cells were contained in the lacZ(+) fraction, as were 98% of the CFU-S. Activation of the enhancer did not require SCL protein. On the contrary, transgene expression in yolk sacs was markedly increased in an SCL−/− background, suggesting that SCL is subject to negative autoregulation. Alternatively the SCL−/− environment may alter differentiation of extra-embryonic mesoderm and result in an increased number of cells capable of expressing high levels of the transgene. Our data represents the first description of an enhancer that integrates information necessary for expression in developing endothelium and early haematopoietic progenitors at distinct times and sites throughout ontogeny. This enhancer provides a potent tool for the manipulation of haematopoiesis and vasculogenesis in vivo.
Collapse
Affiliation(s)
- M Sánchez
- University of Cambridge, Department of Haematology, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
|
32
|
Zhao XF, Aplan PD. The hematopoietic transcription factor SCL binds the p44 subunit of TFIIH. J Biol Chem 1999; 274:1388-93. [PMID: 9880511 DOI: 10.1074/jbc.274.3.1388] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SCL is a basic domain helix-loop-helix (bHLH) oncoprotein that is involved in T-cell acute lymphoblastic leukemia as well as in normal hematopoiesis. Although it is believed that SCL functions as a tissue-specific transcription factor, no molecular mechanism has thus far been identified for this putative function. In this report, we show that SCL interacts with p44, a subunit of the basal transcription factor TFIIH. The minimal region of SCL that interacts with p44 was mapped to a 101-amino acid sequence that includes, but is not limited to, the bHLH region; the SCL-binding site of p44 is located in the carboxyl-terminal half of p44. This interaction was confirmed by glutathione S-transferase fusion protein pull-down assays and a co-immunoprecipitation assay. As analyzed with a yeast two-hybrid system, p44 interacts specifically with SCL, but not with the other class A or B bHLH proteins tested. E2A did not compete with p44 for SCL binding, as demonstrated by an in vitro binding assay. These findings document a previously unsuspected interaction between SCL and a subunit of the basal transcription factor TFIIH, suggesting a potential means by which SCL might modulate transcription.
Collapse
Affiliation(s)
- X F Zhao
- Departments of Pediatrics and Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | |
Collapse
|
33
|
Abstract
A suspected oncoprotein, human development regulated GTP-binding protein (DRG) has never been identified though homologues were found in mouse, Xenopus, Drosophila, yeast and Halobacteria. During a search for SCL binding partners using the yeast 2-hybrid system, we isolated two independent cDNA clones (clone L51 and clone V3) of the human DRG homologue from human fetal liver and human thymus cDNA libraries. Only one amino acid difference was found between human and mouse DRG proteins. Although a human DRG has been previously deposited in the SWISS-PROT Database, we believe that we have cloned the bona fide human DRG based on the highly conserved primary amino acid structure between our cloned human homologue and the mouse DRG.
Collapse
Affiliation(s)
- X F Zhao
- Departments of Pediatrics and Molecular Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
34
|
Cooper CL, Newburger PE. Differential expression of Id genes in multipotent myeloid progenitor cells: Id-1 is induced by early-and late-acting cytokines while Id-2 is selectively induced by cytokines that drive terminal granulocytic differentiation. J Cell Biochem 1998; 71:277-85. [PMID: 9779825 DOI: 10.1002/(sici)1097-4644(19981101)71:2<277::aid-jcb12>3.0.co;2-i] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hematopoietic development is regulated by a complex mixture of cytokine growth factors that guide growth and differentiation of progenitor cell populations at different stages in their development. The genetic programs that drive this process are controlled at the molecular level by the type and number of transcriptional regulators coexpressed in the cell. Both positive- and negative-acting helix-loop-helix transcription factors are expressed during hematopoietic development, with the Id-type transdominant negative regulators controlling the net helix-loop-helix activation potential in the cell at any given time. It has been demonstrated that some of these Id factors are involved in the checkpoint at which undifferentiated progenitor cells make the commitment to terminal maturation. Therefore, we sought to determine whether these Id family factors are selectively induced or extinguished by cytokines that act at different points during hematopoiesis. NFS-60, a myeloid progenitor line that proliferates in response to multiple cytokines, was stimulated by treatment with SCF, IL-3, IL-6, G-CSF, and erythropoietin. Id-1 expression correlated tightly with cellular proliferation: it declined when growth factor stimulation was withdrawn and was quickly induced whenever the cell began to proliferate. The regulation of Id-2 was more complex: its expression was slightly upregulated in factor-deprived cells but only strongly reinduced after extended exposure to cytokines that drive granulocytic differentiation (IL-6, G-CSF, and TGFbeta). These data support a cell-cycle regulatory role for Id-1 in multipotent myeloid progenitor cells and a role for Id-2 during terminal granulocytic differentiation.
