1
|
Wirasinha RC, Davies AR, Srivastava M, Sheridan JM, Sng XYX, Delmonte OM, Dobbs K, Loh KL, Miosge LA, Lee CE, Chand R, Chan A, Yap JY, Keller MD, Chen K, Rossjohn J, La Gruta NL, Vinuesa CG, Reid HH, Lionakis MS, Notarangelo LD, Gray DHD, Goodnow CC, Cook MC, Daley SR. Nfkb2 variants reveal a p100-degradation threshold that defines autoimmune susceptibility. J Exp Med 2021; 218:211502. [PMID: 33107914 PMCID: PMC7595743 DOI: 10.1084/jem.20200476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/16/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
NF-κB2/p100 (p100) is an inhibitor of κB (IκB) protein that is partially degraded to produce the NF-κB2/p52 (p52) transcription factor. Heterozygous NFKB2 mutations cause a human syndrome of immunodeficiency and autoimmunity, but whether autoimmunity arises from insufficiency of p52 or IκB function of mutated p100 is unclear. Here, we studied mice bearing mutations in the p100 degron, a domain that harbors most of the clinically recognized mutations and is required for signal-dependent p100 degradation. Distinct mutations caused graded increases in p100-degradation resistance. Severe p100-degradation resistance, due to inheritance of one highly degradation-resistant allele or two subclinical alleles, caused thymic medullary hypoplasia and autoimmune disease, whereas the absence of p100 and p52 did not. We inferred a similar mechanism occurs in humans, as the T cell receptor repertoires of affected humans and mice contained a hydrophobic signature of increased self-reactivity. Autoimmunity in autosomal dominant NFKB2 syndrome arises largely from defects in nonhematopoietic cells caused by the IκB function of degradation-resistant p100.
Collapse
Affiliation(s)
- Rushika C Wirasinha
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ainsley R Davies
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Monika Srivastava
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julie M Sheridan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Xavier Y X Sng
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Khai L Loh
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Lisa A Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Cindy Eunhee Lee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia
| | - Rochna Chand
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia
| | - Anna Chan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Jin Yan Yap
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Michael D Keller
- Division of Allergy and Immunology, Children's National Medical Center, Washington, DC
| | - Karin Chen
- Department of Pediatrics, University of Utah, Salt Lake City, UT.,Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA
| | - Jamie Rossjohn
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Nicole L La Gruta
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Hugh H Reid
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research & Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Stephen R Daley
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Medeiros M, Candido MF, Valera ET, Brassesco MS. The multifaceted NF-kB: are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci 2021; 78:6161-6200. [PMID: 34333711 PMCID: PMC11072991 DOI: 10.1007/s00018-021-03906-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Collapse
Affiliation(s)
- Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, FFCLRP-USP, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-901, Brazil.
| |
Collapse
|
3
|
Leclerc M, Kresdorn N, Horres R. Asterias rubens: Evidence of NF-kappa B genes. Meta Gene 2016; 8:30-2. [PMID: 27014588 PMCID: PMC4792854 DOI: 10.1016/j.mgene.2015.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/01/2015] [Accepted: 12/13/2015] [Indexed: 11/25/2022] Open
Abstract
In the present paper we show a survey of the Asterias rubens sea star genome for genes associated with NF-kappa-B proteins implied in the immune response. The NF-kappa B gene, into 2 subunits, was found in this invertebrate.
Collapse
|
4
|
Brue T, Quentien MH, Khetchoumian K, Bensa M, Capo-Chichi JM, Delemer B, Balsalobre A, Nassif C, Papadimitriou DT, Pagnier A, Hasselmann C, Patry L, Schwartzentruber J, Souchon PF, Takayasu S, Enjalbert A, Van Vliet G, Majewski J, Drouin J, Samuels ME. Mutations in NFKB2 and potential genetic heterogeneity in patients with DAVID syndrome, having variable endocrine and immune deficiencies. BMC MEDICAL GENETICS 2014; 15:139. [PMID: 25524009 PMCID: PMC4411703 DOI: 10.1186/s12881-014-0139-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/11/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND DAVID syndrome is a rare condition combining anterior pituitary hormone deficiency with common variable immunodeficiency. NFKB2 mutations have recently been identified in patients with ACTH and variable immunodeficiency. A similar mutation was previously found in Nfkb2 in the immunodeficient Lym1 mouse strain, but the effect of the mutation on endocrine function was not evaluated. METHODS We ascertained six unrelated DAVID syndrome families. We performed whole exome and traditional Sanger sequencing to search for causal genes. Lym1 mice were examined for endocrine developmental anomalies. RESULTS Mutations in the NFKB2 gene were identified in three of our families through whole exome sequencing, and in a fourth by direct Sanger sequencing. De novo origin of the mutations could be demonstrated in three of the families. All mutations lie near the C-terminus of the protein-coding region, near signals required for processing of NFΚB2 protein by the alternative pathway. Two of the probands had anatomical pituitary anomalies, and one had growth and thyroid hormone as well as ACTH deficiency; these findings have not been previously reported. Two children of one of the probands carried the mutation and have to date exhibited only an immune phenotype. No mutations were found near the C-terminus of NFKB2 in the remaining two probands; whole exome sequencing has been performed for one of these. Lym1 mice, carrying a similar Nfkb2 C-terminal mutation, showed normal pituitary anatomy and expression of proopiomelanocortin (POMC). CONCLUSIONS We confirm previous findings that mutations near the C-terminus of NFKB2 cause combined endocrine and immunodeficiencies. De novo status of the mutations was confirmed in all cases for which both parents were available. The mutations are consistent with a dominant gain-of-function effect, generating an unprocessed NFKB2 super-repressor protein. We expand the potential phenotype of such NFKB2 mutations to include additional pituitary hormone deficiencies as well as anatomical pituitary anomalies. The lack of an observable endocrine phenotype in Lym1 mice suggests that the endocrine component of DAVID syndrome is either not due to a direct role of NFKB pathways on pituitary development, or else that human and mouse pituitary development differ in its requirements for NFKB pathway function.
Collapse
Affiliation(s)
- Thierry Brue
- Aix-Marseille University, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7286, Faculté de Médecine de Marseille, 13344, Marseille, France.
- Assistance Publique-Hôpitaux de Marseille (APHM), Department of Endocrinology, Centre de Référence des Maladies Rares d'Origine Hypophysaire, Hôpital de la Timone, 13005, Marseille, France.
| | - Marie-Hélène Quentien
- Aix-Marseille University, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7286, Faculté de Médecine de Marseille, 13344, Marseille, France.
- Assistance Publique-Hôpitaux de Marseille (APHM), Department of Endocrinology, Centre de Référence des Maladies Rares d'Origine Hypophysaire, Hôpital de la Timone, 13005, Marseille, France.
| | - Konstantin Khetchoumian
- Laboratoire de Génétique moléculaire, Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
| | - Marco Bensa
- Ospedale Bufalini, Department of Paediatrics, Cesena, FC, Italy.
| | | | - Brigitte Delemer
- Departments of Endocrinology and of Pediatrics, Centre Hospitalier Robert Debré, 51092, Reims, France.
| | - Aurelio Balsalobre
- Laboratoire de Génétique moléculaire, Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
| | - Christina Nassif
- Centre de Recherche du CHU Ste-Justine, 3175 Cote Ste-Catherine, Montreal, QC, Canada.
| | - Dimitris T Papadimitriou
- Department of Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, Athens, Greece.
| | - Anne Pagnier
- Clinique universitaire de pédiatrie, CHU de Grenoble, Grenoble, France.
| | - Caroline Hasselmann
- Centre de Recherche du CHU Ste-Justine, 3175 Cote Ste-Catherine, Montreal, QC, Canada.
| | - Lysanne Patry
- Centre de Recherche du CHU Ste-Justine, 3175 Cote Ste-Catherine, Montreal, QC, Canada.
| | | | - Pierre-François Souchon
- Departments of Endocrinology and of Pediatrics, Centre Hospitalier Robert Debré, 51092, Reims, France.
| | - Shinobu Takayasu
- Laboratoire de Génétique moléculaire, Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
| | - Alain Enjalbert
- Aix-Marseille University, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7286, Faculté de Médecine de Marseille, 13344, Marseille, France.
- Assistance Publique-Hôpitaux de Marseille (APHM), Department of Endocrinology, Centre de Référence des Maladies Rares d'Origine Hypophysaire, Hôpital de la Timone, 13005, Marseille, France.
| | - Guy Van Vliet
- Endocrinology Service and Research Center, Department of Pediatrics, CHU Ste-Justine, University of Montreal, Montreal, QC, Canada.
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Jacques Drouin
- Laboratoire de Génétique moléculaire, Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
| | - Mark E Samuels
- Centre de Recherche du CHU Ste-Justine, 3175 Cote Ste-Catherine, Montreal, QC, Canada.
- Department of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
5
|
Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013; 12:86. [PMID: 23915189 PMCID: PMC3750319 DOI: 10.1186/1476-4598-12-86] [Citation(s) in RCA: 2491] [Impact Index Per Article: 207.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023] Open
Abstract
The NF-κB family of transcription factors has an essential role in inflammation and innate immunity. Furthermore, NF-κB is increasingly recognized as a crucial player in many steps of cancer initiation and progression. During these latter processes NF-κB cooperates with multiple other signaling molecules and pathways. Prominent nodes of crosstalk are mediated by other transcription factors such as STAT3 and p53 or the ETS related gene ERG. These transcription factors either directly interact with NF-κB subunits or affect NF-κB target genes. Crosstalk can also occur through different kinases, such as GSK3-β, p38, or PI3K, which modulate NF-κB transcriptional activity or affect upstream signaling pathways. Other classes of molecules that act as nodes of crosstalk are reactive oxygen species and miRNAs. In this review, we provide an overview of the most relevant modes of crosstalk and cooperativity between NF-κB and other signaling molecules during inflammation and cancer.
