1
|
p110δ PI3K as a therapeutic target of solid tumours. Clin Sci (Lond) 2020; 134:1377-1397. [DOI: 10.1042/cs20190772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
AbstractFrom the time of first characterization of PI3K as a heterodimer made up of a p110 catalytic subunit and a regulatory subunit, a wealth of evidence have placed the class IA PI3Ks at the forefront of drug development for the treatment of various diseases including cancer. The p110α isoform was quickly brought at the centre of attention in the field of cancer research by the discovery of cancer-specific gain-of-function mutations in PIK3CA gene in a range of human solid tumours. In contrast, p110δ PI3K was placed into the spotlight of immunity, inflammation and haematologic malignancies because of the preferential expression of this isoform in leucocytes and the rare mutations in PIK3CD gene. The last decade, however, several studies have provided evidence showing that the correlation between the PIK3CA mutations and the response to PI3K inhibition is less clear than originally considered, whereas concurrently an unexpected role of p110δ PI3K in solid tumours has being emerging. While PIK3CD is mostly non-mutated in cancer, the expression levels of p110δ protein seem to act as an intrinsic cancer-causing driver in various solid tumours including breast, prostate, colorectal and liver cancer, Merkel-Cell carcinoma, glioblastoma and neurobalstoma. Furthermore, p110δ selective inhibitors are being studied as potential single agent treatments or as combination partners in attempt to improve cancer immunotherapy, with both strategies to shown great promise for the treatment of several solid tumours. In this review, we discuss the evidence implicating the p110δ PI3K in human solid tumours, their impact on the current state of the field and the potential of using p110δ-selective inhibitors as monotherapy or combined therapy in different cancer contexts.
Collapse
|
2
|
Abstract
The phosphoinositide 3-kinase (PI 3-K) signal relay pathway represents arguably one of the most intensely studied mechanisms by which extracellular signals elicit cellular responses through the generation of second messengers that are associated with cell growth and transformation. This chapter reviews the many landmark discoveries in the PI 3-K signaling pathway in biology and disease, from the identification of a novel phosphoinositide kinase activity associated with transforming oncogenes in the 1980s, to the identification of oncogenic mutations in the catalytic subunit of PI 3-K in the mid 2000s. Two and a half decades of intense research have provided clear evidence that the PI 3-K pathway controls virtually all aspects of normal cellular physiology, and that deregulation of one or more proteins that regulate or transduce the PI 3-K signal ultimately leads to human pathology. The most recent efforts have focused on the development of specific PI 3-K inhibitors that are currently being evaluated in clinical trials for a range of disease states.This chapter is devoted to a historical review of the landmark findings in the PI 3-K from its relatively humble beginnings in the early to mid 1980s up until the present day. When considering the key findings in the history of PI 3-K, it is essential to recognize the landmark studies by Lowell and Mabel Hokin in the 1950s who were the first to describe that extracellular agonists such as acetylcholine could stimulate the incorporation of radiolabeled phosphate into phospholipids (Hokin and Hokin 1953). Their work initiated an entirely new field of lipid signaling, and subsequent studies in the 1970s by Michell and Lapetina who linked phosphoinositide turnover to membrane-associated receptors that initiate intracellular calcium mobilization (Lapetina and Michell 1973). Later studies revealed that the phospholipase-mediated breakdown of the same minor membrane phospholipids such as PtdIns-4,5-P(2) (phosphatidylinositol-4,5-bisphosphate) is responsible for the release of two additional key second messengers, diacylglycerol (DG) and IP(3) (inositol-1,4,5-trisphosphate) (Kirk et al. 1981; Berridge 1983; Berridge et al. 1983). Berridge, Irvine and Schulz then revealed that one of the byproducts of this lipid signal relay pathway is the release of calcium from intracellular stores such as the endoplasmic reticulum (Streb et al. 1983). Finally, pioneering studies by Nishizuka in the late 1970s identified PKC (protein kinase C) as a phospholipid and diacylglycerol-activated serine/threonine protein kinase (Inoue et al. 1977; Takai et al. 1977). At this point, it probably seemed to most at the time that the story was complete, such that hydrolysis of phosphoinositides such as PtdIns-4,5-P(2) and PtdIns-4-P would account for the major mechanisms of agonist-stimulated lipid signaling leading to physiological responses. On the contrary, the story was far from complete and was about to become a lot more complex.
Collapse
Affiliation(s)
- Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, EC/CLS-633A, 02130, Boston, MA, USA,
| |
Collapse
|
3
|
Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells 2014; 3:199-235. [PMID: 24709958 PMCID: PMC4092852 DOI: 10.3390/cells3020199] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits.
Collapse
|
4
|
Chen PH, Chen X, He X. Platelet-derived growth factors and their receptors: structural and functional perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:2176-86. [PMID: 23137658 DOI: 10.1016/j.bbapap.2012.10.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/24/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022]
Abstract
The four types of platelet-derived growth factors (PDGFs) and the two types of PDGF receptors (PDGFRs, which belong to class III receptor tyrosine kinases) have important functions in the development of connective tissue cells. Recent structural studies have revealed novel mechanisms of PDGFs in propeptide loading and receptor recognition/activation. The detailed structural understanding of PDGF-PDGFR signaling has provided a template that can aid therapeutic intervention to counteract the aberrant signaling of this normally silent pathway, especially in proliferative diseases such as cancer. This review summarizes the advances in the PDGF system with a focus on relating the structural and functional understandings, and discusses the basic aspects of PDGFs and PDGFRs, the mechanisms of activation, and the insights into the therapeutic antagonism of PDGFRs. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Searle 8-417, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
5
|
Schaffhausen BS, Roberts TM. Lessons from polyoma middle T antigen on signaling and transformation: A DNA tumor virus contribution to the war on cancer. Virology 2009; 384:304-16. [PMID: 19022468 PMCID: PMC2676342 DOI: 10.1016/j.virol.2008.09.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/30/2008] [Indexed: 01/16/2023]
Abstract
Middle T antigen (MT) is the principal oncogene of murine polyomavirus. Its study has led to the discovery of the roles of tyrosine kinase and phosphoinositide 3-kinase (PI3K) signaling in mammalian growth control and transformation. MT is necessary for viral transformation in tissue culture cells and tumorigenesis in animals. When expressed alone as a transgene, MT causes tumors in a wide variety of tissues. It has no known catalytic activity, but rather acts by assembling cellular signal transduction molecules. Protein phosphatase 2A, protein tyrosine kinases of the src family, PI3K, phospholipase Cgamma1 as well as the Shc/Grb2 adaptors are all assembled on MT. Their activation sets off a series of signaling cascades. Analyses of virus mutants as well as transgenic animals have demonstrated that the effects of a given signal depend not only tissue type, but on the genetic background of the host animal. There remain many opportunities as we seek a full molecular understanding of MT and apply some of its lessons to human cancer.
Collapse
Affiliation(s)
- Brian S. Schaffhausen
- Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Thomas M. Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Smith D, Shimamura T, Barbera S, Bejcek BE. NF-kappaB controls growth of glioblastomas/astrocytomas. Mol Cell Biochem 2007; 307:141-7. [PMID: 17828582 DOI: 10.1007/s11010-007-9593-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/23/2007] [Indexed: 01/06/2023]
Abstract
NF-kappaB is a family of transcription factors that have been shown to be elevated in a variety of tumor types and in some cases central to their survival and growth. Here we present evidence that U-87 MG and U-118 MG growth is regulated by NF-kappaB and controlled by PDGF. NF-kappaB activity was suppressed by a dominant negative mutant of the human PDGF type beta receptor and PDGF-B chain neutralizing antibodies. Creation of cell lines that had inducible expression of shRNAs directed against either c-Rel or RelA inhibited growth almost 90% indicating that NF-kappaB plays a central role in glioblastoma growth.
Collapse
Affiliation(s)
- Denise Smith
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | | | | | | |
Collapse
|
7
|
Abstract
In 1986, Pawson's group recognized a region of homology between two oncogenic tyrosine kinases that lay outside the catalytic domain. They termed this the Src homology 2, or SH2, domain. In the ensuing years, SH2 domains have been found in an impressive variety of proteins, as has a second region of homology, inevitably termed SH3. These domains appear to mediate controlled protein-protein interactions. Many proteins that contain SH2 and SH3 domains are involved in signal transduction, suggesting a new paradigm for regulation of intracellular signalling pathways.
Collapse
Affiliation(s)
- B J Mayer
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
8
|
Park CS, Schneider IC, Haugh JM. Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts. J Biol Chem 2003; 278:37064-72. [PMID: 12871957 DOI: 10.1074/jbc.m304968200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Isoforms of the serine-threonine kinase Akt coordinate multiple cell survival pathways in response to stimuli such as platelet-derived growth factor (PDGF). Activation of Akt is a multistep process, which relies on the production of 3'-phosphorylated phosphoinositide (PI) lipids by PI 3-kinases. To quantitatively assess the kinetics of PDGF receptor/PI 3-kinase/Akt signaling in fibroblasts, a systematic study of this pathway was performed, and a mechanistic mathematical model that describes its operation was formulated. We find that PDGF receptor phosphorylation exhibits positive cooperativity with respect to PDGF concentration, and its kinetics are quantitatively consistent with a mechanism in which receptor dimerization is initially mediated by the association of two 1:1 PDGF/PDGF receptor complexes. Receptor phosphorylation is transient at high concentrations of PDGF, consistent with the loss of activated receptors upon endocytosis. By comparison, Akt activation responds to lower PDGF concentrations and exhibits more sustained kinetics. Further analysis and modeling suggest that the pathway is saturated at the level of PI 3-kinase activation, and that the p110alpha catalytic subunit of PI 3-kinase contributes most to PDGF-stimulated 3'-PI production. Thus, at high concentrations of PDGF the kinetics of 3'-PI production are limited by the turnover rate of these lipids, while the Akt response is additionally influenced by the rate of Akt deactivation.
