1
|
Miftah H, Benthami H, Badou A. Insights into the emerging immune checkpoint NR2F6 in cancer immunity. J Leukoc Biol 2025; 117:qiae260. [PMID: 39722227 DOI: 10.1093/jleuko/qiae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/17/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
NR2F6 has emerged as a key player in immune regulation, especially in cancer immunity. It has been reported that NR2F6 could suppress the antitumor immune response and has therefore been suggested as a possible target in cancer immunotherapy. In this review, we start by describing the complex structure of the NR2F6 gene and its multifaceted biological functions. Then, we examine its expression in distinct immune cells and cancer cells, elucidating its role in cancer progression. Subsequently, we highlight the predictive significance of NR2F6 for cancer patient outcomes, suggesting its possible use as a prognostic biomarker. Finally, we discuss the emerging potential of NR2F6 as a therapeutic target, presenting novel opportunities for developing effective cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Hayat Miftah
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| | - Hamza Benthami
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| | - Abdallah Badou
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| |
Collapse
|
2
|
Yang J, Sun W, Cui G. Roles of the NR2F Family in the Development, Disease, and Cancer of the Lung. J Dev Biol 2024; 12:24. [PMID: 39311119 PMCID: PMC11417824 DOI: 10.3390/jdb12030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
The NR2F family, including NR2F1, NR2F2, and NR2F6, belongs to the nuclear receptor superfamily. NR2F family members function as transcription factors and play essential roles in the development of multiple organs or tissues in mammals, including the central nervous system, veins and arteries, kidneys, uterus, and vasculature. In the central nervous system, NR2F1/2 coordinate with each other to regulate the development of specific brain subregions or cell types. In addition, NR2F family members are associated with various cancers, such as prostate cancer, breast cancer, and esophageal cancer. Nonetheless, the roles of the NR2F family in the development and diseases of the lung have not been systematically summarized. In this review, we mainly focus on the lung, including recent findings regarding the roles of the NR2F family in development, physiological function, and cancer.
Collapse
Affiliation(s)
- Jiaxin Yang
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou 510005, China;
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
| | - Wenjing Sun
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
| | - Guizhong Cui
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou 510005, China;
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
| |
Collapse
|
3
|
TITF1 Screening in Human Congenital Diaphragmatic Hernia (CDH). CHILDREN 2022; 9:children9081108. [PMID: 35892611 PMCID: PMC9332008 DOI: 10.3390/children9081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/17/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
TITF1 (Thyroid Transcription Factor-1) is a homeodomain-containing transcription factor. Previous studies showed that Titf1 null mice are characterized by failure of tracheo-oesophageal separation and impaired lung morphogenesis resulting in Pulmonary Hypoplasia (PH). In this study, we aim to evaluate the role of TITF1 in the pathogenesis of congenital diaphragmatic hernia (CDH) in humans. We investigated TITF1 expression in human trachea and lungs and performed direct mutation analysis in a CDH population. We studied 13 human fetuses at 14 to 24 weeks of gestation. Five μm sections were fixed in paraformaldehyde and incubated with anti-TITF1 primary antibody. Positive staining was visualized by biotinylated secondary antibody. We also performed TITF1 screening on genomic DNA extracted from peripheral blood of 16 patients affected by CDH and different degrees of PH, searching for mutations, insertions, and/or deletions, by sequencing the exonic regions of the gene. Histochemical studies showed positive brown staining of fetal follicular thyroid epithelium, normal fetal trachea, and normal fetal lung bronchial epithelium. Fetal esophageal wall was immunohistochemically negative. Molecular genetic analysis showed complete identity between the sequences obtained and the Wild Type (WT) form of the gene in all cases. No mutation, insertion and/or deletion was detected. Although TITF1 is expressed in the human fetal lung and has been considered to have a role in the pathogenesis of PH in CDH, the results of our study do not support the hypothesis that TITF1 mutations play a key role in the etiopathogenesis of CDH.
Collapse
|
4
|
Friedmacher F, Rolle U, Puri P. Genetically Modified Mouse Models of Congenital Diaphragmatic Hernia: Opportunities and Limitations for Studying Altered Lung Development. Front Pediatr 2022; 10:867307. [PMID: 35633948 PMCID: PMC9136148 DOI: 10.3389/fped.2022.867307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth defect, characterized by an abnormal opening in the primordial diaphragm that interferes with normal lung development. As a result, CDH is accompanied by immature and hypoplastic lungs, being the leading cause of morbidity and mortality in patients with this condition. In recent decades, various animal models have contributed novel insights into the pathogenic mechanisms underlying CDH and associated pulmonary hypoplasia. In particular, the generation of genetically modified mouse models, which show both diaphragm and lung abnormalities, has resulted in the discovery of multiple genes and signaling pathways involved in the pathogenesis of CDH. This article aims to offer an up-to-date overview on CDH-implicated transcription factors, molecules regulating cell migration and signal transduction as well as components contributing to the formation of extracellular matrix, whilst also discussing the significance of these genetic models for studying altered lung development with regard to the human situation.
Collapse
Affiliation(s)
- Florian Friedmacher
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Prem Puri
- Beacon Hospital, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
COUP-TFII in Kidneys, from Embryos to Sick Adults. Diagnostics (Basel) 2022; 12:diagnostics12051181. [PMID: 35626336 PMCID: PMC9139597 DOI: 10.3390/diagnostics12051181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear hormone receptor of unknown ligands. This molecule has two interesting features: (1) it is a developmental gene, and (2) it is a potential hormone receptor. Here, we describe the possible roles of COUP-TFII in the organogenesis of the kidneys and protection from adult renal diseases, primarily in mouse models. COUP-TFII is highly expressed in embryos, including primordial kidneys, and is essential for the formation of metanephric mesenchyme and the survival of renal precursor cells. Although the expression levels of COUP-TFII are low and its functions are unknown in healthy adults, it serves as a reno-protectant molecule against acute kidney injury. These are good examples of how developmental genes exhibit novel functions in the etiology of adult diseases. We also discuss the ongoing research on the roles of COUP-TFII in podocyte development and diabetic kidney disease. In addition, the identification of potential ligands suggests that COUP-TFII might be a novel therapeutic target for renal diseases in the future.
Collapse
|
6
|
Tocco C, Bertacchi M, Studer M. Structural and Functional Aspects of the Neurodevelopmental Gene NR2F1: From Animal Models to Human Pathology. Front Mol Neurosci 2022; 14:767965. [PMID: 34975398 PMCID: PMC8715095 DOI: 10.3389/fnmol.2021.767965] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.
Collapse
Affiliation(s)
- Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
7
|
Coppola U, Waxman JS. Origin and evolutionary landscape of Nr2f transcription factors across Metazoa. PLoS One 2021; 16:e0254282. [PMID: 34807940 PMCID: PMC8608329 DOI: 10.1371/journal.pone.0254282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nuclear Receptor Subfamily 2 Group F (Nr2f) orphan nuclear hormone transcription factors (TFs) are fundamental regulators of many developmental processes in invertebrates and vertebrates. Despite the importance of these TFs throughout metazoan development, previous work has not clearly outlined their evolutionary history. RESULTS We integrated molecular phylogeny with comparisons of intron/exon structure, domain architecture, and syntenic conservation to define critical evolutionary events that distinguish the Nr2f gene family in Metazoa. Our data indicate that a single ancestral eumetazoan Nr2f gene predated six main Bilateria subfamilies, which include single Nr2f homologs, here referred to as Nr2f1/2/5/6, that are present in invertebrate protostomes and deuterostomes, Nr2f1/2 homologs in agnathans, and Nr2f1, Nr2f2, Nr2f5, and Nr2f6 orthologs that are found in gnathostomes. Four cnidarian Nr2f1/2/5/6 and three agnathan Nr2f1/2 members are each due to independent expansions, while the vertebrate Nr2f1/Nr2f2 and Nr2f5/Nr2f6 members each form paralogous groups that arose from the established series of whole-genome duplications (WGDs). Nr2f6 members are the most divergent Nr2f subfamily in gnathostomes. Interestingly, in contrast to the other gnathostome Nr2f subfamilies, Nr2f5 has been independently lost in numerous vertebrate lineages. Furthermore, our analysis shows there are differential expansions and losses of Nr2f genes in teleosts following their additional rounds of WGDs. CONCLUSION Overall, our analysis of Nr2f gene evolution helps to reveal the origins and previously unrecognized relationships of this ancient TF family, which may allow for greater insights into the conservation of Nr2f functions that shape Metazoan body plans.
Collapse
Affiliation(s)
- Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
8
|
Redina OE, Babenko VN, Smagin DA, Kovalenko IL, Galyamina AG, Kudryavtseva NN. Correlation of Expression Changes between Genes Controlling 5-HT Synthesis and Genes Crh and Trh in the Midbrain Raphe Nuclei of Chronically Aggressive and Defeated Male Mice. Genes (Basel) 2021; 12:genes12111811. [PMID: 34828419 PMCID: PMC8618546 DOI: 10.3390/genes12111811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Midbrain raphe nuclei (MRNs) contain a large number of serotonergic neurons associated with the regulation of numerous types of psychoemotional states and physiological processes. The aim of this work was to study alterations of the MRN transcriptome in mice with prolonged positive or negative fighting experience and to identify key gene networks associated with the regulation of serotonergic system functioning. Numerous genes underwent alterations of transcription in the MRNs of male mice that either manifested aggression or experienced social defeat in daily agonistic interactions. The expression of the Tph2 gene encoding the rate-limiting enzyme of the serotonin synthesis pathway correlated with the expression of many genes, 31 of which were common between aggressive and defeated mice and were downregulated in the MRNs of mice of both experimental groups. Among these common differentially expressed genes (DEGs), there were genes associated with behavior, learning, memory, and synaptic signaling. These results suggested that, in the MRNs of the mice, the transcriptome changes associated with serotonergic regulation of various processes are similar between the two groups (aggressive and defeated). In the MRNs, more DEGs correlating with Tph2 expression were found in defeated mice than in the winners, which is probably a consequence of deeper Tph2 downregulation in the losers. It was shown for the first time that, in both groups of experimental mice, the changes in the transcription of genes controlling the synthesis and transport of serotonin directly correlate with the expression of genes Crh and Trh, which control the synthesis of corticotrophin- and thyrotropin-releasing hormones. Our findings indicate that CRH and TRH locally produced in MRNs are related to serotonergic regulation of brain processes during a chronic social conflict.
