1
|
Wang X, Lennard Richard M, Li P, Henry B, Schutt S, Yu XZ, Fan H, Zhang W, Gilkeson G, Zhang XK. Expression of GM-CSF Is Regulated by Fli-1 Transcription Factor, a Potential Drug Target. THE JOURNAL OF IMMUNOLOGY 2020; 206:59-66. [PMID: 33268481 DOI: 10.4049/jimmunol.2000664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
Friend leukemia virus integration 1 (Fli-1) is an ETS transcription factor and a critical regulator of inflammatory mediators, including MCP-1, CCL5, IL-6, G-CSF, CXCL2, and caspase-1. GM-CSF is a regulator of granulocyte and macrophage lineage differentiation and a key player in the pathogenesis of inflammatory/autoimmune diseases. In this study, we demonstrated that Fli-1 regulates the expression of GM-CSF in both T cells and endothelial cells. The expression of GM-CSF was significantly reduced in T cells and endothelial cells when Fli-1 was reduced. We found that Fli-1 binds directly to the GM-CSF promoter using chromatin immunoprecipitation assay. Transient transfection assays indicated that Fli-1 drives transcription from the GM-CSF promoter in a dose-dependent manner, and mutation of the Fli-1 DNA binding domain resulted in a significant loss of transcriptional activation. Mutation of a known phosphorylation site within the Fli-1 protein led to a significant increase in GM-CSF promoter activation. Thus, direct binding to the promoter and phosphorylation are two important mechanisms behind Fli-1-driven activation of the GM-CSF promoter. In addition, Fli-1 regulates GM-CSF expression in an additive manner with another transcription factor Sp1. Finally, we demonstrated that a low dose of a chemotherapeutic drug, camptothecin, inhibited expression of Fli-1 and reduced GM-CSF production in human T cells. These results demonstrate novel mechanisms for regulating the expression of GM-CSF and suggest that Fli-1 is a critical druggable regulator of inflammation and immunity.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Mara Lennard Richard
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Brittany Henry
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Steven Schutt
- Department of Microbiology and Immunology, Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Weiru Zhang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Gary Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Xian K Zhang
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425;
| |
Collapse
|
2
|
Ben Khalaf N, Al-Mashoor W, Saeed A, Al-Mehatab D, Taha S, Bakhiet M, Fathallah MD. The mouse intron-nested gene, Israa, is expressed in the lymphoid organs and involved in T-cell activation and signaling. Mol Immunol 2019; 111:209-219. [PMID: 31096062 DOI: 10.1016/j.molimm.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 10/26/2022]
Abstract
We have previously reported Israa, immune-system-released activating agent, as a novel gene nested in intron 8 of the mouse Zmiz1 gene. We have also shown that Israa encodes for a novel FYN-binding protein and might be involved in the regulation of T-cell activation. In this report, we demonstrate that Israa gene product regulates the expression of a pool of genes involved in T-cell activation and signaling. Real time PCR and GFP knock-in expression analysis showed that Israa is transcribed and expressed in the spleen mainly by CD3+CD8+ cells as well as in the thymus by CD3+ (DP and DN), CD4+SP and CD8+SP cells at different developmental stages. We also showed that Israa is downregulated in T-cells following activation of T-cell receptor. Using yeast two-hybrid analysis, we identified ELF1, a transcription factor involved in T-cell regulation, as an ISRAA-binding partner. Transcriptomic analysis of an EL4 cell line overexpressing ISRAA revealed differential expression of several genes involved in T-cell signaling, activation and development. Among these genes, Prkcb, Mib2, Fos, Ndfip2, Cxxc5, B2m, Gata3 and Cd247 were upregulated whereas Itk, Socs3, Tigit, Ifng, Il2ra and FoxJ1 were downregulated. Our findings support the existence in mouse of a novel FYN-related T-cell regulation pathway involving the product of an intron-nested gene.
Collapse
Affiliation(s)
- Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Wedad Al-Mashoor
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Azhar Saeed
- University of Michigan Medical School, MI, USA
| | - Dalal Al-Mehatab
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Safa Taha
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - M Dahmani Fathallah
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
3
|
VanDenBerg KR, Freeborn RA, Liu S, Kennedy RC, Zagorski JW, Rockwell CE. Inhibition of early T cell cytokine production by arsenic trioxide occurs independently of Nrf2. PLoS One 2017; 12:e0185579. [PMID: 29049341 PMCID: PMC5648109 DOI: 10.1371/journal.pone.0185579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 09/15/2017] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a stress-activated transcription factor that induces a variety of cytoprotective genes. Nrf2 also mediates immunosuppressive effects in multiple inflammatory models. Upon activation, Nrf2 dissociates from its repressor protein, Keap1, and translocates to the nucleus where it induces Nrf2 target genes. The Nrf2-Keap1 interaction is disrupted by the environmental toxicant and chemotherapeutic agent arsenic trioxide (ATO). The purpose of the present study was to determine the effects of ATO on early events of T cell activation and the role of Nrf2 in those effects. The Nrf2 target genes Hmox-1, Nqo-1, and Gclc were all upregulated by ATO (1–2 μM) in splenocytes derived from wild-type, but not Nrf2-null, mice, suggesting that Nrf2 is activated by ATO in splenocytes. ATO also inhibited IFNγ, IL-2, and GM-CSF mRNA and protein production in wild-type splenocytes activated with the T cell activator, anti-CD3/anti-CD28. However, ATO also decreased production of these cytokines in activated splenocytes from Nrf2-null mice, suggesting the inhibition is independent of Nrf2. Interestingly, ATO inhibited TNFα protein secretion, but not mRNA expression, in activated splenocytes suggesting the inhibition is due to post-transcriptional modification. In addition, c-Fos DNA binding was significantly diminished by ATO in wild-type and Nrf2-null splenocytes activated with anti-CD3/anti-CD28, consistent with the observed inhibition of cytokine production by ATO. Collectively, this study suggests that although ATO activates Nrf2 in splenocytes, inhibition of early T cell cytokine production by ATO occurs independently of Nrf2 and may instead be due to impaired AP-1 DNA binding.
Collapse
Affiliation(s)
- Kelly R. VanDenBerg
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robert A. Freeborn
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Sheng Liu
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Rebekah C. Kennedy
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Joseph W. Zagorski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Cheryl E. Rockwell
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
4
|
Craig MP, Sumanas S. ETS transcription factors in embryonic vascular development. Angiogenesis 2016; 19:275-85. [PMID: 27126901 DOI: 10.1007/s10456-016-9511-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
Abstract
At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.
Collapse
Affiliation(s)
- Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
5
|
Lennard Richard ML, Nowling TK, Brandon D, Watson DK, Zhang XK. Fli-1 controls transcription from the MCP-1 gene promoter, which may provide a novel mechanism for chemokine and cytokine activation. Mol Immunol 2014; 63:566-73. [PMID: 25108845 DOI: 10.1016/j.molimm.2014.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/29/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022]
Abstract
Regulation of proinflammatory cytokines and chemokines is a primary role of the innate immune response. MCP-1 is a chemokine that recruits immune cells to sites of inflammation. Expression of MCP-1 is reduced in primary kidney endothelial cells from mice with a heterozygous knockout of the Fli-1 transcription factor. Fli-1 is a member of the Ets family of transcription factors, which are evolutionarily conserved across several organisms including Drosophilla, Xenopus, mouse and human. Ets family members bind DNA through a consensus sequence GGAA/T, or Ets binding site (EBS). Fli-1 binds to EBSs within the endogenous MCP-1 promoter by ChIP assay. In this study, transient transfection assays indicate that the Fli-1 gene actively promotes transcription from the MCP-1 gene promoter in a dose-dependent manner. Mutation of the DNA binding domain of Fli-1 demonstrated that Fli-1 activates transcription of MCP-1 both directly, by binding to the promoter, and indirectly, likely through interactions with other transcription factors. Another Ets transcription factor, Ets-1, was also tested, but failed to promote transcription. While Ets-1 failed to drive transcription independently, a weak synergistic activation of the MCP-1 promoter was observed between Ets-1 and Fli-1. In addition, Fli-1 and the NFκB family member p65 were found to interact synergistically to activate transcription from the MCP-1 promoter, while Sp1 and p50 inhibit this interaction. Deletion studies identified that EBSs in the distal and proximal MCP-1 promoter are critical for Fli-1 activation from the MCP-1 promoter. Together, these results demonstrate that Fli-1 is a novel regulator of the proinflammatory chemokine MCP-1, that interacts with other transcription factors to form a complex transcriptional mechanism for the activation of MCP-1 and mediation of the inflammatory response.