Collapse
Affiliation(s)
- C L Cooper
- Department of Medicine, University of Massachusetts Cancer Center, Worcester 01605, USA.
| | | |
Collapse
|
35
|
Mead PE, Kelley CM, Hahn PS, Piedad O, Zon LI. SCL specifies hematopoietic mesoderm in Xenopus embryos. Development 1998; 125:2611-20. [PMID: 9636076 DOI: 10.1242/dev.125.14.2611] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeted gene disruption experiments in the mouse have demonstrated an absolute requirement for several transcription factors for the development of hematopoietic progenitors during embryogenesis. Disruption of the basic helix-loop-helix gene SCL (stem cell leukemia) causes a block early in the hematopoietic program with defects in all hematopoietic lineages. To understand how SCL participates in the organogenesis of blood, we have isolated cDNAs encoding Xenopus SCL and characterized the function of SCL during embryogenesis. We demonstrate that SCL is expressed in ventral mesoderm early in embryogenesis. SCL expression is induced by BMP-4, and a dominant negative BMP-4 receptor inhibits SCL expression in the ventral region of the embryo. Expression of SCL in either bFGF-treated animal pole explants or dorsal marginal zone explants leads to the expression of globin protein. Furthermore, over-expression of SCL does not alter normal dorsal-ventral patterning in the embryo, indicating that SCL acts to specify mesoderm to a hematopoietic fate after inductive and patterning events have occurred. We propose that SCL is both necessary and sufficient to specify hematopoietic mesoderm, and that it has a similar role in specifying hematopoietic cell fate as MyoD has in specifying muscle cell fate.
Collapse
Affiliation(s)
- P E Mead
- Division of Hematology/Oncology, Howard Hughes Medical Institute, Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | |
Collapse
|
36
|
Migliaccio AR, Migliaccio G. The making of an erythroid cell. Molecular control of hematopoiesis. BIOTHERAPY (DORDRECHT, NETHERLANDS) 1998; 10:251-68. [PMID: 9592014 DOI: 10.1007/bf02678546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The number of circulating red cells is regulated by the daily balance between two processes: the destruction of the old red cells in the liver and the generation of new cells in the bone marrow. The process during which hematopoietic stem cells generate new red cells is called erythropoiesis. This manuscript will describe the molecular mechanisms involved in the process of erythroid differentiation as we understand them today. In particular it will review how erythroid specific growth factor-receptor interactions activate specific transcription factors to turn on the expression of the genes responsible for the establishment of the erythroid phenotype.