Collapse
Affiliation(s)
- Chang Shin Park
- Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | | | | |
Collapse
|
9
|
Abstract
In this chapter, we have described the biophysical investigations which have dissected the mechanisms of SH2 domain function. Due to nearly a decade and a half of investigation on SH2 domains, much about their binding mechanism has been characterized. SH2 domains have been found to have a positively charged binding cavity, largely conserved between different SH2 domains, which coordinates binding of the pTyr in the target. The ionic interactions between this pocket and the pTyr, in particular, between Arg beta B5 and the phosphate, provide the majority of the binding energy stabilizing SH2 domain-target interactions. The specificity in SH2 domain-target interactions emanates most often from the interactions between the residues C-terminal to the pTyr in the target and the specificity determining residues in the C-terminal half of the SH2 domain. However, the interactions in the specificity determining region of SH2 domains are weak, and hence single SH2 domains show only a modest level of specificity for tyrosine phosphorylated targets. Greater specificity in SH2 domain-containing protein-tyrosine phosphorylated target interactions can be achieved by placing SH2 domains in tandem (as is often found) or possibly through specific localization of SH2 domain-containing proteins within the cell. Although a relatively good understanding of how SH2 domains function in isolation has been obtained, the ways in which SH2 domain binding is coupled to allosteric transmission of signals in larger SH2 domain-containing proteins are still not clear. Hence, the future should bring further investigations of the mechanisms by which SH2 domain ligation alters the enzymatic activity and cellular localization of SH2 domain-containing proteins.
Collapse
Affiliation(s)
- J Michael Bradshaw
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
10
|
Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. gastrointestinal stromal tumors. CANCER GENETICS AND CYTOGENETICS 2002; 135:1-22. [PMID: 12072198 DOI: 10.1016/s0165-4608(02)00546-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Avery A Sandberg
- Department of DNA Diagnostics, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | | |
Collapse
|
11
|
Shimamura T, Hsu TC, Colburn NH, Bejcek BE. Activation of NF-kappaB is required for PDGF-B chain to transform NIH3T3 cells. Exp Cell Res 2002; 274:157-67. [PMID: 11855867 DOI: 10.1006/excr.2001.5449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Elucidating the secondary signaling molecules that are necessary for platelet-derived growth factor (PDGF) to stimulate tumor development will be crucial to the understanding and treatment of a variety of cancers. Several lines of evidence have indicated that the transcription factor NF-kappaB plays a central role in transformation induced by Ha-ras and Bcr-abl, but nothing is known concerning its role in transformation by PDGF. Here we demonstrate that transcription from a promoter containing NF-kappaB binding sequences as well as the DNA binding activity of NF-kappaB were increased in PDGF-B-chain-transformed mouse fibroblast cells. Focus formation of PDGF-B-chain-transformed mouse fibroblasts was suppressed by treatment with acetylsalicylic acid (ASA) and salicylic acid, which are known inhibitors of NF-kappaB activation, but other nonsteroidal anti-inflammatory drugs that do not have an effect on NF-kappaB activity did not affect focus formation in these cells. Furthermore, expression of a dominant negative mutant of IkappaBalpha, pMEIkappaBalpha67CJ, and a dominant negative mutant of p65, p65DeltaC, resulted in decreased focus formation and NF-kappaB activity. Therefore, the transcription factor NF-kappaB plays a vital role in PDGF-B chain transformation of mouse fibroblast cells, and the NF-kappaB activity is sensitive to treatment with ASA.
Collapse
Affiliation(s)
- Takeshi Shimamura
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Protein phosphorylation provides molecular control of complex physiological events within cells. In many cases, phosphorylation on specific amino acids directly controls the assembly of multi-protein complexes by recruiting phospho-specific binding modules. Here, the function, structure, and cell biology of phosphotyrosine-binding domains is discussed.
Collapse
Affiliation(s)
- Michael B Yaffe
- Center for Cancer Research, E18-580, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
| |
Collapse
|
13
|
Fang Y, Johnson LM, Mahon ES, Anderson DH. Two phosphorylation-independent sites on the p85 SH2 domains bind A-Raf kinase. Biochem Biophys Res Commun 2002; 290:1267-74. [PMID: 11812000 DOI: 10.1006/bbrc.2002.6347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.
Collapse
Affiliation(s)
- Yun Fang
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Avenue, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | | | | | | |
Collapse
|
14
|
Chellaiah MA, Biswas RS, Yuen D, Alvarez UM, Hruska KA. Phosphatidylinositol 3,4,5-trisphosphate directs association of Src homology 2-containing signaling proteins with gelsolin. J Biol Chem 2001; 276:47434-44. [PMID: 11577104 DOI: 10.1074/jbc.m107494200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Podosomes are adhesion structures in osteoclasts and are structurally related to focal adhesions mediating cell motility during bone resorption. Here we show that gelsolin coprecipitates some of the focal adhesion-associated proteins such as c-Src, phosphoinositide 3-kinase (PI3K), p130(Cas), focal adhesion kinase, integrin alpha(v)beta(3), vinculin, talin, and paxillin. These proteins were inducibly tyrosine-phosphorylated in response to integrin activation by osteopontin. Previous studies have defined unique biochemical properties of gelsolin related to phosphatidylinositol 3,4,5-trisphosphate in osteoclast podosomes, and here we demonstrate phosphatidylinositol 3,4,5-trisphosphate/gelsolin function in mediating organization of the podosome signaling complex. Overlay and GST pull-down assays demonstrated strong phosphatidylinositol 3,4,5-trisphosphate-PI3K interactions based on the Src homology 2 domains of PI3K. Furthermore, lipid extraction of lysates from activated osteoclasts eliminated interaction between gelsolin, c-Src, PI3K, and focal adhesion kinase despite equal amounts of gelsolin in both the lipid-extracted and unextracted experiment. The cytoplasmic protein tyrosine phosphatase (PTP)-proline-glutamic acid-serine-threonine amino acid sequences (PEST) was also found to be associated with gelsolin in osteoclast podosomes and with stimulation of alpha(v)beta(3)-regulated phosphorylation of PTP-PEST. We conclude that gelsolin plays a key role in recruitment of signaling proteins to the plasma membrane through phospholipid-protein interactions and by regulation of their phosphorylation status through its association with PTP-PEST. Because both gelsolin deficiency and PI3K inhibition impair bone resorption, we conclude that phosphatidylinositol 3,4,5-trisphosphate-based protein interactions are critical for osteoclast function.
Collapse
Affiliation(s)
- M A Chellaiah
- Department of Oral and Craniofacial Biological Sciences, University of Maryland, 666 W. Baltimore St., Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
15
|
Reuther GW, Buss JE, Quilliam LA, Clark GJ, Der CJ. Analysis of function and regulation of proteins that mediate signal transduction by use of lipid-modified plasma membrane-targeting sequences. Methods Enzymol 2001; 327:331-50. [PMID: 11044995 DOI: 10.1016/s0076-6879(00)27288-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
It is now established that the function of many signaling molecules is controlled, in part, by regulation of subcellular localization. For example, the dynamic recruitment of normally cytosolic proteins to the plasma membrane, by activated Ras or activated receptor tyrosine kinases, facilitates their interaction with other membrane-associated components that participate in their full activation (e.g., Raf-1). Therefore, the creation of chimeric proteins that contain lipid-modified signaling sequences that direct membrane localization allows the generation of constitutively activated variants of such proteins. The amino-terminal myristoylation signal sequence of Src family proteins and the carboxy-terminal prenylation signal sequence of Ras proteins have been widely used to achieve this goal. Such membrane-targeted variants have proved to be valuable reagents in the study of the biochemical and biological properties of many signaling molecules.