Collapse
Affiliation(s)
- Bastian Hoesel
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Johannes A Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| |
Collapse
|
6
|
Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012; 26:203-34. [PMID: 22302935 DOI: 10.1101/gad.183434.111] [Citation(s) in RCA: 1350] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to sense and adjust to the environment is crucial to life. For multicellular organisms, the ability to respond to external changes is essential not only for survival but also for normal development and physiology. Although signaling events can directly modify cellular function, typically signaling acts to alter transcriptional responses to generate both transient and sustained changes. Rapid, but transient, changes in gene expression are mediated by inducible transcription factors such as NF-κB. For the past 25 years, NF-κB has served as a paradigm for inducible transcription factors and has provided numerous insights into how signaling events influence gene expression and physiology. Since its discovery as a regulator of expression of the κ light chain gene in B cells, research on NF-κB continues to yield new insights into fundamental cellular processes. Advances in understanding the mechanisms that regulate NF-κB have been accompanied by progress in elucidating the biological significance of this transcription factor in various physiological processes. NF-κB likely plays the most prominent role in the development and function of the immune system and, not surprisingly, when dysregulated, contributes to the pathophysiology of inflammatory disease. As our appreciation of the fundamental role of inflammation in disease pathogenesis has increased, so too has the importance of NF-κB as a key regulatory molecule gained progressively greater significance. However, despite the tremendous progress that has been made in understanding the regulation of NF-κB, there is much that remains to be understood. In this review, we highlight both the progress that has been made and the fundamental questions that remain unanswered after 25 years of study.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
7
|
Yang L, Cui H, Wang Z, Zhang B, Ding J, Liu L, Ding HF. Loss of negative feedback control of nuclear factor-kappaB2 activity in lymphocytes leads to fatal lung inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2646-57. [PMID: 20363924 DOI: 10.2353/ajpath.2010.090751] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteolytic processing of the nuclear factor (NF)-kappaB2 precursor protein p100 generates the active NF-kappaB2 subunit p52, which in turn transcriptionally up-regulates p100 expression. p100 also functions as an IkappaB molecule capable of repressing p52 activity. The biological significance of this negative feedback control loop has yet to be demonstrated in vivo. Here we show that mice deficient in p100 but with constitutive expression of p52 in lymphocytes developed fatal lung inflammation characterized by diffuse alveolar damage with marked peribronchial fibrosis. In contrast, their littermates with only p100 deficiency or constitutive expression of p52 in lymphocytes developed mild lung inflammation with perivascular lymphocyte infiltration and had a normal life span. The fatal lung inflammation is associated with high-level induction of interferon-gamma and its inducible inflammatory chemokines, suggesting the involvement of a T-helper-1 immune response. These findings demonstrate the physiological relevance of the NF-kappaB2 p100 precursor protein in limiting the potentially detrimental effects of constitutive NF-kappaB2 signaling in lymphocytes.
Collapse
Affiliation(s)
- Liqun Yang
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Liu P, Li K, Garofalo RP, Brasier AR. Respiratory syncytial virus induces RelA release from cytoplasmic 100-kDa NF-kappa B2 complexes via a novel retinoic acid-inducible gene-I{middle dot}NF- kappa B-inducing kinase signaling pathway. J Biol Chem 2008; 283:23169-78. [PMID: 18550535 PMCID: PMC2516985 DOI: 10.1074/jbc.m802729200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/05/2008] [Indexed: 11/06/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a primary cause of severe lower respiratory tract infection in children worldwide. RSV infects airway epithelial cells, where it activates inflammatory genes via the NF-kappaB pathway. NF-kappaB is controlled by two pathways, a canonical pathway that releases sequestered RelA complexes from the IkappaBalpha inhibitor, and a second, the noncanonical pathway, that releases RelB from the 100-kDa NF-kappaB2 complex. Recently we found that the retinoic acid-inducible gene I (RIG-I) is a major intracellular RSV sensor upstream of the canonical pathway. In this study, we surprisingly found that RIG-I silencing also inhibited p100 processing to 52-kDa NF-kappaB2 ("p52"), suggesting that RIG-I was functionally upstream of the noncanonical regulatory kinase complex composed of NIK.IKKalpha subunits. Co-immunoprecipitation experiments not only demonstrated that NIK associated with RIG-I and its downstream adaptor, mitochondrial antiviral signaling (MAVS), but also showed the association between IKKalpha and MAVS. To further understand the role of the NIK.IKKalpha pathway, we compared RSV-induced NF-kappaB activation using wild type, Ikkgamma(-/-), Nik(-/-), and Ikkalpha(-/-)-deficient MEF cells. Interestingly, we found that in canonical pathway-defective Ikkgamma(-/-) cells, RSV induced RelA by liberation from p100 complexes. RSV was still able to activate IP10, Rantes, and Grobeta gene expression in Ikkgamma(-/-) cells, and this induction was inhibited by small interfering RNA-mediated RelA knockdown but not RelB silencing. These data suggest that part of the RelA activation in response to RSV infection was induced by a "cross-talk" pathway involving the noncanonical NIK.IKKalpha complex downstream of RIG-I.MAVS. This pathway may be a potential target for RSV treatment.
Collapse
Affiliation(s)
- Ping Liu
- Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555-1060, USA
| | | | | | | |
Collapse
|
9
|
Zarnegar B, Yamazaki S, He JQ, Cheng G. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci U S A 2008; 105:3503-8. [PMID: 18292232 PMCID: PMC2265190 DOI: 10.1073/pnas.0707959105] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Indexed: 01/14/2023] Open
Abstract
Articles in recent years have described two separate and distinct NF-kappaB activation pathways that result in the differential activation of p50- or p52-containing NF-kappaB complexes. Studies examining tumor-necrosis factor receptor-associated factors (TRAFs) have identified positive roles for TRAF2, TRAF5, and TRAF6, but not TRAF3, in canonical (p50-dependent) NF-kappaB activation. Conversely, it recently was reported that TRAF3 functions as an essential negative regulator of the noncanonical (p52-dependent) NF-kappaB pathway. In this article, we provide evidence that TRAF3 potently suppresses canonical NF-kappaB activation and gene expression in vitro and in vivo. We also demonstrate that deregulation of the canonical NF-kappaB pathway in TRAF3-deficient cells results from accumulation of NF-kappaB-inducing kinase (NIK), the essential kinase mediating noncanonical NF-kappaB activation. Thus, our data demonstrate that inhibition of TRAF3 results in coordinated activation of both NF-kappaB activation pathways.
Collapse
Affiliation(s)
- Brian Zarnegar
- *Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095; and
| | - Soh Yamazaki
- School of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Jeannie Q. He
- *Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095; and
| | - Genhong Cheng
- *Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095; and
| |
Collapse
|
10
|
Beinke S, Ley S. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J 2004; 382:393-409. [PMID: 15214841 PMCID: PMC1133795 DOI: 10.1042/bj20040544] [Citation(s) in RCA: 483] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 06/22/2004] [Accepted: 06/24/2004] [Indexed: 01/01/2023]
Abstract
Two members of the NF-kappaB (nuclear factor kappaB)/Rel transcription factor family, NF-kappaB1 and NF-kappaB2, are produced as precursor proteins, NF-kappaB1 p105 and NF-kappaB2 p100 respectively. These are proteolytically processed by the proteasome to produce the mature transcription factors NF-kappaB1 p50 and NF-kappaB2 p52. p105 and p100 are known to function additionally as IkappaBs (inhibitors of NF-kappaB), which retain associated NF-kappaB subunits in the cytoplasm of unstimulated cells. The present review focuses on the latest advances in research on the function of NF-kappaB1 and NF-kappaB2 in immune cells. NF-kappaB2 p100 processing has recently been shown to be stimulated by a subset of NF-kappaB inducers, including lymphotoxin-beta, B-cell activating factor and CD40 ligand, via a novel signalling pathway. This promotes the nuclear translocation of p52-containing NF-kappaB dimers, which regulate peripheral lymphoid organogenesis and B-lymphocyte differentiation. Increased p100 processing also contributes to the malignant phenotype of certain T- and B-cell lymphomas. NF-kappaB1 has a distinct function from NF-kappaB2, and is important in controlling lymphocyte and macrophage function in immune and inflammatory responses. In contrast with p100, p105 is constitutively processed to p50. However, after stimulation with agonists, such as tumour necrosis factor-alpha and lipopolysaccharide, p105 is completely degraded by the proteasome. This releases associated p50, which translocates into the nucleus to modulate target gene expression. p105 degradation also liberates the p105-associated MAP kinase (mitogen-activated protein kinase) kinase kinase TPL-2 (tumour progression locus-2), which can then activate the ERK (extracellular-signal-regulated kinase)/MAP kinase cascade. Thus, in addition to its role in NF-kappaB activation, p105 functions as a regulator of MAP kinase signalling.
Collapse
Key Words
- iκb kinase (ikk)
- nuclear factor κb (nf-κb)
- p100
- p105
- toll-like receptor (tlr)
- tumour progression locus-2 (tpl-2)
- abin, a20-binding inhibitor of nuclear factor κb
- baff, b-cell activating factor
- bmdm, bone-marrow-derived macrophage
- βtrcp, β-transducin repeat-containing protein
- cox-2, cyclo-oxygenase-2
- dc, dendritic cell
- dd, death domain
- dif, dorsal-related immunity factor
- ebna1, ebv nuclear antigen 1
- ebv, epstein–barr virus
- erk, extracellular-signal-regulated kinase
- fn14, fibroblast-growth-factor-inducible 14
- gc, germinal centre
- gm-csf, granulocyte–macrophage colony-stimulating factor
- grr, glycine-rich region
- gsk, glycogen synthase kinase
- htlv-1, human t-cell leukaemia virus type 1
- ifnβ, interferon-β
- iκb, inhibitor of nuclear factor κb
- ikk, iκb kinase
- il, interleukin
- imd, immune deficiency
- jnk, c-jun n-terminal kinase
- lmp1, latent membrane protein 1
- lps, lipopolysaccharide
- ltβr, lymphotoxin-β receptor
- map kinase, mitogen-activated protein kinase
- map 3-kinase, map kinase kinase kinase
- mef, mouse embryo fibroblast
- mek, map kinase/erk kinase
- mip, macrophage inflammatory protein
- nemo, nuclear factor κb essential modulator
- nf-κb, nuclear factor κb
- nik, nf-κb-inducing kinase
- pest region, polypeptide sequence enriched in proline (p), glutamic acid (e), serine (s) and threonine (t)
- pgrp-lc, peptidoglycan recognition protein lc
- rankl, receptor activator of nf-κb ligand
- rhd, rel homology domain
- scf, skp1/cul1/f-box
- th1, t-helper 1
- th2, t-helper 2
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- tpl-2, tumour progression locus-2
- traf, tnf-receptor-associated factor
- tweak, tnf-like weak inducer of apoptosis
Collapse
Affiliation(s)
- Sören Beinke
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, U.K
| | - Steven C. Ley
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, U.K
| |
Collapse
|
11
|
Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, Teitelbaum SL. The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 2003; 198:771-81. [PMID: 12939342 PMCID: PMC2194184 DOI: 10.1084/jem.20030116] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Revised: 07/14/2003] [Accepted: 07/14/2003] [Indexed: 01/12/2023] Open
Abstract
The prototranscription factor p100 represents an intersection of the NF-kappaB and IkappaB families, potentially serving as both the precursor for the active NF-kappaB subunit p52 and as an IkappaB capable of retaining NF-kappaB in the cytoplasm. NF-kappaB-inducing kinase (NIK) controls processing of p100 to generate p52, and thus NIK-deficient mice can be used to examine the biological effects of a failure in such processing. We demonstrate that treatment of wild-type osteoclast precursors with the osteoclastogenic cytokine receptor activator of NF-kappaB ligand (RANKL) increases both expression of p100 and its conversion to p52, resulting in unchanged net levels of p100. In the absence of NIK, p100 expression is increased by RANKL, but its conversion to p52 is blocked, leading to cytosolic accumulation of p100, which, acting as an IkappaB protein, binds NF-kappaB complexes and prevents their nuclear translocation. High levels of unprocessed p100 in osteoclast precursors from NIK-/- mice or a nonprocessable form of the protein in wild-type cells impair RANKL-mediated osteoclastogenesis. Conversely, p100-deficient osteoclast precursors show enhanced sensitivity to RANKL. These data demonstrate a novel, biologically relevant means of regulating NF-kappaB signaling, with upstream control and kinetics distinct from the classical IkappaBalpha pathway.