Collapse
Affiliation(s)
- Mara L Lennard Richard
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Danielle Brandon
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dennis K Watson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xian K Zhang
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA.
| |
Collapse
|
6
|
Kasthuri SR, Premachandra H, Umasuthan N, Whang I, Lee J. Structural characterization and expression analysis of a beta-thymosin homologue (Tβ) in disk abalone, Haliotis discus discus. Gene 2013; 527:376-83. [DOI: 10.1016/j.gene.2013.04.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/05/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022]
|
7
|
Yang N, Ray DW, Matthews LC. Current concepts in glucocorticoid resistance. Steroids 2012; 77:1041-9. [PMID: 22728894 DOI: 10.1016/j.steroids.2012.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 01/04/2023]
Abstract
Glucocorticoids (GCs) are the most potent anti-inflammatory agents known. A major factor limiting their clinical use is the wide variation in responsiveness to therapy. The high doses of GC required for less responsive patients means a high risk of developing very serious side effects. Variation in sensitivity between individuals can be due to a number of factors. Congenital, generalized GC resistance is very rare, and is due to mutations in the glucocorticoid receptor (GR) gene, the receptor that mediates the cellular effects of GC. A more common problem is acquired GC resistance. This localized, disease-associated GC resistance is a serious therapeutic concern and limits therapeutic response in patients with chronic inflammatory disease. It is now believed that localized resistance can be attributed to changes in the cellular microenvironment, as a consequence of chronic inflammation. Multiple factors have been identified, including alterations in both GR-dependent and -independent signaling downstream of cytokine action, oxidative stress, hypoxia and serum derived factors. The underlying mechanisms are now being elucidated, and are discussed here. Attempts to augment tissue GC sensitivity are predicted to permit safe and effective use of low-dose GC therapy in inflammatory disease.
Collapse
Affiliation(s)
- Nan Yang
- Endocrine Sciences Research Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
8
|
Birzele F, Fauti T, Stahl H, Lenter MC, Simon E, Knebel D, Weith A, Hildebrandt T, Mennerich D. Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human. Nucleic Acids Res 2011; 39:7946-60. [PMID: 21729870 PMCID: PMC3185410 DOI: 10.1093/nar/gkr444] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/27/2011] [Accepted: 05/13/2011] [Indexed: 01/14/2023] Open
Abstract
Regulatory T-cells (Treg) play an essential role in the negative regulation of immune answers by developing an attenuated cytokine response that allows suppressing proliferation and effector function of T-cells (CD4(+) Th). The transcription factor FoxP3 is responsible for the regulation of many genes involved in the Treg gene signature. Its ablation leads to severe immune deficiencies in human and mice. Recent developments in sequencing technologies have revolutionized the possibilities to gain insights into transcription factor binding by ChiP-seq and into transcriptome analysis by mRNA-seq. We combine FoxP3 ChiP-seq and mRNA-seq in order to understand the transcriptional differences between primary human CD4(+) T helper and regulatory T-cells, as well as to study the role of FoxP3 in generating those differences. We show, that mRNA-seq allows analyzing the transcriptomal landscape of T-cells including the expression of specific splice variants at much greater depth than previous approaches, whereas 50% of transcriptional regulation events have not been described before by using diverse array technologies. We discovered splicing patterns like the expression of a kinase-dead isoform of IRAK1 upon T-cell activation. The immunoproteasome is up-regulated in both Treg and CD4(+) Th cells upon activation, whereas the 'standard' proteasome is up-regulated in Tregs only upon activation.
Collapse
Affiliation(s)
- Fabian Birzele
- Department of Pulmonary Research, Group Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany and Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA
| | - Tanja Fauti
- Department of Pulmonary Research, Group Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany and Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA
| | - Heiko Stahl
- Department of Pulmonary Research, Group Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany and Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA
| | - Martin C. Lenter
- Department of Pulmonary Research, Group Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany and Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA
| | - Eric Simon
- Department of Pulmonary Research, Group Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany and Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA
| | - Dagmar Knebel
- Department of Pulmonary Research, Group Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany and Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA
| | - Andreas Weith
- Department of Pulmonary Research, Group Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany and Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA
| | - Tobias Hildebrandt
- Department of Pulmonary Research, Group Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany and Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA
| | - Detlev Mennerich
- Department of Pulmonary Research, Group Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 67, 88397 Biberach an der Riß, Germany and Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA
| |
Collapse
|
9
|
Yang J, Yang W, Hirankarn N, Ye DQ, Zhang Y, Pan HF, Mok CC, Chan TM, Wong RWS, Mok MY, Lee KW, Wong SN, Leung AMH, Li XP, Avihingsanon Y, Rianthavorn P, Deekajorndej T, Suphapeetiporn K, Shotelersuk V, Baum L, Kwan P, Lee TL, Ho MHK, Lee PPW, Wong WHS, Zeng S, Zhang J, Wong CM, Ng IOL, Garcia-Barceló MM, Cherny SS, Tam PKH, Sham PC, Lau CS, Lau YL. ELF1 is associated with systemic lupus erythematosus in Asian populations. Hum Mol Genet 2010; 20:601-7. [PMID: 21044949 DOI: 10.1093/hmg/ddq474] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic involvement. The susceptibility genes identified so far can only explain a small proportion of disease heritability. Through a genome-wide association in a Hong Kong Chinese cohort and subsequent replication in two other Asian populations, with a total of 3164 patients and 4482 matched controls, we identified association of ELF1 (E74-like factor 1) with SLE (rs7329174, OR = 1.26, joint P= 1.47 × 10(-8)). ELF1 belongs to the ETS family of transcription factors and is known to be involved in T cell development and function. Database analysis revealed transcripts making use of three alternative exon1s for this gene. Near equivalent expression levels of distinct transcripts initiated from alternative exon1s were detected in peripheral blood mononuclear cells from both SLE patients and healthy controls. Although a direct association of rs7329174 with the three forms of transcripts for this gene was not detected, these findings support an important role of ELF1 in SLE susceptibility and suggest a potentially tight regulation for the expression of this gene.
Collapse
Affiliation(s)
- Jing Yang
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, LKS Faculty of Medicine,The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hollenhorst PC, Chandler KJ, Poulsen RL, Johnson WE, Speck NA, Graves BJ. DNA specificity determinants associate with distinct transcription factor functions. PLoS Genet 2009; 5:e1000778. [PMID: 20019798 PMCID: PMC2787013 DOI: 10.1371/journal.pgen.1000778] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/18/2009] [Indexed: 12/31/2022] Open
Abstract
To elucidate how genomic sequences build transcriptional control networks, we need to understand the connection between DNA sequence and transcription factor binding and function. Binding predictions based solely on consensus predictions are limited, because a single factor can use degenerate sequence motifs and because related transcription factors often prefer identical sequences. The ETS family transcription factor, ETS1, exemplifies these challenges. Unexpected, redundant occupancy of ETS1 and other ETS proteins is observed at promoters of housekeeping genes in T cells due to common sequence preferences and the presence of strong consensus motifs. However, ETS1 exhibits a specific function in T cell activation; thus, unique transcriptional targets are predicted. To uncover the sequence motifs that mediate specific functions of ETS1, a genome-wide approach, chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq), identified both promoter and enhancer binding events in Jurkat T cells. A comparison with DNase I sensitivity both validated the dataset and also improved accuracy. Redundant occupancy of ETS1 with the ETS protein GABPA occurred primarily in promoters of housekeeping genes, whereas ETS1 specific occupancy occurred in the enhancers of T cell–specific genes. Two routes to ETS1 specificity were identified: an intrinsic preference of ETS1 for a variant of the ETS family consensus sequence and the presence of a composite sequence that can support cooperative binding with a RUNX transcription factor. Genome-wide occupancy of RUNX factors corroborated the importance of this partnership. Furthermore, genome-wide occupancy of co-activator CBP indicated tight co-localization with ETS1 at specific enhancers, but not redundant promoters. The distinct sequences associated with redundant versus specific ETS1 occupancy were predictive of promoter or enhancer location and the ontology of nearby genes. These findings demonstrate that diversity of DNA binding motifs may enable variable transcription factor function at different genomic sites. Genomes contain sequences that encode both gene products and the instructions for where and when each gene is expressed. This gene expression code is critical for normal development and goes awry in disease processes such as cancer. The gene expression code is interpreted by proteins called transcription factors that bind to particular DNA sequences and carry instructions for gene activation or repression. This recognition code is challenged by the presence of highly-similar transcription factors that prefer almost identical DNA sequences. In addition, studies in living cells indicate that individual transcription factors have significant flexibility in sequence recognition. Here, we identify thousands of positions in the genome of human T cells that are bound by the transcription factor ETS1. These data, along with comparisons to other genomic datasets, allow us to identify DNA sequences that specify ETS1 binding while excluding binding of other related transcription factors. Furthermore, we discover that ETS1 binds more than one sequence and that these sequence variants can predict distinct biological functions of ETS1. Thus, this work contributes to our understanding of the gene expression code by addressing both how a transcription factor can bind unique genomic locations and why a transcription factor binds multiple DNA sequences.
