1
|
Abstract
Folic acid is a necessary micronutrient for normal human growth and development. Benzo(a)pyrene (BaP) is a ubiquitously distributed environmental pollutant and its metabolite, benzo(a)pyrene-diol-epoxide, is known to exert a strong teratogenic and carcinogenic effect on the body’s tissues and cells. The aim of this study was to investigate the mechanism by which folic acid can inhibit the toxic effects of BaP both in vivo and in vitro. We measured changes in 16HBE cell activity affected by the intervention of folic acid on BaP using the cell counting kit-8 assay and that of cell cycle distribution by flow cytometry. At the same time, we assessed the xeroderma pigmentosum group A, xeroderma pigmentosum group C, excision repair cross complementation group 1, cyclinD1, and CKD4 mRNAs, and their related protein expression both in mouse lung tissue and in 16HBE cells. In conclusion, the mechanisms by which this effect is mediated were not entirely elucidated by our study, possibly because folic acid antagonizes the toxic effects of BaP by upregulating the levels of excision repair cross complementation group 1, xeroderma pigmentosum group A, and xeroderma pigmentosum group C gene expression to improve the rate of DNA repair, in turn accelerating the speed of repair for DNA damage caused by BaP. Meanwhile, folic acid could restrain BaP-induced cyclinD1 protein expression, which could help cells return to their normal cell cycle.
Collapse
|
2
|
Deger N, Yang Y, Lindsey-Boltz LA, Sancar A, Selby CP. Drosophila, which lacks canonical transcription-coupled repair proteins, performs transcription-coupled repair. J Biol Chem 2019; 294:18092-18098. [PMID: 31624146 DOI: 10.1074/jbc.ac119.011448] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/16/2019] [Indexed: 11/06/2022] Open
Abstract
Previous work with the classic T4 endonuclease V digestion of DNA from irradiated Drosophila cells followed by Southern hybridization led to the conclusion that Drosophila lacks transcription-coupled repair (TCR). This conclusion was reinforced by the Drosophila Genome Project, which revealed that Drosophila lacks Cockayne syndrome WD repeat protein (CSA), CSB, or UV-stimulated scaffold protein A (UVSSA) homologs, whose orthologs are present in eukaryotes ranging from Arabidopsis to humans that carry out TCR. A recently developed in vivo excision assay and the excision repair-sequencing (XR-Seq) method have enabled genome-wide analysis of nucleotide excision repair in various organisms at single-nucleotide resolution and in a strand-specific manner. Using these methods, we have discovered that Drosophila S2 cells carry out robust TCR comparable with that observed in mammalian cells. Our findings provide critical new insights into the mechanisms of TCR among various different species.
Collapse
Affiliation(s)
- Nazli Deger
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599.
| |
Collapse
|
3
|
Yang Y, Hu J, Selby CP, Li W, Yimit A, Jiang Y, Sancar A. Single-nucleotide resolution analysis of nucleotide excision repair of ribosomal DNA in humans and mice. J Biol Chem 2018; 294:210-217. [PMID: 30413533 DOI: 10.1074/jbc.ra118.006121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
The unique nucleolar environment, the repetitive nature of ribosomal DNA (rDNA), and especially the possible involvement of RNA polymerase I (RNAPI) in transcription-coupled repair (TCR) have made the study of repair of rDNA both interesting and challenging. TCR, the transcription-dependent, preferential excision repair of the template strand compared with the nontranscribed (coding) strand has been clearly demonstrated in genes transcribed by RNAPII. Whether TCR occurs in rDNA is unresolved. In the present work, we have applied analytical methods to map repair events in rDNA using data generated by the newly developed XR-seq procedure, which measures excision repair genome-wide with single-nucleotide resolution. We find that in human and mouse cell lines, rDNA is not subject to TCR of damage caused by UV or by cisplatin.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jinchuan Hu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599; Fifth People's Hospital of Shanghai and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Wentao Li
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Askar Yimit
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuchao Jiang
- Departments of Biostatistics and Genetics, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599.
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
4
|
Chiou YY, Hu J, Sancar A, Selby CP. RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. J Biol Chem 2017; 293:2476-2486. [PMID: 29282293 DOI: 10.1074/jbc.ra117.000971] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/19/2017] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, bulky DNA adducts located in the template but not the coding strand of genes block elongation by RNA polymerase II (RNAPII). The blocked RNAPII targets these transcription-blocking adducts to undergo more rapid excision repair than adducts located elsewhere in the genome. In excision repair, coupled incisions are made in the damaged DNA strand on both sides of the adduct. The fate of RNAPII in the course of this transcription-coupled repair (TCR) pathway is unclear. To address the fate of RNAPII, we used methods that control transcription to initiate a discrete "wave" of elongation complexes. Analyzing genome-wide transcription and repair by next-generation sequencing, we identified locations of elongation complexes and transcription-repair coupling events in genes throughout the genome. Using UV-exposed human skin fibroblasts, we found that, at the dose used, a single wave of elongation complexes was blocked within the first 25 kb of genes. TCR occurred where the elongation complexes were blocked, and repair was associated with the dissociation of these complexes. These results indicate that individual elongation complexes do not engage in multiple rounds of TCR with successive lesions. Our results are consistent with a model in which RNAPII is dissociated after the dual incision of the transcription-blocking lesion, perhaps by Cockayne syndrome group B translocase, or during the synthesis of a repair patch.
Collapse
Affiliation(s)
- Yi-Ying Chiou
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and.,the Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Jinchuan Hu
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Christopher P Selby
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| |
Collapse
|
5
|
Taghdiri M, Dastsooz H, Fardaei M, Mohammadi S, Farazi Fard MA, Faghihi MA. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome. Front Pediatr 2017; 5:169. [PMID: 28848724 PMCID: PMC5552663 DOI: 10.3389/fped.2017.00169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/18/2017] [Indexed: 02/01/2023] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene (ERCC6), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.
Collapse
Affiliation(s)
- Maryam Taghdiri
- Genetic Counseling Center, Shiraz Welfare Organization, Shiraz, Iran.,Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Dastsooz
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Fardaei
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sanaz Mohammadi
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Wolf Horrell EM, Boulanger MC, D’Orazio JA. Melanocortin 1 Receptor: Structure, Function, and Regulation. Front Genet 2016; 7:95. [PMID: 27303435 PMCID: PMC4885833 DOI: 10.3389/fgene.2016.00095] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
The melanocortin 1 receptor (MC1R) is a melanocytic Gs protein coupled receptor that regulates skin pigmentation, UV responses, and melanoma risk. It is a highly polymorphic gene, and loss of function correlates with a fair, UV-sensitive, and melanoma-prone phenotype due to defective epidermal melanization and sub-optimal DNA repair. MC1R signaling, achieved through adenylyl cyclase activation and generation of the second messenger cAMP, is hormonally controlled by the positive agonist melanocortin, the negative agonist agouti signaling protein, and the neutral antagonist β-defensin 3. Activation of cAMP signaling up-regulates melanin production and deposition in the epidermis which functions to limit UV penetration into the skin and enhances nucleotide excision repair (NER), the genomic stability pathway responsible for clearing UV photolesions from DNA to avoid mutagenesis. Herein we review MC1R structure and function and summarize our laboratory's findings on the molecular mechanisms by which MC1R signaling impacts NER.
Collapse
Affiliation(s)
- Erin M. Wolf Horrell
- Department of Physiology, University of Kentucky College of MedicineLexington, KY, USA
| | - Mary C. Boulanger
- Markey Cancer Center, University of Kentucky College of MedicineLexington, KY, USA
| | - John A. D’Orazio
- Department of Physiology, University of Kentucky College of MedicineLexington, KY, USA
- Markey Cancer Center, University of Kentucky College of MedicineLexington, KY, USA
- Departments of Pediatrics, Toxicology and Cancer Biology, Physiology, and Pharmacology and Nutritional Sciences, University of Kentucky College of MedicineLexington, KY, USA
| |
Collapse
|
7
|
Abstract
DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance.
Collapse
Affiliation(s)
- Pingping Jia
- Elson S. Floyd College of Medicine, United States
| | - Chengtao Her
- School of Molecular Biosciences, Washington State University, United States
| | - Weihang Chai
- Elson S. Floyd College of Medicine, United States; School of Molecular Biosciences, Washington State University, United States.
| |
Collapse
|
8
|
Hu J, Adar S, Selby CP, Lieb JD, Sancar A. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes Dev 2015; 29:948-60. [PMID: 25934506 PMCID: PMC4421983 DOI: 10.1101/gad.261271.115] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hu et al. developed a method for genome-wide mapping of DNA excision repair named XR-seq (excision repair sequencing) and used it to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells. XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells. We developed a method for genome-wide mapping of DNA excision repair named XR-seq (excision repair sequencing). Human nucleotide excision repair generates two incisions surrounding the site of damage, creating an ∼30-mer. In XR-seq, this fragment is isolated and subjected to high-throughput sequencing. We used XR-seq to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells: cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine–pyrimidone photoproducts [(6-4)PPs]. In wild-type cells, CPD repair was highly associated with transcription, specifically with the template strand. Experiments in cells defective in either transcription-coupled excision repair or general excision repair isolated the contribution of each pathway to the overall repair pattern and showed that transcription-coupled repair of both photoproducts occurs exclusively on the template strand. XR-seq maps capture transcription-coupled repair at sites of divergent gene promoters and bidirectional enhancer RNA (eRNA) production at enhancers. XR-seq data also uncovered the repair characteristics and novel sequence preferences of CPDs and (6-4)PPs. XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells.