Collapse
Affiliation(s)
- G W Reuther
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|
16
|
Ram TG, Hosick HL, Ethier SP. Heregulin-beta is especially potent in activating phosphatidylinositol 3-kinase in nontransformed human mammary epithelial cells. J Cell Physiol 2000; 183:301-13. [PMID: 10797304 DOI: 10.1002/(sici)1097-4652(200006)183:3<301::aid-jcp2>3.0.co;2-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The neu differentiation factors/heregulins (HRGs) comprise a family of polypeptide growth factors that activate p185(erbB-2) through direct binding to either erbB-3 or erbB-4 receptor tyrosine kinases. We have previously shown that HRG-beta is mitogenic for various human mammary epithelial cell lines that coexpress c-erbB-2 and c-erbB-3. Phosphatidylinositol 3-kinase (PI3K) is activated by p185(erbB-2) /erbB-3 heterodimers in cells stimulated by HRG, and PI3K is constitutively activated by p185(erbB-2) /erbB-3 in breast carcinoma cells that overexpress c-erbB-2. To better understand the relative abilities of HRGs, epidermal growth factor (EGF), or insulin to activate PI3K under normal physiological conditions, we compared the levels of recruitment of the 85-kDa regulatory subunit of PI3K when activated by the type I (erbB) or type II [insulin-like growth factor (IGF)] receptor tyrosine kinases in two different nontransformed human mammary epithelial cell lines. The nontransformed H16N-2 cells isolated from normal tissue express EGFR, p185(erbB-2), and erbB-3, and are highly responsive to the mitogenic effects of HRG-beta as well as to the combination of EGF and insulin in serum-free culture. We measured the stoichiometry of p85 recruited by tyrosine-phosphorylated proteins induced in H16N-2 cells by either the alpha or the beta isoform of HRG. HRG-beta was greater than 10-fold more potent in inducing p85 recruitment than was the less biologically active HRG-alpha isoform. HRG-beta was also a more potent inducer of p85 recruited by tyrosine-phosphorylated proteins than was either EGF, insulin, or EGF and insulin combined. Furthermore, erbB-3 principally mediated the direct recruitment of p85 in cells stimulated by HRG or EGF, indicating that, in addition to the high-level activation of PI3K by p185(erbB-2) / erbB-3, EGFR/erbB-3 heterodimer interaction is essential for the weak but significant level of PI3K activated by EGF in cells that express normal EGFR levels. Studies using the PI3K inhibitor wortmannin also indicated that PI3K activation was required for the proliferation of H16N-2 cells induced by either HRG-beta or EGF and insulin in serum-free culture. Finally, HRG-beta was also an especially potent inducer of PI3K in the nontransformed MCF-10A cells, which were derived spontaneously from normal reduction mammoplasty tissue. These data show, for the first time, a side-by-side quantitative comparison of the relative degree of PI3K activated by different growth factors in nontransformed growth factor-dependent cells under precisely defined conditions in culture.
Collapse
Affiliation(s)
- T G Ram
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA.
| | | | | |
Collapse
|
17
|
Honda K, Sawada H, Kihara T, Urushitani M, Nakamizo T, Akaike A, Shimohama S. Phosphatidylinositol 3-kinase mediates neuroprotection by estrogen in cultured cortical neurons. J Neurosci Res 2000; 60:321-7. [PMID: 10797534 DOI: 10.1002/(sici)1097-4547(20000501)60:3<321::aid-jnr6>3.0.co;2-t] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been shown that estrogen replacement in menopausal women is effective in slowing down the progression of cognitive impairment in Alzheimer's disease. Although recent studies have demonstrated the neuroprotective effects of estrogen, the precise mechanism of neuroprotection has not been elucidated. In the present study, we show that the phosphatidylinositol 3-kinase (PI3-K) cascade is involved in the neuroprotective mechanism stimulated by estrogen. Exposure to glutamate reduced the viability of rat primary cortical neurons. Pretreatment with 10 nM 17beta-estradiol significantly attenuated the glutamate-induced toxicity. This neuroprotective effect of 17beta-estradiol was blocked by co-administration with LY294002, a selective PI3-K inhibitor, but not by co-administration with PD98059, a selective mitogen activated protein kinase kinase inhibitor. Pretreatment with ICI182780, a specific estrogen receptor antagonist, also blocked the neuroprotection. Immunoblotting assay revealed that treatment with 17beta-estradiol induced the phosphorylation of Akt/PKB, an effector immediately downstream of PI3-K. These results suggest that PI3-K mediates the neuroprotective effect of 17beta-estradiol against glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- K Honda
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu WQ, Vidal M, Mathé C, Périgaud C, Garbay C. Inhibition of the ras-dependent mitogenic pathway by phosphopeptide prodrugs with antiproliferative properties. Bioorg Med Chem Lett 2000; 10:669-72. [PMID: 10762050 DOI: 10.1016/s0960-894x(00)00077-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphopeptide prodrugs bearing two S-acyl-2-thioethyl (SATE) biolabile phosphate protections were developed. They are capable to inhibit the Shc/Grb2 interaction and MAP kinases (ERK1 and ERK2) phosphorylation in cellular assay. The S-acetyl-2-thioethyl (MeSATE) analogue showed an IC50 of 1 microM in the inhibition of the colony formation of tumor cell line NIH3T3/HER2.
Collapse
Affiliation(s)
- W Q Liu
- Laboratoire de Pharmacochimie Moléculaire et Structurale, U266 INSERM, UMR 8600 CNRS, Faculté de Pharmacie, Paris, France
| | | | | | | | | |
Collapse
|
19
|
O'Brien R, Rugman P, Renzoni D, Layton M, Handa R, Hilyard K, Waterfield MD, Driscoll PC, Ladbury JE. Alternative modes of binding of proteins with tandem SH2 domains. Protein Sci 2000; 9:570-9. [PMID: 10752619 PMCID: PMC2144564 DOI: 10.1110/ps.9.3.570] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The issue of specificity in tyrosine kinase intracellular signaling mediated by src homology 2 (SH2) domains has great importance in the understanding how individual signals maintain their mutual exclusivity and affect downstream responses. Several proteins contain tandem SH2 domains that, on interacting with their ligand, provide a higher level of specificity than can be afforded by the interaction of a single SH2 domain. In this study, we focus on the comparison of two proteins ZAP70 and the p85 subunit of PI 3-kinase, which although distinctly different in function and general structure, possess tandem SH2 domains separated by a linker region and which bind to phosphorylated receptor molecules localized to the cell membrane. Binding studies using isothermal titration calorimetry show that these two proteins interact with peptides mimicking their physiological ligands in very different ways. In the case of the SH2 domains from ZAP70, they interact with a stoichiometry of unity, while p85 is able to make two distinct interactions, one with a stoichiometry of 1:1 and the other with two p85 molecules interacting with one receptor. The observation of two different modes of binding of p85 might be important in providing different cellular responses based on fluctuating intracellular concentration regimes of this protein. Thermodynamic data on both proteins suggest that a conformational change occurs on binding. On investigation of this structural change using a truncated form of p85 (including just the two SH2 domains and the inter-SH2 region), both NMR and circular dichroism spectroscopic studies failed to show significant changes in secondary structure. This suggests that any conformational change associated with binding is small and potentially limited to loop regions of the protein.
Collapse
Affiliation(s)
- R O'Brien
- Department of Biochemistry and Molecular Biology, University College London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells. Blood 2000. [DOI: 10.1182/blood.v95.3.1078.003k16_1078_1085] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositide 3-kinase (PI3K) is a key enzyme implicated in intracellular signaling of diverse cellular responses including receptor-mediated responses and neutrophil activation. Several PI3K subunits have been cloned and shown to be localized to plasma membrane receptors, the cytosol, or intracellular vesicles or caveolae. We report the localization of PI3K to a distinct intracellular site, cytoplasmic lipid bodies, in leukocytes. In U937 monocyte cells, PI3K p85 regulatory and p110β catalytic subunits were localized to lipid bodies by immunocytochemistry and/or immunoblotting and enzyme assays of subcellular fractions. In RAW murine macrophages, p55, p85, and p85β PI3K subunits were present at isolated lipid bodies. PI3K p85 was also shown to colocalize and, by co-immunoprecipitation, to be physically associated with phosphorylated Lyn kinase in lipid bodies induced to form in human polymorphonuclear leukocytes. These findings, therefore, indicate a novel site for PI3K compartmentalization and suggest that PI3K-mediated signaling is active within cytoplasmic lipid bodies in leukocytes.
Collapse
|
21
|
Jazayeri A, McGee J, Shimamura T, Cross SB, Bejcek BE. SHP-2 can suppress transformation induced by platelet-derived growth factor. Exp Cell Res 2000; 254:197-203. [PMID: 10640417 DOI: 10.1006/excr.1999.4741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signaling by either the type alpha or type beta receptors of platelet-derived growth factor occurs by phosphorylation of at least 10 intra-cytoplasmic tyrosine residues and their subsequent association of secondary signaling molecules with Src homology 2 (SH2) domains. Although the role of several of these secondary signaling molecules in mitogenesis has become increasingly clear, their roles in morphological transformation are not as well defined. Here we present evidence that the SHP-2 phosphatase which associates with Tyr 1009 of the type beta receptor and Tyr 720 of the type alpha receptor may suppress transformation induced by the PDGF B chain. Cotransfection of a dominant negative mutant of the SHP-2 gene and the PDGF B chain gene into mouse fibroblasts that only poorly formed foci with the PDGF B chain alone resulted in larger and more prominent foci. Furthermore, introduction of a wild-type copy of the SHP-2 gene into a tumor cell line, U-87MG, which relies on PDGF expression to form foci in vitro, caused a reversion of phenotype.
Collapse
Affiliation(s)
- A Jazayeri
- Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
22
|
Zisch AH, Pazzagli C, Freeman AL, Schneller M, Hadman M, Smith JW, Ruoslahti E, Pasquale EB. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene 2000; 19:177-87. [PMID: 10644995 DOI: 10.1038/sj.onc.1203304] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eph receptor tyrosine kinases play key roles in pattern formation during embryonic development, but little is known about the mechanisms by which they elicit specific biological responses in cells. Here, we investigate the role of tyrosines 605 and 611 in the juxtamembrane region of EphB2, because they are conserved Eph receptor autophosphorylation sites and demonstrated binding sites for the SH2 domains of multiple signaling proteins. Mutation of tyrosines 605 and 611 to phenylalanine impaired EphB2 kinase activity, complicating analysis of their function as SH2 domain binding sites and their contribution to EphB2-mediated signaling. In contrast, mutation to the negatively charged glutamic acid disrupted SH2 domain binding without reducing EphB2 kinase activity. By using a panel of EphB2 mutants, we found that kinase activity is required for the changes in cell-matrix and cell - cell adhesion, cytoskeletal organization, and activation of mitogen-activated protein (MAP) kinases elicited by EphB2 in transiently transfected cells. Instead, the two juxtamembrane SH2 domain binding sites were dispensable for these effects. These results suggest that phosphorylation of tyrosines 605 and 611 is critical for EphB2-mediated cellular responses because it regulates EphB2 kinase activity.