Collapse
Affiliation(s)
- Olga E. Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.N.B.); (D.A.S.); (I.L.K.); (A.G.G.); (N.N.K.)
- Correspondence:
| | - Vladimir N. Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.N.B.); (D.A.S.); (I.L.K.); (A.G.G.); (N.N.K.)
| | - Dmitry A. Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.N.B.); (D.A.S.); (I.L.K.); (A.G.G.); (N.N.K.)
| | - Irina L. Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.N.B.); (D.A.S.); (I.L.K.); (A.G.G.); (N.N.K.)
| | - Anna G. Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.N.B.); (D.A.S.); (I.L.K.); (A.G.G.); (N.N.K.)
| | - Natalia N. Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.N.B.); (D.A.S.); (I.L.K.); (A.G.G.); (N.N.K.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
9
|
Genetics of diaphragmatic hernia. Eur J Hum Genet 2021; 29:1729-1733. [PMID: 34621023 PMCID: PMC8632982 DOI: 10.1038/s41431-021-00972-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a life-threatening malformation characterised by failure of diaphragmatic development with lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). The incidence is 1:2000 corresponding to 8% of all major congenital malformations. Morbidity and mortality in affected newborns are very high and at present, there is no precise prenatal or early postnatal prognostication parameter to predict clinical outcome in CDH patients. Most cases occur sporadically, however, genetic causes have long been discussed to explain a proportion of cases. These range from aneuploidy to complex chromosomal aberrations and specific mutations often causing a complex phenotype exhibiting multiple malformations along with CDH. This review summarises the genetic variations which have been observed in syndromic and isolated cases of congenital diaphragmatic hernia.
Collapse
|
10
|
Olson WJ, Jakic B, Labi V, Schoeler K, Kind M, Klepsch V, Baier G, Hermann-Kleiter N. Orphan Nuclear Receptor NR2F6 Suppresses T Follicular Helper Cell Accumulation through Regulation of IL-21. Cell Rep 2020; 28:2878-2891.e5. [PMID: 31509749 PMCID: PMC6791812 DOI: 10.1016/j.celrep.2019.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
CD4 T follicular helper (Tfh) cells are specialized in helping B cells during the germinal center (GC) reaction and ultimately promote long-term humoral immunity. Here we report that loss of the nuclear orphan receptor NR2F6 causes enhanced survival and accumulation of Tfh cells, GC B cells, and plasma cells (PCs) following T cell-dependent immunization. Nr2f6-deficient CD4 T cell dysfunction is the primary cause of cell accumulation. Cytokine expression in Nr2f6-deficient Tfh cells is dysregulated, and Il21 expression is enhanced. Mechanistically, NR2F6 binds directly to the interleukin 21 (IL-21) promoter and a conserved noncoding sequence (CNS) near the Il21 gene in resting CD4+ T cells. During Tfh cell differentiation, this direct NR2F6 DNA interaction is abolished. Enhanced Tfh cell accumulation in Nr2f6-deficient mice can be reverted by blocking IL-21R signaling. Thus, NR2F6 is a critical negative regulator of IL-21 cytokine production in Tfh cells and prevents excessive Tfh cell accumulation. Loss of NR2F6 results in accumulation of Tfh, GC B, and plasma cells after immunization Increased GC populations depend on Nr2f6 loss within the CD4 compartment NR2F6 directly binds to several sites within the Il21 promoter and CNS −36 NR2F6 restrains Il21 expression in CD4 cells; IL-21R blockade reduces Tfh accumulation
Collapse
Affiliation(s)
- William J Olson
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Bojana Jakic
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Michaela Kind
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Victoria Klepsch
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Gottfried Baier
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria.
| |
Collapse
|
11
|
Nakamura H, Doi T, Puri P, Friedmacher F. Transgenic animal models of congenital diaphragmatic hernia: a comprehensive overview of candidate genes and signaling pathways. Pediatr Surg Int 2020; 36:991-997. [PMID: 32591848 PMCID: PMC7385019 DOI: 10.1007/s00383-020-04705-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 01/10/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth defect, characterized by incomplete formation of the diaphragm. Because CDH herniation occurs at the same time as preacinar airway branching, normal lung development becomes severely disrupted, resulting almost invariably in pulmonary hypoplasia. Despite various research efforts over the past decades, the pathogenesis of CDH and associated lung hypoplasia remains poorly understood. With the advent of molecular techniques, transgenic animal models of CDH have generated a large number of candidate genes, thus providing a novel basis for future research and treatment. This review article offers a comprehensive overview of genes and signaling pathways implicated in CDH etiology, whilst also discussing strengths and limitations of transgenic animal models in relation to the human condition.
Collapse
Affiliation(s)
- Hiroki Nakamura
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Department of Pediatric Surgery, Kansai Medical University, Osaka, Japan
| | - Takashi Doi
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Department of Pediatric Surgery, Kansai Medical University, Osaka, Japan
| | - Prem Puri
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Beacon Hospital, University College Dublin, Dublin, Ireland
| | - Florian Friedmacher
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Nuclear Receptors as Regulators of Pituitary Corticotroph Pro-Opiomelanocortin Transcription. Cells 2020; 9:cells9040900. [PMID: 32272677 PMCID: PMC7226830 DOI: 10.3390/cells9040900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis plays a critical role in adaptive stress responses and maintaining organism homeostasis. The pituitary corticotroph is the central player in the HPA axis and is regulated by a plethora of hormonal and stress related factors that synergistically interact to activate and temper pro-opiomelanocortin (POMC) transcription, to either increase or decrease adrenocorticotropic hormone (ACTH) production and secretion as needed. Nuclear receptors are a family of highly conserved transcription factors that can also be induced by various physiologic signals, and they mediate their responses via multiple targets to regulate metabolism and homeostasis. In this review, we summarize the modulatory roles of nuclear receptors on pituitary corticotroph cell POMC transcription, describe the unique and complex role these factors play in hypothalamic–pituitary–adrenal axis (HPA) regulation and discuss potential therapeutic targets in disease states.
Collapse
|
13
|
Polvani S, Pepe S, Milani S, Galli A. COUP-TFII in Health and Disease. Cells 2019; 9:E101. [PMID: 31906104 PMCID: PMC7016888 DOI: 10.3390/cells9010101] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptors (NRs) belong to a vast family of evolutionary conserved proteins acting as ligand-activated transcription factors. Functionally, NRs are essential in embryogenesis and organogenesis and in adulthood they are involved in almost every physiological and pathological process. Our knowledge of NRs action has greatly improved in recent years, demonstrating that both their expression and activity are tightly regulated by a network of signaling pathways, miRNA and reciprocal interactions. The Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII, NR2F2) is a NR classified as an orphan due to the lack of a known natural ligand. Although its expression peaks during development, and then decreases considerably, in adult tissues, COUP-TFII is an important regulator of differentiation and it is variably implicated in tissues homeostasis. As such, alterations of its expression or its transcriptional activity have been studied and linked to a spectrum of diseases in organs and tissues of different origins. Indeed, an altered COUP-TFII expression and activity may cause infertility, abnormality in the vascular system and metabolic diseases like diabetes. Moreover, COUP-TFII is actively investigated in cancer research but its role in tumor progression is yet to be fully understood. In this review, we summarize the current understanding of COUP-TFII in healthy and pathological conditions, proposing an updated and critical view of the many functions of this NR.
Collapse
Affiliation(s)
- Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
- Department of Experimental and Clinical Medicine, University of Florence, largo Brambilla 50, 50139 Firenze, Italy
| | - Sara Pepe
- Istituto per la Ricerca, la Prevenzione e la rete Oncologica (ISPRO), viale Pieraccini 6, 50139 Firenze, Italy;
- Department of Medical Biotechnologies, University of Siena, via M. Bracci 16, 53100 Siena, Italy
| | - Stefano Milani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| |
Collapse
|
14
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
15
|
Mitchell CA, Dasgupta S, Zhang S, Stapleton HM, Volz DC. Disruption of Nuclear Receptor Signaling Alters Triphenyl Phosphate-Induced Cardiotoxicity in Zebrafish Embryos. Toxicol Sci 2019. [PMID: 29529285 DOI: 10.1093/toxsci/kfy037] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Triphenyl phosphate (TPHP) is an unsubstituted aryl phosphate ester used as a flame retardant and plasticizer within the United States. Using zebrafish as a model, the objectives of this study were to rely on (1) mRNA-sequencing to uncover pathways disrupted following embryonic TPHP exposure and (2) high-content screening to identify nuclear receptor ligands that enhance or mitigate TPHP-induced cardiotoxicity. Based on mRNA-sequencing, TPHP exposure from 24 to 72-h postfertilization (hpf) resulted in a concentration-dependent increase in the number of transcripts significantly affected at 72 hpf, and pathway analysis revealed that 5 out of 9 nuclear receptor pathways were associated with the retinoid X receptor (RXR). Based on a screen of 74 unique nuclear receptor ligands as well as follow-up experiments, 2 compounds-ciglitazone (a peroxisome proliferator-activated receptor gamma, or PPARγ, agonist) and fenretinide (a pan-retinoic acid receptor, or RAR, agonist)-reliably mitigated TPHP-induced cardiotoxicity in the absence of effects on TPHP uptake or metabolism. As these data suggested that TPHP may be activating RXR (a heterodimer for both RARs and PPARγ), we coexposed embryos to HX 531-a pan-RXR antagonist-from 24 to 72 hpf and, contrary to our hypothesis, found that coexposure to HX 531 significantly enhanced TPHP-induced cardiotoxicity. Using a luciferase reporter assay, we also found that TPHP did not activate nor inhibit chimeric human RXRα, RXRβ, or RXRγ, suggesting that TPHP does not directly bind nor interact with RXRs. Overall, our data suggest that TPHP may interfere with RXR-dependent pathways involved in cardiac development.