Collapse
Affiliation(s)
- Jinchuan Hu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Sheera Adar
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jason D Lieb
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
9
|
Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet 2015; 6:157. [PMID: 25954303 PMCID: PMC4407582 DOI: 10.3389/fgene.2015.00157] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023] Open
Abstract
DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases Research Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases Research Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
He J, Zhu Q, Wani G, Sharma N, Han C, Qian J, Pentz K, Wang QE, Wani AA. Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem 2014; 289:27278-27289. [PMID: 25118285 DOI: 10.1074/jbc.m114.589812] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis.
Collapse
Affiliation(s)
- Jinshan He
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210.
| | - Gulzar Wani
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Nidhi Sharma
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Chunhua Han
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Jiang Qian
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Kyle Pentz
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Qi-En Wang
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210; Department of Molecular and Cellular Biochemistry, and The Ohio State University, Columbus, Ohio 43210; James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
11
|
Abstract
SIGNIFICANCE Production of proteins requires the synthesis, maturation, and export of mRNAs before their translation in the cytoplasm. Endogenous and exogenous sources of DNA damage pose a challenge to the co-ordinated regulation of gene expression, because the integrity of the DNA template can be compromised by DNA lesions. Cells recognize and respond to this DNA damage through a variety of DNA damage responses (DDRs). Failure to deal with DNA damage appropriately can lead to genomic instability and cancer. RECENT ADVANCES The p53 tumor suppressor plays a dominant role in DDR-dependent changes in gene expression, but this transcription factor is not solely responsible for all changes. Recent evidence indicates that RNA metabolism is integral to DDRs as well. In particular, post-transcriptional processes are emerging as important contributors to these complex responses. CRITICAL ISSUES Transcriptional, post-transcriptional, and translational regulation of gene expression is subject to changes in response to DNA damage. How these processes are intertwined in the unfolding of DDR is not fully understood. FUTURE DIRECTIONS Many complex regulatory responses combine to determine cell fate after DNA damage. Understanding how transcriptional, post-transcriptional, and translational processes interdigitate to create a web of regulatory interactions will be one of the key challenges to fully understand DDRs.
Collapse
Affiliation(s)
- Bruce C McKay
- Department of Biology, Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
12
|
Hu J, Choi JH, Gaddameedhi S, Kemp MG, Reardon JT, Sancar A. Nucleotide excision repair in human cells: fate of the excised oligonucleotide carrying DNA damage in vivo. J Biol Chem 2013; 288:20918-20926. [PMID: 23749995 DOI: 10.1074/jbc.m113.482257] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide excision repair is the sole mechanism for removing the major UV photoproducts from genomic DNA in human cells. In vitro with human cell-free extract or purified excision repair factors, the damage is removed from naked DNA or nucleosomes in the form of 24- to 32-nucleotide-long oligomers (nominal 30-mer) by dual incisions. Whether the DNA damage is removed from chromatin in vivo in a similar manner and what the fate of the excised oligomer was has not been known previously. Here, we demonstrate that dual incisions occur in vivo identical to the in vitro reaction. Further, we show that transcription-coupled repair, which operates in the absence of the XPC protein, also generates the nominal 30-mer in UV-irradiated XP-C mutant cells. Finally, we report that the excised 30-mer is released from the chromatin in complex with the repair factors TFIIH and XPG. Taken together, our results show the congruence of in vivo and in vitro data on nucleotide excision repair in humans.
Collapse
Affiliation(s)
- Jinchuan Hu
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Jun-Hyuk Choi
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and; the Center for Bioanalysis, Department of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon 305-340, South Korea
| | - Shobhan Gaddameedhi
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Michael G Kemp
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Joyce T Reardon
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| |
Collapse
|
13
|
Hastak K, Adimoolam S, Trinklein ND, Myers RM, Ford JM. Identification of a Functional In Vivo p53 Response Element in the Coding Sequence of the Xeroderma Pigmentosum Group C Gene. Genes Cancer 2012; 3:131-40. [PMID: 23050045 DOI: 10.1177/1947601912456288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/08/2012] [Indexed: 12/16/2022] Open
Abstract
The protein product of the xeroderma pigmentosum group C (XPC) gene is a DNA damage recognition factor that functions early in the process of global genomic nucleotide excision repair. Regulation of XPC expression is governed in part by p53 at the transcriptional level. To identify the regulatory elements involved in the p53-dependent control of XPC expression, we performed a quantitative PCR tiling experiment using multiple regularly spaced primer pairs over an 11-kb region centered around the XPC transcriptional start site. p53 chromatin immunoprecipitation was performed following ultraviolet irradiation, and DNA was analyzed for enrichment at each of 48 amplicons covering this region. A segment just upstream of the XPC translational initiation site was significantly enriched, whereas no enrichment of any other region was noted. In vitro promoter reporter assays and gel retardation assays were used to confirm the p53 responsiveness of this region and to define the minimal region with stimulating activity. We identified a p53 response element that has significant similarity to a consensus sequence, with 3 mismatches. This response element is unique in that part of the p53 binding site included the coding sequence for the first 2 amino acids in the XPC protein.
Collapse
Affiliation(s)
- Kedar Hastak
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
14
|
Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli. J Bacteriol 2012; 194:2637-45. [PMID: 22427630 DOI: 10.1128/jb.06725-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcription-coupled repair (TCR) is a cellular process by which some forms of DNA damage are repaired more rapidly from transcribed strands of active genes than from nontranscribed strands or the overall genome. In humans, the TCR coupling factor, CSB, plays a critical role in restoring transcription following both UV-induced and oxidative DNA damage. It also contributes indirectly to the global repair of some forms of oxidative DNA damage. The Escherichia coli homolog, Mfd, is similarly required for TCR of UV-induced lesions. However, its contribution to the restoration of transcription and to global repair of oxidative damage has not been examined. Here, we report the first direct study of transcriptional recovery following UV-induced and oxidative DNA damage in E. coli. We observed that mutations in mfd or uvrA reduced the rate that transcription recovered following UV-induced damage. In contrast, no difference was detected in the rate of transcription recovery in mfd, uvrA, fpg, nth, or polB dinB umuDC mutants relative to wild-type cells following oxidative damage. mfd mutants were also fully resistant to hydrogen peroxide (H(2)O(2)) and removed oxidative lesions from the genome at rates comparable to wild-type cells. The results demonstrate that Mfd promotes the rapid recovery of gene expression following UV-induced damage in E. coli. In addition, these findings imply that Mfd may be functionally distinct from its human CSB homolog in that it does not detectably contribute to the recovery of gene expression or global repair following oxidative damage.
Collapse
|
15
|
Liu J, Lin M, Zhang C, Wang D, Feng Z, Hu W. TAp63γ enhances nucleotide excision repair through transcriptional regulation of DNA repair genes. DNA Repair (Amst) 2012; 11:167-76. [PMID: 22056305 PMCID: PMC3348579 DOI: 10.1016/j.dnarep.2011.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
p63 and p73, two p53 family members, play crucial roles in development and tumor suppression. p63 and p73 have multiple isoforms, which have similar or distinct biological functions. Transactivation (TA) isoforms of p63 and p73 have high similarity with p53 and often have biological functions similar to p53. p53 plays an important role in nucleotide excision repair (NER) through transcriptional regulation of target genes involved in NER, including DDB2, XPC and GADD45. To investigate whether TAp63 and TAp73 play a similar role in NER, Saos2 cells with inducible expression of specific isoforms of TAp63 and TAp73, including TAp63α/β/γ and TAp73α/β/γ isoforms, were employed. Overexpression of TAp63γ significantly enhances NER of ultraviolet (UV)-induced DNA damage, including cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts, and enhances cell survival after UV irradiation in Soas2 cells. The enhancement of NER of UV-induced DNA damage by TAp63γ was also confirmed in H1299 cells with overexpression of TAp63γ. Consistently, knockdown of endogenous TAp63 decreases NER of UV-induced DNA damage in H1299 cells. TAp63α/β and TAp73α/β/γ isoforms do not have a clear effect on NER in Saos2 or H1299 cells. TAp63γ overexpression clearly induces the expression of DDB2, XPC and GADD45 at both RNA and protein levels. Furthermore, luciferase reporter assays show that TAp63γ transcriptionally activates DDB2, XPC and GADD45 genes through the regulation of the p53 binding elements in these genes. These results demonstrate that TAp63γ enhances NER to remove UV-induced DNA damage and maintain genomic stability through transcriptional induction of a set of NER proteins, which provides an additional important mechanism that contributes to the function of TAp63 in tumor suppression.