Collapse
Affiliation(s)
- Peter C. Hollenhorst
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Katherine J. Chandler
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Rachel L. Poulsen
- Department of Statistics, Brigham Young University, Provo, Utah, United States of America
| | - W. Evan Johnson
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Statistics, Brigham Young University, Provo, Utah, United States of America
| | - Nancy A. Speck
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Barbara J. Graves
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
11
|
McCubrey JA, Abrams SL, Stadelman K, Chappell WH, Lahair M, Ferland RA, Steelman LS. Targeting signal transduction pathways to eliminate chemotherapeutic drug resistance and cancer stem cells. ADVANCES IN ENZYME REGULATION 2009; 50:285-307. [PMID: 19895837 PMCID: PMC2862855 DOI: 10.1016/j.advenzreg.2009.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Steelman LS, Stadelman KM, Chappell WH, Horn S, Bäsecke J, Cervello M, Nicoletti F, Libra M, Stivala F, Martelli AM, McCubrey JA. Akt as a therapeutic target in cancer. Expert Opin Ther Targets 2008; 12:1139-65. [PMID: 18694380 DOI: 10.1517/14728222.12.9.1139] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors. OBJECTIVE This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells. METHODS We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular. RESULTS/CONCLUSIONS The PI3K/PTEN/Akt/mTOR pathway is frequently aberrantly regulated in various cancers and targeting this pathway with small molecule inhibitors and may result in novel, more effective anticancer therapies.
Collapse
Affiliation(s)
- Linda S Steelman
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Suppressive effect of Elf-1 on FcεRI α-chain expression in primary mast cells. Immunogenetics 2008; 60:557-63. [DOI: 10.1007/s00251-008-0318-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
|
14
|
Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22:686-707. [DOI: 10.1038/leu.2008.26] [Citation(s) in RCA: 291] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
McCubrey JA, Sokolosky ML, Lehmann BD, Taylor JR, Navolanic PM, Chappell WH, Abrams SL, Stadelman KM, Wong EWT, Misaghian N, Horn S, Bäsecke J, Libra M, Stivala F, Ligresti G, Tafuri A, Milella M, Zarzycki M, Dzugaj A, Chiarini F, Evangelisti C, Martelli AM, Terrian DM, Franklin RA, Steelman LS. Alteration of Akt activity increases chemotherapeutic drug and hormonal resistance in breast cancer yet confers an achilles heel by sensitization to targeted therapy. ADVANCES IN ENZYME REGULATION 2008; 48:113-35. [PMID: 18423407 PMCID: PMC2583357 DOI: 10.1016/j.advenzreg.2008.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The PI3K/PTEN/Akt/mTOR pathway plays critical roles in the regulation of cell growth. The effects of this pathway on drug resistance and cellular senescence of breast cancer cells has been a focus of our laboratory. Introduction of activated Akt or mutant PTEN constructs which lack lipid phosphatase [PTEN(G129E)] or lipid and protein phosphatase [PTEN(C124S)] activity increased the resistance of the cells to the chemotherapeutic drug doxorubicin, and the hormonal drug tamoxifen. Activated Akt and PTEN genes also inhibited the induction of senescence after doxorubicin treatment; a phenomenon associated with unrestrained proliferation and tumorigenesis. Interference with the lipid phosphatase domain of PTEN was sufficient to activate Akt/mTOR/p70S6K as MCF-7 cells transfected with the mutant PTEN gene lacking the lipid phosphatase activity [PTEN(G129E)] displayed elevated levels of activated Akt and p70S6K compared to empty vector transfected cells. Cells transfected with mutant PTEN or Akt constructs were hypersensitive to mTOR inhibitors when compared with the parental or empty vector transfected cells. Akt-transfected cells were cultured for over two months in tamoxifen from which tamoxifen and doxorubicin resistant cells were isolated that were >10-fold more resistant to tamoxifen and doxorubicin than the original Akt-transfected cells. These cells had a decreased induction of both activated p53 and total p21Cip1 upon doxorubicin treatment. Furthermore, these cells had an increased inactivation of GSK-3β and decreased expression of the estrogen receptor-α. In these drug resistant cells, there was an increased activation of ERK which is associated with proliferation. These drug resistant cells were hypersensitive to mTOR inhibitors and also sensitive to MEK inhibitors, indicating that the enhanced p70S6K and ERK expression was relevant to their drug and hormonal resistance. Given that Akt is overexpressed in greater than 50% of breast cancers, our results point to potential therapeutic targets, mTOR and MEK. These studies indicate that activation of the Akt kinase or disruption of the normal activity of the PTEN phosphatase can have dramatic effects on activity of p70S6K and other downstream substrates and thereby altering the therapeutic sensitivity of breast cancer cells. The effects of doxorubicin and tamoxifen on induction of the Raf/MEK/ERK and PI3K/Akt survival pathways were examined in unmodified MCF-7 breast cells. Doxorubicin was a potent inducer of activated ERK and to a lesser extent Akt. Tamoxifen also induced ERK. Thus a consequence of doxorubicin and tamoxifen therapy of breast cancer is the induction of a pro-survival pathway which may contribute to the development of drug resistance. Unmodified MCF-7 cells were also sensitive to MEK and mTOR inhibitors which synergized with both tamoxifen and doxorubicin to induce death. In summary, our results point to the key interactions between the PI3K/PTEN/Akt/mTOR and Raf/MEK/ERK pathways in regulating chemotherapeutic drug resistance/sensitivity in breast cancer and indicate that targeting these pathways may prevent drug and hormonal resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Georgopoulos NT, Merrick A, Scott N, Selby PJ, Melcher A, Trejdosiewicz LK. CD40-mediated death and cytokine secretion in colorectal cancer: a potential target for inflammatory tumour cell killing. Int J Cancer 2007; 121:1373-81. [PMID: 17534894 DOI: 10.1002/ijc.22846] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD40, a member of the tumour necrosis factor family, is expressed in a variety of epithelial cells. Although soluble CD40 agonists are growth-inhibitory, membrane-presented CD40 ligand (CD40L) induces extensive apoptosis in carcinoma cells. This study investigated whether CD40 is expressed in human colorectal carcinoma (CRC) cells and explored the functional consequences of CD40 ligation. CD40 expression in a panel of CRC lines was assessed by flow cytometry and in resected human CRCs by immunohistochemistry. CRC cells were treated in vitro with soluble CD40 agonists or cocultured with fibroblasts expressing membrane-bound CD40 ligand. Apoptosis was determined by flow cytometry using Annexin V/propidium iodide labelling and by a DNA fragmentation assay. Cytokine secretion induced by CD40 ligation was quantified by a multiplex-bead array approach. We show that CD40 is expressed in a proportion of established CRC lines in culture and that receptor expression is functional. Activation of CD40 by membrane-presented CD40L, but not soluble agonists, causes high levels of death in CD40-positive CRC cells and induces secretion of proinflammatory cytokines. In agreement with our in vitro observations, immunohistochemical studies demonstrated that CD40 is highly expressed in a proportion of colorectal cancer specimens. The high level of susceptibility of CRC cells to CD40-killing combined with the ability of CD40 to induce concomitant secretion of proinflammatory cytokines suggest that CD40 ligation may represent a novel mechanism for elimination of CRC cells and render CD40 a promising therapeutic target for the eradication of colorectal tumours.