Collapse
Affiliation(s)
- Deborah Veis Novack
- Washington University School of Medicine, 660 S. Euclid Ave., Box 8301, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Rocha S, Martin AM, Meek DW, Perkins ND. p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1. Mol Cell Biol 2003; 23:4713-27. [PMID: 12808109 PMCID: PMC164841 DOI: 10.1128/mcb.23.13.4713-4727.2003] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p53 and NF-kappaB transcription factor families are important, multifunctional regulators of the cellular response to stress. Here we have investigated the regulatory mechanisms controlling p53-dependent cell cycle arrest and cross talk with NF-kappaB. Upon induction of p53 in H1299 or U-2 OS cells, we observed specific repression of cyclin D1 promoter activity, correlating with a decrease in cyclin D1 protein and mRNA levels. This repression was dependent on the proximal NF-kappaB binding site of the cyclin D1 promoter, which has been shown to bind the p52 NF-kappaB subunit. p53 inhibited the expression of Bcl-3 protein, a member of the IkappaB family that functions as a transcriptional coactivator for p52 NF-kappaB and also reduced p52/Bcl-3 complex levels. Concomitant with this, p53 induced a significant increase in the association of p52 and histone deacetylase 1 (HDAC1). Importantly, p53-mediated suppression of the cyclin D1 promoter was reversed by coexpression of Bcl-3 and inhibition of p52 or deacetylase activity. p53 therefore induces a transcriptional switch in which p52/Bcl-3 activator complexes are replaced by p52/HDAC1 repressor complexes, resulting in active repression of cyclin D1 transcription. These results reveal a unique mechanism by which p53 regulates NF-kappaB function and cell cycle progression.
Collapse
Affiliation(s)
- Sonia Rocha
- School of Life Sciences, Division of Gene Expression and Regulation, University of Dundee, Scotland, United Kingdom
| | | | | | | |
Collapse
|
13
|
Cook JL, Walker TA, Worthen GS, Radke JR. Role of the E1A Rb-binding domain in repression of the NF-kappa B-dependent defense against tumor necrosis factor-alpha. Proc Natl Acad Sci U S A 2002; 99:9966-71. [PMID: 12119420 PMCID: PMC126608 DOI: 10.1073/pnas.162082999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The adenoviral E1A oncogene sensitizes mammalian cells to tumor necrosis factor-alpha (TNF-alpha), in part by repressing the nuclear factor-kappa B (NF-kappa B)-dependent defense against this cytokine. Other E1A activities involve binding to either p300/cyclic AMP response element-binding protein (CBP) or retinoblastoma (Rb)-family proteins, but the roles of E1A interactions with these transcriptional regulators in sensitizing cells to TNF-alpha are unclear. E1A expression did not block upstream events in TNF-alpha-induced activation of NF-kappa B in NIH 3T3 cells, including degradation of I kappa B-alpha, nuclear translocation of NF-kappa B subunits, and their dimeric binding to kappa B sequences in the nucleus. However, E1A markedly repressed NF-kappa B-dependent transcription and sensitized cells to TNF-alpha induced apoptosis. These E1A effects were selective for kappa B-dependent transcription and for the function of the NF-kappa B p65/RelA subunit. A four amino acid E1A deletion that eliminates binding to Rb-family proteins blocked both repression of TNF-alpha-induced transcription and sensitization to apoptosis. In contrast, mutations that eliminate E1A binding to p300/CBP (coactivators of p65/RelA) did not affect either E1A activity. These data suggest that E1A-Rb-binding blocks the NF-kappa B-dependent activation response to TNF-alpha by altering the function of p65/RelA at a stage after formation of the transcription factor-enhancer complex. These observations also open questions about the general role of Rb-family proteins in modulation of NF-kappa B-dependent transcription.
Collapse
Affiliation(s)
- James L Cook
- Department of Medicine and the Cancer Center, University of Illinois College of Medicine, MC-735, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
14
|
Deroo BJ, Rentsch C, Sampath S, Young J, DeFranco DB, Archer TK. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol Cell Biol 2002; 22:4113-23. [PMID: 12024025 PMCID: PMC133869 DOI: 10.1128/mcb.22.12.4113-4123.2002] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin-proteasome pathway regulates the turnover of many transcription factors, including steroid hormone receptors such as the estrogen receptor and progesterone receptor. For these receptors, proteasome inhibition interferes with steroid-mediated transcription. We show here that proteasome inhibition with MG132 results in increased accumulation of the glucocorticoid receptor (GR), confirming that it is likewise a substrate for the ubiquitin-proteasome degradative pathway. Using the mouse mammary tumor virus (MMTV) promoter integrated into tissue culture cells, we found that proteasome inhibition synergistically increases GR-mediated transactivation. This increased activation was observed in a number of cell lines and on various MMTV templates, either as transiently transfected reporters or stably integrated into chromatin. These observations suggest that the increase in GR-mediated transcription due to proteasome inhibition may occur downstream of the initial chromatin remodeling step. In support of this concept, the increase in transcription did not correlate with an increase in chromatin remodeling, as measured by restriction enzyme hypersensitivity, or transcription factor loading, as exemplified by nuclear factor 1. To investigate the relationship between GR turnover, transcription, and subnuclear trafficking, we examined the effect of proteasome inhibition on the mobility of the GR within the nucleus and association of the GR with the nuclear matrix. Blocking GR turnover reduced the mobility of the GR within the nucleus, and this correlated with increased association of the receptor with the nuclear matrix. As a result of proteasome inhibition, GR mobility within the nucleus was reduced while its association with the nuclear matrix was increased. Thus, while altered nuclear mobility of steroid receptors may be a common feature of proteasome inhibition, GR is unique in its enhanced transactivation activity that results when proteasome function is compromised. Proteasomes may therefore impact steroid receptor action at multiple levels and exert distinct effects on individual receptor types.
Collapse
Affiliation(s)
- Bonnie J Deroo
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
15
|
Deroo BJ, Archer TK. Glucocorticoid receptor activation of the I kappa B alpha promoter within chromatin. Mol Biol Cell 2001; 12:3365-74. [PMID: 11694573 PMCID: PMC60261 DOI: 10.1091/mbc.12.11.3365] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The glucocorticoid receptor (GR) is a ligand-activated transcription factor that induces expression of many genes. The GR has been useful for understanding how chromatin structure regulates steroid-induced transcription in model systems. However, the effect of glucocorticoids on chromatin structure has been examined on few endogenous mammalian promoters. We investigated the effect of glucocorticoids on the in vivo chromatin structure of the glucocorticoid-responsive I kappa B alpha gene promoter, the inhibitor of the ubiquitous transcription factor, nuclear factor kappa B (NF kappa B). Glucocorticoids inhibit NF kappa B activity in some tissues by elevating the levels of I kappa B alpha. We found that glucocorticoids activated the I kappa B alpha promoter in human T47D/A1-2 cells containing the GR. We then investigated the chromatin structure of the I kappa B alpha promoter in the absence and presence of glucocorticoids with the use of micrococcal nuclease, restriction enzyme, and deoxyribonuclease (DNaseI) analyses. In untreated cells, the promoter assembles into regularly positioned nucleosomes, and glucocorticoid treatment did not alter nucleosomal position. Restriction enzyme accessiblity studies indicated that the I kappa B alpha promoter is assembled as phased nucleosomes that adopt an "open" chromatin architecture in the absence of hormone. However, glucocorticoids may be required for transcription factor binding, because DNaseI footprinting studies suggested that regulatory factors bind to the promoter upon glucocorticoid treatment.
Collapse
Affiliation(s)
- B J Deroo
- Department of Biochemistry, The University of Western Ontario, London, Ontario, N6A 4L6, Canada
| | | |
Collapse
|
16
|
Johnson RA, Wang X, Ma XL, Huong SM, Huang ES. Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling. J Virol 2001; 75:6022-32. [PMID: 11390604 PMCID: PMC114318 DOI: 10.1128/jvi.75.13.6022-6032.2001] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infection of quiescent fibroblasts with human cytomegalovirus (HCMV) was found to cause a rapid activation of cellular phosphatidylinositol 3-kinase (PI3-K). Maximum PI3-K activation occurred from 15 to 30 min postinfection. This activation was transient, and by 2 h postinfection (hpi), PI3-K activity had declined to preinfection levels. However, at 4 hpi, a second tier of PI3-K activation was detected, and PI3-K activity remained elevated relative to that of mock-infected cells for the remainder of infection. The cellular kinases Akt and p70S6K and the transcription factor NF-kappaB were activated in a PI3-K-dependent manner at similar times following HCMV infection. Analysis using UV-irradiated virus indicated that no viral protein synthesis was necessary for the first phase of PI3-K activation, but viral protein expression was required for the second tier of PI3-K activation. Treatment of infected fibroblasts with LY294002, a potent and specific inhibitor of PI3-K kinase activity, caused a 4-log decrease in viral titers. LY294002 did not inhibit viral entry, but it did decrease viral immediate-early gene expression. In addition, the protein levels of two viral early genes required for DNA replication, UL84 and UL44, were significantly lower in the presence of LY294002. Furthermore, viral DNA replication was strongly inhibited by LY294002 treatment. This inhibition of viral DNA replication could be reversed by adding back the products of PI3-K activity (PI-3,4-P(2) and PI-3,4,5-P(3)), demonstrating that the effect of LY294002 on the viral life cycle was specifically due to the inhibition of PI3-K activity. These results are the first to suggest that PI3-K mediates HCMV-induced activation of host cell mitogenic pathways. They also provide strong evidence that PI3-K activation is important for initiation of viral DNA replication and completion of the viral lytic life cycle.