Collapse
Affiliation(s)
- Juan Liu
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Meihua Lin
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Cen Zhang
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Duoduo Wang
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
16
|
Nagira T, Narisawa J, Teruya K, Katakura Y, Shim SY, Kusumoto KI, Tokumaru S, Tokumaru K, Barnes DW, Shirahata S. Suppression of UVC-induced cell damage and enhancement of DNA repair by the fermented milk, Kefir. Cytotechnology 2011; 40:125-37. [PMID: 19003113 DOI: 10.1023/a:1023984304610] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An aqueous extract of Kefir, fermented milk originally produced in the Caucasus mountains, suppressed morphological changes of human melanoma HMV-1 and SK-MEL cells and human normal fibroblastTIG-1 cells caused by UVC-irradiation, suggesting that UV damage can be suppressed by the Kefir extract. The addition of the Kefir extract after UVC-irradiation of HVM-1 cells resulted in a remarkable decrease in intracellular reactive oxygen species (ROS) which had been increased by UVC irradiation. The Kefir extract also stimulated unscheduled DNA synthesis and suppressed UVC-induced apoptosis of HMV-1 cells. A colony formation assay revealed that the Kefir extract rescued HMV-1 cells from cell death caused by UVC irradiation. The Kefir extract, as well as methyl methanethiosulfonate which is known to enhance the nucleotide excision repair (NER) activity, exhibited strong thymine dimer repair-enhancing activity. Epigalocatechin exhibited a weak NER activity but vitamins A, C, and E and catechin showed no NER activity. The thymine dimer repair-enhancing factors in the Kefir extract were heat-stable and assumed to be molecules with a molecular weight of less than 5000. The treatment of HMV-1 cells with the Kefir extract during or before UVC- irradiation also prevented the generation of ROS and thymine dimmer, and suppressed the apoptosis of HMV-1 cells, suggesting that application of Kefir can prevent UV damage.
Collapse
Affiliation(s)
- Tsutomu Nagira
- Department of Genetic Resources Technology, Faculty of Agriculture, Graduate School of Kyushu University, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Diderich K, Alanazi M, Hoeijmakers JHJ. Premature aging and cancer in nucleotide excision repair-disorders. DNA Repair (Amst) 2011; 10:772-80. [PMID: 21680258 DOI: 10.1016/j.dnarep.2011.04.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During the past decades, the major impact of DNA damage on cancer as 'disease of the genes' has become abundantly apparent. In addition to cancer, recent years have also uncovered a very strong association of DNA damage with many features of (premature) aging. The notion that DNA repair systems protect not only against cancer but also equally against to fast aging has become evident from a systematic, integral analysis of a variety of mouse mutants carrying defects in e.g. transcription-coupled repair with or without an additional impairment of global genome nucleotide excision repair and the corresponding segmental premature aging syndromes in human. A striking correlation between the degree of the DNA repair deficiency and the acceleration of specific progeroid symptoms has been discovered for those repair systems that primarily protect from the cytotoxic and cytostatic effects of DNA damage. These observations are explained from the perspective of nucleotide excision repair mouse mutant and human syndromes. However, similar principles likely apply to other DNA repair pathways including interstrand crosslink repair and double strand break repair and genome maintenance systems in general, supporting the notion that DNA damage constitutes an important intermediate in the process of aging.
Collapse
Affiliation(s)
- K Diderich
- MGC Department of Genetics, CBG Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Saijo M, Takedachi A, Tanaka K. Nucleotide excision repair by mutant xeroderma pigmentosum group A (XPA) proteins with deficiency in interaction with RPA. J Biol Chem 2010; 286:5476-83. [PMID: 21148310 DOI: 10.1074/jbc.m110.172916] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The xeroderma pigmentosum group A protein (XPA) is a core component of nucleotide excision repair (NER). To coordinate early stage NER, XPA interacts with various proteins, including replication protein A (RPA), ERCC1, DDB2, and TFIIH, in addition to UV-damaged or chemical carcinogen-damaged DNA. In this study, we investigated the effects of mutations in the RPA binding regions of XPA on XPA function in NER. XPA binds through an N-terminal region to the middle subunit (RPA32) of the RPA heterotrimer and through a central region that overlaps with its damaged DNA binding region to the RPA70 subunit. In cell-free NER assays, an N-terminal deletion mutant of XPA showed loss of binding to RPA32 and reduced DNA repair activity, but it could still bind to UV-damaged DNA and RPA. In contrast, amino acid substitutions in the central region reduced incisions at the damaged site in the cell-free NER assay, and four of these mutants (K141A, T142A, K167A, and K179A) showed reduced binding to RPA70 but normal binding to damaged DNA. Furthermore, mutants that had one of the four aforementioned substitutions and an N-terminal deletion exhibited lower DNA incision activity and binding to RPA than XPA with only one of these substitutions or the deletion. Taken together, these results indicate that XPA interaction with both RPA32 and RPA70 is indispensable for NER reactions.
Collapse
Affiliation(s)
- Masafumi Saijo
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
19
|
Stubbert LJ, Smith JM, McKay BC. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin. BMC Cancer 2010; 10:207. [PMID: 20470425 PMCID: PMC2889890 DOI: 10.1186/1471-2407-10-207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 05/14/2010] [Indexed: 01/22/2023] Open
Abstract
Background One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. Methods RNA interference (RNAi) was used to reduce the transcription-coupled nucleotide excision repair (TC-NER) capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B) transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. Results These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. Conclusion The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic.
Collapse
Affiliation(s)
- Lawton J Stubbert
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | | | | |
Collapse
|
20
|
Dominguez-Brauer C, Chen YJ, Brauer PM, Pimkina J, Raychaudhuri P. ARF stimulates XPC to trigger nucleotide excision repair by regulating the repressor complex of E2F4. EMBO Rep 2009; 10:1036-1042. [PMID: 19644500 PMCID: PMC2750060 DOI: 10.1038/embor.2009.139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 12/17/2022] Open
Abstract
The tumour suppressor ARF (alternative reading frame), which is mutated or silenced in various tumours, has a crucial role in tumour surveillance to suppress unwarranted cell growth and proliferation. ARF has also been linked to the DNA-damage-induced response of p53 because of its ability to inhibit murine double minute 2 (MDM2). Here, however, we provide genetic evidence for a role of ARF in nucleotide excision repair (NER) that is independent of p53. Cells lacking ARF are deficient in NER. Expression of ARF restores the repair activity, which coincides with increased expression of the damaged-DNA recognition protein xeroderma pigmentosum, complementation group C (XPC). We provide evidence that, by disrupting the interaction between E2F transcription factor 4 (E2F4) and DRTF polypeptide 1 (DP1), ARF reduces the interaction of the E2F4-p130 repressor complex with the promoter of XPC to ensure high-level expression of XPC. Together, our results point to an important 'care-taker'-type tumour-suppression function for ARF in NER through the increased expression of XPC.
Collapse
Affiliation(s)
- Carmen Dominguez-Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, M/C 669, 900 S. Ashland Avenue, Chicago, Illinois 60607, USA
| | - Yi-Ju Chen
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, M/C 669, 900 S. Ashland Avenue, Chicago, Illinois 60607, USA
| | - Patrick M Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, M/C 669, 900 S. Ashland Avenue, Chicago, Illinois 60607, USA
| | - Julia Pimkina
- Division of Medical Sciences, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, M/C 669, 900 S. Ashland Avenue, Chicago, Illinois 60607, USA
| |
Collapse
|
21
|
Chen X, Ding B, LeJeune D, Ruggiero C, Li S. Rpb1 sumoylation in response to UV radiation or transcriptional impairment in yeast. PLoS One 2009; 4:e5267. [PMID: 19384408 PMCID: PMC2668072 DOI: 10.1371/journal.pone.0005267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 03/24/2009] [Indexed: 11/18/2022] Open
Abstract
Covalent modifications of proteins by ubiquitin and the Small Ubiquitin-like MOdifier (SUMO) have been revealed to be involved in a plethora of cellular processes, including transcription, DNA repair and DNA damage responses. It has been well known that in response to DNA damage that blocks transcription elongation, Rpb1, the largest subunit of RNA polymerase II (Pol II), is ubiquitylated and subsequently degraded in mammalian and yeast cells. However, it is still an enigma regarding how Pol II responds to damaged DNA and conveys signal(s) for DNA damage-related cellular processes. We found that Rpb1 is also sumoylated in yeast cells upon UV radiation or impairment of transcription elongation, and this modification is independent of DNA damage checkpoint activation. Ubc9, an E2 SUMO conjugase, and Siz1, an E3 SUMO ligase, play important roles in Rpb1 sumoylation. K1487, which is located in the acidic linker region between the C-terminal domain and the globular domain of Rpb1, is the major sumoylation site. Rpb1 sumoylation is not affected by its ubiquitylation, and vice versa, indicating that the two processes do not crosstalk. Abolishment of Rpb1 sumoylation at K1487 does not affect transcription elongation or transcription coupled repair (TCR) of UV-induced DNA damage. However, deficiency in TCR enhances UV-induced Rpb1 sumoylation, presumably due to the persistence of transcription-blocking DNA lesions in the transcribed strand of a gene. Remarkably, abolishment of Rpb1 sumoylation at K1487 causes enhanced and prolonged UV-induced phosphorylation of Rad53, especially in TCR-deficient cells, suggesting that the sumoylation plays a role in restraining the DNA damage checkpoint response caused by transcription-blocking lesions. Our results demonstrate a novel covalent modification of Rpb1 in response to UV induced DNA damage or transcriptional impairment, and unravel an important link between the modification and the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Xuefeng Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Baojin Ding
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Danielle LeJeune
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Christine Ruggiero
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
22
|
Tremblay M, Teng Y, Paquette M, Waters R, Conconi A. Complementary roles of yeast Rad4p and Rad34p in nucleotide excision repair of active and inactive rRNA gene chromatin. Mol Cell Biol 2008; 28:7504-13. [PMID: 18936173 PMCID: PMC2593431 DOI: 10.1128/mcb.00137-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/26/2008] [Accepted: 10/08/2008] [Indexed: 02/03/2023] Open
Abstract
Nucleotide excision repair (NER) removes a plethora of DNA lesions. It is performed by a large multisubunit protein complex that finds and repairs damaged DNA in different chromatin contexts and nuclear domains. The nucleolus is the most transcriptionally active domain, and in yeast, transcription-coupled NER occurs in RNA polymerase I-transcribed genes (rDNA). Here we have analyzed the roles of two members of the xeroderma pigmentosum group C family of proteins, Rad4p and Rad34p, during NER in the active and inactive rDNA. We report that Rad4p is essential for repair in the intergenic spacer, the inactive rDNA coding region, and for strand-specific repair at the transcription initiation site, whereas Rad34p is not. Rad34p is necessary for transcription-coupled NER that starts about 40 nucleotides downstream of the transcription initiation site of the active rDNA, whereas Rad4p is not. Thus, although Rad4p and Rad34p share sequence homology, their roles in NER in the rDNA locus are almost entirely distinct and complementary. These results provide evidences that transcription-coupled NER and global genome NER participate in the removal of UV-induced DNA lesions from the transcribed strand of active rDNA. Furthermore, nonnucleosome rDNA is repaired faster than nucleosome rDNA, indicating that an open chromatin structure facilitates NER in vivo.