Collapse
Affiliation(s)
- Constance A Mitchell
- Environmental Toxicology Graduate Program.,Department of Environmental Sciences, University of California, Riverside, California
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California
| | - Sharon Zhang
- Division of Environmental Sciences and Policy, Duke University, Durham, North Carolina
| | - Heather M Stapleton
- Division of Environmental Sciences and Policy, Duke University, Durham, North Carolina
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, California
| |
Collapse
|
16
|
Yoon K, Chen CC, Orr AA, Barreto PN, Tamamis P, Safe S. Activation of COUP-TFI by a Novel Diindolylmethane Derivative. Cells 2019; 8:220. [PMID: 30866413 PMCID: PMC6468570 DOI: 10.3390/cells8030220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is an orphan receptor and member of the nuclear receptor superfamily. Among a series of methylene substituted diindolylmethanes (C-DIMs) containing substituted phenyl and heteroaromatic groups, we identified 1,1-bis(3'-indolyl)-1-(4-pyridyl)-methane (DIM-C-Pyr-4) as an activator of COUP-TFI. Structure activity studies with structurally diverse heteroaromatic C-DIMs showed that the pyridyl substituted compound was active and the 4-pyridyl substituent was more potent than the 2- or 3-pyridyl analogs in transactivation assays in breast cancer cells. The DIM-C-Pyr-4 activated chimeric GAL4-COUP-TFI constructs containing full length, C- or N-terminal deletions, and transactivation was inhibited by phosphatidylinositol-3-kinase and protein kinase A inhibitors. However, DIM-C-Pyr-4 also induced transactivation and interactions of COUP-TFI and steroid receptor coactivators-1 and -2 in mammalian two-hybrid assays, and ligand-induced interactions of the C-terminal region of COUP-TFI were not affected by kinase inhibitors. We also showed that DIM-C-Pyr-4 activated COUP-TFI-dependent early growth response 1 (Egr-1) expression and this response primarily involved COUP-TFI interactions with Sp3 and to a lesser extent Sp1 bound to the proximal region of the Egr-1 promoter. Modeling studies showed interactions of DIM-C-Pyr-4 within the ligand binding domain of COUP-TFI. This report is the first to identify a COUP-TFI agonist and demonstrate activation of COUP-TFI-dependent Egr-1 expression.
Collapse
Affiliation(s)
- Kyungsil Yoon
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- Division of Translational Science, National Cancer Center, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Chien-Cheng Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| | - Asuka A Orr
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Patricia N Barreto
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Phanourios Tamamis
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Stephen Safe
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
17
|
Ashraf UM, Sanchez ER, Kumarasamy S. COUP-TFII revisited: Its role in metabolic gene regulation. Steroids 2019; 141:63-69. [PMID: 30481528 PMCID: PMC6435262 DOI: 10.1016/j.steroids.2018.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023]
Abstract
Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII) is an orphan member of the nuclear receptor family of transcriptional regulators. Although hormonal activation of COUP-TFII has not yet been identified, rodent genetic models have uncovered vital and diverse roles for COUP-TFII in biological processes. These include control of cardiac function and angiogenesis, reproduction, neuronal development, cell fate and organogenesis. Recently, an emerging body of evidence has demonstrated COUP-TFII involvement in various metabolic systems such as adipogenesis, lipid metabolism, hepatic gluconeogenesis, insulin secretion, and regulation of blood pressure. The potential relevance of these observations to human pathology has been corroborated by the identification of single nucleotide polymorphism in the human COUP-TFII promoter controlling insulin sensitivity. Of particular interest to metabolism is the ability of COUP-TFII to interact with the Glucocorticoid Receptor (GR). This interaction is known to control gluconeogenesis, principally through direct binding of COUP-TFII/GR complexes to the promoters of gluconeogenic enzyme genes. However, it is likely that this interaction is critical to other metabolic processes, since GR, like COUP-TFII, is an essential regulator of adipogenesis, insulin sensitivity, and blood pressure. This review will highlight these unique roles of COUP-TFII in metabolic gene regulation.
Collapse
Affiliation(s)
- Usman M Ashraf
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Edwin R Sanchez
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA; Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sivarajan Kumarasamy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
18
|
Teng X, Liu YY, Teng W, Brent GA. COUP-TF1 Modulates Thyroid Hormone Action in an Embryonic Stem-Cell Model of Cortical Pyramidal Neuronal Differentiation. Thyroid 2018; 28:667-678. [PMID: 29205104 PMCID: PMC5952340 DOI: 10.1089/thy.2017.0256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Thyroid hormone is critical for normal brain development and acts in a spatial and temporal specific pattern. Thyroid hormone excess, or deficiency, can lead to irreversible impairment of brain and sensory development. Chicken ovalbumin upstream-transcription factor 1 (COUP-TF1), expressed early in neuronal development, is essential to achieve normal brain structure. Thyroid hormone stimulation of gene expression is inversely correlated with the level of COUP-TF1 expression. METHODS An in vitro method of differentiating mouse embryonic stem (mES) cells into cortical neurons was utilized to study the influence of COUP-TF1 on thyroid hormone signaling in brain development. mES cells were cultured and differentiated in specific conditioned media, and a high percentage of nestin-positive progenitor neurons in the first stage, and cortical neurons in the second stage, was obtained with characteristic neuronal firing. RESULTS The number of nestin-positive progenitors, as determined by fluorescence-activated cell sorting analysis, was significantly greater with triiodothyronine (T3) treatment compared to control (p < 0.05). T3 enhanced the expression of cortical neuron marker (Tbr1 and Rc3) mRNAs. After COUP-TF1 knockdown, the number of nestin-positive progenitors was reduced compared to control (p < 0.05), but the number increased with T3 treatment. The mRNA of cortical neuronal gene markers was measured after COUP-TF1 knockdown. In the presence of T3, the peak expression of neuron markers Emx1, Tbr1, Camkiv, and Rc3 mRNA was earlier, at day 18 of differentiation, compared to control cells, at day 22. Furthermore, after COUP-TF1 knockdown, T3 induction of Rc3 and Tbr1 mRNA was significantly enhanced compared to cells expressing COUP-TF1. CONCLUSION These results indicate that COUP-TF1 plays an important role in modulating the timing and magnitude of T3-stimulated gene expression required for normal corticogenesis.
Collapse
Affiliation(s)
- Xiaochun Teng
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Yan-Yun Liu
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Gregory A. Brent
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
19
|
Musselman LP, Fink JL, Maier EJ, Gatto JA, Brent MR, Baranski TJ. Seven-Up Is a Novel Regulator of Insulin Signaling. Genetics 2018; 208:1643-1656. [PMID: 29487137 PMCID: PMC5887154 DOI: 10.1534/genetics.118.300770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 02/04/2018] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance is associated with obesity, cardiovascular disease, non-alcoholic fatty liver disease, and type 2 diabetes. These complications are exacerbated by a high-calorie diet, which we used to model type 2 diabetes in Drosophila melanogaster Our studies focused on the fat body, an adipose- and liver-like tissue that stores fat and maintains circulating glucose. A gene regulatory network was constructed to predict potential regulators of insulin signaling in this tissue. Genomic characterization of fat bodies suggested a central role for the transcription factor Seven-up (Svp). Here, we describe a new role for Svp as a positive regulator of insulin signaling. Tissue-specific loss-of-function showed that Svp is required in the fat body to promote glucose clearance, lipid turnover, and insulin signaling. Svp appears to promote insulin signaling, at least in part, by inhibiting ecdysone signaling. Svp also impairs the immune response possibly via inhibition of antimicrobial peptide expression in the fat body. Taken together, these studies show that gene regulatory networks can help identify positive regulators of insulin signaling and metabolic homeostasis using the Drosophila fat body.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
- Department of Biological Sciences, Binghamton University, New York 13902
| | - Jill L Fink
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ezekiel J Maier
- Department of Computer Science, and Department of Genetics and
| | - Jared A Gatto
- Department of Biological Sciences, Binghamton University, New York 13902
| | - Michael R Brent
- Department of Computer Science, Washington University in St. Louis, Missouri 63110
| | - Thomas J Baranski
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
20
|
False responses of Renilla luciferase reporter control to nuclear receptor TR4. Mol Cell Biochem 2017; 430:139-147. [PMID: 28210900 DOI: 10.1007/s11010-017-2961-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/28/2017] [Indexed: 01/30/2023]
Abstract
Renilla luciferase reporter is a widely used internal control in dual luciferase reporter assay system, where its transcription is driven by a constitutively active promoter. However, the authenticity of the Renilla luciferase response in some experimental settings has recently been questioned. Testicular receptor 4 (TR4, also known as NR2C2) belongs to the subfamily 2 of nuclear receptors. TR4 binds to a direct repeat regulatory element in the promoter of a variety of target genes and plays a key role in tumorigenesis, lipoprotein regulation, and central nervous system development. In our experimental system using murine pituitary corticotroph tumor AtT20 cells to investigate TR4 actions on POMC transcription, we found that overexpression of TR4 resulted in reduced Renilla luciferase expression whereas knockdown TR4 increased Renilla luciferase expression. The TR4 inhibitory effect was mediated by the TR4 DNA-binding domain and behaved similarly to the GR and its agonist, Dexamethasone. We further demonstrated that the chimeric intron, commonly present in various Renilla plasmid backbones such as pRL-Null, pRL-SV40, and pRL-TK, was responsible for TR4's inhibitory effect. The results suggest that an intron-free Renilla luciferase reporter may provide a satisfactory internal control for TR4 at certain dose range. Our findings advocate caution on the use of Renilla luciferase as an internal control in TR4-directed studies to avoid misleading data interpretation.
Collapse
|
21
|
Chen CA, Bosch DGM, Cho MT, Rosenfeld JA, Shinawi M, Lewis RA, Mann J, Jayakar P, Payne K, Walsh L, Moss T, Schreiber A, Schoonveld C, Monaghan KG, Elmslie F, Douglas G, Boonstra FN, Millan F, Cremers FPM, McKnight D, Richard G, Juusola J, Kendall F, Ramsey K, Anyane-Yeboa K, Malkin E, Chung WK, Niyazov D, Pascual JM, Walkiewicz M, Veluchamy V, Li C, Hisama FM, de Vries BBA, Schaaf C. The expanding clinical phenotype of Bosch-Boonstra-Schaaf optic atrophy syndrome: 20 new cases and possible genotype-phenotype correlations. Genet Med 2016; 18:1143-1150. [PMID: 26986877 DOI: 10.1038/gim.2016.18] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/19/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is an autosomal-dominant disorder characterized by optic atrophy and intellectual disability caused by loss-of-function mutations in NR2F1. We report 20 new individuals with BBSOAS, exploring the spectrum of clinical phenotypes and assessing potential genotype-phenotype correlations. METHODS Clinical features of individuals with pathogenic NR2F1 variants were evaluated by review of medical records. The functional relevance of coding nonsynonymous NR2F1 variants was assessed with a luciferase assay measuring the impact on transcriptional activity. The effects of two start codon variants on protein expression were evaluated by western blot analysis. RESULTS We recruited 20 individuals with novel pathogenic NR2F1 variants (seven missense variants, five translation initiation variants, two frameshifting insertions/deletions, one nonframeshifting insertion/deletion, and five whole-gene deletions). All the missense variants were found to impair transcriptional activity. In addition to visual and cognitive deficits, individuals with BBSOAS manifested hypotonia (75%), seizures (40%), autism spectrum disorder (35%), oromotor dysfunction (60%), thinning of the corpus callosum (53%), and hearing defects (20%). CONCLUSION BBSOAS encompasses a broad range of clinical phenotypes. Functional studies help determine the severity of novel NR2F1 variants. Some genotype-phenotype correlations seem to exist, with missense mutations in the DNA-binding domain causing the most severe phenotypes.Genet Med 18 11, 1143-1150.