Collapse
Affiliation(s)
- R A Johnson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | |
Collapse
|
17
|
Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, García-Sastre A. Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol 2000; 74:11566-73. [PMID: 11090154 PMCID: PMC112437 DOI: 10.1128/jvi.74.24.11566-11573.2000] [Citation(s) in RCA: 453] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The alpha/beta interferon (IFN-alpha/beta) system represents one of the first lines of defense against virus infections. As a result, most viruses encode IFN antagonistic factors which enhance viral replication in their hosts. We have previously shown that a recombinant influenza A virus lacking the NS1 gene (delNS1) only replicates efficiently in IFN-alpha/beta-deficient systems. Consistent with this observation, we found that infection of tissue culture cells with delNS1 virus, but not with wild-type influenza A virus, induced high levels of mRNA synthesis from IFN-alpha/beta genes, including IFN-beta. It is known that transactivation of the IFN-beta promoter depends on NF-kappaB and several other transcription factors. Interestingly, cells infected with delNS1 virus showed high levels of NF-kappaB activation compared with those infected with wild-type virus. Expression of dominant-negative inhibitors of the NF-kappaB pathway during delNS1 virus infection prevented the transactivation of the IFN-beta promoter, demonstrating a functional link between NF-kappaB activation and IFN-alpha/beta synthesis in delNS1 virus-infected cells. Moreover, expression of the NS1 protein prevented virus- and/or double-stranded RNA (dsRNA)-mediated activation of the NF-kappaB pathway and of IFN-beta synthesis. This inhibitory property of the NS1 protein of influenza A virus was dependent on its ability to bind dsRNA, supporting a model in which binding of NS1 to dsRNA generated during influenza virus infection prevents the activation of the IFN system. NS1-mediated inhibition of the NF-kappaB pathway may thus play a key role in the pathogenesis of influenza A virus.
Collapse
Affiliation(s)
- X Wang
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Roux P, Alfieri C, Hrimech M, Cohen EA, Tanner JE. Activation of transcription factors NF-kappaB and NF-IL-6 by human immunodeficiency virus type 1 protein R (Vpr) induces interleukin-8 expression. J Virol 2000; 74:4658-65. [PMID: 10775602 PMCID: PMC111986 DOI: 10.1128/jvi.74.10.4658-4665.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1999] [Accepted: 02/21/2000] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV)-positive individuals express elevated levels of interleukin-8 (IL-8), which is believed to be responsible for some of the clinical manifestations occurring during AIDS. We report here that virion-derived HIV type 1 (HIV-1) protein R (Vpr) increased IL-8 expression in primary T cells and macrophages, as well as in the T-cell line Jurkat, the monocytic cell line U937, and the epithelial cell line A549. Vpr appeared to increase IL-8 expression and IL-8 promoter activity by activating transcription factors NF-kappaB and NF-IL-6. Elevated Vpr was also shown to increase transcription of the NF-kappaB and NF-IL-6 enhancer-containing viral promoters for HIV, cytomegalovirus, and simian virus 40, as well as increase the expression of IL-6 and IL-10 in primary macrophages and in A549 cells, tumor necrosis factor alpha expression in primary T cells, and IL-6 and gamma interferon expression in U937 cells. These results suggest a new role for Vpr in the pathogenesis of HIV infection, namely, the activation of transcription factors NF-IL-6 and NF-kappaB.
Collapse
Affiliation(s)
- P Roux
- Laboratory of Molecular Virology, Ste-Justine Hospital Research Center, Canada
| | | | | | | | | |
Collapse
|
19
|
Kim KE, Gu C, Thakur S, Vieira E, Lin JC, Rabson AB. Transcriptional regulatory effects of lymphoma-associated NFKB2/lyt10 protooncogenes. Oncogene 2000; 19:1334-45. [PMID: 10713675 DOI: 10.1038/sj.onc.1203432] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
C-terminal truncations of the NFKB2 p100 gene product have been observed in a number of cases of human cutaneous T cell lymphomas, as well as human B-cell lymphomas and myelomas. The contribution of these alterations to lymphomagenesis is not understood; however, truncation at amino acid 666 to generate 80 - 85 kD proteins in the HUT78 cell line is associated with addition of a short (serine-alanine-serine) fusion at the 3' end of p80HT, as well as with increased expression of NFKB2 mRNA. We therefore examined the effects of p80HT on the regulation of NFKB2 expression, as well as the properties of a series of other tumor-associated, and site directed mutations of NFKB2. While p80HT had not itself acquired novel transcriptional activation properties with respect to the NFKB2 P1 or P2 promoters or the IL-6 kappaB promoter, p80HT had lost the potent inhibitory (IkappaB-like) activity associated with the wild-type, p100 gene product. Loss of the inhibitory property depended on the SAS residues in the fusion protein, direct truncation at aa666 was fully inhibitory, as was a substitution of three alanines for the SAS residues. The presence of as few as two C-terminal ankyrin motifs was sufficient for inhibition of NF-kappaB-mediated transcriptional activation. Assays of a series of additional lymphoma-associated NF-kappaB-2 truncation suggested that the C-terminal truncation associated with these proteins was also associated with a loss of the IkappaB-like activities of p100 NF-kappaB-2, for at least some NF-kappaB target promoters. Thus, the loss of IkappaB-like activity of lymphoma-associated NFKB2 mutations may play an important role in the genesis of a subset of human lymphomas.
Collapse
Affiliation(s)
- K E Kim
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry - Robert Wood Johnson Medical School, Piscataway, New Jersey, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
20
|
Miller WE, Cheshire JL, Raab-Traub N. Interaction of tumor necrosis factor receptor-associated factor signaling proteins with the latent membrane protein 1 PXQXT motif is essential for induction of epidermal growth factor receptor expression. Mol Cell Biol 1998; 18:2835-44. [PMID: 9566902 PMCID: PMC110662 DOI: 10.1128/mcb.18.5.2835] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
The Epstein-Barr virus latent membrane protein 1 (LMP1) oncoprotein causes multiple cellular changes, including induction of epidermal growth factor receptor (EGFR) expression and activation of the NF-kappaB transcription factor. LMP1 and the cellular protein CD40, which also induces EGFR expression, interact with the tumor necrosis factor receptor-associated factor (TRAF) proteins. The LMP1 carboxy-terminal activation region 1 signaling domain interacts specifically with the TRAFs and is essential for EGFR induction through a mechanism independent of NF-kappaB alone. LMP1 and CD40 share a common TRAF binding motif, PXQXT. In this study, the PXQXT motifs in both LMP1 and CD40 were altered and mutant proteins were analyzed for induction of EGFR expression. Replacement of the T residue with A in CD40 completely blocked induction of the EGFR, while the same mutation in LMP1 did not affect EGFR induction. Replacement of both P and Q residues with A's in LMP1 reduced EGFR induction by >75%, while deletion of PXQXT blocked EGFR induction. These results genetically link EGFR induction by LMP1 to the TRAF signaling pathway. Overexpression of TRAF2 potently activates NF-kappaB, although TRAF2 did not induce expression of the EGFR either alone or in combination with TRAF1 and TRAF3. In vivo analyses of the interaction of the TRAFs with LMP1 variants mutated in the PXQXT domain indicate that high-level induction of EGFR expression requires interaction with TRAF1, -2, and -3. However, exogenous expression of TRAF3 decreased EGFR induction mediated by either LMP1 or CD40. These data suggest that TRAF-mediated activation of EGFR expression requires assembly of a complex containing the appropriate stoichiometry of TRAF proteins clustered at the cell membrane with LMP1.
Collapse
Affiliation(s)
- W E Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | |
Collapse
|
21
|
Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS. A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev 1998; 12:968-81. [PMID: 9531535 PMCID: PMC316671 DOI: 10.1101/gad.12.7.968] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bcr-Abl is a chimeric oncoprotein that is strongly implicated in acute lymphoblastic (ALL) and chronic myelogenous leukemias (CML). This deregulated tyrosine kinase selectively causes hematopoietic disorders resembling human leukemias in animal models and transforms fibroblasts and hematopoietic cells in culture. Bcr-Abl also protects cells from death induced on cytokine deprivation or exposure to DNA damaging agents. In addition, the antiapoptotic function of Bcr-Abl is thought to play a necessary role in hematopoietic transformation and potentially in leukemogenesis. The transcription factor NF-kappaB has been identified recently as an inhibitor of apoptosis and as a potential regulator of cellular transformation. This study shows that expression of Bcr-Abl leads to activation of NF-kappaB-dependent transcription by causing nuclear translocation of NF-kappaB as well as by increasing the transactivation function of the RelA/p65 subunit of NF-kappaB. Importantly, this activation is dependent on the tyrosine kinase activity of Bcr-Abl and partially requires Ras. The ability of Bcr-Abl to protect cytokine-dependent 32D myeloid cells from death induced by cytokine deprivation or DNA damage does not, however, require functional NF-kappaB. However, using a super-repressor form of IkappaBalpha, we show that NF-kappaB is required for Bcr-Abl-mediated tumorigenicity in nude mice and for transformation of primary bone marrow cells. This study implicates NF-kappaB as an important component of Bcr-Abl signaling. NF-kappaB-regulated genes, therefore, likely play a role in transformation by Bcr-Abl and thus in Bcr-Abl-associated human leukemias.