Collapse
Affiliation(s)
- Maxime Tremblay
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Poste 7446, Université de Sherbrooke, 3001 12th Ave. Nord, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
23
|
Cellular concentrations of DDB2 regulate dynamic binding of DDB1 at UV-induced DNA damage. Mol Cell Biol 2008; 28:7402-13. [PMID: 18936169 DOI: 10.1128/mcb.01108-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleotide excision repair (NER) is the principal pathway for counteracting cytotoxic and mutagenic effects of UV irradiation. To provide insight into the in vivo regulation of the DNA damage recognition step of global genome NER (GG-NER), we constructed cell lines expressing fluorescently tagged damaged DNA binding protein 1 (DDB1). DDB1 is a core subunit of a number of cullin 4-RING ubiquitin ligase complexes. UV-activated DDB1-DDB2-CUL4A-ROC1 ubiquitin ligase participates in the initiation of GG-NER and triggers the UV-dependent degradation of its subunit DDB2. We found that DDB1 rapidly accumulates on DNA damage sites. However, its binding to damaged DNA is not static, since DDB1 constantly dissociates from and binds to DNA lesions. DDB2, but not CUL4A, was indispensable for binding of DDB1 to DNA damage sites. The residence time of DDB1 on the damage site is independent of the main damage-recognizing protein of GG-NER, XPC, as well as of UV-induced proteolysis of DDB2. The amount of DDB1 that is temporally immobilized on damaged DNA critically depends on DDB2 levels in the cell. We propose a model in which UV-dependent degradation of DDB2 is important for the release of DDB1 from continuous association to unrepaired DNA and makes DDB1 available for its other DNA damage response functions.
Collapse
|
24
|
Kim TI, Cho PY, Song KJ, Li S, Hong SJ, Park SW, Chai JY, Shin EH. Gene expression of Clonorchis sinensis metacercaria induced by gamma irradiation. Parasitol Res 2008; 102:1143-50. [PMID: 18224473 DOI: 10.1007/s00436-008-0882-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 01/09/2008] [Indexed: 01/01/2023]
Abstract
Gamma-rays are a form of ionizing radiation and produce serious cellular damage to nuclei and organelles. Gamma irradiation induces the expressions of genes involved in DNA repair. Clonorchis sinensis resides in and provokes pathophysiologic changes in the bile ducts of mammals. The C. sinensis metacercariae are unsusceptible or resistant to gamma irradiation with LD50 of 16.5 Gy. Using the annealing control primer-based polymerase chain reaction (PCR) method, 19 genes were found to be up-regulated in C. sinensis metacercariae exposed to gamma rays. Contigs of up-regulated genes (URGs) were retrieved in a C. sinensis expressed sequence tag pool and extended by DNA-walking. Of the 13 URGs annotated putatively as functional genes, five URGs were associated with energy metabolism, six with protein processing, and the other two with DNA repair protein RAD23 and inhibitor of apoptosis protein. Four URGs were confirmed up-regulated by gamma irradiation by quantitative real-time PCR. One unknown gene, which was up-regulated to the greatest extent, might contribute to early recovery from gamma-irradiation-induced damage. The up-regulations of genes encoding DNA repair, protein processing, and energy metabolism proteins suggests that increases in gene products orchestrate DNA lesion repair and recover cellular functions in gamma-irradiated C. sinensis metacercariae.
Collapse
Affiliation(s)
- Tae Im Kim
- Department of Parasitology, Chung-Ang University College of Medicine, Tongjak-gu, Seoul 156-756, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Heydari AR, Unnikrishnan A, Lucente LV, Richardson A. Caloric restriction and genomic stability. Nucleic Acids Res 2007; 35:7485-96. [PMID: 17942423 PMCID: PMC2190719 DOI: 10.1093/nar/gkm860] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caloric restriction (CR) reduces the incidence and progression of spontaneous and induced tumors in laboratory rodents while increasing mean and maximum life spans. It has been suggested that CR extends longevity and reduces age-related pathologies by reducing the levels of DNA damage and mutations that accumulate with age. This hypothesis is attractive because the integrity of the genome is essential to a cell/organism and because it is supported by observations that both cancer and immunological defects, which increase significantly with age and are delayed by CR, are associated with changes in DNA damage and/or DNA repair. Over the last three decades, numerous laboratories have examined the effects of CR on the integrity of the genome and the ability of cells to repair DNA. The majority of studies performed indicate that the age-related increase in oxidative damage to DNA is significantly reduced by CR. Early studies suggest that CR reduces DNA damage by enhancing DNA repair. With the advent of genomic technology and our increased understanding of specific repair pathways, CR has been shown to have a significant effect on major DNA repair pathways, such as NER, BER and double-strand break repair.
Collapse
Affiliation(s)
- Ahmad R Heydari
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
26
|
Ding B, Ruggiero C, Chen X, Li S. Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast. DNA Repair (Amst) 2007; 6:1661-9. [PMID: 17644494 PMCID: PMC2096704 DOI: 10.1016/j.dnarep.2007.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/08/2007] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. A specialized NER pathway, called transcription coupled NER (TC-NER), refers to preferential repair in the transcribed strand of an actively transcribed gene. To be distinguished from TCR-NER, the genome-wide NER process is termed as global genomic NER (GG-NER). In Saccharomyces cerevisiae, GG-NER is dependent on Rad7, whereas TC-NER is mediated by Rad26, the homolog of the human Cockayne syndrome group B protein, and by Rpb9, a non-essential subunit of RNA polymerase II. Tfb5, the tenth subunit of the transcription/repair factor TFIIH, is implicated in one group of the human syndrome trichothiodystrophy. Here, we show that Tfb5 plays different roles in different NER pathways in yeast. No repair takes place in the non-transcribed strand of a gene in tfb5 cells, or in both strands of a gene in rad26 rpb9 tfb5 cells, indicating that Tfb5 is essential for GG-NER. However, residual repair occurs in the transcribed strand of a gene in tfb5 cells, suggesting that Tfb5 is important, but not absolutely required for TC-NER. Interestingly, substantial repair occurs in the transcribed strand of a gene in rad7 tfb5 and rad7 rpb9 tfb5 cells, indicating that, in the absence of GG-NER, Tfb5 is largely dispensable for Rad26 mediated TC-NER. Furthermore, we show that no repair takes place in the transcribed strand of a gene in rad7 rad26 tfb5 cells, suggesting that Tfb5 is required for Rpb9 mediated TC-NER. Taken together, our results indicate that Tfb5 is partially dispensable for Rad26 mediated TC-NER, especially in GG-NER deficient cells. However, this TFIIH subunit is required for other NER pathways.
Collapse
Affiliation(s)
| | | | | | - Shisheng Li
- *Corresponding Author [225-578-9102(Phone)/225-578-9895(FAX)/ ]
| |
Collapse
|
27
|
Chen X, Ruggiero C, Li S. Yeast Rpb9 plays an important role in ubiquitylation and degradation of Rpb1 in response to UV-induced DNA damage. Mol Cell Biol 2007; 27:4617-25. [PMID: 17452455 PMCID: PMC1951484 DOI: 10.1128/mcb.00404-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/09/2007] [Accepted: 04/11/2007] [Indexed: 01/28/2023] Open
Abstract
Rpb9, a nonessential subunit of RNA polymerase II (Pol II), has multiple transcription-related functions in Saccharomyces cerevisiae, including transcription elongation and transcription-coupled repair (TCR). Here we show that, in response to UV radiation, Rpb9 also functions in promoting ubiquitylation and degradation of Rpb1, the largest subunit of Pol II. This function of Rpb9 is not affected by any pathways of nucleotide excision repair, including TCR mediated by Rpb9 itself and by Rad26. Rpb9 is composed of three distinct domains: the N-terminal Zn1, the C-terminal Zn2, and the central linker. The Zn2 domain, which is dispensable for transcription elongation and TCR functions, is essential for Rpb9 to promote Rpb1 degradation, whereas the Zn1 and linker domains, which are essential for transcription elongation and TCR functions, play a subsidiary role in Rpb1 degradation. Coimmunoprecipitation analysis suggests that almost the full length of Rpb9 is required for a strong interaction with the core Pol II: deletion of the Zn2 domain causes dramatically weakened interaction, whereas deletion of Zn1 and the linker resulted in undetectable interaction. Furthermore, we show that Rpb1, rather than the whole Pol II complex, is degraded in response to UV radiation and that the degradation is primarily mediated by the 26S proteasome.