Collapse
Affiliation(s)
- A R Migliaccio
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanitá, Rome, Italy
| | | |
Collapse
|
37
|
Minegishi N, Ohta J, Suwabe N, Nakauchi H, Ishihara H, Hayashi N, Yamamoto M. Alternative promoters regulate transcription of the mouse GATA-2 gene. J Biol Chem 1998; 273:3625-34. [PMID: 9452491 DOI: 10.1074/jbc.273.6.3625] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcription factor GATA-2 has been shown to be a key regulator in hematopoietic progenitor cells. To elucidate how the expression of the GATA-2 gene is controlled, we isolated the mouse GATA-2 (mGATA-2) gene. Transcription of mGATA-2 mRNAs was found to initiate from two distinct first exons, both of which encode entirely untranslated regions, while the remaining five exons are shared by each of the two divergent mRNAs. Reverse transcriptase-polymerase chain reaction analysis revealed that GATA-2 mRNA initiated at the upstream first exon (IS) in Sca-1+/c-kit+ hematopoietic progenitor cells, whereas mRNA that initiates at the downstream first exon (IG) is expressed in all tissues and cell lines that express GATA-2. While the structure of the IG exon/promoter shows high similarity to those of the Xenopus and human GATA-2 genes, the IS exon/promoter has not been described previously. When we examined the regulation contributing to IS transcription using transient transfection assays, we found that sequences lying between -79 and -61 are critical for the cell type-specific activity of the IS promoter. DNase I footprinting experiments and electrophoretic mobility shift assays demonstrated the binding of transcription factors to this region. These data indicate that the proximal 80 base pair region of IS promoter is important for the generation of cell type-specific expression of mGATA-2 from the IS exon.
Collapse
Affiliation(s)
- N Minegishi
- Center for Tsukuba Advanced Research Alliance and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Goldfarb AN, Lewandowska K, Pennell CA. Identification of a highly conserved module in E proteins required for in vivo helix-loop-helix dimerization. J Biol Chem 1998; 273:2866-73. [PMID: 9446597 DOI: 10.1074/jbc.273.5.2866] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors often function as heterodimeric complexes consisting of a tissue-specific factor such as SCL/tal or MyoD bound to a broadly expressed E protein. bHLH dimerization therefore appears to represent a key regulatory step in cell lineage determination and oncogenesis. Previous functional and structural studies have indicated that the well defined HLH domain is both necessary and sufficient for dimerization. Most of these studies, however, have employed in vitro systems for analysis of HLH dimerization, and their implications for the requirements for in vivo dimerization remain unclear. Using multiple approaches, we have analyzed bHLH dimerization in intact, living cells and have identified a novel domain in E proteins, domain C, which is required for in vivo dimerization. Domain C, which lies just carboxyl-terminal to helix 2 of the HLH domain, represents the most highly conserved region within E proteins and appears to influence the in vivo conformation of the adjacent HLH domain. These results suggest that HLH dimerization in vivo may represent a complex, regulated process that is distinct from HLH dimerization in vitro.
Collapse
Affiliation(s)
- A N Goldfarb
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4943, USA.
| | | | | |
Collapse
|
39
|
Abstract
Production of red blood cells (erythropoiesis) in the vertebrate embryo is critical to its survival and subsequent development. As red cells are the first blood cells to appear in embryogenesis, their origin reflects commitment of mesoderm to an hematopoietic fate and provides an avenue by which to examine the development of the hematopoietic system, including the hematopoietic stem cell (HSC). We discuss the genetics of erythropoiesis as studied in two systems: the mouse and zebrafish (Danio rerio). In the mouse, targeted disruption has established several genes as essential at different stages of hematopoiesis or erythroid precursor cell maturation. In the zebrafish, numerous mutants displaying a wide range of phenotypes have been isolated, although the affected genes are unknown. In comparing mouse knockout and zebrafish mutant phenotypes, we propose a pathway for erythropoiesis that emphasizes the apparent similarity of the mutants and the complementary nature of investigation in the two species. We speculate that further genetic studies in mouse and zebrafish will identify the majority of essential genes and define a regulatory network for hematopoiesis in vertebrates.