Collapse
Affiliation(s)
- J Y Reuther
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | | | | | | | | |
Collapse
|
22
|
Attar RM, Macdonald-Bravo H, Raventos-Suarez C, Durham SK, Bravo R. Expression of constitutively active IkappaB beta in T cells of transgenic mice: persistent NF-kappaB activity is required for T-cell immune responses. Mol Cell Biol 1998; 18:477-87. [PMID: 9418895 PMCID: PMC121517 DOI: 10.1128/mcb.18.1.477] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factor NF-kappaB is normally sequestered in the cytoplasm by members of the IkappaB family, including IkappaB alpha, IkappaB beta, and the recently cloned IkappaB epsilon. Upon cellular activation, these inhibitors are rapidly phosphorylated on two amino-terminal serines, ubiquitinated, and degraded by the 26S proteasome, releasing a functional NF-kappaB. To determine the importance of IkappaB beta in NF-kappaB regulation in T cells, we generated transgenic mice expressing a constitutively active IkappaB beta mutant (mIkappaB beta) under the control of the lck promoter. The transgene contains the two critical N-terminal serine residues mutated to alanines and therefore no longer susceptible to degradation upon cell activation. mIkappaB beta is unable to totally displace IkappaB alpha from RelA-containing complexes, thus allowing a transient activation of NF-kappaB upon T-cell stimulation. However, mIkappaB beta completely blocks NF-kappaB activity after IkappaB alpha degradation. In addition, as a consequence of this inhibition, ikba expression is down regulated, along with that of other NF-kappaB-regulated genes. These transgenic mice have a significant reduction in the peripheral T-cell population, especially CD8+ cells. The remaining T cells have impaired proliferation in response to phorbol 12-myristate 13-acetate plus phytohemagglutinin or calcium ionophore but not to anti-CD3/anti-CD28 costimulation. As a result of these alterations, transgenic animals present defects in immune responses such as delayed-type hypersensitivity and the generation of specific antibodies against T-cell-dependent antigens. These results show that in nonstimulated T cells, IkappaB beta cannot efficiently displace IkappaB alpha bound to RelA-containing complexes and that persistent NF-kappaB activity is required for proper T-cell responses in vivo.
Collapse
Affiliation(s)
- R M Attar
- Department of Oncology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000, USA
| | | | | | | | | |
Collapse
|
23
|
Cheshire JL, Baldwin AS. Synergistic activation of NF-kappaB by tumor necrosis factor alpha and gamma interferon via enhanced I kappaB alpha degradation and de novo I kappaBbeta degradation. Mol Cell Biol 1997; 17:6746-54. [PMID: 9343439 PMCID: PMC232529 DOI: 10.1128/mcb.17.11.6746] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-alpha) and gamma interferon (IFN-gamma) are required for an effective immune response to bacterial infection and these cytokines synergize in a variety of biological responses, including the induction of cytokine, cell adhesion, and inducible nitrous oxide synthase gene expression. Typically, the synergistic effect on gene expression is due to the independent activation of nuclear factor kappaB (NF-kappaB) by TNF-alpha and of signal transducers and activators of transcription or IFN-regulatory factor 1 by IFNs, allowing these transcription factors to bind their unique promoter sites. However, since activation of NF-kappaB by TNF-alpha is often transient and would not activate long-term kappaB-dependent transcription effectively, we explored the effects of IFN-gamma on TNF-alpha-induced NF-kappaB activity. IFN-gamma, which typically does not activate NF-kappaB, synergistically enhanced TNF-alpha-induced NF-kappaB nuclear translocation via a mechanism that involves the induced degradation of I kappaBbeta and that apparently requires tyrosine kinase activity in preneuronal cells but not in endothelial cells. Correspondingly, cotreatment of cells with TNF-alpha and IFN-gamma leads to persistent activation of NF-kappaB and to potent activation of kappaB-dependent gene expression, which may explain, at least in part, the synergy observed between these cytokines, as well as their involvement in the generation of an effective immune response.
Collapse
Affiliation(s)
- J L Cheshire
- Lineberger Comprehensive Cancer Center, Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | |
Collapse
|
24
|
Ishikawa H, Carrasco D, Claudio E, Ryseck RP, Bravo R. Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-kappaB2. J Exp Med 1997; 186:999-1014. [PMID: 9314550 PMCID: PMC2199059 DOI: 10.1084/jem.186.7.999] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nfkb2 gene encodes the p100 precursor which produces the p52 protein after proteolytic cleavage of its COOH-terminal domain. Although the p52 product can act as an alternative subunit of NF-kappaB, the p100 precursor is believed to function as an inhibitor of Rel/NF-kappaB activity by cytoplasmic retention of Rel/NF-kappaB complexes, like other members of the IkappaB family. However, the physiological relevance of the p100 precursor as an IkappaB molecule has not been understood. To assess the role of the precursor in vivo, we generated, by gene targeting, mice lacking p100 but still containing a functional p52 protein. Mice with a homozygous deletion of the COOH-terminal ankyrin repeats of NF-kappaB2 (p100(-/-)) had marked gastric hyperplasia, resulting in early postnatal death. p100(-/-) animals also presented histopathological alterations of hematopoietic tissues, enlarged lymph nodes, increased lymphocyte proliferation in response to several stimuli, and enhanced cytokine production in activated T cells. Dramatic induction of nuclear kappaB-binding activity composed of p52-containing complexes was found in all tissues examined and also in stimulated lymphocytes. Thus, the p100 precursor is essential for the proper regulation of p52-containing Rel/NF-kappaB complexes in various cell types and its absence cannot be efficiently compensated for by other IkappaB proteins.
Collapse
Affiliation(s)
- H Ishikawa
- The Department of Oncology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000, USA
| | | | | | | | | |
Collapse
|
25
|
Yurochko AD, Hwang ES, Rasmussen L, Keay S, Pereira L, Huang ES. The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-kappaB during infection. J Virol 1997; 71:5051-9. [PMID: 9188570 PMCID: PMC191738 DOI: 10.1128/jvi.71.7.5051-5059.1997] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cellular transcription factors Sp1 and NF-kappaB were upregulated shortly after the binding of purified live or UV-inactivated human cytomegalovirus (HCMV) to the cell surface. The rapid time frame of transcription factor induction is similar to that seen in other systems in which cellular factors are induced following receptor-ligand engagement. This similarity suggested that a cellular receptor-viral ligand interaction might be involved in Sp1 and NF-kappaB activation during the earliest stages of HCMV infection. To focus on the possible role viral ligands play in initiating cellular events following infection, we first used purified viral membrane extracts to demonstrate that constituents on the membrane are responsible for cellular activation. Additionally, these studies showed, through the use of neutralizing antibodies, that the viral membrane mediators of this activation are the major envelope glycoproteins gB (UL55) and gH (UL75). To confirm these results, neutralizing anti-gB and -gH antibodies were used to block the interactions of these glycoproteins on whole purified virus with their cell surface receptors. In so doing, we found that Sp1 and NF-kappaB induction was inhibited. Lastly, through the use of purified viral gB protein and an anti-idiotypic antibody that mimics the image of the viral gH protein, it was found that the engagement of individual viral ligands with their appropriate cell surface receptors was sufficient to activate cellular Sp1 and NF-kappaB. These results support our hypothesis that HCMV glycoproteins mediate an initial signal transduction pathway which leads to the upregulation of host cell transcription factors and suggests a model wherein the orderly sequence of virus-mediated changes in cellular activation initiates with viral binding via envelope glycoproteins to the cognate cellular receptor(s).
Collapse
Affiliation(s)
- A D Yurochko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7295, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Su F, Schneider RJ. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol 1996; 70:4558-66. [PMID: 8676482 PMCID: PMC190392 DOI: 10.1128/jvi.70.7.4558-4566.1996] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The HBx protein is a small polypeptide encoded by mammalian hepadnaviruses that is essential for viral infectivity and is thought to play a role in development of hepatocellular carcinoma during chronic hepatitis B virus infection. HBx is a transactivator that stimulates Ras signal transduction pathways in the cytoplasm and certain transcription elements in the nucleus. To better understand the activities of HBx protein and its mechanism of action, we have explored the manner by which HBx activates the transcription factor NF-kappaB during transient expression. We show that HBx induces prolonged formation, in a Ras-dependent manner, of transcriptionally active NF-kappaB DNA-binding complexes, which make up the family of Rel-related proteins, p50, p52, RelA, and c-Rel. HBx was found to activate NF-kappaB through two distinct cytoplasmic pathways by acting on both the 37-kDa IkappaBalpha inhibitor and the 105-kappaDa NF-kappaB1 precursor inhibitor protein, known as p105. HBx induces phosphorylation of IkappaBalpha, a three- to fourfold reduction in IKBalpha stability, and concomitant nuclear accumulation of NF-kappaB DNA-binding complexes, similar to that reported for human T-cell leukemia virus type 1 Tax protein. In addition, HBx mediates a striking reduction in cytoplasmic p105 NF-kappaB1 inhibitor and p50 protein levels and release of RelA protein that was sequestered by the p105 inhibitor, concomitant with nuclear accumulation of NF-kappaB complexes. HBx mediated only a slight reduction in the cytoplasmic levels of NF-kappaB2 p100 protein, an additional precursor inhibitor of NF-kappaB, which is thought to be less efficiently processed or less responsive to release of NF-kappaB. No evidence was found for HBx activation of NF-kappaB by targeting acidic sphingomyelinase- controlled pathways. Studies also suggest that stimulation of NF-kappaB by HBx does not involve activation of Ras via the neutral sphingomyelin-ceramide pathway. Thus, HBx protein is shown to activate the NF-kappaB family of Rel-related proteins by acting on two distinct NF-kappaB cytoplasmic inhibitors.
Collapse
Affiliation(s)
- F Su
- Department of Biochemistry and Kaplan Cancer Center, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|
27
|
Klement JF, Rice NR, Car BD, Abbondanzo SJ, Powers GD, Bhatt PH, Chen CH, Rosen CA, Stewart CL. IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol Cell Biol 1996; 16:2341-9. [PMID: 8628301 PMCID: PMC231222 DOI: 10.1128/mcb.16.5.2341] [Citation(s) in RCA: 268] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ubiquitous transcription factor NF-kappaB is an essential component in signal transduction pathways, in inflammation, and in the immune response. NF-kappaB is maintained in an inactive state in the cytoplasm by protein-protein interaction with IkappaBalpha. Upon stimulation, rapid degradation of IkappaBalpha allows nuclear translocation of NF-kappaB. To study the importance of IkappaBalpha in signal transduction, IkappaBalpha-deficient mice were derived by gene targeting. Cultured fibroblasts derived from IkappaBalpha-deficient embryos exhibit levels of NF-kappaB1, NF-kappaB2, RelA, c-Rel, and IkappaBbeta similar to those of wild-type fibroblasts. A failure to increase nuclear levels of NF-kappaB indicates that cytoplasmic retention of NF-kappaB may be compensated for by other IkappaB proteins. Treatment of wild-type cells with tumor necrosis factor alpha (TNF-alpha) resulted in rapid, transient nuclear localization of NF-kappaB. IkappaBalpha-deficient fibroblasts are also TNF-alpha responsive, but nuclear localization of NF-kappaB is prolonged, thus demonstrating that a major irreplaceable function Of IkappaBalpha is termination of the NF-kappaB response. Consistent with these observations, and with IkappaBalpha and NF-kappaB's role in regulating inflammatory and immune responses, is the normal development Of IkappaBalpha-deficient mice. However, growth ceases 3 days after birth and death usually occurs at 7 to 10 days of age. An increased percentage of monocytes/macrophages was detected in spleen cells taken from 5-, 7-, and 9-day-old pups. Death is accompanied by severe widespread dermatitis and increased levels of TNF-alpha mRNA in the skin.