Collapse
Affiliation(s)
- A H Zisch
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, California, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wellbrock C, Fischer P, Schartl M. PI3-kinase is involved in mitogenic signaling by the oncogenic receptor tyrosine kinase Xiphophorus melanoma receptor kinase in fish melanoma. Exp Cell Res 1999; 251:340-9. [PMID: 10471319 DOI: 10.1006/excr.1999.4580] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Overexpression of the mutationally activated receptor tyrosine kinase Xiphophorus melanoma receptor kinase (Xmrk) initiates formation of hereditary malignant melanoma in the fish Xiphophorus. In melanoma as well as in a melanoma-derived cell line (PSM) this receptor is highly activated resulting in constitutive Xmrk-mediated mitogenic signaling. In order to analyze mitogenic signaling triggered by Xmrk a possible involvement of phosphatidylinositol 3 (PI3)-kinase in Xmrk signal transduction was examined. Constitutive binding of the p85 adapter subunit of PI3-kinase to the Xmrk receptor was detected in PSM melanoma cells. Further analyses in BHK cells expressing a Xmrk chimera (HER-mrk) showed that p85 association with the intracellular part of Xmrk was dependent on autophosphorylation of the receptor. In vitro binding studies revealed that the interaction is mediated mainly through the N-terminal SH2 domain of p85 which directly binds to a sequence motif around phosphorylated Tyr-983 in the Xmrk carboxy-terminus. In accordance with recruitment of p85 by Xmrk in PSM cells, the PI3-kinase downstream target Akt was found to be highly phosphorylated on Ser-473, indicating efficient PI3-kinase signaling in melanoma cells. PI3-kinase activation was also detected in Xiphophorus melanoma. Moreover, malignant melanomas exhibited an increased level of PI3-kinase activity which was about three times higher than that in benign pigmented lesions. Inhibition of PI3-kinase activity in PSM melanoma cells by both Wortmannin and LY294002 blocked entry into S-phase. Together these data demonstrate that PI3-kinase is a substrate of the oncogenic Xmrk receptor and plays a significant role in mitogenic signaling of melanoma cells and the formation of malignant melanoma in Xiphophorus.
Collapse
Affiliation(s)
- C Wellbrock
- Biocenter (Theodor-Boveri Institut), University of Würzburg, Würzburg, Germany.
| | | | | |
Collapse
|
24
|
Ashcroft M, Stephens RM, Hallberg B, Downward J, Kaplan DR. The selective and inducible activation of endogenous PI 3-kinase in PC12 cells results in efficient NGF-mediated survival but defective neurite outgrowth. Oncogene 1999; 18:4586-97. [PMID: 10467403 DOI: 10.1038/sj.onc.1202814] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Trk/Nerve Growth Factor receptor mediates the rapid activation of a number of intracellular signaling proteins, including phosphatidylinositol 3-kinase (PI 3-kinase). Here, we describe a novel, NGF-inducible system that we used to specifically address the signaling potential of endogenous PI 3-kinase in NGF-mediated neuronal survival and differentiation processes. This system utilizes a Trk receptor mutant (Trk(def)) lacking sequences Y490, Y785 and KFG important for the activation of the major Trk targets; SHC, PLC-gammal, Ras, PI 3-kinase and SNT. Trk(def) was kinase active but defective for NGF-induced responses when stably expressed in PC12nnr5 cells (which lack detectable levels of TrkA and are non-responsive to NGF). The PI 3-kinase consensus binding site, YxxM (YVPM), was introduced into the insert region within the kinase domain of Trk(def). NGF-stimulated tyrosine phosphorylation of the Trk(def)+PI 3-kinase addback receptor, resulted in the direct association and selective activation of PI 3-kinase in vitro and the production of PI(3,4)P2 and PI(3,4,5)P3 in vivo (comparable to wild-type). PC12nnr5 cells stably expressing Trk(def) + PI 3-kinase, initiated neurite outgrowth but failed to stably extend and maintain these neurites in response to NGF as compared to PC12 parental cells, or PC12nnr5 cells overexpressing wild-type Trk. However, Trk(def) + PI 3-kinase was fully competent in mediating NGF-induced survival processes. We propose that while endogenous PI 3-kinase can contribute in part to neurite initiation processes, its selective activation and subsequent signaling to downstream effectors such as Akt, functions mainly to promote cell survival in the PC12 system.
Collapse
Affiliation(s)
- M Ashcroft
- ABL-Basic Research Program, NCI-FCRDC, West 7th Street, Frederick, Maryland, MD 21702, USA
| | | | | | | | | |
Collapse
|
25
|
Hart CP, Martin JE, Reed MA, Keval AA, Pustelnik MJ, Northrop JP, Patel DV, Grove JR. Potent inhibitory ligands of the GRB2 SH2 domain from recombinant peptide libraries. Cell Signal 1999; 11:453-64. [PMID: 10400318 DOI: 10.1016/s0898-6568(99)00017-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We cloned and expressed the SH2 domain of human GRB2 as glutathione S-transferase and maltose binding protein fusion proteins. We screened three phagemid-based fd pVIII-protein phage display libraries against SH2 domain fusion proteins. Sequence analysis of the peptide extensions yielded a variety of related peptides. By examining the ability of the phage clones to bind other SH2 domains, we demonstrated that the phage were specific for the SH2 domain of GRB2. Based on the sequence motif identified in the "random" library screening experiment, we also built and screened a phage display library based on a Tyr-X-Asn motif (X5-Tyr-X-Asn-X8). To examine the affinity of the phage derived peptides for GRB2, we set up a radioligand competition binding assay based on immobilized GRB2 and radiolabelled autophosphorylated EGFR ICD as the radioligand. Results obtained with peptide competitors derived from the phage sequences demonstrated that nonphosphotyrosine-containing peptides identified with the phage display technology had an affinity for the receptor similar to tyrosine-phosphorylated peptides derived from the EGFR natural substrate. Interestingly, when the phage display peptides were then phosphorylated on tyrosine, their affinity for GRB2 increased dramatically. We also demonstrated the ability of the peptides to block the binding of the GRB2 SH2 domain to EGFR in a mammalian cell-based binding assay.
Collapse
Affiliation(s)
- C P Hart
- Affymax Research Institute, Santa Clara, CA 95051, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cox D, Tseng CC, Bjekic G, Greenberg S. A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem 1999; 274:1240-7. [PMID: 9880492 DOI: 10.1074/jbc.274.3.1240] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis requires actin assembly and pseudopod extension, two cellular events that coincide spatially and temporally. The signal transduction events underlying both processes may be distinct. We tested whether phagocytic signaling resembles that of growth factor receptors, which induce actin polymerization via activation of phosphatidylinositol 3-kinase (PI 3-kinase). Fcgamma receptor-mediated phagocytosis was accompanied by a rapid increase in the accumulation of phosphatidylinositol 3,4,5-trisphosphate in vivo, and addition of wortmannin (WM) or LY294002, two inhibitors of PI 3-kinase(s), inhibited phagocytosis but not Fcgamma receptor-directed actin polymerization. However, both compounds prevented maximal pseudopod extension, suggesting that PI 3-kinase inhibition produced a limitation in membrane required for pseudopod extension. Availability of plasma membrane was not limiting for phagocytosis, because blockade of ingestion in the presence of WM was not overcome by reducing the number of particles adhering to macrophages. However, decreasing bead size, and hence the magnitude of pseudopod extension required for particle engulfment, relieved the inhibition of phagocytosis in the presence of WM or LY294002 by up to 80%. The block in phagocytosis of large particles occurred before phagosomal closure, because both compounds inhibited spreading of macrophages on substrate-bound IgG. Macrophage spreading on IgG was accompanied by exocytic insertion of membrane from an intracellular source, as measured by the dye FM1-43. These results indicate that one or more isoforms of PI 3 kinase are required for maximal pseudopod extension but not phagocytosis per se. We suggest that PI 3-kinase is required for coordinating exocytic membrane insertion and pseudopod extension.
Collapse
Affiliation(s)
- D Cox
- Departments of Medicine and Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Y J Hei
- Pharmaceutical Research Institute, Bristol-Myers Squibb, Buffalo, NY 14213, USA
| |
Collapse
|
28
|
Oh H, Fujio Y, Kunisada K, Hirota H, Matsui H, Kishimoto T, Yamauchi-Takihara K. Activation of phosphatidylinositol 3-kinase through glycoprotein 130 induces protein kinase B and p70 S6 kinase phosphorylation in cardiac myocytes. J Biol Chem 1998; 273:9703-10. [PMID: 9545305 DOI: 10.1074/jbc.273.16.9703] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (PI) 3-kinase is known to be activated by cytokine stimulation through different types of receptors to transduce intracellular responses. We have previously reported that leukemia inhibitory factor (LIF) induces the activation of Janus kinase signal transducer and activator of transcription (JAK-STAT) and mitogen-activated protein (MAP) kinase pathways through glycoprotein (gp) 130 in cardiac myocytes. However, whether PI 3-kinase is involved in regulation of gp130 signaling and the activation mechanisms by which it associates with other tyrosine-phosphorylated proteins remain unknown. We found that LIF induced the activation of PI 3-kinase in cardiac myocytes. Moreover, JAK1 binds to PI 3-kinase, and LIF stimulation increases the PI 3-kinase activity in JAK1 immunoprecipitates. Activation of MAP kinase and protein kinase B by LIF was attenuated by wortmannin. LIF-induced p70 S6 kinase activation, protein synthesis, and c-fos mRNA expression were inhibited by wortmannin and rapamycin. Both inhibitors failed to appreciably affect the phosphorylation of STAT3. In conclusion, PI 3-kinase is activated with LIF in cardiac myocytes, and JAK1 is found to associate with this enzyme. PI 3-kinase provides a crucial link between gp130, MAP kinase, protein kinase B, and p70 S6 kinase in cardiac myocytes.