Collapse
Affiliation(s)
- Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Daniëlle G M Bosch
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Bartiméus, Institute for the Visually Impaired, Zeist, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard Alan Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - John Mann
- Genetics, Kaiser-Permanente Fresno Medical Center, Clovis, California, USA
| | | | - Katelyn Payne
- Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Laurence Walsh
- Riley Hospital for Children, Indianapolis, Indiana, USA.,Departments of Neurology, Medical and Molecular Genetics, and Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Timothy Moss
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | - Frances Elmslie
- South West Thames Regional Genetics Service, St. George's Healthcare NHS Trust, London, UK
| | | | - F Nienke Boonstra
- Bartiméus, Institute for the Visually Impaired, Zeist, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Fran Kendall
- VMP Genetics, LLC, Atlanta, Georgia, USA.,University of Georgia, Athens, Georgia, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA.,Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Dmitriy Niyazov
- Division of Medical Genetics, Department of Pediatrics, Ochsner Clinic Foundation, New Orleans, Louisiana
| | - Juan M Pascual
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Chumei Li
- McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Fuki M Hisama
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
22
|
Detchokul S, Elangovan A, Crampin EJ, Davis MJ, Frauman AG. Network analysis of an in vitro model of androgen-resistance in prostate cancer. BMC Cancer 2015; 15:883. [PMID: 26553226 PMCID: PMC4640359 DOI: 10.1186/s12885-015-1884-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The development of androgen resistance is a major limitation to androgen deprivation treatment in prostate cancer. We have developed an in vitro model of androgen-resistance to characterise molecular changes occurring as androgen resistance evolves over time. Our aim is to understand biological network profiles of transcriptomic changes occurring during the transition to androgen-resistance and to validate these changes between our in vitro model and clinical datasets (paired samples before and after androgen-deprivation therapy of patients with advanced prostate cancer). METHODS We established an androgen-independent subline from LNCaP cells by prolonged exposure to androgen-deprivation. We examined phenotypic profiles and performed RNA-sequencing. The reads generated were compared to human clinical samples and were analysed using differential expression, pathway analysis and protein-protein interaction networks. RESULTS After 24 weeks of androgen-deprivation, LNCaP cells had increased proliferative and invasive behaviour compared to parental LNCaP, and its growth was no longer responsive to androgen. We identified key genes and pathways that overlap between our cell line and clinical RNA sequencing datasets and analysed the overlapping protein-protein interaction network that shared the same pattern of behaviour in both datasets. Mechanisms bypassing androgen receptor signalling pathways are significantly enriched. Several steroid hormone receptors are differentially expressed in both datasets. In particular, the progesterone receptor is significantly differentially expressed and is part of the interaction network disrupted in both datasets. Other signalling pathways commonly altered in prostate cancer, MAPK and PI3K-Akt pathways, are significantly enriched in both datasets. CONCLUSIONS The overlap between the human and cell-line differential expression profiles and protein networks was statistically significant showing that the cell-line model reproduces molecular patterns observed in clinical castrate resistant prostate cancer samples, making this cell line a useful tool in understanding castrate resistant prostate cancer. Pathway analysis revealed similar patterns of enriched pathways from differentially expressed genes of both human clinical and cell line datasets. Our analysis revealed several potential mechanisms and network interactions, including cooperative behaviours of other nuclear receptors, in particular the subfamily of steroid hormone receptors such as PGR and alteration to gene expression in both the MAPK and PI3K-Akt signalling pathways.
Collapse
Affiliation(s)
- Sujitra Detchokul
- Clinical Pharmacology and Therapeutics, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC, Australia.
| | - Aparna Elangovan
- Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia.
| | - Edmund J Crampin
- Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia.
- School of Mathematics & Statistics, The University of Melbourne, Parkville, VIC, Australia.
- School of Medicine, University of Melbourne, Parkville, VIC, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, VIC, Australia.
| | - Melissa J Davis
- Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia.
| | - Albert G Frauman
- Clinical Pharmacology and Therapeutics, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC, Australia.
| |
Collapse
|
23
|
Chatagnon A, Veber P, Morin V, Bedo J, Triqueneaux G, Sémon M, Laudet V, d'Alché-Buc F, Benoit G. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements. Nucleic Acids Res 2015; 43:4833-54. [PMID: 25897113 PMCID: PMC4446430 DOI: 10.1093/nar/gkv370] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status.
Collapse
Affiliation(s)
- Amandine Chatagnon
- Université de Lyon, Université Claude Bernard Lyon1, CGphiMC UMR CNRS 5534, 69622 Villeurbanne, France
| | - Philippe Veber
- Université de Lyon, Université Claude Bernard Lyon1, LBBE UMR CNRS 5558, 69622 Villeurbanne, France
| | - Valérie Morin
- Université de Lyon, Université Claude Bernard Lyon1, CGphiMC UMR CNRS 5534, 69622 Villeurbanne, France
| | - Justin Bedo
- Université d'Evry-Val d'Essonne, IBISC EA 4526, 91037 Evry, France
| | - Gérard Triqueneaux
- Université de Lyon, Université Claude Bernard Lyon1, CGphiMC UMR CNRS 5534, 69622 Villeurbanne, France
| | - Marie Sémon
- IGFL, Université de Lyon, Université Lyon 1, CNRS, INRA; Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Vincent Laudet
- IGFL, Université de Lyon, Université Lyon 1, CNRS, INRA; Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | | | - Gérard Benoit
- Université de Lyon, Université Claude Bernard Lyon1, CGphiMC UMR CNRS 5534, 69622 Villeurbanne, France
| |
Collapse
|
24
|
Hermann-Kleiter N, Baier G. Orphan nuclear receptor NR2F6 acts as an essential gatekeeper of Th17 CD4+ T cell effector functions. Cell Commun Signal 2014; 12:38. [PMID: 24919548 PMCID: PMC4066320 DOI: 10.1186/1478-811x-12-38] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022] Open
Abstract
Members of the evolutionarily conserved family of the chicken ovalbumin upstream promoter transcription factor NR2F/COUP-TF orphan receptors have been implicated in lymphocyte biology, ranging from activation to differentiation and elicitation of immune effector functions. In particular, a CD4+ T cell intrinsic and non-redundant function of NR2F6 as a potent and selective repressor of the transcription of the pro-inflammatory cytokines interleukin (Il) 2, interferon y (ifng) and consequently of T helper (Th)17 CD4+ T cell-mediated autoimmune disorders has been discovered. NR2F6 serves as an antigen receptor signaling threshold-regulated barrier against autoimmunity where NR2F6 is part of a negative feedback loop that limits inflammatory tissue damage induced by weakly immunogenic antigens such as self-antigens. Under such low affinity antigen receptor stimulation, NR2F6 appears as a prototypical repressor that functions to “lock out” harmful Th17 lineage effector transcription. Mechanistically, only sustained high affinity antigen receptor-induced protein kinase C (PKC)-mediated phosphorylation has been shown to inactivate NR2F6, thereby displacing pre-bound NR2F6 from the DNA and, subsequently, allowing for robust NFAT/AP-1- and RORγt-mediated cytokine transcription. The NR2F6 target gene repertoire thus identifies a general anti-inflammatory gatekeeper role for this orphan receptor. Investigating these signaling pathway(s) will enable a greater knowledge of the genetic, immune, and environmental mechanisms that lead to chronic inflammation and of certain autoimmune disorders in a given individual.
Collapse
Affiliation(s)
- Natascha Hermann-Kleiter
- Department for Pharmacology and Genetics, Translational Cell Genetics, Medical University of Innsbruck, Peter Mayr Str, 1a, A-6020, Innsbruck, Austria.
| | | |
Collapse
|
25
|
Tang K, Tsai SY, Tsai MJ. COUP-TFs and eye development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:201-9. [PMID: 24878540 DOI: 10.1016/j.bbagrm.2014.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Recent studies reveal that COUP-TF genes are essential for neural development, cardiovascular development, energy metabolism and adipogenesis, as well as for organogenesis of multiple systems. In this review, we mainly describe the COUP-TF genes, molecular mechanisms of COUP-TF action, and their crucial functions in the morphogenesis of the murine eye. Mutations of COUP-TF genes lead to the congenital coloboma and/or optic atrophy in both mouse and human, indicating that the study on COUP-TFs and the eye will benefit our understanding of the etiology of human ocular diseases. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Lin SC, Li YH, Wu MH, Chang YF, Lee DK, Tsai SY, Tsai MJ, Tsai SJ. Suppression of COUP-TFII by proinflammatory cytokines contributes to the pathogenesis of endometriosis. J Clin Endocrinol Metab 2014; 99:E427-37. [PMID: 24423359 PMCID: PMC5393480 DOI: 10.1210/jc.2013-3717] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CONTEXT Endometriosis is one of the most common gynecological diseases in women with a prevalence rate of approximately 10%. Chronic pelvic inflammation has been observed in patients with endometriosis and is associated with disease severity. However, how pelvic inflammation promotes endometriosis progression remains unknown. OBJECTIVE The objective of the study was to investigate the regulatory network of proinflammatory cytokines in endometriosis progression. DESIGN, SETTINGS, AND PATIENTS Immunostaining of human endometrial (n = 21) and endometriotic (n = 36) sections, quantitative RT-PCR, Western blotting, chromatin immunoprecipitation, and luciferase reporter assays in primary culture human endometrial stromal cells were performed. Autologous transplantation of uterine endometrium from control chicken ovalbumin upstream promoter-transcription factor II [(COUP-TFII) flox/flox] and uterus-specific COUP-TFII knockout mice was performed. RESULTS Expression of COUP-TFII was significantly reduced in endometriotic stroma. Reduction of COUP-TFII in endometriotic stromal cells was mediated by proinflammatory cytokines including IL-1β, TNF-α, and TGF-β1 via a common effector, microRNA-302a. Treatment with these proinflammatory cytokines increased the expression of microRNA-302a, which targets the 3'untranslated region of COUP-TFII to cause its down-regulation. Intriguingly, down-regulation of COUP-TFII in endometrial stromal cells resulted in de-repression of cyclooxygenase-2 (COX-2). Further investigation demonstrated that COUP-TFII directly binds to COX-2 promoter to inhibit its transcription. Forced expression of COUP-TFII inhibited IL-1β-induced COX-2 up-regulation, whereas the knockdown of COUP-TFII augmented this effect. CONCLUSION Because overexpression of COX-2 has been demonstrated to be a master regulator in endometriosis progression, our data demonstrate the critical function of proinflammatory cytokines and the COUP-TFII regulatory gene network in the progression of endometriosis.