Collapse
Affiliation(s)
- J F Klement
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
McElhinny JA, Trushin SA, Bren GD, Chester N, Paya CV. Casein kinase II phosphorylates I kappa B alpha at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol Cell Biol 1996; 16:899-906. [PMID: 8622692 PMCID: PMC231071 DOI: 10.1128/mcb.16.3.899] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoprotein I kappa B alpha exists in the cytoplasm of resting cells bound to the ubiquitous transcription factor NF-kappa B (p50-p65). In response to specific cellular stimulation, I kappa B alpha is further phosphorylated and subsequently degraded, allowing NF-kappa B to translocate to the nucleus and transactivate target genes. To identify the kinase(s) involved in I kappa B alpha phosphorylation, we first performed an I kappa B alpha in-gel kinase assay. Two kinase activities of 35 and 42 kDa were identified in cellular extracts from Jurkat T and U937 promonocytic cell lines. Specific inhibitors and immunodepletion studies identified the I kappa B alpha kinase activities as those of the alpha and alpha' subunits of casein kinase II (CKII). Immunoprecipitation studies demonstrated that CKII and I kappa B alpha physically associate in vivo. Moreover, phosphopeptide maps of I kappa B alpha phosphorylated in vitro by cellular extracts and in vivo in resting Jurkat T cells contained the same pattern of phosphopeptides as observed in maps of I kappa B alpha phosphorylated in vitro by purified CKII. Sequence analysis revealed that purified CKII and the kinase activity within cell extracts phosphorylated I kappa B alpha at its C terminus at S-283, S-288, S-293, and T-291. The functional role of CKII was tested in an in vitro I kappa B alpha degradation assay with extracts from uninfected and human immunodeficiency virus (HIV)-infected U937 cells. Immunodepletion of CKII from these extracts abrogated both the basal and enhanced HIV-induced degradation of I kappa B alpha. These studies provide new evidence that the protein kinase CKII physically associates with I kappa B alpha in vivo, induces multisite (serine/threonine) phosphorylation, and is required for the basal and HIV-induced degradation of I kappa B alpha in vitro.
Collapse
Affiliation(s)
- J A McElhinny
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
29
|
Makarov SS, Olsen JC, Johnston WN, Anderle SK, Brown RR, Baldwin AS, Haskill JS, Schwab JH. Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist cDNA. Proc Natl Acad Sci U S A 1996; 93:402-6. [PMID: 8552648 PMCID: PMC40246 DOI: 10.1073/pnas.93.1.402] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Restoration of the impaired balance between pro- and antiinflammatory cytokines should provide effective treatment of rheumatoid arthritis. Gene therapy has been proposed as an approach for delivery of therapeutic proteins to arthritic joints. Here, we examined the efficacy of antiinflammatory gene therapy in bacterial cell wall-induced arthritis in rats. Human secreted interleukin 1 receptor antagonist (sIL-1ra) was expressed in joints of rats with recurrent bacterial cell wall-induced arthritis by using ex vivo gene transfer. To achieve this, primary synoviocytes were transduced in culture with a retroviral vector carrying the sIL-1ra cDNA. Transduced cells were engrafted in ankle joints of animals prior to reactivation of arthritis. Animals in control groups were engrafted with synoviocytes transduced with lacZ and neo marker genes. Cells continued to express transferred genes for at least 9 days after engraftment. We found that gene transfer of sIL-1ra significantly suppressed the severity of recurrence of arthritis, as assessed by measuring joint swelling and by the gross-observation score, and attenuated but did not abolish erosion of cartilage and bone. The effect of intraarticularly expressed sIL-1ra was essentially local, as there was no significant difference in severity of recurrence between unengrafted contralateral joints in control and experimental groups. We estimate that locally expressed sIL-1ra was about four orders of magnitude more therapeutically efficient than systemically administered recombinant sIL-1ra protein. These findings provide experimental evidence for the feasibility of antiinflammatory gene therapy for arthritis.
Collapse
Affiliation(s)
- S S Makarov
- Lineberger Cancer Research Center, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu X, Ge R, Ricciardi RP. Evidence for the involvement of a nuclear NF-kappa B inhibitor in global down-regulation of the major histocompatibility complex class I enhancer in adenovirus type 12-transformed cells. Mol Cell Biol 1996; 16:398-404. [PMID: 8524321 PMCID: PMC231015 DOI: 10.1128/mcb.16.1.398] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Diminished expression of major histocompatibility complex class I antigens on the surface of adenovirus type 12 (Ad12)-transformed cells contributes to their high tumorigenic potential by enabling them to escape immune recognition by cytotoxic T lymphocytes. This low class I antigen expression is due to a block in class I transcription, which is mediated by Ad12 E1A. Genetic analysis has shown that the class I enhancer is the target for transcriptional down-regulation. In this study, we show that the ability of the R1 element of the class I enhancer to stimulate transcription is greatly reduced in Ad12-transformed cells. The loss of functional activity by the R1 element was attributed to loss of binding by the NF-kappa B p50-p65 heterodimer. NF-kappa B binding appears to be blocked within the nucleus rather than at the level of nuclear translocation. Significantly, NF-kappa B binding activity could be recovered from the nuclear extracts of Ad12-transformed cells following detergent treatment, suggesting that the block is mediated through a nuclear inhibitor present in the Ad12-transformed cells. These results, taken together with the fact that the R2 element of the class I enhancer exhibits strong binding to the transcriptional repressor COUP-TF, suggest that the class I enhancer is globally down-regulated in Ad12-transformed cells.
Collapse
Affiliation(s)
- X Liu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
31
|
Paine E, Scheinman RI, Baldwin AS, Raab-Traub N. Expression of LMP1 in epithelial cells leads to the activation of a select subset of NF-kappa B/Rel family proteins. J Virol 1995; 69:4572-6. [PMID: 7769726 PMCID: PMC189208 DOI: 10.1128/jvi.69.7.4572-4576.1995] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study demonstrates that the Epstein-Barr virus protein LMP1 activates a specific subset of NF-kappa B/Rel proteins in the C33 epithelial cell line. Western immunoblot analysis used to analyze the intracellular distribution and abundance of the proteins present in these complexes demonstrated that levels of the p50 and p52 proteins were significantly elevated in the nuclei of LMP1-expressing cells. The data also suggest that LMP1 facilitates the translocation of p50 to the nucleus and may affect the processing of the p100 and p105 precursor proteins or the stability of p52 and p50.
Collapse
Affiliation(s)
- E Paine
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295, USA
| | | | | | | |
Collapse
|
32
|
Perez P, Lira SA, Bravo R. Overexpression of RelA in transgenic mouse thymocytes: specific increase in levels of the inhibitor protein I kappa B alpha. Mol Cell Biol 1995; 15:3523-30. [PMID: 7791759 PMCID: PMC230589 DOI: 10.1128/mcb.15.7.3523] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RelA (p65) is one of the strongest activators of the Rel/NF-kappa B family. As a first step to elucidate the mechanisms that regulate its activity in vivo, we have generated transgenic mice overexpressing RelA in the thymus. Although the levels of RelA were significantly increased in thymocytes of transgenic mice, the overall NF-kappa B-binding activity in unstimulated cells was not augmented compared with that in control thymocytes. This could be explained by the dramatic increase of endogenous I kappa B alpha levels observed in RelA-overexpressing cells in both cytoplasmic and nuclear compartments. The ikba mRNA levels were not augmented by overexpressed RelA, but I kappa B alpha inhibitor was found to be stabilized through association with RelA. Although a fraction of RelA was associated with cytoplasmic p105, no changes in the precursor levels were observed. Upon stimulation of RelA-overexpressing thymocytes with phorbol 12-myristate 13-acetate and lectin (phytohemaglutinin), different kappa B-binding complexes, including RelA homodimers, were partially released from I kappa B alpha. Association of RelA with I kappa B alpha prevented complete degradation of the inhibitor. No effect of phorbol 12-myristate 13-acetate-lectin treatment was detected on RelA associated with p105. Our data indicate that cytoplasmic retention of overexpressed RelA by I kappa B alpha is the major in vivo mechanism controlling the potential excess of NF-kappa B activity in long-term RelA-overexpressing thymocytes.
Collapse
Affiliation(s)
- P Perez
- Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000, USA
| | | | | |
Collapse
|
33
|
Alkalay I, Yaron A, Hatzubai A, Jung S, Avraham A, Gerlitz O, Pashut-Lavon I, Ben-Neriah Y. In vivo stimulation of I kappa B phosphorylation is not sufficient to activate NF-kappa B. Mol Cell Biol 1995; 15:1294-301. [PMID: 7862123 PMCID: PMC230352 DOI: 10.1128/mcb.15.3.1294] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
NF-kappa B is a major inducible transcription factor in many immune and inflammatory reactions. Its activation involves the dissociation of the inhibitory subunit I kappa B from cytoplasmic NF-kappa B/Rel complexes, following which the Rel proteins are translocated to the nucleus, where they bind to DNA and activate transcription. Phosphorylation of I kappa B in cell-free experiments results in its inactivation and release from the Rel complex, but in vivo NF-kappa B activation is associated with I kappa B degradation. In vivo phosphorylation of I kappa B alpha was demonstrated in several recent studies, but its role is unknown. Our study shows that the T-cell activation results in rapid phosphorylation of I kappa B alpha and that this event is a physiological one, dependent on appropriate lymphocyte costimulation. Inducible I kappa B alpha phosphorylation was abolished by several distinct NF-kappa B blocking reagents, suggesting that it plays an essential role in the activation process. However, the in vivo induction of I kappa B alpha phosphorylation did not cause the inhibitory subunit to dissociate from the Rel complex. We identified several protease inhibitors which allow phosphorylation of I kappa B alpha but prevent its degradation upon cell stimulation, presumably through inhibition of the cytoplasmic proteasome. In the presence of these inhibitors, phosphorylated I kappa B alpha remained bound to the Rel complex in the cytoplasm for an extended period of time, whereas NF-kappa B activation was abolished. It appears that activation of NF-kappa B requires degradation of I kappa B alpha while it is a part of the Rel cytoplasmic complex, with inducible phosphorylation of the inhibitory subunit influencing the rate of degradation.