Collapse
Affiliation(s)
- Xuefeng Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
28
|
Alrefai RH, Winter DB, Bohr VA, Gearhart PJ. Nucleotide excision repair in an immunoglobulin variable gene is less efficient than in a housekeeping gene. Mol Immunol 2007; 44:2800-5. [PMID: 17336386 PMCID: PMC1925044 DOI: 10.1016/j.molimm.2007.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/19/2007] [Accepted: 01/20/2007] [Indexed: 11/28/2022]
Abstract
Immunoglobulin variable genes undergo several unusual genetic modifications to generate diversity, such as gene rearrangement, gene conversion, somatic hypermutation, and heavy chain class switch recombination. In view of these specialized processes, we examined the possibility that variable genes have intrinsic characteristics that allow them to be processed differently in the course of basic DNA transactions as well. This hypothesis was studied in an experimental system to gauge the relative efficiency of a DNA repair pathway, nucleotide excision repair, on a variable gene and a housekeeping gene. DNA damage was induced by ultraviolet light in murine hybridoma B cells, and repair was measured over time by an alkaline Southern blot technique, which detected removal of cyclobutane pyrimidine dimers. The rate of DNA repair in a rearranged variable gene, V(H)S107, was compared to that in the dihydrofolate reductase gene. Although both genes were actively transcribed, the V(H)S107 gene was repaired less efficiently than the dihydrofolate reductase gene. These results suggest that variable genes have inherent properties that affect the efficiency of nucleotide excision repair.
Collapse
Affiliation(s)
| | | | | | - Patricia J. Gearhart
- * Corresponding author. Tel.:+1 410 558 8561; fax: +1 410 558 8157. E-mail address: (P.J. Gearhart)
| |
Collapse
|
29
|
Kobayashi K, Karran P, Oda S, Yanaga K. Involvement of mismatch repair in transcription-coupled nucleotide excision repair. Hum Cell 2006; 18:103-15. [PMID: 17022143 DOI: 10.1111/j.1749-0774.2005.tb00001.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nucleotide excision repair (NER) is a versatile repair pathway to remove a variety of DNA distorting lesions. NER operate via two subpathways, that are global genome repair (GGR) and transcription coupled nucleotide excision repair (TCR). GGR removes DNA damage from the genome over all, whilst TCR is selectively directed to DNA lesions in the transcribed strand of expressed genes. The damage recognition step in GGR and TCR is also different. In GGR, the XPC-HR23B complex is an essential factor to recruit proteins for subsequent process. In TCR, a stalled RNA polymerase II is a presumed trigger to initiate TCR machinery in concert with Cockayne syndrome (CS) proteins. Mismatch repair (MMR) keeps fidelity of DNA replication through correcting replication errors. A distinctive feature of MMR pathway is that this repair is directed exclusively to the newly synthesized strand. This characteristic contributes to mediation of cytotoxity by methylating agents, and MMR deficient cells are more resistant to methylating agents than MMR proficient cells. The interaction between MMR and NER has been reported by several investigators. However, the most controversial problem is the role of MMR in TCR TCR in E. coli requires the participation of the MutS and MutL MMR proteins. On the contrary, TCR in yeast is independent of the yeast MutS and MutL homologues. To date, in mammalian cells, there are conflicting evidences for the association of MMR with TCR pathway. The aim of this article is to provide a brief overview of the recent literature on this subject.
Collapse
|
30
|
Li S, Chen X, Ruggiero C, Ding B, Smerdon MJ. Modulation of Rad26- and Rpb9-mediated DNA repair by different promoter elements. J Biol Chem 2006; 281:36643-51. [PMID: 17023424 PMCID: PMC1913475 DOI: 10.1074/jbc.m604885200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad26, the yeast homologue of human Cockayne syndrome group B protein, and Rpb9, a nonessential subunit of RNA polymerase II, have been shown to mediate two subpathways of transcription-coupled DNA repair in yeast. Here we show that Rad26- and Rpb9-mediated repair in the yeast GAL1 gene is differently modulated by different promoter elements. The initiation site and efficiency of Rad26-mediated repair in the transcribed strand are determined by the upstream activating sequence (UAS) but not by the TATA or local sequences. The role of UAS in determining the Rad26-mediated repair is not through loading of RNA polymerase II or the transcriptional regulatory complex SAGA. However, both the UAS and the TATA sequences are essential for confining Rad26-mediated repair to the transcribed strand. Mutation of the TATA sequence, which greatly reduces transcription, or deletion of the TATA or mutation of the UAS, which completely abolishes transcription, causes Rad26-mediated repair to occur in both strands. Rpb9-mediated repair only occurs in the transcribed strand and is efficient only in the presence of both TATA and UAS sequences. Also, the efficiency of Rpb9-mediated repair is dependent on the SAGA complex. Our results suggest that Rad26-mediated repair can be either transcription-coupled, provided that a substantial level of transcription is present, or transcription-independent, if the transcription is too low or absent. In contrast, Rpb9-mediated repair is strictly transcription-coupled and is efficient only when the transcription level is high.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | |
Collapse
|
31
|
Leibeling D, Laspe P, Emmert S. Nucleotide excision repair and cancer. J Mol Histol 2006; 37:225-38. [PMID: 16855787 DOI: 10.1007/s10735-006-9041-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 06/21/2006] [Indexed: 12/14/2022]
Abstract
Nucleotide excision repair (NER) is the most versatile and best studied DNA repair system in humans. NER can repair a variety of bulky DNA damages including UV-light induced DNA photoproducts. NER consists of a multistep process in which the DNA lesion is recognized and demarcated by DNA unwinding. Then, an approximately 28 bp DNA damage containing oligonucleotide is excised followed by gap filling using the undamaged DNA strand as a template. The consequences of defective NER are demonstrated by three rare autosomal-recessive NER-defective syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). XP patients show severe sun sensitivity, freckling in sun exposed skin, and develop skin cancers already during childhood. CS patients exhibit sun sensitivity, severe neurologic abnormalities, and cachectic dwarfism. Clinical symptoms of TTD patients include sun sensitivity, freckling in sun exposed skin areas, and brittle sulfur-deficient hair. In contrast to XP patients, CS and TTD patients are not skin cancer prone. Studying these syndromes can increase the knowledge of skin cancer development including cutaneous melanoma as well as basal and squamous cell carcinoma in general that may lead to new preventional and therapeutic anticancer strategies in the normal population.
Collapse
Affiliation(s)
- Diana Leibeling
- Department of Dermatology and Venerology, Georg-August-University Goettingen, Von-Siebold-Strasse 3, 37075 Goettingen, Germany
| | | | | |
Collapse
|
32
|
Jiang G, Sancar A. Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences. Mol Cell Biol 2006; 26:39-49. [PMID: 16354678 PMCID: PMC1317637 DOI: 10.1128/mcb.26.1.39-49.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a chromatin immunoprecipitation method for analyzing the binding of repair and checkpoint proteins to DNA base lesions in any region of the human genome. Using this method, we investigated the recruitment of DNA damage checkpoint proteins RPA, Rad9, and ATR to base damage induced by UV and acetoxyacetylaminofluorene in transcribed and nontranscribed regions in wild-type and excision repair-deficient human cells in G1 and S phases of the cell cycle. We find that all 3 damage sensors tested assemble at the site or in the vicinity of damage in the absence of DNA replication or repair and that transcription enhances recruitment of checkpoint proteins to the damage site. Furthermore, we find that UV irradiation of human cells defective in excision repair leads to phosphorylation of Chk1 kinase in both G1 and S phase of the cell cycle, suggesting that primary DNA lesions as well as stalled transcription complexes may act as signals to initiate the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Biochemistry and Biophysics, Mary Ellen Jones Building CB 7260, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
33
|
Prehn RT. The role of mutation in the new cancer paradigm. Cancer Cell Int 2005; 5:9. [PMID: 15854226 PMCID: PMC1090602 DOI: 10.1186/1475-2867-5-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 04/26/2005] [Indexed: 11/16/2022] Open
Abstract
The almost universal belief that cancer is caused by mutation may gradually be giving way to the belief that cancer begins as a cellular adaptation that involves the local epigenetic silencing of various genes. In my own interpretation of the new epigenetic paradigm, the genes epigenetically suppressed are genes that normally serve in post-embryonic life to suppress and keep suppressed those other genes upon which embryonic development depends. Those other genes, if not silenced or suppressed in the post-embryonic animal, become, I suggest, the oncogenes that are the basis of neoplasia. Mutations that occur in silenced genes supposedly go unrepaired and are, therefore, postulated to accumulate, but such mutations probably play little or no causative role in neoplasia because they occur in already epigenetically silenced genes. These mutations probably often serve to make the silencing, and therefore the cancer, epigenetically irreversible.