Collapse
Affiliation(s)
- H Oh
- Department of Medicine III, Osaka University Medical School, Suita, Osaka 565, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Slomiany A, Nowak P, Piotrowski E, Slomiany BL. Effect of Ethanol on Intracellular Vesicular Transport from Golgi to the Apical Cell Membrane: Role of Phosphatidylinositol 3-Kinase and Phospholipase A2 in Golgi Transport Vesicles Association and Fusion with the Apical Membrane. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03634.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Cardiac Angiotensin II Subtype 2 Receptor Signal Transduction Pathways: Embryonic Cardiomyocytes and Human Heart. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-1-4615-5743-2_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Hiraguri M, Miike S, Sano H, Kurasawa K, Saito Y, Iwamoto I. Granulocyte-macrophage colony-stimulating factor and IL-5 activate mitogen-activated protein kinase through Jak2 kinase and phosphatidylinositol 3-kinase in human eosinophils. J Allergy Clin Immunol 1997; 100:S45-51. [PMID: 9440544 DOI: 10.1016/s0091-6749(97)70004-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitogen-activated protein (MAP) kinases are activated by the sequential activation of Ras, Raf, and MEK (MAP kinase kinase) and regulate a wide variety of cell functions. To determine the kinase cascade for granulocyte-macrophage colony-stimulating factor (GM-CSF)- and IL-5-induced MAP kinase activation in eosinophils, we studied the effect of inhibitors of Jak2 kinase, tyrosine kinases, phosphatidylinositol 3-kinase, and protein kinase C on GM-CSF- and IL-5-induced MAP kinase activation in human eosinophils. GM-CSF and IL-5 activated 40, 42, and 44 kilodalton MAP kinase isoforms in eosinophils. This was indicated by the electrophoretic mobility shift of the three isoforms of MAP kinase in immunoblotting with anti-MAP kinase antibody and also by in-gel MAP kinase assay. MAP kinase activation was time- and dose-dependent, becoming maximal 3 to 15 minutes after stimulation. A Jak2 kinase inhibitor AG-490, a tyrosine kinase inhibitor genistein, and a phosphatidylinositol 3-kinase inhibitor wortmannin inhibited GM-CSF- and IL-5-induced MAP kinase activation in eosinophils, whereas a protein kinase C inhibitor staurosporine had a weak inhibitory effect. Furthermore, AG-490 and genistein prevented GM-CSF-induced tyrosine phosphorylation of Jak2 kinase in eosinophils. Taken together, these results indicate that GM-CSF and IL-5 activate MAP kinases through the signaling pathway of Jak2 kinase-tyrosine phosphorylated beta chain-phosphatidylinositol 3-kinase-Ras in eosinophils.
Collapse
Affiliation(s)
- M Hiraguri
- Department of Internal Medicine, Chiba University School of Medicine, Chiba City, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Rabkin SW, Goutsouliak V, Kong JY. Angiotensin II induces activation of phosphatidylinositol 3-kinase in cardiomyocytes. J Hypertens 1997; 15:891-9. [PMID: 9280213 DOI: 10.1097/00004872-199715080-00014] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase phosphorylates membrane lipids at the third position of the inositol ring producing phosphoinositides, not on the pathway for production of 1,4,5-triphosphate. OBJECTIVE To test the hypotheses that angiotensin II (Ang II) activates phosphatidylinositol 3-kinase in cardiomyocytes and that this pathway is involved in Ang II-induced protein synthesis. METHODS Cardiomyocytes, in culture, from 7-day-old chick embryonic hearts were treated with Ang II and the activation of phosphatidylinositol 3-kinase was assessed after immunoprecipitation with antibodies to the p85 subunit of phosphatidylinositol 3-kinase by the conversion of PI (phosphatidylinositol) to phosphatidylinositol 3-monophosphate (PIP) in the presence of gamma-[32P]-ATP and analyzed by thin-layer chromatography. Western blotting was performed after antiphosphotyrosine immunoprecipitation with antibodies to the p85 subunit of phosphatidylinositol 3-kinase. Protein synthesis was assessed by [35S]-methionine incorporation and polyacrylamide gel electrophoresis. RESULTS Ang II stimulated phosphatidylinositol 3-kinase activity dramatically, with 4.5- and 3.5-fold increases in PIP formation after 1 and 5 min, respectively. The involvement of tyrosine kinases was demonstrated by Western blotting in which Ang II increased tyrosine phosphorylation of a protein recognized by antibodies to the 85 kDa subunit of phosphatidylinositol 3-kinase. Furthermore, the tyrosine kinase inhibitor lavendustin A blocked Ang II-stimulated phosphatidylinositol 3-kinase activity and conversion of phosphatidylinositol to PIP. Ang II increased new protein synthesis as reflected by the significantly (P < 0.05) greater incorporation of [35S]-methionine into cardiomyocytes treated with Ang II. The link between Ang II and protein synthesis was mediated in part through phosphatidylinositol 3-kinase because the phosphatidylinositol 3-kinase inhibitor wortmannin blocked the effect of Ang II on protein synthesis. Increased production both of nuclear and of cytosolic proteins was demonstrated by agarose gel electrophoresis of these cellular components of Ang II-treated cardiomyocytes. Wortmannin produced a general inhibition of the synthesis of nuclear and cytosolic proteins, with a greater effect on nuclear proteins. The action of wortmannin on nuclear protein synthesis was confirmed by similar findings with another phosphatidylinositol 3-kinase inhibitor, LY294002. CONCLUSION Phosphatidylinositol 3-kinase activation by Ang II occurs through a pathway utilizing tyrosine phosphorylation. Furthermore, this pathway is involved in cardiomyocyte protein synthesis and the possibility that it is operative in Ang II-mediated cardiac hypertrophy arises.
Collapse
Affiliation(s)
- S W Rabkin
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
33
|
Panek RL, Dahring TK, Olszewski BJ, Keiser JA. PDGF receptor protein tyrosine kinase expression in the balloon-injured rat carotid artery. Arterioscler Thromb Vasc Biol 1997; 17:1283-8. [PMID: 9261258 DOI: 10.1161/01.atv.17.7.1283] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Platelet-derived growth factor (PDGF) receptor gene expression has previously been demonstrated in balloon-injured rat carotid arteries to be regulated during repair of carotid injury. In the present study we showed that PDGF receptor protein expression and phosphorylation are changed over time after carotid artery injury. In control and 2-day-postinjury vessels, expression of PDGF alpha receptor protein was readily detectable, whereas PDGF beta receptor expression appeared very low. Between 2 and 7 days postinjury, a time interval previously shown to correspond with smooth muscle cell migration followed by the appearance of a neointima, PDGF alpha receptor expression had increased only slightly, to roughly 35% above control levels, and was maximal by day 7 postinjury, whereas PDGF beta receptor expression had doubled. From 7 to 14 days after carotid injury, intimal area was greatly increased and was associated with a further increase in PDGF beta receptor protein expression and receptor phosphorylation to a maximum between days 10 and 12. In contrast, PDGF alpha receptor expression had decreased slightly during this time interval. Moreover, phosphorylation of PDGF alpha receptors was barely detectable and did not change over the time course of injury. From 14 to 28 days after injury, intimal area was increased only slightly, whereas PDGF beta receptor protein and phosphorylation levels had diminished to roughly half of the 10-day injury values. In addition, the increase in PDGF beta receptor protein expression and tyrosine phosphorylation observed over the time of injury were also associated with a corresponding increase in the association of phosphatidylinositol 3' kinase (PI-3 kinase) with phosphorylated PDGF beta receptors. These findings show that balloon injury to rat carotid arteries results in temporally related changes in the expression of PDGF receptors and their state of tyrosine phosphorylation. Furthermore, tyrosine phosphorylation of PDGF beta receptors in the balloon-injured rat carotid artery in vivo resulted in the association of PI-3 kinase. These are important new findings, which add to our knowledge concerning the role and activity of PDGF receptors in the formation of a neointima.
Collapse
Affiliation(s)
- R L Panek
- Department of Vascular and Cardiac Diseases, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Mich. 48105, USA
| | | | | | | |
Collapse
|
34
|
Medzihradszky KF, Phillipps NJ, Senderowicz L, Wang P, Turck CW. Synthesis and characterization of histidine-phosphorylated peptides. Protein Sci 1997; 6:1405-11. [PMID: 9232641 PMCID: PMC2143754 DOI: 10.1002/pro.5560060704] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Posttranslational phosphorylation of proteins is an important event in many cellular processes. Whereas phosphoesters of serine, threonine, and tyrosine have been studied extensively, only limited information is available for other amino acids modified by a phosphate group. The formation of phosphohistidine residues in proteins was discovered originally in prokaryotic organisms, but also has been found recently in eukaryotic cells. We describe methods for the synthesis and analysis of phosphohistidine-containing peptides, a prerequisite for the investigation of the role of this posttranslational modification in cellular processes.