Collapse
Affiliation(s)
- Shih-Chieh Lin
- Department of Physiology (S.-C.L., Y.-F.C., S.-J.T.), Institute of Basic Medical Sciences (Y.-H.L., S.-J.T.), and Department of Obstetrics and Gynecology (M.-H.W.), College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; and Department of Molecular and Cellular Biology (D.-K.L., S.Y.T., M.-J.T.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Al-Rayyan N, Litchfield LM, Ivanova MM, Radde BN, Cheng A, Elbedewy A, Klinge CM. 5-Aza-2-deoxycytidine and trichostatin A increase COUP-TFII expression in antiestrogen-resistant breast cancer cell lines. Cancer Lett 2014; 347:139-50. [PMID: 24513177 DOI: 10.1016/j.canlet.2014.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/15/2014] [Accepted: 02/03/2014] [Indexed: 02/06/2023]
Abstract
COUP-TFII is reduced in endocrine-resistant breast cancer cells and is negatively associated with tumor grade. Transient re-expression of COUP-TFII restores antiestrogen sensitivity in resistant LCC2 and LCC9 cells and repression of COUP-TFII results in antiestrogen-resistance in MCF-7 endocrine-sensitive cells. We addressed the hypothesis that reduced COUP-TFII expression in endocrine-resistant breast cancer cells results from epigenetic modification. The NR2F2 gene encoding COUP-TFII includes seven CpG islands, including one in the 5' promoter and one in exon 1. Treatment of LCC2 and LCC9 endocrine-resistant breast cancer cells with 5-aza-2'-deoxycytidine (AZA), a DNA methyltransferase (DNMT) inhibitor, +/- trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, increased COUP-TFII suggesting that the decrease in COUP-TFII is mediated by epigenetic changes. Methylation-specific PCR (MSP) revealed higher methylation of NR2F2 in the first exon in LCC2 and LCC9 cells compared to MCF-7 cells and AZA reduced this methylation. Translational importance is suggested by Cancer Methylome System (CMS) analysis revealing that breast tumors have increased COUP-TFII (NR2F2) promoter and gene methylation versus normal breast.
Collapse
Affiliation(s)
- Numan Al-Rayyan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lacey M Litchfield
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Margarita M Ivanova
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Brandie N Radde
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Alan Cheng
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Ahmed Elbedewy
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
28
|
Chiang DY, Cuthbertson DW, Ruiz FR, Li N, Pereira FA. A coregulatory network of NR2F1 and microRNA-140. PLoS One 2013; 8:e83358. [PMID: 24349493 PMCID: PMC3857795 DOI: 10.1371/journal.pone.0083358] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/11/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Both nuclear receptor subfamily 2 group F member 1 (NR2F1) and microRNAs (miRNAs) have been shown to play critical roles in the developing and functional inner ear. Based on previous studies suggesting interplay between NR2F1 and miRNAs, we investigated the coregulation between NR2F1 and miRNAs to better understand the regulatory mechanisms of inner ear development and functional maturation. RESULTS Using a bioinformatic approach, we identified 11 potential miRNAs that might coregulate target genes with NR2F1 and analyzed their targets and potential roles in physiology and disease. We selected 6 miRNAs to analyze using quantitative real-time (qRT) -PCR and found that miR-140 is significantly down-regulated by 4.5-fold (P=0.004) in the inner ear of NR2F1 knockout (Nr2f1(-/-)) mice compared to wild-type littermates but is unchanged in the brain. Based on this, we performed chromatin-immunoprecipitation followed by qRT-PCR and confirmed that NR2F1 directly binds and regulates both miR-140 and Klf9 in vivo. Furthermore, we performed luciferase reporter assay and showed that miR-140 mimic directly regulates KLF9-3'UTR, thereby establishing and validating an example coregulatory network involving NR2F1, miR-140, and Klf9. CONCLUSIONS We have described and experimentally validated a novel tissue-dependent coregulatory network for NR2F1, miR-140, and Klf9 in the inner ear and we propose the existence of many such coregulatory networks important for both inner ear development and function.
Collapse
Affiliation(s)
- David Y. Chiang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - David W. Cuthbertson
- Bobby R. Alford Department of Otolaryngology- Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fernanda R. Ruiz
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Na Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fred A. Pereira
- Bobby R. Alford Department of Otolaryngology- Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
29
|
Chen G. Roles of Vitamin A Metabolism in the Development of Hepatic Insulin Resistance. ISRN HEPATOLOGY 2013; 2013:534972. [PMID: 27335827 PMCID: PMC4890907 DOI: 10.1155/2013/534972] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
30
|
Systematic analyses of the cytotoxic effects of compound 11a, a putative synthetic agonist of photoreceptor-specific nuclear receptor (PNR), in cancer cell lines. PLoS One 2013; 8:e75198. [PMID: 24066170 PMCID: PMC3774666 DOI: 10.1371/journal.pone.0075198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/11/2013] [Indexed: 12/19/2022] Open
Abstract
Photoreceptor cell-specific receptor (PNR/NR2E3) is an orphan nuclear receptor that plays a critical role in retinal development and photoreceptor maintenance. The disease-causing mutations in PNR have a pleiotropic effect resulting in varying retinal diseases. Recently, PNR has been implicated in control of cellular functions in cancer cells. PNR was reported to be a novel regulator of ERα expression in breast cancer cells, and high PNR expression correlates with favorable response to tamoxifen treatment. Moreover, PNR was shown to increase p53 stability in HeLa cells, implying that PNR may be a therapeutic target in this and other cancers that retain a wild type p53 gene. To facilitate further understanding of PNR functions in cancer, we characterized compound 11a, a synthetic, putative PNR agonist in several cell-based assays. Interestingly, we showed that 11a failed to activate PNR and its cytotoxicity was independent of PNR expression, excluding PNR as a mediator for 11a cytotoxicity. Systematic analyses of the cytotoxic effects of 11a in NCI-60 cell lines revealed a strong positive correlation of cytotoxicity with p53 status, i.e., p53 wild type cell lines were significantly more sensitive to 11a than p53 mutated or null cell lines. Furthermore, using HCT116 p53+/+ and p53-/- isogenic cell lines we revealed that the mechanism of 11a-induced cytotoxicity occurred through G1/S phase cell cycle arrest rather than apoptosis. In conclusion, we observed a correlation of 11a sensitivity with p53 status but not with PNR expression, suggesting that tumors expressing wild type p53 might be responsive to this compound.
Collapse
|
31
|
Xie X, Tang K, Yu CT, Tsai SY, Tsai MJ. Regulatory potential of COUP-TFs in development: stem/progenitor cells. Semin Cell Dev Biol 2013; 24:687-93. [PMID: 23978678 DOI: 10.1016/j.semcdb.2013.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022]
Abstract
The formation of complex organisms is highly dependent on the differentiation of specialized mature cells from common stem/progenitor cells. The orphan nuclear receptors chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are broadly, but not ubiquitously, expressed in multiple tissues throughout embryonic development and COUP-TFs are indispensible for proper organogenesis. Recently, growing evidence suggests a critical role of COUP-TFs in multiple aspects of stem/progenitor cell biology. In this review, we highlight the progress of COUP-TFs function and its underlying mechanism in driving stem/progenitor cell self-renewal, lineage specification, differentiation, maintenance, and cell identity in diverse tissue types. These studies provide novel insights into future clinical utilities of COUP-TFs in stem cell based therapies and in the management of diseases.
Collapse
Affiliation(s)
- Xin Xie
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
32
|
Smits BMG, Haag JD, Rissman AI, Sharma D, Tran A, Schoenborn AA, Baird RC, Peiffer DS, Leinweber DQ, Muelbl MJ, Meilahn AL, Eichelberg MR, Leng N, Kendziorski C, John MC, Powers PA, Alexander CM, Gould MN. The gene desert mammary carcinoma susceptibility locus Mcs1a regulates Nr2f1 modifying mammary epithelial cell differentiation and proliferation. PLoS Genet 2013; 9:e1003549. [PMID: 23785296 PMCID: PMC3681674 DOI: 10.1371/journal.pgen.1003549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/23/2013] [Indexed: 12/28/2022] Open
Abstract
Genome-wide association studies have revealed that many low-penetrance breast cancer susceptibility loci are located in non-protein coding genomic regions; however, few have been characterized. In a comparative genetics approach to model such loci in a rat breast cancer model, we previously identified the mammary carcinoma susceptibility locus Mcs1a. We now localize Mcs1a to a critical interval (277 Kb) within a gene desert. Mcs1a reduces mammary carcinoma multiplicity by 50% and acts in a mammary cell-autonomous manner. We developed a megadeletion mouse model, which lacks 535 Kb of sequence containing the Mcs1a ortholog. Global gene expression analysis by RNA-seq revealed that in the mouse mammary gland, the orphan nuclear receptor gene Nr2f1/Coup-tf1 is regulated by Mcs1a. In resistant Mcs1a congenic rats, as compared with susceptible congenic control rats, we found Nr2f1 transcript levels to be elevated in mammary gland, epithelial cells, and carcinoma samples. Chromatin looping over ∼820 Kb of sequence from the Nr2f1 promoter to a strongly conserved element within the Mcs1a critical interval was identified. This element contains a 14 bp indel polymorphism that affects a human-rat-mouse conserved COUP-TF binding motif and is a functional Mcs1a candidate. In both the rat and mouse models, higher Nr2f1 transcript levels are associated with higher abundance of luminal mammary epithelial cells. In both the mouse mammary gland and a human breast cancer global gene expression data set, we found Nr2f1 transcript levels to be strongly anti-correlated to a gene cluster enriched in cell cycle-related genes. We queried 12 large publicly available human breast cancer gene expression studies and found that the median NR2F1 transcript level is consistently lower in 'triple-negative' (ER-PR-HER2-) breast cancers as compared with 'receptor-positive' breast cancers. Our data suggest that the non-protein coding locus Mcs1a regulates Nr2f1, which is a candidate modifier of differentiation, proliferation, and mammary cancer risk.