Collapse
Affiliation(s)
- S H Orkin
- Department of Pediatrics, Children's Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
40
|
Drake CJ, Brandt SJ, Trusk TC, Little CD. TAL1/SCL is expressed in endothelial progenitor cells/angioblasts and defines a dorsal-to-ventral gradient of vasculogenesis. Dev Biol 1997; 192:17-30. [PMID: 9405094 DOI: 10.1006/dbio.1997.8751] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study we establish that TAL1/SCL, a member of the helix-loop-helix family of transcription factors, and an important regulator of the hematopoietic lineage in mice, is expressed in the endothelial lineage of avians. The earliest events of vascular development were examined using antibodies to TAL1/SCL, and the QH1 antibody, an established marker of quail endothelial cells. Analyses using double immunofluorescence confocal microscopy show that: (i) TAL1/SCL is expressed by both quail and chicken endothelial cells; (ii) TAL1/SCL expression precedes that of the QH1 epitope; and (iii) TAL1/SCL, but not QH1, expression defines a subpopulation of primordial cells within the splanchnic mesoderm. Collectively these data suggest that TAL1/SCL-positive/QH1-negative cells are angioblasts. Further, using TAL1/SCL expression as a marker of the endothelial lineage, we demonstrate that in addition to the previously described cranial-to-caudal gradient, there is a dorsal-to-ventral progression of vasculogenesis.
Collapse
Affiliation(s)
- C J Drake
- Department of Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
41
|
Elefanty AG, Robb L, Begley CG. Factors involved in leukaemogenesis and haemopoiesis. BAILLIERE'S CLINICAL HAEMATOLOGY 1997; 10:589-614. [PMID: 9421618 DOI: 10.1016/s0950-3536(97)80028-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review describes the chromosomal abnormalities in T-cell acute lymphoblastic leukaemia (ALL) which result in the over-expression of the gene SCL, which encodes a helix-loop-helix transcription factor. Also described are how gene targeting studies have revealed a key role for SCL in normal haemopoiesis. Next, the BCR-ABL fusion protein, seen in chronic myeloid leukaemia (CML) and in some patients with ALL, is discussed. Finally, the involvement of members of the core-binding factor (CBF) gene family in leukaemogenesis are described. Members of this gene family are involved in the generation of fusion proteins as a result of t(8;21) and inv(16), the most common translocations associated with acute myeloid leukaemia (AML). They provide a useful model of the way in which aberrant transcriptional function, brought about through genetic alterations, can modify haemopoietic development.
Collapse
Affiliation(s)
- A G Elefanty
- Division of Cancer and Haematology, Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | |
Collapse
|
42
|
Expression of SCL Is Normal in Transfusion-Dependent Diamond-Blackfan Anemia But Other bHLH Proteins Are Deficient. Blood 1997. [DOI: 10.1182/blood.v90.5.2068] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractBasic helix-loop-helix proteins, which are tissue specific (SCL) or broadly expressed (E proteins), interact positively to regulate erythroid specific genes. Here, expression of SCL and two broadly expressed E proteins, E47 and HEB, was high early in erythroid differentiation and declined during maturation. Stimulation of erythroid progenitors/precursors with stem cell factor (SCF ) enhanced SCL and E protein levels, one mechanism by which SCF may increase erythroid proliferation. Interactions between SCL and E proteins are competed by Id2, which binds and sequesters E proteins. Upregulation of Id2, demonstrated here late in erythroid differentiation, may downregulate genes involved in erythroid proliferation/differentiation. We examined expression of bHLH proteins in transfusion-dependent patients with Diamond-Blackfan anemia (DBA) to determine if these interactions are disrupted. In erythroblasts from patients, expression of SCL protein and mRNA was normal and SCL increased in response to SCF. However, E47 and HEB protein levels were significantly decreased. Id2 was strongly expressed in patients. Through reduction of SCL/E protein heterodimer formation, abnormal levels of bHLH transcription factors may affect expression of erythroid specific genes, such as β globin. Stimulation of Diamond-Blackfan cells with SCF partially compensated for this defect, enhancing expression of E47, HEB, and SCL. SCF may function to increase SCL/E protein heterodimer formation, which may be one of the mechanisms through which SCF stimulates erythroid proliferation/ differentiation in DBA.