Collapse
Affiliation(s)
- Nikolaos T Georgopoulos
- Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, United Kingdom.
| | | | | | | | | | | |
Collapse
|
17
|
Corrigan CJ, Loke TK. Clinical and molecular aspects of glucocorticoid resistant asthma. Ther Clin Risk Manag 2007; 3:771-87. [PMID: 18473002 PMCID: PMC2376076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
This paper is an overview of the diagnosis, differential diagnosis and cellular and molecular mechanisms of glucocorticoid resistant asthma. It addresses the clinical definition and rationale for the diagnosis of therapy resistant asthma. It purports that, since glucocorticoid resistant asthmatics are not globally physiologically glucocorticoid resistant, then the phenomenon is most likely acquired, probably in immune cells (and most probably in T cells and monocyte/macrophages), as a result of local inflammatory and environmental influences. The molecular mechanisms which have been uncovered to date which could account for glucocorticoid resistance are discussed, in particular the roles of AP-1 and p38 MAP kinase signaling, the role of the beta-isoform of the glucocorticoid receptor and the role of histone proteins and DNA folding. Finally, there are suggestions for clinical management of these patients based on accumulated evidence.
Collapse
Affiliation(s)
- Chris J Corrigan
- Division of Asthma, Allergy and Lung Biology, King’s College London, London, England, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London London, England, UK
| | | |
Collapse
|
18
|
Abstract
BACKGROUND Interleukin (IL)-5 is a key regulator of eosinophilia in allergic inflammation and parasite infections but the mechanisms regulating IL-5 expression in activated human T lymphocytes are poorly understood. From studies on mouse cells, the activation protein (AP)-1 and GATA-3 sites in the proximal promoter region appear to be important in IL-5 regulation but the significance of an adjacent Ets/nuclear factor of activated T cell (NFAT) site has been less clear. METHODS Interleukin-5 transcriptional activity was measured by transfection of reporter genes into the human HSB-2 cells and normal T lymphocytes. Expression vectors encoding transcription factors were used for transactivation studies and IL-5 expression measured using reporter genes and mRNA levels. Transcription factor binding was shown with chromatin immunoprecipitation (ChIP). RESULTS HSB-2 cells showed high inducible expression of IL-5 mRNA. Mutation of reporter gene plasmids showed the Ets/NFAT site was of equal importance to the AP-1 and GATA-3 sites in regulating IL-5 transcription. Transactivation by Ets1 increased luciferase expression 15-fold, in the absence of stimulation, and AP-1 (c-Fos/c-Jun) and GATA-3 gave transactivations of 85-fold, and 100-fold, respectively. Synergistic interactions were demonstrated between Ets1, GATA-3 and AP-1. Dominant-negative AP-1 inhibited IL-5 transcription. Transactivation by GATA-3 and synergy between GATA-3, Ets1 and AP-1 were verified measuring IL-5 mRNA levels. Chromatin immunoprecipitation showed increased binding of Ets1 and GATA-3 to the IL-5 promoter after stimulation. The importance of the Ets1 site and of synergistic interactions between the three transcription factors were verified with primary human T cells. CONCLUSION Ets1, GATA-3 and AP-1 synergize to regulate IL-5 transcription in human T cells.
Collapse
Affiliation(s)
- J Wang
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
19
|
McCubrey JA, Steelman LS, Franklin RA, Abrams SL, Chappell WH, Wong EWT, Lehmann BD, Terrian DM, Basecke J, Stivala F, Libra M, Evangelisti C, Martelli AM. Targeting the RAF/MEK/ERK, PI3K/AKT and p53 pathways in hematopoietic drug resistance. ADVANCES IN ENZYME REGULATION 2007; 47:64-103. [PMID: 17382374 PMCID: PMC2696319 DOI: 10.1016/j.advenzreg.2006.12.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ito K, Chung KF, Adcock IM. Update on glucocorticoid action and resistance. J Allergy Clin Immunol 2006; 117:522-43. [PMID: 16522450 DOI: 10.1016/j.jaci.2006.01.032] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 01/25/2006] [Accepted: 01/25/2006] [Indexed: 12/11/2022]
Abstract
Extensive development of inhaled and oral glucocorticoids has resulted in highly potent molecules that have been optimized to target activity to the lung and minimize systemic exposure. These have proved highly effective for most asthmatic subjects, but despite these developments, there are a number of subjects with asthma who fail to respond to even high doses of inhaled or even oral glucocorticoids. Advances in delineating the fundamental mechanisms of glucocorticoid pharmacology, especially the concepts of transactivation and transrepression and cofactor recruitment, have resulted in better understanding of the molecular mechanisms whereby glucocorticoids suppress inflammation. The existence of multiple mechanisms underlying glucocorticoid insensitivity raises the possibility that this might indeed reflect different diseases with a common phenotype, and studies examining the efficacy of potential new agents should be targeted toward subgroups of patients with severe corticosteroid-resistant asthma who clearly require effective new drugs and other approaches to improved asthma control.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Cell and Molecular Biology, Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | | | | |
Collapse
|
21
|
Wei P, Taniguchi S, Sakai Y, Imamura M, Inoguchi T, Nawata H, Oda S, Nakabeppu Y, Nishimura J, Ikuyama S. Expression of adipose differentiation-related protein (ADRP) is conjointly regulated by PU.1 and AP-1 in macrophages. J Biochem 2006; 138:399-412. [PMID: 16272134 DOI: 10.1093/jb/mvi136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
ADRP is associated with intracellular lipid droplets. We demonstrate the regulatory mechanism for ADRP expression in RAW264.7 macrophages. The ADRP mRNA expression was stimulated by PMA, and synergistically enhanced in association with its protein level in the presence of lipids. A proteasome inhibitor protected the protein from degradation under the lipid-free conditions. One of the possible sites of the PMA action was proved to be an Ets/AP-1 element in the promoter, since mutations of this site reduced the PMA-induced promoter activity, and ligation of this element led to a significant increase in the PMA-responsiveness of homologous or heterologous promoters. Mutations of this site diminished the synergistic effect on the promoter activity induced by PMA and oleic acid, suggesting a possible interaction between this site and the downstream PPARdelta site. EMSA revealed that PU.1 and AP-1 conjointly bound to this site. The juxtaposition of the two sequences was requisite for full activity, since spacer sequences between them decreased the PMA-induced activity. PI3 kinase inhibitor was found to reduce the PMA-induced mRNA expression and promoter activity in parallel with PU.1/AP-1 complex formation on EMSA. From these results, we concluded that the Ets/AP-1 site is an important cis-acting element that regulates the ADRP gene expression in macrophages.