Collapse
Affiliation(s)
- K F Medzihradszky
- Department of Pharmaceutical Chemistry, University of California San Francisco 94143-0446, USA
| | | | | | | | | |
Collapse
|
35
|
Morinelli TA, Finley EL, Jaffa AA, Kurtz DT, Ullian ME. Tyrosine phosphorylation of phosphatidylinositol 3-kinase and of the thromboxane A2 (TXA2) receptor by the TXA2 mimetic I-BOP in A7r5 cells. Biochem Pharmacol 1997; 53:1823-32. [PMID: 9256157 DOI: 10.1016/s0006-2952(97)00005-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thromboxane A2 (TXA2) interacts with its G-protein coupled receptor, the TP receptor, to produce contraction and proliferation of vascular smooth muscle cells. We have shown previously that proliferation of primary cultures of vascular smooth muscle cells initiated by [1S-(1alpha, 2beta(5Z), 3alpha(1E, 3R), 4alpha]-7-[3-(3-hydroxy-4-(4'-iodophenoxy)-1-butenyl)-7-oxab icyclo-[2.2.1]heptan-2yl]-5'-heptenoic acid (I-BOP), a stable TXA2 mimetic, is mediated by activation of mitogen-activated protein (MAP) kinase. In the present study, we examined further the intracellular mediators involved in TXA2 activation of vascular smooth muscle cells. Transient transfection of the cDNA for the TP receptor into A7r5 vascular smooth muscle cells resulted in expression of TP receptors with a receptor density, Bmax, of 0.7 +/- 0.2 pmol/mg protein and a receptor affinity, Kd, of 0.6 +/- 0.1 nM (N = 7). Mock transfected cells lacked significant receptor expression. In TP receptor transfected cells, I-BOP increased the activation of MAP kinase 2-fold, stimulated tyrosine phosphorylation of cellular proteins of relative molecular mass (Mr) of 140, 85, 60, 56, and 45 kDa, and increased the message for c-jun, a nuclear transcription factor involved in mitogenesis, 2.6-fold. Immunoblot analysis indicated that the 85-kDa protein represented phosphoinositide 3-kinase (PI3-K), while the 60 kDa protein was the TP receptor. The activity of PI3-K was increased 3.5-fold by the addition of I-BOP (0.1 microM). In summary, the present study demonstrated that stimulation of the TP receptor results in tyrosine phosphorylation of the receptor and of PI3-K.
Collapse
Affiliation(s)
- T A Morinelli
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | |
Collapse
|
36
|
Fitzgerald EM, Dolphin AC. Regulation of rat neuronal voltage-dependent calcium channels by endogenous p21-ras. Eur J Neurosci 1997; 9:1252-61. [PMID: 9215709 DOI: 10.1111/j.1460-9568.1997.tb01480.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Influx of calcium through voltage-dependent calcium channels (VDCCs) has been implicated in the processes of cell growth and differentiation. Various signalling proteins, including nerve growth factor (NGF), p21-ras and src tyrosine kinases, have been suggested to have a role in the regulation of neuronal VDCCs. Using the whole-cell patch-clamp technique we have investigated the role of endogenous p21-ras in the regulation of VDCCs in primary cultured dorsal root ganglion (DRG) neurons obtained from neonatal rats. Neutralization of endogenous p21-ras by microinjection of p21-ras antibody (Y13-259) reduced the maximum peak barium current, I(max), whereas microinjection of oncogenic p21-K-ras increased the current. Thus, endogenous p21-ras is involved in the tonic regulation of calcium currents in these cells. Intracellular application of a phosphopeptide, Trk 490, which prevents the binding of the adaptor protein shc to the activated NGF receptor, so blocking p21-ras activation, reduced I(max). Similarly, deprivation of NGF by overnight incubation in NGF-free medium also reduced I(max). Together, these results suggest that NGF receptor tyrosine kinase activation of p21-ras is likely to be involved in the tonic regulation of VDCCs in DRG neurons. Deprivation of NGF combined with microinjection of p21-ras antibody (Y13-259), however, caused an even greater reduction of I(max). Thus, NGF activation can only partially explain the regulation of these currents by endogenous p21-ras. Src tyrosine kinases have been suggested to activate p21-ras. In DRG neurons, microinjection of purified src tyrosine kinase, pp60c-src, increased I(max) in these cells. However, co-microinjection of pp60c-src with Y13-259 antibody prevented the increase in I(max), implying that pp60c-src can also regulate calcium currents via the activation of endogenous p21-ras. Further support for the involvement of tyrosine kinases in VDCC regulation was provided by the application of the general tyrosine kinase inhibitor, genistein, which also reduced I(max). Thus, VDCCs in rat DRG neurons appear to be tonically up-regulated by endogenous p21-ras. This effect appears largely to involve NGF receptor tyrosine kinase activation of p21-ras. In addition, src tyrosine kinase may also regulate VDCCs, possibly via p21-ras.
Collapse
Affiliation(s)
- E M Fitzgerald
- Department of Pharmacology, Royal Free Hospital School of Medicine, London, UK
| | | |
Collapse
|
37
|
Liao DF, Monia B, Dean N, Berk BC. Protein kinase C-zeta mediates angiotensin II activation of ERK1/2 in vascular smooth muscle cells. J Biol Chem 1997; 272:6146-50. [PMID: 9045626 DOI: 10.1074/jbc.272.10.6146] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Activation of 44 and 42 kDa extracellular signal-regulated kinases (ERK)1/2 by angiotensin II (angII) plays an important role in vascular smooth muscle cell (VSMC) function. The dual specificity mitogen-actived protein (MAP) kinase/ERK kinase (MEK) activates ERK1/2 in response to angII, but the MEK activating kinases remain undefined. Raf is a candidate MEK kinase. However, a kinase other than Raf appears responsible for angII-mediated signal transduction because we showed previously that treatment with 1 microM phorbol 12, 13-dibutyrate (PDBU) for 24 h completely blocked Raf-Ras association in VSMC but did not inhibit activation of MEK and ERK1/2 by angII. We hypothesized that an atypical protein kinase C (PKC) isoform, which lacks a phorbol ester binding domain, mediated ERK1/2 activation by angII. Western blot analysis of rat aortic VSMC with PKC isoform-specific antibodies showed PKC-alpha, -beta1, -delta, -epsilon, and -zeta in relative abundance. All isoforms except PKC-zeta were down-regulated by 1 microM PDBU for 24 h suggesting that PKC-zeta was responsible for angII-mediated ERK1/2 activation. In response to angII, PKC-zeta associated with Ras as shown by co-precipitation of PKC-zeta with anti-H-Ras antibody. To characterize further the role of PKC-zeta, PKC-zeta protein was depleted specifically by transfection with antisense PKC-zeta oligonucleotides. Antisense PKC-zeta oligonucleotide treatment significantly decreased PKC-zeta protein expression (without effect on other PKC isoforms) and angII-mediated ERK1/2 activation in a concentration-dependent manner. In contrast, ERK1/2 activation by platelet-derived growth factor and phorbol ester was not significantly inhibited. These results demonstrate an important difference in signal transduction by angII compared with PDGF and phorbol ester in VSMC, and suggest a critical role for PKC-zeta and Ras in angII stimulation of ERK1/2.
Collapse
Affiliation(s)
- D F Liao
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
38
|
Liu L, Jefferson AB, Zhang X, Norris FA, Majerus PW, Krystal G. A novel phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase associates with the interleukin-3 receptor. J Biol Chem 1996; 271:29729-33. [PMID: 8939907 DOI: 10.1074/jbc.271.47.29729] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To gain insight into the intracellular signaling cascades that are activated by the binding of interleukin-3 (IL-3) to its target cells, we have embarked on the identification of proteins that are associated with the IL-3 receptor (IL-3R). In a previous study we reported that a 110-kDa serine/threonine protein kinase is constitutively associated with the IL-3R and activated following IL-3 stimulation. We now report that a phosphatidylinositol-3,4, 5-trisphosphate (PtdIns-3,4,5-P3) 5-phosphatase (5-ptase) is also constitutively associated with the IL-3R. This 5-ptase is magnesium-dependent and removes the 5-position phosphate from PtdIns-3,4,5-P3 but does not metabolize PtdIns-4,5-P2, inositol (Ins)-1,3,4,5-P4, or Ins-1,4,5-P3. This substrate specificity distinguishes it from any previously characterized 5-ptase. Interestingly, it may be bound indirectly via phosphatidylinositol 3-kinase (PI 3-kinase), another enzyme that is constitutively bound to the IL-3R. However, unlike PI 3-kinase which becomes activated following IL-3 stimulation, this receptor-associated 5-ptase activity does not increase following IL-3 stimulation, and its primary function may be to keep the principal in vivo product of PI 3-kinase, PtdIns-3,4,5-P3, at low levels in unstimulated cells, to terminate the PI 3-kinase signal following IL-3 stimulation or to metabolize PtdIns-3,4,5-P3 to a metabolically active second messenger, i.e. PtdIns-3,4-P2.