Collapse
Affiliation(s)
- Bart M. G. Smits
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jill D. Haag
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Anna I. Rissman
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Deepak Sharma
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ann Tran
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Alexi A. Schoenborn
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Rachael C. Baird
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Dan S. Peiffer
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - David Q. Leinweber
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Matthew J. Muelbl
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Amanda L. Meilahn
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mark R. Eichelberg
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ning Leng
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Manorama C. John
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia A. Powers
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caroline M. Alexander
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Michael N. Gould
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
33
|
Song CH, Lee HJ, Park E, Lee K. The chicken ovalbumin upstream promoter-transcription factor II negatively regulates the transactivation of androgen receptor in prostate cancer cells. PLoS One 2012; 7:e49026. [PMID: 23145053 PMCID: PMC3492188 DOI: 10.1371/journal.pone.0049026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/03/2012] [Indexed: 01/23/2023] Open
Abstract
Androgen receptor (AR) is involved in the development and progression of prostate cancers. However, the mechanisms by which this occurs remain incompletely understood. In previous reports, chicken ovalbumin upstream promoter-transcription factor II (COUP-TF II) has been suggested to play a role in the development of cancers. In the present study, we explored a putative role of COUP-TF II in prostate cancers by investigating its effect on cell proliferation and a cross-talk between COUP-TF II and AR. Overexpression of COUP-TF II results in the inhibition of androgen-dependent proliferation of prostate cancer cells. Further studies show that COUP-TF II functions as a corepressor of AR. It represses AR transactivation on target promoters containing the androgen response element (ARE) in a dose-dependent manner. In addition, COUP-TF II interacts physically with AR in vitro and in vivo. It binds to both the DNA binding domain (DBD) and the ligand-binding domain (LBD) of AR and disrupts the N/C terminal interaction of AR. Furthermore, COUP-TF II competes with coactivators such as ARA70, SRC-1, and GRIP1 to modulate AR transactivation as well as inhibiting the recruitment of AR to its ARE-containing target promoter. Taken together, our findings suggest that COUP-TF II is a novel corepressor of AR, and provide an insight into the role of COUP-TF II in prostate cancers.
Collapse
Affiliation(s)
- Chin-Hee Song
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun Joo Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Eunsook Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Keesook Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell 2012; 11:633-48. [PMID: 22981823 DOI: 10.1016/j.stem.2012.07.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/31/2012] [Accepted: 07/09/2012] [Indexed: 01/29/2023]
Abstract
Neural crest cells (NCC) are a transient, embryonic cell population characterized by unusual migratory ability and developmental plasticity. To annotate and characterize cis-regulatory elements utilized by the human NCC, we coupled a hESC differentiation model with genome-wide profiling of histone modifications and of coactivator and transcription factor (TF) occupancy. Sequence analysis predicted major TFs binding at epigenomically annotated hNCC enhancers, including a master NC regulator, TFAP2A, and nuclear receptors NR2F1 and NR2F2. Although many TF binding events occur outside enhancers, sites coinciding with enhancer chromatin signatures show significantly higher sequence constraint, nucleosomal depletion, correlation with gene expression, and functional conservation in NCC isolated from chicken embryos. Simultaneous co-occupancy by TFAP2A and NR2F1/F2 is associated with permissive enhancer chromatin states, characterized by high levels of p300 and H3K27ac. Our results provide global insights into human NC chromatin landscapes and a rich resource for studies of craniofacial development and disease.
Collapse
|
35
|
Mayer S, Roeser M, Lachmann P, Ishii S, Suh JM, Harlander S, Desch M, Brunssen C, Morawietz H, Tsai SY, Tsai MJ, Hohenstein B, Hugo C, Todorov VT. Chicken ovalbumin upstream promoter transcription factor II regulates renin gene expression. J Biol Chem 2012; 287:24483-91. [PMID: 22645148 DOI: 10.1074/jbc.m111.329474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study aimed to investigate the possible involvement of the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) in the regulation of renin gene expression. COUP-TFII colocalized with renin in the juxtaglomerular cells of the kidney, which are the main source of renin in vivo. Protein-DNA binding studies demonstrated that COUP-TFII binds to an imperfect direct repeat COUP-TFII recognition sequence (termed hereafter proxDR) in the proximal renin promoter. Because cAMP signaling plays a central role in the control of the renin gene expression, we suggested that COUP-TFII may modulate this cAMP effect. Accordingly, knockdown of COUP-TFII in the clonal renin-producing cell lines As4.1 and Calu-6 diminished the stimulation of the renin mRNA expression by cAMP agonists. In addition, the mutation of the proxDR element in renin promoter reporter gene constructs abrogated the inducibility by cAMP. The proxDR sequence was found to be necessary for the function of a proximal renin promoter cAMP-response element (CRE). Knockdown of COUP-TFII or cAMP-binding protein (CREB), which is the archetypal transcription factor binding to CRE, decreased the basal renin gene expression. However, the deficiency of COUP-TFII did not further diminish the renin expression when CREB was knocked down. In agreement with the cell culture studies, mutant mice deficient in COUP-TFII have lower renin expression than their control strain. Altogether our data show that COUP-TFII is involved in the control of renin gene expression.
Collapse
Affiliation(s)
- Sandra Mayer
- Laboratory for Experimental Nephrology and Division of Nephrology, Dresden University of Technology, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
van den Driesche S, Walker M, McKinnell C, Scott HM, Eddie SL, Mitchell RT, Seckl JR, Drake AJ, Smith LB, Anderson RA, Sharpe RM. Proposed role for COUP-TFII in regulating fetal Leydig cell steroidogenesis, perturbation of which leads to masculinization disorders in rodents. PLoS One 2012; 7:e37064. [PMID: 22615892 PMCID: PMC3355148 DOI: 10.1371/journal.pone.0037064] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/13/2012] [Indexed: 11/22/2022] Open
Abstract
Reproductive disorders that are common/increasing in prevalence in human males may arise because of deficient androgen production/action during a fetal ‘masculinization programming window’. We identify a potentially important role for Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) in Leydig cell (LC) steroidogenesis that may partly explain this. In rats, fetal LC size and intratesticular testosterone (ITT) increased ∼3-fold between e15.5-e21.5 which associated with a progressive decrease in the percentage of LC expressing COUP-TFII. Exposure of fetuses to dibutyl phthalate (DBP), which induces masculinization disorders, dose-dependently prevented the age-related decrease in LC COUP-TFII expression and the normal increases in LC size and ITT. We show that nuclear COUP-TFII expression in fetal rat LC relates inversely to LC expression of steroidogenic factor-1 (SF-1)-dependent genes (StAR, Cyp11a1, Cyp17a1) with overlapping binding sites for SF-1 and COUP-TFII in their promoter regions, but does not affect an SF-1 dependent LC gene (3β-HSD) without overlapping sites. We also show that once COUP-TFII expression in LC has switched off, it is re-induced by DBP exposure, coincident with suppression of ITT. Furthermore, other treatments that reduce fetal ITT in rats (dexamethasone, diethylstilbestrol (DES)) also maintain/induce LC nuclear expression of COUP-TFII. In contrast to rats, in mice DBP neither causes persistence of fetal LC COUP-TFII nor reduces ITT, whereas DES-exposure of mice maintains COUP-TFII expression in fetal LC and decreases ITT, as in rats. These findings suggest that lifting of repression by COUP-TFII may be an important mechanism that promotes increased testosterone production by fetal LC to drive masculinization. As we also show an age-related decline in expression of COUP-TFII in human fetal LC, this mechanism may also be functional in humans, and its susceptibility to disruption by environmental chemicals, stress and pregnancy hormones could explain the origin of some human male reproductive disorders.
Collapse
Affiliation(s)
- Sander van den Driesche
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Glucose-dependent regulation of NR2F2 promoter and influence of SNP-rs3743462 on whole body insulin sensitivity. PLoS One 2012; 7:e35810. [PMID: 22606236 PMCID: PMC3351448 DOI: 10.1371/journal.pone.0035810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/22/2012] [Indexed: 11/21/2022] Open
Abstract
Background The Nuclear Receptor 2F2 (NR2F2/COUP-TFII) heterozygous knockout mice display low basal insulinemia and enhanced insulin sensitivity. We previously established that insulin represses NR2F2 gene expression in pancreatic β-cells. The cis-regulatory region of the NR2F2 promoter is unknown and its influence on metabolism in humans is poorly understood. The present study aimed to identify the regulatory regions that control NR2F2 gene transcription and to evaluate the effect of NR2F2 promoter variation on glucose homeostasis in humans. Methodology/Principal Findings Regulation of the NR2F2 promoter was assessed using gene reporter assays, ChIP and gel shift experiments. The effects of variation at SNP rs3743462 in NR2F2 on quantitative metabolic traits were studied in two European prospective cohorts. We identified a minimal promoter region that down-regulates NR2F2 expression by attenuating HNF4α activation in response to high glucose concentrations. Subjects of the French DESIR population, who carried the rs3743462 T-to-C polymorphism, located in the distal glucose-responsive promoter, displayed lower basal insulin levels and lower HOMA-IR index. The C-allele at rs3743462 was associated with increased NR2F2 binding and decreased NR2F2 gene expression. Conclusions/Significance The rs3743462 polymorphism affects glucose-responsive NR2F2 promoter regulation and thereby may influence whole-body insulin sensitivity, suggesting a role of NR2F2 in the control of glucose homeostasis in humans.