Collapse
Affiliation(s)
- Ping Wei
- Division of Clinical Immunology, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Beppu 874-0838, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Andoh A, Yasui H, Inatomi O, Zhang Z, Deguchi Y, Hata K, Araki Y, Tsujikawa T, Kitoh K, Kim-Mitsuyama S, Takayanagi A, Shimizu N, Fujiyama Y. Interleukin-17 augments tumor necrosis factor-alpha-induced granulocyte and granulocyte/macrophage colony-stimulating factor release from human colonic myofibroblasts. J Gastroenterol 2005; 40:802-10. [PMID: 16143885 DOI: 10.1007/s00535-005-1632-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 04/14/2005] [Indexed: 02/04/2023]
Abstract
BACKGROUND Interleukin (IL)-17 is a newly identified T-cell-specific cytokine. In this study, we investigated the effects of IL-17 on colony-stimulating factor (CSF) release in human colonic subepithelial myofibroblasts (SEMFs). METHODS CSF release and mRNA expression were determined by enzyme-linked immunosorbent assay (ELISA) and Northern blotting, respectively. Nuclear factor (NF)-kappaB- and activating protein (AP-1)-DNA binding activities were evaluated by electrophoretic gel mobility shift assays (EMSAs). RESULTS Unstimulated cells secreted a small amount of granulocyte G- and granulocyte/macrophage (GM)-CSF, and a considerable amount of M-CSF. IL-17 weakly enhanced G-CSF release, but did not affect GM- and M-CSF release. IL-17 selectively enhanced tumor necrosis factor (TNF)-alpha-induced G- and GM-CSF release. The combination of IL-17 plus TNF-alpha induced a marked increase in NF-kappaB- and AP-1-DNA binding activities. The adenovirus-mediated transfer of a stable form of IkappaBalpha and/or a dominant negative mutant of c-Jun markedly inhibited the IL-17 plus TNF-alpha-induced G- and GM-CSF mRNA expression. Furthermore, a stability study showed that IL-17 plus TNF-alpha markedly enhanced the stability of G- and GM-CSF mRNA. CONCLUSIONS IL-17 augments TNF-alpha-induced G- and GM-CSF release via transcriptional and posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Akira Andoh
- Department of Internal Medicine, Shiga University of Medical Science, Seta Tukinowa, Otsu, 520-2192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mishra JP, Mishra S, Gee K, Kumar A. Differential involvement of calmodulin-dependent protein kinase II-activated AP-1 and c-Jun N-terminal kinase-activated EGR-1 signaling pathways in tumor necrosis factor-alpha and lipopolysaccharide-induced CD44 expression in human monocytic cells. J Biol Chem 2005; 280:26825-37. [PMID: 15923644 DOI: 10.1074/jbc.m500244200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD44 plays a crucial role in cell migration, inflammation, and immune responses. Alteration in the levels of CD44 expression on monocytic cells by endotoxins and immunoregulatory cytokines may modulate the migration of immune cells to inflammatory sites and the development of immune responses. Lipopolysaccharide (LPS) and the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), act as important regulators of CD44 expression in human monocytic cells. We previously demonstrated that the c-Jun N-terminal kinase (JNK), a mitogen-activated protein kinase (MAPK), differentially regulated LPS- but not TNF-alpha-induced CD44 expression in monocytic cells. In this study, our results suggest that the calcium signaling pathway, in particular calmodulin (CaM) and CaM-dependent protein kinase II (CaMK-II), is involved in TNF-alpha- but not LPS-induced CD44 expression. CD44 promoter analysis suggested the participation of distinct transcription factors AP-1 and Egr-1 in TNF-alpha- and LPS-induced CD44 expression, respectively. Furthermore, TNF-alpha-induced CD44 expression was regulated by AP-1 through the activation of the CaMK-II pathway, whereas LPS-induced CD44 transcription was regulated specifically by Egr-1 through JNK activation. Overall, the results suggest the involvement of two distinct and independent signaling pathways involved in the regulation of CD44 transcription that may represent potential targets for anti-inflammatory agents capable of inhibiting CD44-mediated cell migration.
Collapse
Affiliation(s)
- Jyoti P Mishra
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Ma W, Gee K, Lim W, Chambers K, Angel JB, Kozlowski M, Kumar A. Dexamethasone inhibits IL-12p40 production in lipopolysaccharide-stimulated human monocytic cells by down-regulating the activity of c-Jun N-terminal kinase, the activation protein-1, and NF-kappa B transcription factors. THE JOURNAL OF IMMUNOLOGY 2004; 172:318-30. [PMID: 14688340 DOI: 10.4049/jimmunol.172.1.318] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-12 plays a critical role in the development of cell-mediated immune responses and in the pathogenesis of inflammatory and autoimmune disorders. Dexamethasone (DXM), an anti-inflammatory glucocorticoid, has been shown to inhibit IL-12p40 production in LPS-stimulated monocytic cells. In this study, we investigated the molecular mechanism by which DXM inhibits IL-12p40 production by studying the role of the mitogen-activated protein kinases (MAPKs), and the key transcription factors involved in human IL-12p40 production in LPS-stimulated monocytic cells. A role for c-Jun N-terminal kinase (JNK) MAPK in LPS-induced IL-12p40 regulation in a promonocytic THP-1/CD14 cell line was demonstrated by using specific inhibitors of JNK activation, SP600125 and a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase-1 mutant. To identify transcription factors regulating IL-12p40 gene transcription, extensive deletion analyses of the IL-12p40 promoter was performed. The results revealed the involvement of a sequence encompassing the AP-1-binding site, in addition to that of NF-kappaB. The role of AP-1 in IL-12p40 transcription was confirmed by using antisense c-fos and c-jun oligonucleotides. Studies conducted to understand the regulation of AP-1 and NF-kappaB activation by JNK MAPK revealed that both DXM and SP600125 inhibited IL-12p40 gene transcription by inhibiting the activation of AP-1 and NF-kappaB transcription factors as revealed by luciferase reporter and gel mobility shift assays. Taken together, our results suggest that DXM may inhibit IL-12p40 production in LPS-stimulated human monocytic cells by down-regulating the activation of JNK MAPK, the AP-1, and NF-kappaB transcription factors.
Collapse
Affiliation(s)
- Wei Ma
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
O'Reilly D, Quinn CM, El-Shanawany T, Gordon S, Greaves DR. Multiple Ets factors and interferon regulatory factor-4 modulate CD68 expression in a cell type-specific manner. J Biol Chem 2003; 278:21909-19. [PMID: 12676954 DOI: 10.1074/jbc.m212150200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD68 is a transmembrane glycoprotein expressed in all cells of the mononuclear phagocyte lineage including monocytes and tissue resident macrophages. Deletion analysis of the 5'-flanking sequences of the gene demonstrated that the proximal -150-bp sequence of the CD68 promoter exhibits high level promoter activity in macrophages. Mutations that abolish Ets factor binding at positions -106 and -89 reduce promoter activity in macrophages to 12 and 30%, respectively. Band shift experiments show that PU.1 associates with the -89 site whereas, Elf-1 preferentially binds the -106 Ets binding site and enhances CD68 activity in vitro. Furthermore, chromatin immunoprecipitation experiments confirm that Elf-1 and PU.1 associate with the CD68 proximal promoter in vivo in THP-1 cells. PU.1 does not bind to the CD68 promoter alone but instead forms heterocomplexes with members of the interferon regulatory factor family (IRF) including IRF-4 and IRF-8. IRF-4 and IRF-8 typically mediate transcriptional activation when associated with PU.1 on composite elements. However, our data show that PU.1/IRF-4 and IRF-8 heterocomplexes down-regulate CD68 promoter activity in macrophages and repression is dependent on the integrity of both the IRF and PU.1 half-sites of this composite element. Chromatin immunoprecipitation data reveal that neither IRF-4 nor IRF-8 associate with the CD68 proximal promoter in macrophages in vivo but IRF-4 is associated with the promoter in B lymphocytes. We propose that expression of CD68 in myeloid cells requires the Ets transcription factors Elf-1 and PU.1 and CD68 expression is down-regulated in lymphoid cells by combinatorial interactions between PU.1 and IRF-4.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/biosynthesis
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- B-Lymphocytes/metabolism
- Base Sequence
- Binding Sites
- Blotting, Western
- COS Cells
- Cell Line
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Genes, Reporter
- Genetic Vectors
- HL-60 Cells
- Humans
- Interferon Regulatory Factors
- Lymphocytes/metabolism
- Macrophages/metabolism
- Mice
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Nuclear Proteins
- Plasmids/metabolism
- Polymerase Chain Reaction
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/metabolism
- Repressor Proteins/metabolism
- Time Factors
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Tumor Cells, Cultured
- U937 Cells
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Fukushima T, Miyazaki Y, Tsushima H, Tsutsumi C, Taguchi J, Yoshida S, Kuriyama K, Scadden D, Nimer S, Tomonaga M. The level of MEF but not ELF-1 correlates with FAB subtype of acute myeloid leukemia and is low in good prognosis cases. Leuk Res 2003; 27:387-92. [PMID: 12620289 DOI: 10.1016/s0145-2126(02)00214-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ETS proteins (such as PU.1, Fli-1 and ETS-1) have been shown to play important roles in normal and abnormal hematopoiesis. We examined the expression of the ELF subfamily of ETS genes (ELF-1, MEF and NERF) in acute myeloid leukemia (AML) cells using Northern blot analysis. ELF-1 and MEF were expressed in all samples, whereas NERF was not. The relative expression (RE) of MEF, but not ELF-1, was significantly lower (P<0.0001) in AML with t(8;21) and t(15;17) compared with AML with normal karyotype. The pattern of MEF expression was not uniform among cells with CD34(+)/CD33(+). It is suggested that the low RE of MEF might be part of a gene expression profile characterizing AML with a good prognosis.