Collapse
Affiliation(s)
- L Liu
- Terry Fox Laboratory, British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1L3
| | | | | | | | | | | |
Collapse
|
39
|
Chen HC, Appeddu PA, Isoda H, Guan JL. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 1996; 271:26329-34. [PMID: 8824286 DOI: 10.1074/jbc.271.42.26329] [Citation(s) in RCA: 434] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have shown previously that cell adhesion or platelet-derived growth factor (PDGF) promotes the in vivo association of focal adhesion kinase (FAK) with phosphatidylinositol (PI) 3-kinase. In vitro experiments indicated that this interaction was mediated by the p85 subunit of PI 3-kinase and dependent on the tyrosine phosphorylation of FAK. Here we report data suggesting that the major autophosphorylation site of FAK (Tyr-397) is the binding site for the SH2 domains of p85 in vitro and is also required for the association of FAK with PI 3-kinase in vivo. We also show that Tyr-397 is responsible for the increased FAK:PI 3-kinase association upon PDGF stimulation, implying that no additional site of FAK was involved in its binding to PI 3-kinase after PDGF stimulation. Finally, we present evidence that the interaction of PI 3-kinase with Tyr-397 of FAK stimulates its activity. Together, these results suggest that FAK activation and autophosphorylation at Tyr-397 may lead to its association with PI 3-kinase through the SH2 domains of p85, which can subsequently activate PI 3-kinase during cell adhesion.
Collapse
Affiliation(s)
- H C Chen
- Cancer Biology Laboratories, Department of Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
40
|
Beslu N, LaRose J, Casteran N, Birnbaum D, Lecocq E, Dubreuil P, Rottapel R. Phosphatidylinositol-3' kinase is not required for mitogenesis or internalization of the Flt3/Flk2 receptor tyrosine kinase. J Biol Chem 1996; 271:20075-81. [PMID: 8702727 DOI: 10.1074/jbc.271.33.20075] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Flt3/Flk2 is a receptor tyrosine kinase that is expressed on early hematopoietic progenitor cells. Flt3/Flk2 belongs to a family of receptors, including Kit and colony-stimulating factor-1R, which support growth and differentiation within the hematopoietic system. The Flt3/Flk2 ligand, in combination with other growth factors, stimulates the proliferation of hematopoietic progenitors of both lymphoid and myeloid lineages in vitro. We report that phosphatidylinositol 3'-kinase (PI3K) binds to a unique site in the carboxy tail of murine Flt3/Flk2. In distinction to Kit and colony-stimulating factor-1R, mutant receptors unable to couple to PI3K and expressed in rodent fibroblasts or in the interleukin 3-dependent cell line Ba/F3 provide a mitogenic signal comparable to wild-type receptors. Flt3/Flk2 receptors that do not bind to PI3K also normally down-regulate, a function ascribed to PI3K in the context of other receptor systems. These data point to the existence of other unidentified pathways that, alone or in combination with PI3K, transduce these cellular responses following the activation of Flt3/Flk2.
Collapse
Affiliation(s)
- N Beslu
- Molecular Hematology Laboratory, Unite 119, Institut National de la Santé et de la Recherche Mèdicale, 27 Bd Lei Roure, 13009 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Breeze AL, Kara BV, Barratt DG, Anderson M, Smith JC, Luke RW, Best JR, Cartlidge SA. Structure of a specific peptide complex of the carboxy-terminal SH2 domain from the p85 alpha subunit of phosphatidylinositol 3-kinase. EMBO J 1996; 15:3579-89. [PMID: 8670861 PMCID: PMC451962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have determined the solution structure of the C-terminal SH2 domain of the p85 alpha subunit of human phosphatidylinositol (PI) 3-kinase (EC 2.7.1.137) in complex with a phosphorylated tyrosine pentapeptide sequence from the platelet-derived growth factor receptor using heteronuclear nuclear magnetic resonance spectroscopy. Overall, the structure is similar to other SH2 domain complexes, but displays different detail interactions within the phosphotyrosine binding site and in the recognition site for the +3 methionine residue of the peptide, the side chain of which inserts into a particularly deep and narrow pocket which is displaced relative to that of other SH2 domains. The contacts made within this +3 pocket provide the structural basis for the strong selection for methionine at this position which characterizes the SH2 domains of PI3-kinase. Comparison with spectral and structural features of the uncomplexed domain shows that the long BG loop becomes less mobile in the presence of the bound peptide. In contrast, extreme resonance broadening encountered for most residues in the beta D', beta E and beta F strands and associated connecting loops of the domain in the absence of peptide persists in the complex, implying conformational averaging in this part of the molecule on a microsecond-to-millisecond time scale.
Collapse
Affiliation(s)
- A L Breeze
- Protein Structure Laboratory, Zeneca Pharmaceuticals, Mereside, Alderley Park, Cheshire, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bachelot C, Rameh L, Parsons T, Cantley LC. Association of phosphatidylinositol 3-kinase, via the SH2 domains of p85, with focal adhesion kinase in polyoma middle t-transformed fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1311:45-52. [PMID: 8603102 DOI: 10.1016/0167-4889(95)00176-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Focal adhesion kinase (FAK), a non-receptor protein tyrosine kinase, becomes activated and phosphorylated on tyrosine in cells transformed with v-src. By cytoimmunofluorescence a sub-fraction of the p85 subunit of phosphoinositide 3-kinase (PI 3-kinase) localized in focal adhesion plaques. We examined the possibility that FAK associates with PI 3-kinase. In fibroblasts transformed with polyoma middle t, PI 3-kinase activity co-immunoprecipitated with pp125FAK using two different antibodies against this protein. PP125FAK from middle t-transformed cells associated with a glutathione-S-transferase fusion protein containing the 85-kDa subunit of phosphatidylinositol 3-kinase. Both of the SH2 domains and the SH3 domain of p85 also formed complexes with pp125FAK in vitro. Phosphopeptides that bind to the SH2 domains completely blocked the binding of full-length p85 to pp125FAK, while a peptide that binds to the SH3 domain was ineffective, indicating that the association between p85 and pp125FAK is mediated by the SH2 domains of p85.
Collapse
Affiliation(s)
- C Bachelot
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
43
|
Akimoto K, Takahashi R, Moriya S, Nishioka N, Takayanagi J, Kimura K, Fukui Y, Osada SI, Mizuno K, Hirai SI, Kazlauskas A, Ohno S. EGF or PDGF receptors activate atypical PKClambda through phosphatidylinositol 3-kinase. EMBO J 1996; 15:788-98. [PMID: 8631300 PMCID: PMC450277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Overexpression of a TPA-insensitive PKC member, an atypical protein kinase C (aPKClambda), results in an enhancement of the transcriptional activation of TPA response element (TRE) in cells stimulated with epidermal growth factor (EGF) or platelet-derived growth factor (PDGF). EGF or PDGF also caused a transient increase in the in vivo phosphorylation level and a change in the intracellular localization of aPKClambda from the nucleus to the cytosol, indicating the activation of aPKClambda in response to this growth factor stimulation. These immediate signal-dependent changes in aKPClambda were observed for a PDGF receptor add-back mutant (Y40/51) that possesses only two of the five major autophosphorylation sites and binds PI3-kinase, and were inhibited by wortmannin, an inhibitor of PI3-kinase. Furthermore, an N-terminal fragment of the catalytic subunit of PI3-kinase, p110alpha, inhibited aPKClambda-dependent activation of TRE in Y40/51 cells stimulated with PDGF. Overexpression of p110alpha resulted in an enhancement of TRE expression in response to PDGF and the regulatory domain of aPKClambda inhibited this TRE activation in Y40/51 cells. These results provide the first in vivo evidence supporting the presence of a novel signalling pathway from receptor tyrosine kinases to aPKClambda through PI3-kinase.
Collapse
Affiliation(s)
- K Akimoto
- Department of Molecular Biology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Barchi JJ, Nomizu M, Otaka A, Roller PP, Burke TR. Conformational analysis of cyclic hexapeptides designed as constrained ligands for the SH2 domain of the p85 subunit of phosphatidylinositol-3-OH kinase. Biopolymers 1996; 38:191-208. [PMID: 8589253 DOI: 10.1002/(sici)1097-0282(199602)38:2<191::aid-bip6>3.0.co;2-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structures of the cyclic hexapeptide cyclo(-Gly-Tyr-Val-Pro-Met-Leu-) (1) and its phosphotyrosyl (pTyr) derivative cyclo[-Gly-Tyr(PO3H2)-Val-Pro-Met-Leu-] (2), designed as constrained models of a sequence that interacts with the src homology 2 (SH2) region of the p85 subunit of phosphatidylinositol-3-OH kinase (PI-3 kinase), were studied in methanol/water solutions by 500 MHz nmr spectroscopy. Compound 1 was found to exist as a 2:1 mixture of isomers about the Val-Pro bond (trans and cis prolyl) between 292-330 K in 75% CD3O(D,H)/(D,H)2O solutions. A third species of undetermined structure (ca. 5%) was also observed. Compound 2, a model of phosphorylated peptide ligand that binds to the PI-3 kinase SH2 domain, exhibited similar conformational isomerism. When either compound was dissolved in pure solvent [i.e., 100% CD3O(H,D) or (H,D)2O] the ratio of cis to trans isomers was ca 1:1. A battery of one- and two-dimensional nmr experiments at different temperatures and solvent compositions allowed a complete assignment of both the cis and trans forms of 1 and indicated the trans compound to be the major isomer. The spectral properties of the phophorylated derivative 2 paralleled those of 1, indicating like conformations for the two compounds. Analysis of rotating frame Overhauser spectroscopy data, coupling constants, amide proton temperature dependence, and amide proton exchange rates generated a set of constraints that were employed in energy minimization and molecular dynamics calculations using the CHARMM force field. The trans isomer exists with the tyrosine and C-terminal Tyr(+3) (Met) residues at opposite corners of the 18-membered ring separated by a distance of 16-18 A, in contrast with the cis isomer where the side chains of these residues are much closer in space (7-14 A). It was previously shown that the pTyr and the third amino acid C-terminal to this residue are the critical recognition elements for pTyr-peptide binding to the PI-3 kinase SH2 domain. Such cyclic structures may offer appropriate scaffolding for positioning important amino acid side chains of pTyr-containing peptides as a means of increasing their binding affinities to SH2 domains, and in turn provide a conceptual approach toward the design of SH2 domain directed peptidomimetics.