Collapse
|
43
|
Itoh F, Nakane T, Chiba S. Gene expression of MASH-1, MATH-1, neuroD and NSCL-2, basic helix-loop-helix proteins, during neural differentiation in P19 embryonal carcinoma cells. TOHOKU J EXP MED 1997; 182:327-36. [PMID: 9352625 DOI: 10.1620/tjem.182.327] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined the gene expression of MASH-1, MATH-1, neuroD and NSCL-2 during neural differentiation of P19 embryonal carcinoma cells using reverse transcription-polymerase chain reaction and high performance liquid chromatography. These proteins are members of basic helix-loop-helix transcription factor family and their expressions are reported to be transient and restricted in the nervous system during early neurogenesis. Retinoic acid (RA-, 1 microM)-treatment and aggregation for 4 days induced and greatly increased MASH-1, neuroD and NSCL-2 mRNA in P19 cells. The increases peaked at day 3, 4 and 5, respectively. RA-treatment increased MATH-1 mRNA slightly. mRNA of MAP2, a neural differentiation marker, were increased by RA-treatment and the increases reached to the plateau at day 5. The results indicate that the gene expression of MASH-1, MATH-1, neuroD and NSCL-2 during neural differentiation in P19 cells is transient and the order is similar to that in the mouse embryo nervous system as previously reported.
Collapse
Affiliation(s)
- F Itoh
- Department of Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | |
Collapse
|
44
|
Aplan PD, Jones CA, Chervinsky DS, Zhao X, Ellsworth M, Wu C, McGuire EA, Gross KW. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J 1997; 16:2408-19. [PMID: 9171354 PMCID: PMC1169841 DOI: 10.1093/emboj/16.9.2408] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The product of the scl (also called tal-1 or TCL5) gene is a basic domain, helix-loop-helix (bHLH) transcription factor required for the development of hematopoietic cells. Additionally, scl gene disruption and dysregulation, by either chromosomal translocations or a site-specific interstitial deletion whereby 5' regulatory elements of the sil gene become juxtaposed to the body of the scl gene, is associated with T-cell acute lymphoblastic leukemia (ALL) and T-cell lymphoblastic lymphoma. Here we show that an inappropriately expressed scl protein, driven by sil regulatory elements, can cause aggressive T-cell malignancies in collaboration with a misexpressed LMO1 protein, thus recapitulating the situation seen in a subset of human T-cell ALL. Moreover, we show that inappropriately expressed scl can interfere with the development of other tissues derived from mesoderm. Lastly, we show that an scl construct lacking the scl transactivation domain collaborates with misexpressed LMO1, demonstrating that the scl transactivation domain is dispensable for oncogenesis, and supporting the hypothesis that the scl gene product exerts its oncogenic action through a dominant-negative mechanism.
Collapse
Affiliation(s)
- P D Aplan
- Department of Pediatrics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Expression of the Id Family Helix-Loop-Helix Regulators During Growth and Development in the Hematopoietic System. Blood 1997. [DOI: 10.1182/blood.v89.9.3155] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTo better understand the molecular mechanism(s) by which growth and differentiation of the primitive hematopoietic stem cell is initiated, as well as the means by which the maturing cell can commit to development along a specific cell lineage, we elected to study the Id family of helix-loop-helix (HLH) transcriptional regulators. Some members of the HLH family are expressed in a stage-specific manner during hematopoietic development and can regulate the ability of immature hematopoietic cells to terminally differentiate. None of the four Id family genes were detected in the most primitive progenitors. Id-1 was widely expressed in proliferating bi- and unipotential progenitors, but its expression was downregulated in cells of increasing maturity; conversely, Id-2 and, to a limited extent, Id-3 gene expression increased as cells matured and lost proliferative capacity. Id-2 expression ran counter to that of Id-1 not only during maturation, but during periods of cell growth and arrest as well. This is quite distinct from the nonhematopoietic tissues, in which these two factors are coordinately expressed and suggests that Id-1 and Id-2 might be regulating very different events during hematopoiesis than they regulate in other cell types.