Collapse
MESH Headings
- Acute Disease
- Adult
- Aged
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Chromosomes, Human, Pair 15/ultrastructure
- Chromosomes, Human, Pair 17/ultrastructure
- Chromosomes, Human, Pair 21/ultrastructure
- Chromosomes, Human, Pair 8/ultrastructure
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Female
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/chemistry
- Humans
- Karyotyping
- Leukemia, Myeloid/classification
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Male
- Middle Aged
- Prognosis
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/analysis
- RNA, Neoplasm/biosynthesis
- Transcription Factors/analysis
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Takuya Fukushima
- Department of Hematology and Molecular Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University School of Medicine, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Donovan S, See W, Bonifas J, Stokoe D, Shannon KM. Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell 2002; 2:507-14. [PMID: 12498719 DOI: 10.1016/s1535-6108(02)00214-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Nf1 tumor suppressor encodes a GTPase-activating protein for Ras. Previous work has implicated hyperactive Ras in the aberrant growth of Nf1-deficient cells; however, there are limited data on which effectors modulate specific phenotypes. To address this, we generated myeloid cell lines by infecting fetal liver cells with a retrovirus encoding a truncated allele of c-Myb. Granulocyte-macrophage colony stimulating factor (GM-CSF) promoted the survival of wild-type Myb cells in a dose-dependent manner. By contrast, Nf1-deficient myeloid cells deprived of growth factors, were resistant to apoptosis due to hyperactivation of the phosphoinositide-3-OH kinase/protein kinase B cascade. Nf1(-/-) cells also demonstrated growth factor-independent proliferation and upregulation of GM-CSF mRNA production that were dependent upon Raf/MEK/ERK signaling. These data link specific Ras effectors with discrete cellular phenotypes in Nf1-deficient cells.
Collapse
Affiliation(s)
- Shane Donovan
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
28
|
Juang YT, Tenbrock K, Nambiar MP, Gourley MF, Tsokos GC. Defective production of functional 98-kDa form of Elf-1 is responsible for the decreased expression of TCR zeta-chain in patients with systemic lupus erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6048-55. [PMID: 12421992 DOI: 10.4049/jimmunol.169.10.6048] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE), the prototypic autoimmune disease, is characterized by defective expression of TCR zeta-chain. Elf-1 (E-74-like factor) is a member of the Ets (E-26-specific) family and is crucial for the basal transcription of TCR zeta-chain in Jurkat cells. We previously demonstrated that Elf-1 exists in the cytoplasm mainly as 80-kDa form and after phosphorylation and O-glycosylation it moves to the nucleus as a 98-kDa which binds DNA. We now demonstrate that Elf-1 is crucial for the transactivation of TCR zeta-chain promoter in normal and SLE T cells. Defective expression of TCR zeta-chain in SLE T cells is associated with two distinct molecular defects in the generation of the 98-kDa DNA binding Elf-1 form. In the first, the levels of the 98-kDa form were either decreased or absent. In the second, the apparent levels of the nuclear Elf-1 form were normal but included only two of the three bands into which the nuclear Elf-1 form separated in isoelectric focusing gels. Because both the transcription and the translation processes of Elf-1 gene are normal in SLE T cells, our data demonstrate that abnormal posttranslational mechanisms of the Elf-1 protein result in defective expression of functional Elf-1, and consequently, the transcriptional defect of TCR zeta-chain in patients of SLE.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/metabolism
- Down-Regulation/genetics
- Down-Regulation/immunology
- Ephrin-A2/biosynthesis
- Ephrin-A2/deficiency
- Ephrin-A2/metabolism
- Ephrin-A2/physiology
- Female
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Humans
- Isoelectric Point
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Male
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Molecular Weight
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/deficiency
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/immunology
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Transcription Factors/biosynthesis
- Transcription Factors/deficiency
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Yuang-Taung Juang
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | | | |
Collapse
|
29
|
Juang YT, Solomou EE, Rellahan B, Tsokos GC. Phosphorylation and O-linked glycosylation of Elf-1 leads to its translocation to the nucleus and binding to the promoter of the TCR zeta-chain. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2865-71. [PMID: 11884456 DOI: 10.4049/jimmunol.168.6.2865] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elf-1, a member of the E 26-specific transcription factor family with a predicted molecular mass of 68 kDa, is involved in the transcriptional regulation of several hematopoietic cell genes. We demonstrate that Elf-1 exists primarily as a 98-kDa form in the nucleus and as an 80-kDa form in the cytoplasm. Phosphorylation and O-linked glycosylation contribute to the increased posttranslational molecular mass of Elf-1. The 98-kDa Elf-1 is released from the cytoplasm tethering retinoblastoma protein and moves to the nucleus, where it binds to the promoter of the TCR zeta-chain gene. Finally, the cytoplasmic 98-kDa form enters the proteasome pathway and undergoes degradation. In conclusion, different forms of Elf-1 are the products of posttranslational modifications that determine its subcellular localization, activity, and metabolic degradation.
Collapse
Affiliation(s)
- Yuang-Taung Juang
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
30
|
Li SL, Valente AJ, Wang L, Gamez MJ, Clark RA. Transcriptional regulation of the p67phox gene: role of AP-1 in concert with myeloid-specific transcription factors. J Biol Chem 2001; 276:39368-78. [PMID: 11483614 DOI: 10.1074/jbc.m106111200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have investigated the myeloid-specific transcriptional regulation of p67(phox), an essential component of phagocyte respiratory burst NADPH oxidase. Analysis was carried out on the p67(phox) 5'-flanking region from -3669 to -4 (relative to ATG), including the first exon and intron and part of the second exon. The construct extending from -985 to -4 produced the highest luciferase activity in myeloid HL-60 cells but was not active in HeLa or Jurkat cells, indicating myeloid-specific expression. Four active elements were identified: Sp1/Sp3 at -694, PU.1 at -289, AP-1 at -210, and PU.1/HAF1 at -182, the latter three being in the first intron. These cis elements bound their cognate transacting factors both in vitro and in vivo. Mutation of the Sp1, PU.1, or PU.1/HAF1 site each decreased promoter activity by 35-50%. Mutations in all three sites reduced promoter activity by 90%. However, mutation of the AP-1 site alone nearly abolished promoter activity. The AP-1 site bound Jun and Fos proteins from HL-60 cell nuclear extract. Co-expression with Jun B in AP-1-deficient cells increased promoter activity by 3-fold. These data show that full p67(phox) promoter activity requires cooperation between myeloid-specific and nonmyeloid transcription factors, with AP-1 being the most critical for function.
Collapse
Affiliation(s)
- S L Li
- Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
31
|
Smith PJ, Cousins DJ, Jee YK, Staynov DZ, Lee TH, Lavender P. Suppression of granulocyte-macrophage colony-stimulating factor expression by glucocorticoids involves inhibition of enhancer function by the glucocorticoid receptor binding to composite NF-AT/activator protein-1 elements. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2502-10. [PMID: 11509589 DOI: 10.4049/jimmunol.167.5.2502] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased expression of a number of cytokines including GM-CSF is associated with chronic inflammatory conditions such as bronchial asthma. Glucocorticoid therapy results in suppression of cytokine levels by a mechanism(s) not yet fully understood. We have examined regulation of GM-CSF expression by the synthetic glucocorticoid dexamethasone in human T cells. Transient transfection assays with reporter constructs revealed that dexamethasone inhibited the function of the GM-CSF enhancer, but had no effect on regulation of GM-CSF expression occurring through the proximal promoter. Activation of the GM-CSF enhancer involves cooperative interaction between the transcription factors NF-AT and AP-1. We demonstrate here that glucocorticoid-mediated inhibition of enhancer function involves glucocorticoid receptor (GR) binding to the NF-AT/AP-1 sites. These elements, which do not constitute recognizable glucocorticoid response elements, support binding of the GR, primarily as a dimer. This binding correlates with the ability of dexamethasone to inhibit enhancer activity of the NF-AT/AP-1 elements, suggesting a competition between NF-AT/AP-1 proteins and GR.