Collapse
|
38
|
Weatherford ET, Liu X, Sigmund CD. Regulation of renin expression by the orphan nuclear receptors Nr2f2 and Nr2f6. Am J Physiol Renal Physiol 2012; 302:F1025-33. [PMID: 22278040 PMCID: PMC3330716 DOI: 10.1152/ajprenal.00362.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 01/21/2012] [Indexed: 01/13/2023] Open
Abstract
Understanding the transcriptional mechanisms of renin expression is key to understanding the regulation of the renin-angiotensin system. We previously identified the nuclear receptors RAR/RXR and Nr2f6 (EAR2) as positive and negative transcriptional regulators of renin expression, respectively (Liu X, Huang X, Sigmund CD. Circ Res 92: 1033-1040, 2003). Both mediate their effects through a hormone response element (HRE) within the renin enhancer. Here, we determined whether another nuclear receptor, Nr2f2 (Coup-TFII, Arp-1), identified in a screen of proteins that bind the HRE, also regulates renin expression. Luciferase assays indicate that Nr2f2 negatively regulates the renin promoter more potently than Nr2f6. Gel-shift and chromatin immunoprecipitation (ChIP) indicate that Nr2f2 and Nr2f6 can bind directly to the renin enhancer through the HRE. Surprisingly, baseline expression of endogenous renin was not effected when Nr2f2 was knocked down in As4.1 cells, whereas knockdown of Nr2f6 increased renin expression twofold. Interestingly, however, knockdown of Nr2f2 augmented the induction of renin expression caused by retinoic acid. These data indicate that both Nr2f6 and Nr2f2 can negatively regulate the renin promoter, under baseline conditions and in response to physiological queues, respectively. Therefore, Nr2f2 may require an initiating signal that results in a change at the chromatin level or activation of another transcription factor to exert its effects. We conclude that both Nr2f2 and Nr2f6 negatively regulate renin promoter activity, but may do so by divergent mechanisms.
Collapse
Affiliation(s)
- Eric T Weatherford
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
39
|
Lee KN, Jang WG, Kim EJ, Oh SH, Son HJ, Kim SH, Franceschi R, Zhang XK, Lee SE, Koh JT. Orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) protein negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation through suppressing runt-related gene 2 (Runx2) activity. J Biol Chem 2012; 287:18888-99. [PMID: 22493443 DOI: 10.1074/jbc.m111.311878] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear receptor of the steroid-thyroid hormone receptor superfamily. COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development and has been shown to regulate cellular growth, differentiation, and organ development. However, the role of COUP-TFII in osteoblast differentiation has not been systematically evaluated. In the present study, COUP-TFII was strongly expressed in multipotential mesenchymal cells, and the endogenous expression level decreased during osteoblast differentiation. Overexpression of COUP-TFII inhibited bone morphogenetic protein 2 (BMP2)-induced osteoblastic gene expression. The results of alkaline phosphatase, Alizarin Red staining, and osteocalcin production assay showed that COUP-TFII overexpression blocks BMP2-induced osteoblast differentiation. In contrast, the down-regulation of COUP-TFII synergistically induced the expression of BMP2-induced osteoblastic genes and osteoblast differentiation. Furthermore, the immunoprecipitation assay showed that COUP-TFII and Runx2 physically interacted and COUP-TFII significantly impaired the Runx2-dependent activation of the osteocalcin promoter. From the ChIP assay, we found that COUP-TFII repressed DNA binding of Runx2 to the osteocalcin gene, whereas Runx2 inhibited COUP-TFII expression via direct binding to the COUP-TFII promoter. Taken together, these findings demonstrate that COUP-TFII negatively regulates osteoblast differentiation via interaction with Runx2, and during the differentiation state, BMP2-induced Runx2 represses COUP-TFII expression and promotes osteoblast differentiation.
Collapse
Affiliation(s)
- Kkot-Nim Lee
- Dental Science Research Institute and the BK21 Project, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fang B, Mane-Padros D, Bolotin E, Jiang T, Sladek FM. Identification of a binding motif specific to HNF4 by comparative analysis of multiple nuclear receptors. Nucleic Acids Res 2012; 40:5343-56. [PMID: 22383578 PMCID: PMC3384313 DOI: 10.1093/nar/gks190] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nuclear receptors (NRs) regulate gene expression by binding specific DNA sequences consisting of AG[G/T]TCA or AGAACA half site motifs in a variety of configurations. However, those motifs/configurations alone do not adequately explain the diversity of NR function in vivo. Here, a systematic examination of DNA binding specificity by protein-binding microarrays (PBMs) of three closely related human NRs—HNF4α, retinoid X receptor alpha (RXRα) and COUPTF2—reveals an HNF4-specific binding motif (H4-SBM), xxxxCAAAGTCCA, as well as a previously unrecognized polarity in the classical DR1 motif (AGGTCAxAGGTCA) for HNF4α, RXRα and COUPTF2 homodimers. ChIP-seq data indicate that the H4-SBM is uniquely bound by HNF4α but not 10 other NRs in vivo, while NRs PXR, FXRα, Rev-Erbα appear to bind adjacent to H4-SBMs. HNF4-specific DNA recognition and transactivation are mediated by residues Asp69 and Arg76 in the DNA-binding domain; this combination of amino acids is unique to HNF4 among all human NRs. Expression profiling and ChIP data predict ∼100 new human HNF4α target genes with an H4-SBM site, including several Co-enzyme A-related genes and genes with links to disease. These results provide important new insights into NR DNA binding.
Collapse
Affiliation(s)
- Bin Fang
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
41
|
Vinayavekhin N, Saghatelian A. Discovery of a protein-metabolite interaction between unsaturated fatty acids and the nuclear receptor Nur77 using a metabolomics approach. J Am Chem Soc 2011; 133:17168-71. [PMID: 21973308 PMCID: PMC4569094 DOI: 10.1021/ja208199h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuron-derived clone 77 (Nur77) is an orphan nuclear receptor with currently no known natural ligands. Here we applied a metabolomics platform for detecting protein-metabolite interactions (PMIs) to identify lipids that bind to Nur77. Using this approach, we discovered that the Nur77 ligand-binding domain (Nur77LBD) enriches unsaturated fatty acids (UFAs) in tissue lipid mixtures. The interaction of Nur77 with arachidonic acid and docosahexaenoic acid was subsequently characterized using a number of biophysical and biochemical assays. Together these data indicate that UFAs bind to Nur77LBD to cause changes in the conformation and oligomerization of the receptor. UFAs are the only endogenous lipids reported to bind to Nur77, which highlights the use of metabolomics in the discovery of novel PMIs.
Collapse
Affiliation(s)
- Nawaporn Vinayavekhin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Alan Saghatelian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
42
|
Abstract
Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) belong to the steroid/thyroid hormone receptor superfamily. Cloning of their cDNAs demonstrated the existence of two distinct but related genes: COUP-TFI (EAR-3, NR2F1) and COUP-TFII (ARP-1, NR2F2). They are referred to as orphan receptors because ligands for COUP-TFs have yet to be identified. Since 1998, extensive studies have demonstrated their physiological importance in cell-fate specification, organogenesis, angiogenesis, and metabolism, as well as a variety of diseases. In this article, we will comprehensively review the biological functions of COUP-TFII and its underlying mechanism in various developmental processes and diseases. In addition, we will briefly summarize some of the current findings of COUP-TFI.
Collapse
Affiliation(s)
- Fu-Jung Lin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
43
|
Tan JJ, Ong SA, Chen KS. Rasd1 interacts with Ear2 (Nr2f6) to regulate renin transcription. BMC Mol Biol 2011; 12:4. [PMID: 21247419 PMCID: PMC3036621 DOI: 10.1186/1471-2199-12-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/19/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Rasd1 protein is a dexamethasone induced monomeric Ras-like G protein that oscillates in the suprachiasmatic nucleus (SCN). Previous studies have shown that Rasd1 modulates multiple signaling cascades. However, it is still unclear exactly how Rasd1 carries out its function. Studying protein-protein interactions involving Rasd1 may provide insights into its biological functions in different contexts. RESULTS To further explore the molecular function of Rasd1, we performed a yeast two-hybrid screen and identified Ear2, a negative regulator of renin transcription, as an interaction partner of Rasd1. We validated the interaction in vitro and in transfected COS-7 cells. We further confirmed the interaction of endogenous Rasd1 and Ear2 from HEK293T cell and mouse brain extract. Rasd1 inhibited transcriptional repression by Ear2 on a renin promoter-luciferase reporter construct both in the presence and absence of all-trans-retinoic acid. Moreover, real-time RT-PCR showed upregulation of endogenous renin transcription in As4.1 cells over-expressing Rasd1. We demonstrated that the ligand binding domain of Ear2 is required for physical and functional interaction between the two proteins. In addition, we demonstrated that shRNA-mediated knockdown of Rasd1 results in further repression of Ear2-mediated renin transcription, whereas induction of Rasd1 by dexamethasone counteracts the effects of shRNA-mediated Rasd1 knockdown. Finally, our study showed that Rasd1 missense mutations not only attenuate their physical interaction with Ear2 but also abolish their ability to counteract repression of renin transcription mediated by Ear2. CONCLUSIONS Our study provides evidence for physical and functional interactions between Rasd1 and Ear2. The results suggest that their interactions are involved in renin transcriptional regulation. These findings not only reveal a novel role for Rasd1-medated signaling but also provide the basis for potential intervention of renin expression.
Collapse
Affiliation(s)
- Jen Jen Tan
- School of Biological Sciences, Department of Genomics and Genetics, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | | | | |
Collapse
|
44
|
Zhou XE, Suino-Powell KM, Xu Y, Chan CW, Tanabe O, Kruse SW, Reynolds R, Engel JD, Xu HE. The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. J Biol Chem 2010; 286:2877-85. [PMID: 21068381 DOI: 10.1074/jbc.m110.168740] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.
Collapse
Affiliation(s)
- X Edward Zhou
- Laboratory of Structural Sciences and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wu SP, Lee DK, Demayo FJ, Tsai SY, Tsai MJ. Generation of ES cells for conditional expression of nuclear receptors and coregulators in vivo. Mol Endocrinol 2010; 24:1297-304. [PMID: 20382891 DOI: 10.1210/me.2010-0068] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nuclear receptors and coregulators orchestrate diverse aspects of biological functions and inappropriate expression of these factors often associates with human diseases. The present study describes a conditional overexpression system consisting of a minigene located at the Rosa26 locus in the genome of mouse embryonic stem (ES) cells. Before activation, the minigene is silent due to a floxed STOP cassette inserted between the promoter and the transgene. Upon cre-mediated excision of the STOP cassette, the minigene constitutively expresses the tagged transgene driven by the ubiquitous CAGGS promoter. Thus, this system can be used to express target gene in any tissue in a spatial and/or temporal manner if respective cre mouse lines are available. Serving as proof of principle, the CAG-S-hCOUP-TFI allele was generated in ES cells and subsequently in mice. This allele was capable of conditionally overexpressing human chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) in all tissues tested upon activation by cre drivers. This allele was further subjected to address functionality of expressed COUP-TFI and the functional similarity between COUP-TFI and COUP-TFII. Expression of COUP-TFI in COUP-TFII-ablated uterus suppressed aberrant estrogen receptor-alpha activities and rescued implantation and decidualization defects of COUP-TFII mutants, suggesting that COUP-TFI and COUP-TFII are able to functionally compensate for each other in the uterus. A toolbox currently under construction will contain ES cell lines for overexpressing all 48 nuclear receptors and selected 10 coregulators. Upon completion, it will be a very valuable resource for the scientific community. Several ES cells are currently available for distribution.