Collapse
|
34
|
Thorel F, Constantinou A, Dunand-Sauthier I, Nouspikel T, Lalle P, Raams A, Jaspers NGJ, Vermeulen W, Shivji MKK, Wood RD, Clarkson SG. Definition of a short region of XPG necessary for TFIIH interaction and stable recruitment to sites of UV damage. Mol Cell Biol 2004; 24:10670-80. [PMID: 15572672 PMCID: PMC533987 DOI: 10.1128/mcb.24.24.10670-10680.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XPG is the human endonuclease that cuts 3' to DNA lesions during nucleotide excision repair. Missense mutations in XPG can lead to xeroderma pigmentosum (XP), whereas truncated or unstable XPG proteins cause Cockayne syndrome (CS), normally yielding life spans of <7 years. One XP-G individual who had advanced XP/CS symptoms at 28 years has been identified. The genetic, biochemical, and cellular defects in this remarkable case provide insight into the onset of XP and CS, and they reveal a previously unrecognized property of XPG. Both of this individual's XPG alleles produce a severely truncated protein, but an infrequent alternative splice generates an XPG protein lacking seven internal amino acids, which can account for his very slight cellular UV resistance. Deletion of XPG amino acids 225 to 231 does not abolish structure-specific endonuclease activity. Instead, this region is essential for interaction with TFIIH and for the stable recruitment of XPG to sites of local UV damage after the prior recruitment of TFIIH. These results define a new functional domain of XPG, and they demonstrate that recruitment of DNA repair proteins to sites of damage does not necessarily lead to productive repair reactions. This observation has potential implications that extend beyond nucleotide excision repair.
Collapse
Affiliation(s)
- Fabrizio Thorel
- Department of Microbiology and Molecular Medicine, University Medical Centre, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
de Waard H, de Wit J, Andressoo JO, van Oostrom CTM, Riis B, Weimann A, Poulsen HE, van Steeg H, Hoeijmakers JHJ, van der Horst GTJ. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol Cell Biol 2004; 24:7941-8. [PMID: 15340056 PMCID: PMC515046 DOI: 10.1128/mcb.24.18.7941-7948.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutations in the CSA and CSB genes cause Cockayne syndrome, a rare inherited disorder characterized by UV sensitivity, severe neurological abnormalities, and progeriod symptoms. Both gene products function in the transcription-coupled repair (TCR) subpathway of nucleotide excision repair (NER), providing the cell with a mechanism to remove transcription-blocking lesions from the transcribed strands of actively transcribed genes. Besides a function in TCR of NER lesions, a role of CSB in (transcription-coupled) repair of oxidative DNA damage has been suggested. In this study we used mouse models to compare the effect of a CSA or a CSB defect on oxidative DNA damage sensitivity at the levels of the cell and the intact organism. In contrast to CSB(-/-) mouse embryonic fibroblasts (MEFs), CSA(-/-) MEFs are not hypersensitive to gamma-ray or paraquat treatment. Similar results were obtained for keratinocytes. In contrast, both CSB(-/-) and CSA(-/-) embryonic stem cells show slight gamma-ray sensitivity. Finally, CSB(-/-) but not CSA(-/-) mice fed with food containing di(2-ethylhexyl)phthalate (causing elevated levels of oxidative DNA damage in the liver) show weight reduction. These findings not only uncover a clear difference in oxidative DNA damage sensitivity between CSA- and CSB-deficient cell lines and mice but also show that sensitivity to oxidative DNA damage is not a uniform characteristic of Cockayne syndrome. This difference in the DNA damage response between CSA- and CSB-deficient cells is unexpected, since until now no consistent differences between CSA and CSB patients have been reported. We suggest that the CSA and CSB proteins in part perform separate roles in different DNA damage response pathways.
Collapse
Affiliation(s)
- Harm de Waard
- MGC, Department of Cell Biology and Genetics, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee DF, Drouin R, Pitsikas P, Rainbow AJ. Detection of an involvement of the human mismatch repair genes hMLH1 and hMSH2 in nucleotide excision repair is dependent on UVC fluence to cells. Cancer Res 2004; 64:3865-70. [PMID: 15172995 DOI: 10.1158/0008-5472.can-03-3193] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is conflicting evidence for the role of the mismatch repair (MMR) genes hMLH1 and hMSH2 in the transcription-coupled repair (TCR) pathway of nucleotide excision repair. In the present work, we have examined the role of these MMR genes in nucleotide excision repair using two reporter gene assays. AdHCMVlacZ is a replication-deficient recombinant adenovirus that expresses the beta-galactosidase reporter gene under the control of the human cytomegalovirus immediate early promoter. We have reported previously a reduced host cell reactivation (HCR) for beta-galactosidase expression of UVC-irradiated AdHCMVlacZ in TCR-deficient Cockayne syndrome (CS) fibroblasts compared with normal fibroblasts, indicating that HCR depends, at least in part, on TCR. In addition, we have reported that UVC-enhanced expression of the undamaged reporter gene is induced at lower UVC fluences to cells and at higher levels after low UVC fluences in TCR-deficient compared with normal human fibroblasts, suggesting that persistent damage in active genes triggers increased activity from the human cytomegalovirus-driven reporter construct. We have examined HCR and UV-enhanced expression of the reporter gene in hMLH1-deficient HCT116 human colon adenocarcinoma cells and HCT116-chr3 cells (the MMR-proficient counterpart of HCT116) as well as hMSH2-deficient LoVo human colon adenocarcinoma cells and their hMSH2-proficient counterpart SW480 cells. We show a greater UV-enhanced expression of the undamaged reporter gene after low UVC exposure in HCT116 compared with HCT116-chr3 cells and in LoVo compared with SW480 cells. We show also a reduced HCR in HCT116 compared with HCT116-chr3 cells and in LoVo compared with SW480 cells. However, the reduction in HCR was less or absent when cells were pretreated with UVC. These results suggest that detection of an involvement of hMLH1 and hMSH2 in TCR is dependent on UVC (254 nm) fluence to cells.
Collapse
Affiliation(s)
- David F Lee
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
37
|
Feng Z, Hu W, Chasin LA, Tang MS. Effects of genomic context and chromatin structure on transcription-coupled and global genomic repair in mammalian cells. Nucleic Acids Res 2004; 31:5897-906. [PMID: 14530438 PMCID: PMC219485 DOI: 10.1093/nar/gkg808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been long recognized that in mammalian cells, DNA damage is preferentially repaired in the transcribed strand of transcriptionally active genes. However, recently, we found that in Chinese hamster ovary (CHO) cells, UV-induced cyclobutane pyrimidine dimers (CPDs) are preferentially repaired in both the transcribed and the non-transcribed strand of exon 1 of the dihydrofolate reductase (DHFR) gene. We mapped CPD repair at the nucleotide level in the transcriptionally active DHFR gene and the adjacent upstream OST gene, both of which have been translocated to two chromosomal positions that differ from their normal endogeneous positions. This allowed us to study the role of transcription, genomic context and chromatin structure on repair. We found that CPD repair in the transcribed strand is the same for endogenous and translocated DHFR genes, and the order of repair efficiency is exon 1 > exon 2 > exon 5. However, unlike the endogenous DHFR gene, efficient repair of CPDs in the non-transcribed strand of exon 1 is not observed in the translocated DHFR gene. CPDs are efficiently repaired in the transcribed strand in endogenous and translocated OST genes, which indicates that efficient repair in exon 1 of the non-transcribed strand of the endogenous DHFR gene is not due to the extension of transcription-coupled repair of the OST gene. Using micrococcal nuclease digestion, we probed the chromatin structure in the DHFR gene and found that chromatin structure in the exon 1 region of endogenous DHFR is much more open than at translocated loci. These results suggest that while transcription-coupled repair is transcription dependent, global genomic repair is greatly affected by chromatin structure.
Collapse
Affiliation(s)
- Zhaohui Feng
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA and. Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
38
|
Masson C, Menaa F, Pinon-Lataillade G, Frobert Y, Chevillard S, Radicella JP, Sarasin A, Angulo JF. Global genome repair is required to activate KIN17, a UVC-responsive gene involved in DNA replication. Proc Natl Acad Sci U S A 2003; 100:616-21. [PMID: 12525703 PMCID: PMC141045 DOI: 10.1073/pnas.0236176100] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UV light provokes DNA lesions that interfere with replication and transcription. These lesions may compromise cell viability and usually are removed by nucleotide excision repair (NER). In humans, inactivation of NER is associated with three rare autosomal recessive inherited disorders: xeroderma pigmentosum (XP), Cockayne syndrome, and trichothiodystrophy. The NER earliest step is lesion recognition by a complex formed by XPC and HHR23B proteins. In a subsequent step, XPA protein becomes associated to the repair complex. Here we investigate whether XPA and XPC proteins, involved in global genome repair, may contribute to a signal transduction pathway regulating the response to UVC-induced lesions. We monitored the expression of several UVC-induced genes in cells deficient in either a transduction pathway or mutated on an NER gene. Expression of the KIN17 gene is induced after UVC irradiation independently of p53 and of activating transcription factor 2. However, in human cells derived from XPA or XPC patients the UVC-induced accumulation of KIN17 RNA and protein is abolished. Our results indicate that the presence of functional XPA and XPC proteins is essential for the up-regulation of the KIN17 gene after UVC irradiation. They also show that the integrity of global genome repair is required to trigger KIN17 gene expression and probably other UVC-responsive genes.