Collapse
Affiliation(s)
- P J Smith
- Department of Respiratory Medicine and Allergy, Kings College London, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Shi MJ, Park SR, Kim PH, Stavnezer J. Roles of Ets proteins, NF-kappa B and nocodazole in regulating induction of transcription of mouse germline Ig alpha RNA by transforming growth factor-beta 1. Int Immunol 2001; 13:733-46. [PMID: 11369700 DOI: 10.1093/intimm/13.6.733] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Antibody class switch recombination (CSR) occurs after antigen activation of B cells. CSR is directed to specific heavy chain isotypes by cytokines and B cell activators that induce transcription from the unrearranged, or germline (GL), C(H) region genes. Transforming growth factor (TGF)-beta1 is essential for switch recombination to IgA due to its ability to induce transcription from GL Ig alpha genes. It has been shown that the promoters which regulate transcription of mouse and human GL alpha RNAs contain a TGF-beta1-responsive element that binds Smad and core binding factor (CBFalpha)/AML/PEBPalpha/RUNX: They also contain other elements which bind the transcription factors CREB, BSAP and Ets family proteins. In this manuscript we demonstrate that two tandem Ets sites in the mouse GL alpha promoter bind the transcription factors Elf-1 and PU.1, and that the 3' site is essential for expression of a luciferase reporter gene driven by the GL alpha promoter. Binding of Elf-1 to the GL alpha promoter is inducible by lipopolysaccharide in nuclear extracts from splenic B cells. An NF-kappaB site is identified, although it does not contribute to expression of the promoter in reporter gene assays. Since CSR to IgA is greatly reduced in NF-kappaB/p50-deficient mice, these data support the hypothesis that NF-kappaB has roles in switching in addition to regulation of GL transcription. Finally, we demonstrate that nocodazole, which disrupts microtubules that sequester Smad proteins in the cytoplasm, stimulates transcription from the GL alpha promoter.
Collapse
Affiliation(s)
- M J Shi
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655-0122, USA
| | | | | | | |
Collapse
|
33
|
Angel P, Szabowski A, Schorpp-Kistner M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 2001; 20:2413-23. [PMID: 11402337 DOI: 10.1038/sj.onc.1204380] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mouse skin has become the model of choice to study the regulation and function of AP-1 subunits in many physiological and pathological processes in vivo and in vitro. Genetically modified mice, in vitro reconstituted skin equivalents and epidermal cell lines were established, in which AP-1-regulated genetic programs of cell proliferation, differentiation and tumorigenesis can be analysed. Since the epidermis, as our interface with the environment, is subjected to radiation and injury, signal transduction pathways and critical AP-1 members regulating the mammalian stress response could be identified. Regulated expression of important components of the cytokine network, cell surface receptors and proteases, which orchestrate the process of wound healing has been found to rely on AP-1 activity. Here we review our current knowledge on the function of AP-1 subunits and AP-1 target genes in these fascinating fields of skin physiology and pathology.
Collapse
Affiliation(s)
- P Angel
- Deutsches Krebsforschungszentrum, Division of Signal Transduction and Growth Control, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
34
|
Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001; 20:2438-52. [PMID: 11402339 DOI: 10.1038/sj.onc.1204385] [Citation(s) in RCA: 536] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fos and Jun family proteins regulate the expression of a myriad of genes in a variety of tissues and cell types. This functional versatility emerges from their interactions with related bZIP proteins and with structurally unrelated transcription factors. These interactions at composite regulatory elements produce nucleoprotein complexes with high sequence-specificity and regulatory selectivity. Several general principles including binding cooperativity and conformational adaptability have emerged from studies of regulatory complexes containing Fos-Jun family proteins. The structural properties of Fos-Jun family proteins including opposite orientations of heterodimer binding and the ability to bend DNA can contribute to the assembly and functions of such complexes. The cooperative recruitment of transcription factors, coactivators and chromatin remodeling factors to promoter and enhancer regions generates multiprotein transcription regulatory complexes with cell- and stimulus-specific transcriptional activities. The gene-specific architecture of these complexes can mediate the selective control of transcriptional activity.
Collapse
Affiliation(s)
- Y Chinenov
- Howard Hughes Medical Institute, University of Michigan Medical School Ann Arbor, Michigan, MI 48109-0650, USA
| | | |
Collapse
|
35
|
Dube A, Thai S, Gaspar J, Rudders S, Libermann TA, Iruela-Arispe L, Oettgen P. Elf-1 is a transcriptional regulator of the Tie2 gene during vascular development. Circ Res 2001; 88:237-44. [PMID: 11157678 DOI: 10.1161/01.res.88.2.237] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular development requires the tightly coordinated expression of several growth factors and their receptors. Among these are the Tie1 and Tie2 receptors, which are almost exclusively endothelial cell-specific. The critical transcriptional regulators of vascular-specific gene expression remain largely unknown. The Ets factors are a family of evolutionarily conserved transcription factors that regulate genes involved in cellular growth and differentiation. We have recently shown that the Ets factor NERF is a strong transactivator of the Tie1 and Tie2 genes. To extend these studies, we have begun to identify the Ets factors that are expressed in developing blood vessels of the chicken chorioallantoic membrane (CAM), a highly vascular embryonic network. RNA was extracted from microdissected CAM blood vessels, and reverse transcriptase-polymerase chain reaction was performed using oligonucleotides encoding conserved amino acids within the Ets domain. One of the polymerase chain reaction fragments was subcloned and identified as the chicken homologue of the Ets factor ELF-1, cELF-1. ELF-1 is most closely related to the Ets factor NERF. In situ hybridization and immunohistochemistry demonstrate that cELF-1 is enriched in developing chicken blood vessels. cELF-1 is also a strong transactivator of the Tie1 and Tie2 genes and can bind to conserved Ets sites within the promoters of these genes. A complex of similar size forms when gel shifts are performed with cellular extracts derived from the CAM blood vessels, which is recognized by an antibody against cELF-1. In summary, ELF-1 belongs to a subset of Ets factors that regulate vascular-specific gene expression during blood vessel development.
Collapse
MESH Headings
- Allantois/blood supply
- Allantois/embryology
- Allantois/metabolism
- Animals
- Blood Vessels/cytology
- Blood Vessels/embryology
- Blood Vessels/metabolism
- Blotting, Northern
- Cell Line
- Chick Embryo
- Chickens
- Chorion/blood supply
- Chorion/embryology
- Chorion/metabolism
- Cloning, Molecular
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Developmental/genetics
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Molecular Sequence Data
- Nuclear Proteins
- Organ Specificity
- Promoter Regions, Genetic/genetics
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, TIE-1
- Receptor, TIE-2
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, TIE
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- A Dube
- Cardiology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Ets proteins are a family of transcription factors that share an 85 amino acid conserved DNA binding domain, the ETS domain. Over 25 mammalian Ets family members control important biological processes, including cellular proliferation, differentiation, lymphocyte development and activation, transformation and apoptosis by recognizing the GGA core motif in the promoter or enhancer of their target genes. Protein - protein interactions regulates DNA binding, subcellular localization, target gene selection and transcriptional activity of Ets proteins. Combinatorial control is a characteristic property of Ets family members, involving interaction between Ets and other key transcriptional factors such as AP-1, NFkappaB and Pax family members. Specific domains of Ets proteins interact with many protein motifs such as bHLH, bZipper and Paired domain. Such interactions coordinate cellular processes in response to diverse signals including cytokines, growth factors, antigen and cellular stresses.
Collapse
Affiliation(s)
- R Li
- Center for Molecular and Structural Biology, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA
| | | | | |
Collapse
|
37
|
Abstract
Ets is a family of transcription factors present in species ranging from sponges to human. All family members contain an approximately 85 amino acid DNA binding domain, designated the Ets domain. Ets proteins bind to specific purine-rich DNA sequences with a core motif of GGAA/T, and transcriptionally regulate a number of viral and cellular genes. Thus, Ets proteins are an important family of transcription factors that control the expression of genes that are critical for several biological processes, including cellular proliferation, differentiation, development, transformation, and apoptosis. Here, we tabulate genes that are regulated by Ets factors and describe past, present and future strategies for the identification and validation of Ets target genes. Through definition of authentic target genes, we will begin to understand the mechanisms by which Ets factors control normal and abnormal cellular processes.