Collapse
Affiliation(s)
- San-Pin Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
46
|
Montemayor C, Montemayor OA, Ridgeway A, Lin F, Wheeler DA, Pletcher SD, Pereira FA. Genome-wide analysis of binding sites and direct target genes of the orphan nuclear receptor NR2F1/COUP-TFI. PLoS One 2010; 5:e8910. [PMID: 20111703 PMCID: PMC2811727 DOI: 10.1371/journal.pone.0008910] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 01/04/2010] [Indexed: 11/18/2022] Open
Abstract
Background Identification of bona fide direct nuclear receptor gene targets has been challenging but essential for understanding regulation of organismal physiological processes. Results We describe a methodology to identify transcription factor binding sites and target genes in vivo by intersecting microarray data, computational binding site queries, and evolutionary conservation. We provide detailed experimental validation of each step and, as a proof of principle, utilize the methodology to identify novel direct targets of the orphan nuclear receptor NR2F1 (COUP-TFI). The first step involved validation of microarray gene expression profiles obtained from wild-type and COUP-TFI−/− inner ear tissues. Secondly, we developed a bioinformatic tool to search for COUP-TFI DNA binding sites in genomes, using a classification-type Hidden Markov Model trained with 49 published COUP-TF response elements. We next obtained a ranked list of candidate in vivo direct COUP-TFI targets by integrating the microarray and bioinformatics analyses according to the degree of binding site evolutionary conservation and microarray statistical significance. Lastly, as proof-of-concept, 5 specific genes were validated for direct regulation. For example, the fatty acid binding protein 7 (Fabp7) gene is a direct COUP-TFI target in vivo because: i) we identified 2 conserved COUP-TFI binding sites in the Fabp7 promoter; ii) Fapb7 transcript and protein levels are significantly reduced in COUP-TFI−/− tissues and in MEFs; iii) chromatin immunoprecipitation demonstrates that COUP-TFI is recruited to the Fabp7 promoter in vitro and in vivo and iv) it is associated with active chromatin having increased H3K9 acetylation and enrichment for CBP and SRC-1 binding in the newborn brain. Conclusion We have developed and validated a methodology to identify in vivo direct nuclear receptor target genes. This bioinformatics tool can be modified to scan for response elements of transcription factors, cis-regulatory modules, or any flexible DNA pattern.
Collapse
Affiliation(s)
- Celina Montemayor
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | | | | | | | | | | | | |
Collapse
|
47
|
Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc Natl Acad Sci U S A 2009; 106:15726-31. [PMID: 19717459 DOI: 10.1073/pnas.0907689106] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Promyelocytic leukemia (PML) bodies (also called ND10) are dynamic nuclear structures implicated in a wide variety of cellular processes. ALT-associated PML bodies (APBs) are specialized PML bodies found exclusively in telomerase-negative tumors in which telomeres are maintained by recombination-based alternative (ALT) mechanisms. Although it has been suggested that APBs are directly implicated in telomere metabolism of ALT cells, their precise role and structure have remained elusive. Here we show that PML bodies in ALT cells associate with chromosome ends forming small, spatially well-defined clusters, containing on average 2-5 telomeres. Using an innovative approach that gently enlarges PML bodies in living cells while retaining their overall organization, we show that this physical enlargement of APBs spatially resolves the single telomeres in the cluster, but does not perturb the potential of the APB to recruit chromosome extremities. We show that telomere clustering in PML bodies is cell-cycle regulated and that unique telomeres within a cluster associate with recombination proteins. Enlargement of APBs induced the accumulation of telomere-telomere recombination intermediates visible on metaphase spreads and connecting heterologous chromosomes. The strand composition of these recombination intermediates indicated that this recombination is constrained to a narrow time window in the cell cycle following replication. These data provide strong evidence that PML bodies are not only a marker for ALT cells but play a direct role in telomere recombination, both by bringing together chromosome ends and by promoting telomere-telomere interactions between heterologous chromosomes.
Collapse
|
48
|
Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, Xu Y, Wang L, Tsai SY, Tsai MJ, Xu HE. Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol 2008; 6:e227. [PMID: 18798693 PMCID: PMC2535662 DOI: 10.1371/journal.pbio.0060227] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 08/04/2008] [Indexed: 12/22/2022] Open
Abstract
The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 Å crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix α10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation. Unlike other classes of receptors, nuclear receptors can bind directly to DNA and act as transcription factors, playing key roles in embryonic development and cellular metabolism. Most nuclear receptors are activated by signal-triggering molecules (ligands) and can regulate their activity by recruiting coactivator proteins. However, the ligands are unknown for a subset of “orphan” nuclear receptors, including the chicken ovalbumin promoter-transcription factors (COUP-TFI and II, and EAR2). COUP-TFs are the most conserved nuclear receptors, with roles in angiogenesis, neuronal development, organogenesis, and metabolic homeostasis. Here we demonstrate that COUP-TFII is a ligand-regulated nuclear receptor that can be activated by unphysiological micromolar concentrations of retinoic acids. We determined the structure of the ligand-free ligand-binding domain of the human COUP-TFII, revealing the autorepressed conformation of the receptor, where helix α10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. These results suggest a mechanism where ligands activate COUP-TFII by releasing the receptor from the autorepressed conformation. The identification of COUP-TFII as a low-affinity retinoic acid receptor suggests ways of searching for the endogenous ligands that may ultimately link retinoic acid and COUP-TF signaling pathways. Structural and functional studies reveal that the orphan nuclear receptor COUP-TFII is a low-affinity receptor for retinoic acids. paving the way to finding the endogenous ligands that may ultimately link retinoic acid and COUP-TF signaling pathways.
Collapse
Affiliation(s)
- Schoen W Kruse
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Kelly Suino-Powell
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - X. Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Jennifer E Kretschman
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Ross Reynolds
- Department of Physics, Grand Valley State University, Allendale, Michigan, United States of America
| | - Clemens Vonrhein
- Global Phasing Ltd., Sheraton House, Castle Park, Cambridge, United Kingdom
| | - Yong Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Liliang Wang
- Department of Molecular and Cellular Biology and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - H. Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Fulp CT, Cho G, Marsh ED, Nasrallah IM, Labosky PA, Golden JA. Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet 2008; 17:3740-60. [PMID: 18799476 PMCID: PMC2581427 DOI: 10.1093/hmg/ddn271] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations in the aristaless-related homeobox (ARX) gene are associated with multiple neurologic disorders in humans. Studies in mice indicate Arx plays a role in neuronal progenitor proliferation and development of the cerebral cortex, thalamus, hippocampus, striatum, and olfactory bulbs. Specific defects associated with Arx loss of function include abnormal interneuron migration and subtype differentiation. How disruptions in ARX result in human disease and how loss of Arx in mice results in these phenotypes remains poorly understood. To gain insight into the biological functions of Arx, we performed a genome-wide expression screen to identify transcriptional changes within the subpallium in the absence of Arx. We have identified 84 genes whose expression was dysregulated in the absence of Arx. This population was enriched in genes involved in cell migration, axonal guidance, neurogenesis, and regulation of transcription and includes genes implicated in autism, epilepsy, and mental retardation; all features recognized in patients with ARX mutations. Additionally, we found Arx directly repressed three of the identified transcription factors: Lmo1, Ebf3 and Shox2. To further understand how the identified genes are involved in neural development, we used gene set enrichment algorithms to compare the Arx gene regulatory network (GRN) to the Dlx1/2 GRN and interneuron transcriptome. These analyses identified a subset of genes in the Arx GRN that are shared with that of the Dlx1/2 GRN and that are enriched in the interneuron transcriptome. These data indicate Arx plays multiple roles in forebrain development, both dependent and independent of Dlx1/2, and thus provides further insights into the understanding of the mechanisms underlying the pathology of mental retardation and epilepsy phenotypes resulting from ARX mutations.
Collapse
Affiliation(s)
- Carl T Fulp
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
50
|
Chen Y, Rao F, Rodriguez-Flores JL, Mahapatra NR, Mahata M, Wen G, Salem RM, Shih PAB, Das M, Schork NJ, Ziegler MG, Hamilton BA, Mahata SK, O'Connor DT. Common genetic variants in the chromogranin A promoter alter autonomic activity and blood pressure. Kidney Int 2008; 74:115-25. [PMID: 18432188 PMCID: PMC2576285 DOI: 10.1038/ki.2008.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromogranin A (CHGA) is stored and released from the same secretory vesicles that contain catecholamines in chromaffin cells and noradrenergic neurons. We had previously identified common genetic variants at the CHGA locus in several human populations. Here we focus on whether inter-individual variants in the promoter region are of physiological significance. A common haplotype, CGATA (Hap-B), blunted the blood pressure response to cold stress and the effect exhibited molecular heterosis with the greatest blood pressure change found in Hap-A/Hap-B heterozygotes. Homozygosity for three minor alleles with peak effects within the haplotype predicted lower stress-induced blood pressure changes. The G-462A variant predicted resting blood pressure in the population with higher pressures occurring in heterozygotes (heterosis). Using cells transfected with CHGA promoter-luciferase reporter constructs, the Hap-B haplotype had decreased luciferase expression compared to the TTGTC (Hap-A) haplotype under both basal conditions and after activation by pre-ganglionic stimuli. The G-462A variant altered a COUP-TF transcriptional control motif. The two alleles in transfected promoters differed in basal activity and in the responses to COUP-II-TF transactivation and to retinoic acid. In vitro findings of molecular heterosis were also noted with the transfected CHGA promoter wherein the diploid combination of the two G-462A alleles gave rise to higher luciferase expression than either allele in isolation. Our results suggest that common genetic variants in the CHGA promoter may regulate heritable changes in blood pressure.
Collapse
Affiliation(s)
- Y Chen
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - F Rao
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - JL Rodriguez-Flores
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - NR Mahapatra
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - M Mahata
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - G Wen
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - RM Salem
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - P-A B Shih
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - M Das
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - NJ Schork
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - MG Ziegler
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - BA Hamilton
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
| | - SK Mahata
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| | - DT O'Connor
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, San Diego, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
- Department of Pharmacology, University of California at San Diego, San Diego, California, USA
| |
Collapse
|