Collapse
Affiliation(s)
- Christel Masson
- Laboratoire de Génétique de la Radiosensibilité, Département de Radiobiologie et de Radiopathologie (DRR), Direction des Sciences du Vivant (DSV), Commissariat à l'Energie Atomique (CEA), B.P. 6, 92265 Fontenay aux Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Adimoolam S, Ford JM. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci U S A 2002; 99:12985-90. [PMID: 12242345 PMCID: PMC130573 DOI: 10.1073/pnas.202485699] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The p53 tumor suppressor gene product is a transcription factor involved in cell-cycle regulation, apoptosis, and DNA repair. We and others have shown that p53 is required for efficient nucleotide excision repair (NER) of UV-induced DNA lesions. p53-deficient cells are defective in the repair of UV photoproducts in genomic DNA but proficient for transcription-coupled repair. Therefore, we examined whether p53 regulates the expression of genes required for global genomic repair. In this study, we demonstrate that the mRNA and protein products of the xeroderma pigmentosum group C (XPC) gene are UV-inducible in a time- and dose-dependent manner in human WI38 fibroblasts and HCT116 colorectal cancer cells wild type for p53. However, no significant induction of XPC was observed in p53-deficient counterparts to these cells. Furthermore, regulated expression of wild-type p53 in p53 null Li-Fraumeni syndrome human fibroblasts significantly augmented the expression of XPC protein. Analysis of the human XPC gene sequence revealed a putative p53 response element in the XPC promoter that was capable of mediating sequence-specific DNA binding to p53 in vitro. These results provide strong evidence that the NER gene XPC is a DNA damage-inducible and p53-regulated gene and likely plays a role in the p53-dependent NER pathway.
Collapse
Affiliation(s)
- Shanthi Adimoolam
- Departments of Medicine (Oncology) and Genetics, Stanford University School of Medicine, 1115 CCSR Building, 269 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
40
|
Surrallés J, Ramírez MJ, Marcos R, Natarajan AT, Mullenders LHF. Clusters of transcription-coupled repair in the human genome. Proc Natl Acad Sci U S A 2002; 99:10571-4. [PMID: 12142466 PMCID: PMC124978 DOI: 10.1073/pnas.162278199] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Indexed: 11/18/2022] Open
Abstract
A specialized nucleotide excision repair pathway known as transcription-coupled repair (TCR) counteracts the toxic effects of DNA damage in transcriptionally active genes. The clustering of active genes into gene-rich chromosomal domains predicts that the sites of TCR are unevenly distributed through the genome. To elucidate the genomic organization and chromosomal localization of TCR, we isolated DNA fragments encompassing TCR-mediated repair sites from UV-C irradiated xeroderma pigmentosum group C cells, which can only repair the transcribed strand of active genes. This DNA was used as a molecular probe to visualize TCR in normal metaphase spreads by reverse fluorescence in situ hybridization. Whereas DNA repair sites in normal human cells are evenly distributed through the genome, TCR is highly localized at specific chromosomal domains. Particularly, clusters of TCR sites were identified at early-replicating gene-rich bands and telomeric regions of several chromosomes. High gene-density chromosomes such as chromosome 19 and the GC-rich domains of several chromosomes (T bands) are preferential locations of TCR. Our results demonstrate that the intragenomic localization of TCR resembles the uneven distribution of the human transcriptome, CpG islands, and hyperacetylated histones, enforcing the basic link between DNA repair, transcription, and nuclear organization in a complex genome.
Collapse
Affiliation(s)
- Jordi Surrallés
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
41
|
Abstract
UV-damaged DNA-binding protein (UV-DDB) is composed of two subunits, DDB1 (p127) and DDB2 (p48). Mutations in the DDB2 gene inactivate UV-DDB in individuals from complementation group E of xeroderma pigmentosum (XP-E), an autosomal recessive disease characterized by sun sensitivity, severe risk for skin cancer and defective nucleotide excision repair. UV-DDB is also deficient in many rodent tissues, exposing a shortcoming in rodent models for cancer. In vitro, UV-DDB binds to cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts and other DNA lesions, stimulating the excision of CPDs, and to a lesser extent, of 6-4 photoproducts. In vivo, UV-DDB plays an important role in the p53-dependent response of mammalian cells to DNA damage. When cells are exposed to UV, the resulting accumulation of p53 activates DDB2 transcription, which leads to increased levels of UV-DDB. Binding of UV-DDB to CPDs targets these lesions for global genomic repair, suppressing mutations without affecting UV survival. Apparently, cells are able to survive with unrepaired CPDs because of the activity of bypass DNA polymerases. Finally, there is evidence that UV-DDB may have roles in the cell that are distinct from DNA repair.
Collapse
Affiliation(s)
- Jean Tang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5151, USA
| | | |
Collapse
|
42
|
Ng JMY, Vrieling H, Sugasawa K, Ooms MP, Grootegoed JA, Vreeburg JTM, Visser P, Beems RB, Gorgels TGMF, Hanaoka F, Hoeijmakers JHJ, van der Horst GTJ. Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B. Mol Cell Biol 2002; 22:1233-45. [PMID: 11809813 PMCID: PMC134644 DOI: 10.1128/mcb.22.4.1233-1245.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mHR23B encodes one of the two mammalian homologs of Saccharomyces cerevisiae RAD23, a ubiquitin-like fusion protein involved in nucleotide excision repair (NER). Part of mHR23B is complexed with the XPC protein, and this heterodimer functions as the main damage detector and initiator of global genome NER. While XPC defects exist in humans and mice, mutations for mHR23A and mHR23B are not known. Here, we present a mouse model for mHR23B. Unlike XPC-deficient cells, mHR23B(-/-) mouse embryonic fibroblasts are not UV sensitive and retain the repair characteristics of wild-type cells. In agreement with the results of in vitro repair studies, this indicates that mHR23A can functionally replace mHR23B in NER. Unexpectedly, mHR23B(-/-) mice show impaired embryonic development and a high rate (90%) of intrauterine or neonatal death. Surviving animals display a variety of abnormalities, including retarded growth, facial dysmorphology, and male sterility. Such abnormalities are not observed in XPC and other NER-deficient mouse mutants and point to a separate function of mHR23B in development. This function may involve regulation of protein stability via the ubiquitin/proteasome pathway and is not or only in part compensated for by mHR23A.
Collapse
Affiliation(s)
- Jessica M Y Ng
- MGC-Department of Cell Biology and Genetics, Centre for Biomedical Genetics, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Missura M, Buterin T, Hindges R, Hübscher U, Kaspárková J, Brabec V, Naegeli H. Double-check probing of DNA bending and unwinding by XPA-RPA: an architectural function in DNA repair. EMBO J 2001; 20:3554-64. [PMID: 11432842 PMCID: PMC125508 DOI: 10.1093/emboj/20.13.3554] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The multiprotein factor composed of XPA and replication protein A (RPA) is an essential subunit of the mammalian nucleotide excision repair system. Although XPA-RPA has been implicated in damage recognition, its activity in the DNA repair pathway remains controversial. By replacing DNA adducts with mispaired bases or non-hybridizing analogues, we found that the weak preference of XPA and RPA for damaged substrates is entirely mediated by indirect readout of DNA helix conformations. Further screening with artificially distorted substrates revealed that XPA binds most efficiently to rigidly bent duplexes but not to single-stranded DNA. Conversely, RPA recognizes single-stranded sites but not backbone bending. Thus, the association of XPA with RPA generates a double-check sensor that detects, simultaneously, backbone and base pair distortion of DNA. The affinity of XPA for sharply bent duplexes, characteristic of architectural proteins, is not compatible with a direct function during recognition of nucleotide lesions. Instead, XPA in conjunction with RPA may constitute a regulatory factor that monitors DNA bending and unwinding to verify the damage-specific localization of repair complexes or control their correct three-dimensional assembly.
Collapse
Affiliation(s)
| | | | - Robert Hindges
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, August Forel-Strasse 1, 8008 Zürich,
Institute of Veterinary Biochemistry, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland and Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno, Czech Republic Corresponding author e-mail:
| | - Ulrich Hübscher
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, August Forel-Strasse 1, 8008 Zürich,
Institute of Veterinary Biochemistry, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland and Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno, Czech Republic Corresponding author e-mail:
| | - Jana Kaspárková
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, August Forel-Strasse 1, 8008 Zürich,
Institute of Veterinary Biochemistry, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland and Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno, Czech Republic Corresponding author e-mail:
| | - Viktor Brabec
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, August Forel-Strasse 1, 8008 Zürich,
Institute of Veterinary Biochemistry, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland and Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno, Czech Republic Corresponding author e-mail:
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, August Forel-Strasse 1, 8008 Zürich,
Institute of Veterinary Biochemistry, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland and Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno, Czech Republic Corresponding author e-mail:
| |
Collapse
|
44
|
Sugasawa K, Okamoto T, Shimizu Y, Masutani C, Iwai S, Hanaoka F. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev 2001; 15:507-21. [PMID: 11238373 PMCID: PMC312644 DOI: 10.1101/gad.866301] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.
Collapse
Affiliation(s)
- K Sugasawa
- Cellular Physiology Laboratory, RIKEN, Institute of Physical and Chemical Research, Saitama 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Hara R, Mo J, Sancar A. DNA damage in the nucleosome core is refractory to repair by human excision nuclease. Mol Cell Biol 2000; 20:9173-81. [PMID: 11094069 PMCID: PMC102175 DOI: 10.1128/mcb.20.24.9173-9181.2000] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the effect of nucleosomes on nucleotide excision repair in humans, we prepared a mononucleosome containing a (6-4) photoproduct in the nucleosome core and examined its repair with the reconstituted human excision nuclease system and with cell extracts. Nucleosomal DNA is repaired at a rate of about 10% of that for naked DNA in both systems. These results are in agreement with in vivo data showing a considerably slower rate of repair of overall genomic DNA relative to that for transcriptionally active DNA. Furthermore, our results indicate that the first-order packing of DNA in nucleosomes is a primary determinant of slow repair of DNA in chromatin.