Collapse
|
46
|
Bockamp EO, McLaughlin F, Göttgens B, Murrell AM, Elefanty AG, Green AR. Distinct mechanisms direct SCL/tal-1 expression in erythroid cells and CD34 positive primitive myeloid cells. J Biol Chem 1997; 272:8781-90. [PMID: 9079714 DOI: 10.1074/jbc.272.13.8781] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SCL/tal-1 gene (hereafter designated SCL) encodes a basic helix-loop-helix transcription factor which is pivotal for the normal development of all hematopoietic lineages and which is expressed in committed erythroid, mast, and megakaryocytic cells as well as in hematopoietic stem cells. The molecular basis for expression of SCL in stem cells and its subsequent modulation during lineage commitment is of fundamental importance for understanding how early "decisions" are made during hematopoiesis. We now compare the activity of SCL promoters 1a and 1b in erythroid cells and in CD34 positive primitive myeloid cells. SCL mRNA expression in CD34 positive myeloid cells did not require GATA-1. Promoter 1a activity was weak or absent in CD34 positive myeloid cells and appeared to correlate with the presence or absence of low levels of GATA-1. However, promoter 1b, which was silent in committed erythroid cells, was strongly active in transient assays using CD34 positive myeloid cells, and functioned in a GATA-independent manner. Interestingly, RNase protection assays demonstrated that endogenous promoter 1b was active in both erythroid and CD34 positive myeloid cells. These results demonstrate that fundamentally different mechanisms regulate the SCL promoter region in committed erythroid cells and in CD34 positive myeloid cells. Moreover these observations suggest that in erythroid, but not in CD34 positive myeloid cells, promoter 1b required integration in chromatin and/or additional sequences for its activity. Stable transfection experiments showed that both core promoters were silent following integration in erythroid or CD34 positive myeloid cells. Our data therefore indicate that additional regulatory elements were necessary for both SCL promoters to overcome chromatin-mediated repression.
Collapse
Affiliation(s)
- E O Bockamp
- University of Cambridge, Department of Haematology, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Porcher C, Swat W, Rockwell K, Fujiwara Y, Alt FW, Orkin SH. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 1996; 86:47-57. [PMID: 8689686 DOI: 10.1016/s0092-8674(00)80076-8] [Citation(s) in RCA: 550] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The T cell leukemia oncoprotein SCL/tal-1, a basic-helix-loop-helix transcription factor, is required for production of embryonic red blood cells in the mouse yolk sac. To define roles in other lineages, we studied the hematopoietic potential of homozygous mutant SCL/tal-1 -/- embryonic stem cells upon in vitro differentiation and in vivo in chimeric mice. Here we show that in the absence of SCL/tal-1, hematopoiesis, Including the generation of red cells, myeloid cells, megakaryocytes, mast cells, and both T and B lymphoid cells, is undetectable. These findings suggest that SCL/tal-1 functions very early in hematopoietic development, either in specification of ventral mesoderm to a blood cell fate, or in formation or maintenance of immature progenitors.
Collapse
Affiliation(s)
- C Porcher
- Division of Hematology and Oncology, Childrens Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
48
|
Robb L, Begley CG. The helix-loop-helix gene SCL: implicated in T-cell acute lymphoblastic leukaemia and in normal haematopoietic development. Int J Biochem Cell Biol 1996; 28:609-18. [PMID: 8673726 DOI: 10.1016/1357-2725(96)00006-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The SCL gene encodes a member of the helix-loop-helix family of transcription factors and was first identified through its involvement in a chromosomal translocation in a human leukaemic cell line. SCL is now recognized to be aberrantly expressed in most human T-cell leukaemias. In around 25% of cases SCL overexpression is associated with identifiable chromosomal abnormalities but in other cases the mechanism of ectopic expression has not yet been identified. SCL is normally expressed in haematopoietic progenitor cells, erythroid cells, mast cells and megakaryocytes. Gene delivery experiments using haematopoietic cell lines and the recent creation of mice with a null mutation of the SCL gene have demonstrated that SCL plays a crucial role in haematopoietic commitment and differentiation.