Collapse
Affiliation(s)
- I Alkalay
- Lautenberg Center for General and Tumor Immunology, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
34
|
McElhinny JA, MacMorran WS, Bren GD, Ten RM, Israel A, Paya CV. Regulation of I kappa B alpha and p105 in monocytes and macrophages persistently infected with human immunodeficiency virus. J Virol 1995; 69:1500-9. [PMID: 7853483 PMCID: PMC188740 DOI: 10.1128/jvi.69.3.1500-1509.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanisms regulating human immunodeficiency virus (HIV) persistence in human monocytes/macrophages are partially understood. Persistent HIV infection of U937 monocytic cells results in NF-kappa B activation. Whether virus-induced NF-kappa B activation is a mechanism that favors continuous viral replication in macrophages remains unknown. To further delineate the molecular mechanisms involved in the activation of NF-kappa B in HIV-infected monocytes and macrophages, we have focused on the regulation of the I kappa B molecules. First, we show that persistent HIV infection results in the activation of NF-kappa B not only in monocytic cells but also in macrophages. In HIV-infected cells, I kappa B alpha protein levels are decreased secondary to enhanced protein degradation. This parallels the increased I kappa B alpha synthesis secondary to increased I kappa B alpha gene transcription, i.e., increased RNA and transcriptional activity of its promoter-enhancer. Another protein with I kappa B function, p105, is also modified in HIV-infected cells: p105 and p50 steady-state protein levels are increased as a result of increased synthesis and proteolytic processing of p105. Transcriptional activity of p105 is also increased in infected cells and is also mediated by NF-kappa B through a specific kappa B motif. These results demonstrate the existence of a triple autoregulatory loop in monocytes and macrophages involving HIV, p105 and p50, and MAD3, with the end result of persistent NF-kappa B activation and viral persistence. Furthermore, persistent HIV infection of monocytes and macrophages provides a useful model with which to study concomitant modifications of different I kappa B molecules.
Collapse
Affiliation(s)
- J A McElhinny
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905
| | | | | | | | | | | |
Collapse
|
35
|
Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS. Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 1995; 15:943-53. [PMID: 7823959 PMCID: PMC231982 DOI: 10.1128/mcb.15.2.943] [Citation(s) in RCA: 644] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glucocorticoids are potent immunosuppressants which work in part by inhibiting cytokine gene transcription. We show here that NF-kappa B, an important regulator of numerous cytokine genes, is functionally inhibited by the synthetic glucocorticoid dexamethasone (DEX). In transfection experiments, DEX treatment in the presence of cotransfected glucocorticoid receptor (GR) inhibits NF-kappa B p65-mediated gene expression and p65 inhibits GR activation of a glucocorticoid response element. Evidence is presented for a direct interaction between GR and the NF-kappa B subunits p65 and p50. In addition, we demonstrate that the ability of p65, p50, and c-rel subunits to bind DNA is inhibited by DEX and GR. In HeLa cells, DEX activation of endogenous GR is sufficient to block tumor necrosis factor alpha or interleukin 1 activation of NF-kappa B at the levels of both DNA binding and transcriptional activation. DEX treatment of HeLa cells also results in a significant loss of nuclear p65 and a slight increase in cytoplasmic p65. These data reveal a second mechanism by which NF-kappa B activity may be regulated by DEX. We also report that RU486 treatment of wild-type GR and DEX treatment of a transactivation mutant of GR each can significantly inhibit p65 activity. In addition, we found that the zinc finger domain of GR is necessary for the inhibition of p65. This domain is also required for GR repression of AP-1. Surprisingly, while both AP-1 and NF-kappa B can be inhibited by activated GR, synergistic NF-kappa B/AP-1 activity is largely unaffected. These data suggest that NF-kappa B, AP-1, and GR interact in a complex regulatory network to modulate gene expression and that cross-coupling of NF-kappa B and GR plays an important role in glucocorticoid-mediated repression of cytokine transcription.
Collapse
Affiliation(s)
- R I Scheinman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599
| | | | | | | | | |
Collapse
|
36
|
Ernst MK, Dunn LL, Rice NR. The PEST-like sequence of I kappa B alpha is responsible for inhibition of DNA binding but not for cytoplasmic retention of c-Rel or RelA homodimers. Mol Cell Biol 1995; 15:872-82. [PMID: 7823953 PMCID: PMC231969 DOI: 10.1128/mcb.15.2.872] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In most cells, proteins belonging to the Rel/NF-kappa B family of transcription factors are held in inactive form in the cytoplasm by an inhibitor protein, I kappa B alpha. Stimulation of the cells leads to degradation of the inhibitor and transit of active DNA-binding Rel/NF-kappa B dimers to the nucleus. I kappa B alpha is also able to inhibit DNA binding by Rel/NF-kappa B dimers in vitro, suggesting that it may perform the same function in cells when the activating signal is no longer present. Structurally, the human I kappa B alpha molecule can be divided into three sections: a 70-amino-acid N terminus with no known function, a 205-residue midsection composed of six ankyrin-like repeats, and a very acidic 42-amino-acid C terminus that resembles a PEST sequence. In this study we examined how the structural elements of the I kappa B alpha protein correlate with its functional capabilities both in vitro and in vivo. Using a battery of I kappa B alpha mutants, we show that (i) a dimer binds a single I kappa B alpha molecule, (ii) the acidic C-terminal region of I kappa B alpha is not required for protein-protein binding and does not mask the nuclear localization signal of the dimer, (iii) the same C-terminal region is required for inhibition of DNA binding, and (iv) this inhibition may be accomplished by direct interaction between the PEST-like region and the DNA-binding region of one of the subunits of the dimer.
Collapse
Affiliation(s)
- M K Ernst
- Laboratory of Molecular Virology and Carcinogenesis, National Cancer Institute Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | |
Collapse
|
37
|
Kanno T, Franzoso G, Siebenlist U. Human T-cell leukemia virus type I Tax-protein-mediated activation of NF-kappa B from p100 (NF-kappa B2)-inhibited cytoplasmic reservoirs. Proc Natl Acad Sci U S A 1994; 91:12634-8. [PMID: 7809091 PMCID: PMC45493 DOI: 10.1073/pnas.91.26.12634] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human T-cell leukemia virus type I Tax protein transforms T cells through induced expression of many cellular genes, including those encoding the growth-related proteins interleukin 2 and the alpha chain of its receptor. Induction of these genes is mediated, at least in part, through Tax-dependent posttranslational activation of NF-kappa B, typically heterodimers of p50 (NF-kappa B1) and p65 (RelA). The preexisting NF-kappa B proteins are retained in the cytoplasm of cells by association with inhibitory ankyrin-motif-containing I kappa B proteins, primarily I kappa B-alpha but also including the precursor proteins p105 (NF-kappa B1) and p100 (NF-kappa B2). Here we demonstrate the existence of a previously undescribed multimeric cytoplasmic complex in which NF-kappa B dimers are associated with the p100 inhibitor in a manner dependent on the precursor protein's ankyrin domain. We also demonstrate an antagonistic effect of the Tax protein on the cytoplasmic sequestration function of p100; this in turn leads to nuclear translocation of NF-kappa B dimers liberated from multimeric complexes. Tax may exert these effects through the physical association with p100. Tax also relieves the p100-mediated inhibition of DNA binding by p50-p65 heterodimers in vitro. The results demonstrate a mechanism by which Tax may activate NF-kappa B in T cells.
Collapse
Affiliation(s)
- T Kanno
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
38
|
Alternate RNA splicing of murine nfkb1 generates a nuclear isoform of the p50 precursor NF-kappa B1 that can function as a transactivator of NF-kappa B-regulated transcription. Mol Cell Biol 1994. [PMID: 7969179 DOI: 10.1128/mcb.14.12.8460] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NF-kappa B1 subunit of the transcription factor NF-kappa B is derived by proteolytic cleavage from the N terminus of a 105-kDa precursor protein. The C terminus of p105NF-kappa B1, like those of I kappa B proteins, contains ankyrin-related repeats that inhibit DNA binding and nuclear localization of the precursor and confer I kappa B-like properties upon p105NF-kappa B1. Here we report the characterization of two novel NF-kappa B1 precursor isoforms, p84NF-kappa B1 and p98NF-kappa B1, that arise by alternate splicing within the C-terminal coding region of murine nfkb1. p98NF-kappa B1, which lacks the 111 C-terminal amino acids (aa) of p105NF-kappa B1, has a novel 35-aa C terminus encoded by an alternate reading frame of the gene. p84NF-kappa B1 lacks the C-terminal 190 aa of p105NF-kappa B1, including part of ankyrin repeat 7. RNA and protein analyses indicated that the expression of p84NF-kappa B1 and p98NF-kappa B1 is restricted to certain tissues and that the phorbol myristate acetate-mediated induction of p84NF-kappa B1 and p105NF-kappa B1 differs in a cell-type-specific manner. Both p84NF-kappa B1 and p98NF-kappa B1 are found in the nuclei of transfected cells. Transient transfection analysis revealed that p98NF-kappa B1, but not p105NF-kappa B1 or p84NF-kappa B1, acts as a transactivator of NF-kappa B-regulated gene expression and that this is dependent on sequences in the Rel homology domain required for DNA binding and on the novel 35 C-terminal aa of this isoform. In contrast to previous findings, which indicated that p105NF-kappa B1 does not bind DNA, all of the NF-kappa B1 precursors were found to specifically bind with low affinity to a highly restricted set of NF-kappa B sites in vitro, thereby raising the possibility that certain of the NF-kappa B1 precursor isoforms may directly modulate gene expression.