Collapse
Affiliation(s)
- R Hara
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
46
|
Nitta M, Saijo M, Kodo N, Matsuda T, Nakatsu Y, Tamai H, Tanaka K. A novel cytoplasmic GTPase XAB1 interacts with DNA repair protein XPA. Nucleic Acids Res 2000; 28:4212-8. [PMID: 11058119 PMCID: PMC113144 DOI: 10.1093/nar/28.21.4212] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Revised: 09/13/2000] [Accepted: 09/13/2000] [Indexed: 11/14/2022] Open
Abstract
The xeroderma pigmentosum group A protein (XPA) plays a central role in nucleotide excision repair (NER). To identify proteins that bind to XPA, we screened a HeLa cDNA library using the yeast two-hybrid system. Here we report a novel cytoplasmic GTP-binding protein, designated XPA binding protein 1 (XAB1). The deduced amino acid sequence of XAB1 consisted of 374 residues with a molecular weight of 41 kDa and an isoelectric point of 4.65. Sequence analysis revealed that XAB1 has four sequence motifs G1-G4 of the GTP-binding protein family in the N-terminal half. XAB1 also contains an acidic region in the C-terminal portion. Northern blot analysis showed that XAB1 mRNA is expressed ubiquitously, and immunofluorescence analysis revealed that XAB1 is localized mainly in the cytoplasm. Consistent with the GTP-binding motif, purified recombinant XAB1 protein has intrinsic GTPase activity. Using the yeast two-hybrid system, we elucidated that XAB1 binds to the N-terminal region of XPA. The deletion of five amino acids, residues 30-34 of XPA, required for nuclear localization of XPA abolished the interaction with XAB1. These results suggest that XAB1 is a novel cytoplasmic GTPase involved in nuclear localization of XPA.
Collapse
Affiliation(s)
- M Nitta
- Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
van Oosten M, Rebel H, Friedberg EC, van Steeg H, van der Horst GT, van Kranen HJ, Westerman A, van Zeeland AA, Mullenders LH, de Gruijl FR. Differential role of transcription-coupled repair in UVB-induced G2 arrest and apoptosis in mouse epidermis. Proc Natl Acad Sci U S A 2000; 97:11268-73. [PMID: 11005836 PMCID: PMC17189 DOI: 10.1073/pnas.200226697] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nucleotide excision repair (NER), apoptosis, and cell-cycle regulation are major defense mechanisms against the carcinogenic effects of UVB light. NER eliminates UVB-induced DNA photolesions via two subpathways: global genome repair (GGR) and transcription-coupled repair (TCR). Defects in NER result in the human disorders xeroderma pigmentosum (XP) and Cockayne syndrome (CS), displaying severe UV sensitivity and in the case of XP, cancer proneness. We investigated the impact of deficiencies in NER subpathways on apoptosis, hyperplasia, and cell cycle progression in the epidermis of UVB-exposed CS group B (Csb(-/-)) mice (no TCR), XP group C (Xpc(-/-)) mice (no GGR), and XP group A (Xpa(-/-)) mice (no TCR and no GGR). On UVB treatment (250 J/m(2)), Xpa(-/-) and Csb(-/-) mice revealed an extensive apoptotic response in the skin, a blockage of cell cycle progression of epidermal cells, and strong hyperplasia. Interestingly, the absence of this apoptotic response in the skin of wild-type and Xpc(-/-) mice coincided with the ability of epidermal cells to enter the S phase. However, only epidermal cells of Xpc(-/-) mice subsequently became arrested in the G(2) phase. Our data demonstrate that TCR (and/or restoration of UVB-inhibited transcription) enables damaged cells to progress through S phase and prevents the induction of apoptosis and hyperplasia. G(2) arrest is manifest only under conditions of proficient TCR in combination with deficient GGR, indicating that epidermal cells become arrested in the G(2) phase as a result of persisting damage in their genome.
Collapse
Affiliation(s)
- M van Oosten
- Department of Radiation Genetics and Chemical Mutagenesis MGC, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tang JY, Hwang BJ, Ford JM, Hanawalt PC, Chu G. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell 2000; 5:737-44. [PMID: 10882109 PMCID: PMC2894271 DOI: 10.1016/s1097-2765(00)80252-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UV-damaged DNA-binding activity (UV-DDB) is deficient in some xeroderma pigmentosum group E individuals due to mutation of the p48 gene, but its role in DNA repair has been obscure. We found that UV-DDB is also deficient in cell lines and primary tissues from rodents. Transfection of p48 conferred UV-DDB to hamster cells, and enhanced removal of cyclobutane pyrimidine dimers (CPDs) from genomic DNA and from the nontranscribed strand of an expressed gene. Expression of p48 suppressed UV-induced mutations arising from the nontranscribed strand, but had no effect on cellular UV sensitivity. These results define the role of p48 in DNA repair, demonstrate the importance of CPDs in mutagenesis, and suggest how rodent models can be improved to better reflect cancer susceptibility in humans.
Collapse
Affiliation(s)
- Jean Y. Tang
- Department of Medicine Stanford University Stanford, California 94305
- Department of Biochemistry Stanford University Stanford, California 94305
| | - Byung Joon Hwang
- Department of Medicine Stanford University Stanford, California 94305
- Department of Biochemistry Stanford University Stanford, California 94305
| | - James M. Ford
- Department of Medicine Stanford University Stanford, California 94305
- Department of Genetics Stanford University Stanford, California 94305
| | - Philip C. Hanawalt
- Department of Biological Sciences Stanford University Stanford, California 94305
| | - Gilbert Chu
- Department of Medicine Stanford University Stanford, California 94305
- Department of Biochemistry Stanford University Stanford, California 94305
- To whom correspondence should be addressed ()
| |
Collapse
|
49
|
Nouspikel T, Hanawalt PC. Terminally differentiated human neurons repair transcribed genes but display attenuated global DNA repair and modulation of repair gene expression. Mol Cell Biol 2000; 20:1562-70. [PMID: 10669734 PMCID: PMC85340 DOI: 10.1128/mcb.20.5.1562-1570.2000] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repair of UV-induced DNA lesions in terminally differentiated human hNT neurons was compared to that in their repair-proficient precursor NT2 cells. Global genome repair of (6-4)pyrimidine-pyrimidone photoproducts was significantly slower in hNT neurons than in the precursor cells, and repair of cyclobutane pyrimidine dimers (CPDs) was not detected in the hNT neurons. This deficiency in global genome repair did not appear to be due to denser chromatin structure in hNT neurons. By contrast, CPDs were removed efficiently from both strands of transcribed genes in hNT neurons, with the nontranscribed strand being repaired unexpectedly well. Correlated with these changes in repair during neuronal differentiation were modifications in the expression of several repair genes, in particular an up-regulation of the two structure-specific nucleases XPG and XPF/ERCC1. These results have implications for neuronal dysfunction and aging.
Collapse
Affiliation(s)
- T Nouspikel
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | |
Collapse
|
50
|
Emmert S, Kobayashi N, Khan SG, Kraemer KH. The xeroderma pigmentosum group C gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6-4 photoproducts. Proc Natl Acad Sci U S A 2000; 97:2151-6. [PMID: 10681431 PMCID: PMC15769 DOI: 10.1073/pnas.040559697] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the contribution of the xeroderma pigmentosum group C (XPC) gene to DNA repair. We stably transfected XPC cells (XP4PA-SV-EB) with XPC cDNA and selected a partially corrected (XP4PA-SE1) and a fully corrected (XP4PA-SE2) clone. Cell survival after UVC (254 nm) exposure was low for XP4PA-SV-EB, intermediate for XP4PA-SE1, and normal for XP4PA-SE2 cells. XP4PA-SV-EB cells had undetectable XPC mRNA and protein levels. XP4PA-SE1 cells had 130% of normal mRNA but 25% of normal protein levels, whereas XP4PA-SE2 cells had an 18-fold mRNA overexpression and normal XPC protein levels compared with normal cells. We measured cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP) by using specific mAbs and the ELISA technique. XP4PA-SV-EB cells had no detectable removal of CPD or 6-4PP from their global genome by 24 h after 30 J/m(2) UVC exposure. The partially corrected XP4PA-SE1 cells had normal repair of CPD but minimal repair of 6-4PP by 24 h, whereas the fully corrected XP4PA-SE2 cells regained normal CPD and 6-4PP repair capacities. We also exposed pRSVcat plasmid to UVC (to induce CPD and 6-4PP), to UVC + photolyase (to leave only 6-4PP on the plasmid), or to UVB + acetophenone (to induce only CPD). Host cell reactivation of UVB + acetophenone-, but not of UVC + photolyase-treated plasmids was normal in XP4PA-SE1 cells. Thus, increasing XPC gene expression leads to selective repair of CPD in the global genome. Undetectable XPC protein is associated with no repair of CPD or 6-4PP, detectable but subnormal XPC protein levels reconstitute CPD but not 6-4PP repair, and normal XPC protein levels fully reconstitute both CPD and 6-4PP repair.
Collapse
Affiliation(s)
- S Emmert
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|