Collapse
Affiliation(s)
- J J Barchi
- Laboratory of Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Weiss RH, Yabes AP. Mitogenic inhibition by phorbol esters is associated with decreased phosphatidylinositol-3 kinase activation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C619-27. [PMID: 8779927 DOI: 10.1152/ajpcell.1996.270.2.c619] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In contrast to their role as potent tumor promoters, phorbol esters can cause inhibition of cell growth. Because the effect of phorbol esters occurs through activation of protein kinase C (PKC) and because activated PKC is translocated to the membrane placing it in a position to act on the intracellular portion of the growth factor receptor, we asked whether this inhibitory effect is mediated through the action of phorbol 12-myristate 13-acetate (PMA) on receptor association with the signal transfer proteins. When added to rat vascular smooth muscle (VSM) cells concurrently with basic fibroblast growth factor (bFGF), PMA at 100 ng/ml completely inhibits bFGF-stimulated DNA synthesis. Under the same growth-inhibitory conditions of PMA addition, aggregation of phosphatidylinositol 3-kinase (PI3K) to the fibroblast growth factor receptor and tyrosine phosphorylation of the 85-kDa regulatory component of the signal transfer protein PI3K are reduced by 94 and 79%, respectively. PI3K catalytic activity, as measured by conversion of phosphatidylinositol to phosphatidylinositol 3-phosphate, is decreased 88% by PMA addition. This effect is not specific to PI3K, since aggregation of phospholipase C-gamma 1 to the activated bFGF receptor is also decreased by PMA treatment. In addition, the PI3K inhibitor wortmannin markedly attenuates bFGF-stimulated VSM cell growth in a dose-dependent manner. These data suggest that the site of growth inhibition by PMA in VSM cells lies upstream of signal transfer particle aggregation and that such growth arrest may be mediated through inhibition of activation of PI3K.
Collapse
Affiliation(s)
- R H Weiss
- Department of Internal Medicine, University of California, Davis 95616, USA
| | | |
Collapse
|
46
|
Laminet AA, Apell G, Conroy L, Kavanaugh WM. Affinity, specificity, and kinetics of the interaction of the SHC phosphotyrosine binding domain with asparagine-X-X-phosphotyrosine motifs of growth factor receptors. J Biol Chem 1996; 271:264-9. [PMID: 8550571 DOI: 10.1074/jbc.271.1.264] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphotyrosine binding (PTB) domain specifically binds to tyrosine-phosphorylated proteins, but differs in structure and mechanism of action from the SH2 domain family. We quantitated the affinity, specificity, and kinetics of the interaction of the SHC PTB domain with a sequence motif, asparagine-X-X-phosphotyrosine (NXX(pY)), found in several receptor tyrosine kinases and oncogenic proteins. PTB domain-mediated interaction with the NXX(pY) motif of c-ErbB2 was characterized by similar overall affinity but slower kinetics than that reported for SH2 domains. This suggested that unlike SH2 domains, PTB domains may not rapidly exchange among associated proteins. Furthermore, when directly and quantitatively compared, PTB domain binding specificity did not significantly overlap with a panel of seven SH2 domains. Thus, signaling pathways involving PTB and SH2 domain-mediated interactions can be regulated separately. Finally, our data define the minimal SHC PTB domain binding motif as NXX(pY), not NPX(pY) as suggested by other authors, and suggest a high affinity motif, hydrophobic residue-(D/E)-N-X-X-pY-(W/F), found in the Trk and ErbB receptor tyrosine kinase families. We conclude that PTB domains mediate specific protein-protein interactions independent from those mediated by SH2 domains.
Collapse
Affiliation(s)
- A A Laminet
- Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | |
Collapse
|
47
|
PDGF and FGF receptors in health and disease. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-5687(96)80009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Fusco A, Vecchio G, Dathan NA, Carlomagno F, Di Fiore PP, Santoro M. Intracellular Signaling by the ret Tyrosine Kinase. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-3-662-21948-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
49
|
Levy-Toledano R, Blaettler DH, LaRochelle WJ, Taylor SI. Insulin-induced activation of phosphatidylinositol (PI) 3-kinase. Insulin-induced phosphorylation of insulin receptors and insulin receptor substrate-1 displaces phosphorylated platelet-derived growth factor receptors from binding sites on PI 3-kinase. J Biol Chem 1995; 270:30018-22. [PMID: 8530404 DOI: 10.1074/jbc.270.50.30018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phosphatidylinositol (PI) 3-kinase is an enzyme that functions in the signaling pathways downstream from multiple cell surface receptors. The p85 regulatory subunit of PI 3-kinase binds to phosphotyrosine residues of various phosphoproteins including the platelet-derived growth factor (PDGF) receptor, the insulin receptor, and insulin receptor substrate-1 (IRS-1). Using NIH-3T3 cells overexpressing the human insulin receptor, we demonstrate that the p85 regulatory subunit of PI 3-kinase binds to phosphorylated PDGF receptor in cells incubated in the absence of insulin. When insulin is added, p85 is released from phosphorylated PDGF receptors and binds to phosphorylated insulin receptors and insulin receptor substrate-1. Moreover, insulin-induced dissociation of PDGF receptors from binding sites on PI 3-kinase requires a functional insulin receptor and is not prevented by vanadate treatment. In contrast, insulin activation does not displace PDGF receptors from binding sites on Ras GTPase-activating protein. This competition for binding to PI 3-kinase provides a mechanism for cross-talk among signaling pathways initiated by distinct peptide hormones and growth factors such as insulin and PDGF.
Collapse
Affiliation(s)
- R Levy-Toledano
- Diabetes Branch, NIDDK, NCI, National Institutes of Health Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
50
|
Chalupny NJ, Aruffo A, Esselstyn JM, Chan PY, Bajorath J, Blake J, Gilliland LK, Ledbetter JA, Tepper MA. Specific binding of Fyn and phosphatidylinositol 3-kinase to the B cell surface glycoprotein CD19 through their src homology 2 domains. Eur J Immunol 1995; 25:2978-84. [PMID: 7589101 DOI: 10.1002/eji.1830251040] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD19 is a B cell surface protein capable of forming non-covalent molecular complexes with a number of other B cell surface proteins including the CD21/CD81/Leu-13 complex as well as with surface immunoglobulin. CD19 tyrosine phosphorylation increases after B cell activation, and is proposed to play a role in signal transduction through its cytoplasmic domain, which contains nine tyrosine residues. Several second messenger proteins have been shown to immunoprecipitate with CD19, including p59 Fyn (Fyn), p59 Lyn (Lyn) and phosphatidylinositol-3 kinase (PI-3 kinase). These associations are predicted to occur via the src-homology 2 (SH2) domains of the second messenger proteins. Two of the cytoplasmic tyrosines in the CD19 cytoplasmic region contain the consensus binding sequence for the PI-3 kinase SH2 domain (YPO4-X-X-M). However, the reported consensus binding sequence for the Fyn and Lyn SH2 domains (YPO4-X-X-I/L) is not found in CD19. We investigated the capacity of CD19 cytoplasmic tyrosines to bind both Fyn and PI-3 kinase SH2-domain fusion proteins. In activated B cells, both Fyn and PI-3 kinase SH2-domain fusion proteins precipitate CD19. Using synthetic tyrosine-phosphorylated peptides comprising each of the CD19 cytoplasmic tyrosines and surrounding amino acids, we investigated the ability of the Fyn SH2 and PI-3 kinase SH2 fusion proteins to bind to the different CD19 cytoplasmic phosphotyrosine peptides. ELISA revealed that the two CD19 cytoplasmic tyrosine residues contained within the Y-X-X-M sequences (Y484 and Y515) bound preferentially to the PI-3 kinase SH2-domain fusion proteins. Two different tyrosines (Y405 and Y445) bound preferentially to the Fyn SH2-domain fusion protein via a novel sequence, Y-E-N-D/E, different from that previously reported for the Fyn SH2 domain. In precipitation studies, peptide Y484 was able to compete with tyrosine phosphorylated CD19 specifically for binding to the PI-3 kinase SH2 domain fusion proteins, while peptides Y405 and Y445 were able to compete specifically for binding to the Fyn SH2 domain fusion proteins. These results indicate that CD19 may be capable of binding both Fyn and PI-3 kinase concurrently, suggesting a mechanism for CD19 signal transduction, in which binding of PI-3 kinase to the Fyn SH3 domain results in activation of PI-3 kinase.
Collapse
Affiliation(s)
- N J Chalupny
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, USA
| | | | | | | | | | | | | | | | | |
Collapse
|