Collapse
|
39
|
Grumont RJ, Fecondo J, Gerondakis S. Alternate RNA splicing of murine nfkb1 generates a nuclear isoform of the p50 precursor NF-kappa B1 that can function as a transactivator of NF-kappa B-regulated transcription. Mol Cell Biol 1994; 14:8460-70. [PMID: 7969179 PMCID: PMC359385 DOI: 10.1128/mcb.14.12.8460-8470.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The NF-kappa B1 subunit of the transcription factor NF-kappa B is derived by proteolytic cleavage from the N terminus of a 105-kDa precursor protein. The C terminus of p105NF-kappa B1, like those of I kappa B proteins, contains ankyrin-related repeats that inhibit DNA binding and nuclear localization of the precursor and confer I kappa B-like properties upon p105NF-kappa B1. Here we report the characterization of two novel NF-kappa B1 precursor isoforms, p84NF-kappa B1 and p98NF-kappa B1, that arise by alternate splicing within the C-terminal coding region of murine nfkb1. p98NF-kappa B1, which lacks the 111 C-terminal amino acids (aa) of p105NF-kappa B1, has a novel 35-aa C terminus encoded by an alternate reading frame of the gene. p84NF-kappa B1 lacks the C-terminal 190 aa of p105NF-kappa B1, including part of ankyrin repeat 7. RNA and protein analyses indicated that the expression of p84NF-kappa B1 and p98NF-kappa B1 is restricted to certain tissues and that the phorbol myristate acetate-mediated induction of p84NF-kappa B1 and p105NF-kappa B1 differs in a cell-type-specific manner. Both p84NF-kappa B1 and p98NF-kappa B1 are found in the nuclei of transfected cells. Transient transfection analysis revealed that p98NF-kappa B1, but not p105NF-kappa B1 or p84NF-kappa B1, acts as a transactivator of NF-kappa B-regulated gene expression and that this is dependent on sequences in the Rel homology domain required for DNA binding and on the novel 35 C-terminal aa of this isoform. In contrast to previous findings, which indicated that p105NF-kappa B1 does not bind DNA, all of the NF-kappa B1 precursors were found to specifically bind with low affinity to a highly restricted set of NF-kappa B sites in vitro, thereby raising the possibility that certain of the NF-kappa B1 precursor isoforms may directly modulate gene expression.
Collapse
Affiliation(s)
- R J Grumont
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Australia
| | | | | |
Collapse
|
40
|
Muñoz E, Courtois G, Veschambre P, Jalinot P, Israël A. Tax induces nuclear translocation of NF-kappa B through dissociation of cytoplasmic complexes containing p105 or p100 but does not induce degradation of I kappa B alpha/MAD3. J Virol 1994; 68:8035-44. [PMID: 7966593 PMCID: PMC237267 DOI: 10.1128/jvi.68.12.8035-8044.1994] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The activity of the NF-kappa B transcription factor is controlled through cytoplasmic retention by either of two types of molecules: the inhibitor I kappa B alpha/MAD3 or the p105 and p100 precursors of the p50 and p52 DNA-binding subunits. Treatment of cells with classical NF-kappa B inducers such as tumor necrosis factor, interleukin-1, phorbol myristate acetate, and lipopolysaccharide results in MAD3 degradation followed by nuclear translocation of NF-kappa B. On the other hand, the mechanisms involved in the dissociation of the cytoplasmic p105/p100-containing complexes are largely unknown. The Tax protein encoded by human T-cell leukemia virus type 1 is a potent activator of viral and cellular gene transcription. It does not bind DNA directly but seems to activate transcription indirectly either by enhancing the activities of the transcription factors that recognize responsive elements located in the promoters of the Tax-responsive genes or by forming ternary complexes with these factors and DNA. It has been previously shown that Tax is able to induce nuclear translocation of NF-kappa B. We demonstrate here that Tax can induce translocation of members of the NF-kappa B family retained in the cytoplasm through their interaction with either p105 or p100. On the other hand, Tax induces no apparent degradation of MAD3, although experiments using cycloheximide indicate that it decreases the half-life of MAD3. However, this activity is shared by a mutant of Tax which is unable to activate NF-kappa B. These results suggest that Tax activates NF-kappa B essentially through the p105/p100 retention pathway.
Collapse
Affiliation(s)
- E Muñoz
- Unité de Biologie Moleculaire de l'Expression Génique, Institut Pasteur, France
| | | | | | | | | |
Collapse
|
41
|
Reciprocal regulation of the Epstein-Barr virus BamHI-F promoter by EBNA-1 and an E2F transcription factor. Mol Cell Biol 1994. [PMID: 7935429 DOI: 10.1128/mcb.14.11.7144] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Epstein-Barr virus BamHI-F promoter (Fp) is one of three used to transcribe the EBNA latency proteins, in particular, EBNA-1, the only viral gene product needed for episomal replication. Fp is distinguished by possession of the only EBNA-1 binding sites (the Q locus) in the Epstein-Barr virus genome outside oriP. Activity of Fp is negatively autoregulated by interaction of EBNA-1 at two sites in the Q locus, which is situated downstream of the RNA start site. We demonstrate in transient assays that this EBNA-1-mediated repression of Fp can be overcome by an E2F transcription factor which interacts with the DNA at a site centered between the two EBNA-1 binding sites within the Q locus. An E2F-1 fusion protein protects the sequence 5'-GGATGGCGGGTAATA-3' from DNase I digestion, and a DNA probe containing this sequence binds an E2F-specific protein complex from cell extracts, although this region is only loosely homologous with known consensus binding sites for E2F transcription factors. In mobility shift assays, E2F can displace the binding of EBNA-1 from the Q locus but not from oriP, where the E2F binding site is not present. E2F also activates expression of Fp in epithelial cells. These findings identify a potentially new binding site for members of the E2F family of transcription factors and suggest that such a factor is important for expression of EBNA-1 in lymphoid and epithelial cells by displacing EBNA-1 from the Q locus. In addition, the possibility that Fp activity is under cell cycle control is raised. Since the supply of functional E2F varies during the cell cycle and since in these assays overexpression of E2F can overcome repression of Fp by EBNA-1, control of transcription of EBNA-1 mRNA by cell cycle regulatory factors may help to bring about ordered replication of episomes.
Collapse
|
42
|
Sung NS, Wilson J, Davenport M, Sista ND, Pagano JS. Reciprocal regulation of the Epstein-Barr virus BamHI-F promoter by EBNA-1 and an E2F transcription factor. Mol Cell Biol 1994; 14:7144-52. [PMID: 7935429 PMCID: PMC359248 DOI: 10.1128/mcb.14.11.7144-7152.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Epstein-Barr virus BamHI-F promoter (Fp) is one of three used to transcribe the EBNA latency proteins, in particular, EBNA-1, the only viral gene product needed for episomal replication. Fp is distinguished by possession of the only EBNA-1 binding sites (the Q locus) in the Epstein-Barr virus genome outside oriP. Activity of Fp is negatively autoregulated by interaction of EBNA-1 at two sites in the Q locus, which is situated downstream of the RNA start site. We demonstrate in transient assays that this EBNA-1-mediated repression of Fp can be overcome by an E2F transcription factor which interacts with the DNA at a site centered between the two EBNA-1 binding sites within the Q locus. An E2F-1 fusion protein protects the sequence 5'-GGATGGCGGGTAATA-3' from DNase I digestion, and a DNA probe containing this sequence binds an E2F-specific protein complex from cell extracts, although this region is only loosely homologous with known consensus binding sites for E2F transcription factors. In mobility shift assays, E2F can displace the binding of EBNA-1 from the Q locus but not from oriP, where the E2F binding site is not present. E2F also activates expression of Fp in epithelial cells. These findings identify a potentially new binding site for members of the E2F family of transcription factors and suggest that such a factor is important for expression of EBNA-1 in lymphoid and epithelial cells by displacing EBNA-1 from the Q locus. In addition, the possibility that Fp activity is under cell cycle control is raised. Since the supply of functional E2F varies during the cell cycle and since in these assays overexpression of E2F can overcome repression of Fp by EBNA-1, control of transcription of EBNA-1 mRNA by cell cycle regulatory factors may help to bring about ordered replication of episomes.
Collapse
Affiliation(s)
- N S Sung
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|
43
|
Kinetic analysis of human T-cell leukemia virus type I Tax-mediated activation of NF-kappa B. Mol Cell Biol 1994. [PMID: 7935369 DOI: 10.1128/mcb.14.10.6443] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type I (HTLV-I) Tax protein induces the expression of cellular genes, at least in part, by activating the endogenous NF-kappa B transcription factors. Induced expression of cellular genes is thought to be important for transformation of T cells to continued growth, a prelude to the establishment of adult T-cell leukemia. However, neither underlying mechanisms nor kinetics of the Tax-mediated activation of NF-kappa B are understood. We have analyzed a permanently transfected Jurkat T-cell line in which the expression of Tax is entirely dependent on addition of heavy metals. The initial NF-kappa B binding activity seen after induction of Tax is due almost exclusively to p50/p65 heterodimers. At later times, NF-kappa B complexes containing c-Rel and/or p52 accumulate. The early activation of p50/p65 complexes is a posttranslational event, since neither mRNA nor protein levels of NF-kappa B subunits had increased at that time. We demonstrate for the first time a Tax-induced proteolytic degradation of the NF-kappa B inhibitor, I kappa B-alpha, which may trigger the initial nuclear translocation of NF-kappa B. As nuclear NF-kappa B rapidly and potently stimulates resynthesis of I kappa B-alpha, the steady-state level of I kappa B-alpha does not significantly change. Thus, the dramatic Tax-induced increase in the I kappa B-alpha turnover may continually weaken inhibition and activate NF-kappa B. Additional, distinct actions of Tax may contribute further to the high levels of NF-kappa B activity seen.
Collapse
|
44
|
Kanno T, Brown K, Franzoso G, Siebenlist U. Kinetic analysis of human T-cell leukemia virus type I Tax-mediated activation of NF-kappa B. Mol Cell Biol 1994; 14:6443-51. [PMID: 7935369 PMCID: PMC359174 DOI: 10.1128/mcb.14.10.6443-6451.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human T-cell leukemia virus type I (HTLV-I) Tax protein induces the expression of cellular genes, at least in part, by activating the endogenous NF-kappa B transcription factors. Induced expression of cellular genes is thought to be important for transformation of T cells to continued growth, a prelude to the establishment of adult T-cell leukemia. However, neither underlying mechanisms nor kinetics of the Tax-mediated activation of NF-kappa B are understood. We have analyzed a permanently transfected Jurkat T-cell line in which the expression of Tax is entirely dependent on addition of heavy metals. The initial NF-kappa B binding activity seen after induction of Tax is due almost exclusively to p50/p65 heterodimers. At later times, NF-kappa B complexes containing c-Rel and/or p52 accumulate. The early activation of p50/p65 complexes is a posttranslational event, since neither mRNA nor protein levels of NF-kappa B subunits had increased at that time. We demonstrate for the first time a Tax-induced proteolytic degradation of the NF-kappa B inhibitor, I kappa B-alpha, which may trigger the initial nuclear translocation of NF-kappa B. As nuclear NF-kappa B rapidly and potently stimulates resynthesis of I kappa B-alpha, the steady-state level of I kappa B-alpha does not significantly change. Thus, the dramatic Tax-induced increase in the I kappa B-alpha turnover may continually weaken inhibition and activate NF-kappa B. Additional, distinct actions of Tax may contribute further to the high levels of NF-kappa B activity seen.
Collapse
Affiliation(s)
- T Kanno
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|