Collapse
Affiliation(s)
- L Robb
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
49
|
Chetty R, Pulford K, Jones M, Mathieu-Mahul D, Close P, Hussein S, Pallesen G, Ralfkiaer E, Stein H, Gatter K, Mason D. An immunohistochemical study of TAL-1 protein expression in leukaemias and lymphomas with a novel monoclonal antibody, 2TL 242. J Pathol 1996; 178:311-5. [PMID: 8778337 DOI: 10.1002/(sici)1096-9896(199603)178:3<311::aid-path477>3.0.co;2-b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fifty formalin fixed, paraffin-embedded cases of T-acute lymphoblastic leukaemia (T-ALL) from 12 bone marrow trephines and 38 lymph nodes were stained with a new monoclonal antibody, 2TL 242, raised against recombinant TAL1 protein. The antibody recognizes TAL-1 polypeptides of molecular weight 39 and 41 kD (full length). In addition, a variety of other leukaemias and lymphomas were also stained with 2TL 242. Twenty-four of the 50 cases of T-ALL showed nuclear positivity, ranging from 10 to 90 per cent of leukaemic cells. A positive staining reaction was nuclear and stippled in pattern. Nuclear staining was not seen in any other type of leukaemia or lymphoma. Five cases of follicular lymphoma showed diffuse cytoplasmic staining of variable intensity. Although some background staining is obtained with this antibody, positive nuclear staining is easily distinguishable. This monoclonal antibody has a potential role in primary diagnosis and in the detection of minimal residual disease in T-ALL.
Collapse
Affiliation(s)
- R Chetty
- Department of Cellular Science, University of Oxford, U.K
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mullick A, Groulx N, Trasler D, Gros P. Nhlh1, a basic helix-loop-helix transcription factor, is very tightly linked to the mouse looptail (Lp) mutation. Mamm Genome 1995; 6:700-4. [PMID: 8563167 DOI: 10.1007/bf00354291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Looptail (Lp) is a mutation on the distal portion of mouse Chromosome (Chr) 1 that affects neurulation in mouse and is phenotypically expressed by appearance of an open neural tube along the entire antero-posterior axis of the embryo (craniorachischisis). Nhlh1, a member of the basic helix-loop-helix family of transcription factors, is expressed in the developing neural tube in structures affected by the Lp mutation and has been regionally assigned to the distal part of mouse Chr 1. Using a large panel of looptail animals from an (Lp/+ x SWR/J)F1 x SWR/J segregating backcross progeny, we have determined that Nhlh1 maps very close to Lp, with no recombinant detected in 500 informative animals tested; both map within a 0.6-cM segment defined as D1Mit113/Apoa2/Fcer1 gamma-(0.4 cM)-Nhlh1/Lp-(0.2 cM)-Fcer1 alpha/D1Mit149/Spna1. Nucleotide sequencing of Nhlh1 cDNA clones from wild type (WT) and Lp/Lp embryos failed to identify sequence alterations associated with the mutant phenotype. Southern hybridization of genomic DNA from WT and Lp/Lp embryos failed to identify specific rearrangements at or near the Nhlh1 locus, and Northern RNA blotting and RT-PCR evaluation of Nhlh1 mRNA expression indicated that both the levels and types of Nhlh1 mRNAs produced in WT and Lp/Lp embryos were indistinguishable. These studies suggest that Nhlh1 and Lp are not allelic. Nevertheless, Nhlh1 is the Chr 1 marker most tightly linked to Lp identified to date and can, therefore, be used as an excellent entry probe to clone the Lp region.
Collapse
Affiliation(s)
- A Mullick
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|