Collapse
Affiliation(s)
- V I Sementchenko
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
38
|
Nishiyama C, Takahashi K, Nishiyama M, Okumura K, Ra C, Ohtake Y, Yokota T. Splice isoforms of transcription factor Elf-1 affecting its regulatory function in transcription-molecular cloning of rat Elf-1. Biosci Biotechnol Biochem 2000; 64:2601-7. [PMID: 11210123 DOI: 10.1271/bbb.64.2601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To elucidate the role of Elf-1 in Fc epsilonRI alpha chain expression, rat Elf-1 cDNAs were isolated and characterized. The rat Elf-1 cDNA of 2744 bp contained an open reading frame of 1848 bp. In addition to the full length rat Elf-1 cDNA (named type 1), two splice isoforms were isolated. One of the two isoforms lacked the amino acid residues from 85th to 120th (type 2), and the other from 85th to 175th (type 3). Similar isoforms were also observed in human tissue. Overexpression of rat Elf-1 (type 1) using a transient coexpression system inhibited of the alpha chain promoter activity. The inhibition activity was different between the isoforms; the inhibition activity of type 2 was lower than that of type 1, and type 3 did not have an inhibitory effect. This observation suggested that each Elf-1 isoform played a different role in the gene expression under its control.
Collapse
Affiliation(s)
- C Nishiyama
- Foods & Pharmaceuticals Research & Development Laboratory, Asahi Breweries, Ltd., Kitasoma-gun, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Szabowski A, Maas-Szabowski N, Andrecht S, Kolbus A, Schorpp-Kistner M, Fusenig NE, Angel P. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell 2000; 103:745-55. [PMID: 11114331 DOI: 10.1016/s0092-8674(00)00178-1] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Interactions between mesenchymal and epithelial cells are responsible for organogenesis and tissue homeostasis. This mutual cross-talk involves cell surface proteins and soluble factors, which are mostly the result of regulated transcription. To elucidate dimer-specific functions of the AP-1 family of transcription factors, we reconstituted skin by combining primary human keratinocytes and mouse wild-type, c-jun(-/-), and junB(-/-) fibroblasts. We have discovered an antagonistic function of these AP-1 subunits in the fibroblast-mediated paracrine control of keratinocyte proliferation and differentiation, and traced this effect to the IL-1-dependent regulation of KGF and GM-CSF. These data suggest that the relative activation state of these AP-1 subunits in a non-cell-autonomous, transregulatory fashion directs regeneration of the epidermis and maintenance of tissue homeostasis in skin.
Collapse
Affiliation(s)
- A Szabowski
- Division of Signal Transduction and Growth Control Deutsches Krebsforschungszentrum Im Neuenheimer Feld 280 69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Oxidized LDL can induce an increase in intracellular calcium concentration and the activation of protein kinase C in mouse peritoneal macrophages. The activation of protein kinase C leads to the release into the culture medium of granulocyte-macrophage colony-stimulating factor, which plays a priming role in oxidized LDL-induced macrophage proliferation. The expression of granulocyte-macrophage colony-stimulating factor in macrophages by oxidized LDL is positively regulated in the 5'-flanking region of granulocyte-macrophage colony-stimulating factor gene from sequence -169 to -160, but negatively regulated from -91 to -82. Granulocyte-macrophage colony-stimulating factor released by oxidized LDL from macrophages induces proliferation in autocrine or paracrine fashion via the activation of phosphatidylinositol 3-kinase. The capacity of oxidized LDL to induce macrophage proliferation in vitro may be involved in the enhanced progression of atherosclerosis in vivo.
Collapse
Affiliation(s)
- M Sakai
- Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan
| | | | | | | |
Collapse
|
41
|
Echlin DR, Tae HJ, Mitin N, Taparowsky EJ. B-ATF functions as a negative regulator of AP-1 mediated transcription and blocks cellular transformation by Ras and Fos. Oncogene 2000; 19:1752-63. [PMID: 10777209 DOI: 10.1038/sj.onc.1203491] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
B-ATF is a nuclear basic leucine zipper protein that belongs to the AP-1/ATF superfamily of transcription factors. Northern blot analysis reveals that the human B-ATF gene is expressed most highly in hematopoietic tissues. Interaction studies in vitro and in vivo show that the leucine zipper of B-ATF mediates dimerization with members of the Jun family of proteins. Chimeric proteins consisting of portions of B-ATF and the DNA binding domain of the yeast activator GAL4 do not stimulate reporter gene expression in mammalian cells, indicating that B-ATF does not contain a conventional transcription activation domain. Jun/B-ATF dimers display similar DNA binding profiles as Jun/Fos dimers, with a bias toward binding TRE (12-O-tetradecanolyphorbol-13-acetate-response element) over CRE (cyclic AMP-response element) DNA sites. B-ATF inhibits transcriptional activation of a reporter gene containing TRE sites in a dose-dependent manner, presumably by competing with Fos for Jun and forming transcriptionally inert Jun/B-ATF heterodimers. Stable expression of B-ATF in C3H10T1/2 cells does not reduce cell viability, but does result in a reduced cellular growth rate when compared to controls. This effect is dominant in the presence of the growth promoting effects of the H-Ras or the v-Fos oncoproteins, since expression of B-ATF restricts the efficiency of focus formation by these transforming agents. These findings demonstrate that B-ATF is a tissue-specific transcription factor with the potential to function as a dominant-negative to AP-1.
Collapse
Affiliation(s)
- D R Echlin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | |
Collapse
|
42
|
Biwa T, Sakai M, Matsumura T, Kobori S, Kaneko K, Miyazaki A, Hakamata H, Horiuchi S, Shichiri M. Sites of action of protein kinase C and phosphatidylinositol 3-kinase are distinct in oxidized low density lipoprotein-induced macrophage proliferation. J Biol Chem 2000; 275:5810-6. [PMID: 10681570 DOI: 10.1074/jbc.275.8.5810] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidized low density lipoprotein (Ox-LDL) can induce macrophage proliferation in vitro. To explore the mechanisms involved in this process, we reported that activation of protein kinase C (PKC) is involved in its signaling pathway (Matsumura, T., Sakai, M., Kobori, S., Biwa, T., Takemura, T., Matsuda, H., Hakamata, H., Horiuchi, S., and Shichiri, M. (1997) Arterioscler. Thromb. Vasc. Biol. 17, 3013-3020) and that expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) and its subsequent release in the culture medium are important (Biwa, T., Hakamata, H., Sakai, M., Miyazaki, A., Suzuki, H., Kodama, T., Shichiri, M., and Horiuchi, S. (1998) J. Biol. Chem. 273, 28305-28313). However, a recent study also demonstrated the involvement of phosphatidylinositol 3-kinase (PI3K) in this process. In the present study, we investigated the role of PKC and PI3K in Ox-LDL-induced macrophage proliferation. Ox-LDL-induced macrophage proliferation was inhibited by 90% by a PKC inhibitor, calphostin C, and 50% by a PI3K inhibitor, wortmannin. Ox-LDL-induced expression of GM-CSF and its subsequent release were inhibited by calphostin C but not by wortmannin, whereas recombinant GM-CSF-induced macrophage proliferation was inhibited by wortmannin by 50% but not by calphostin C. Ox-LDL activated PI3K at two time points (10 min and 4 h), and the activation at the second but not first point was significantly inhibited by calphostin C and anti-GM-CSF antibody. Our results suggest that PKC plays a role upstream in the signaling pathway to GM-CSF induction, whereas PI3K is involved, at least in part, downstream in the signaling pathway after GM-CSF induction.
Collapse
Affiliation(s)
- T Biwa
- Department of Metabolic Medicine, Kumamoto University School of Medicine, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Greenland KJ, Jantke I, Jenatschke S, Bracken KE, Vinson C, Gellersen B. The human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase gene promoter is controlled by Ets and activating protein-1 transcription factors and progesterone. Endocrinology 2000; 141:581-97. [PMID: 10650939 DOI: 10.1210/endo.141.2.7313] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) is a key catabolic enzyme in the inactivation of PGF2alpha and PGE2 and therefore serves as an important determinant in regulating their local concentrations. To gain insights into the transcriptional regulation of this enzyme, we have isolated 3.5 kb of the 5'-flanking sequence of the human PGDH promoter and characterized its control in hemopoietic cells and cells of myometrial and placental origin. Several potential binding sites for cAMP-responsive element-binding protein (CREB), Ets, and activating protein-1 (AP-1) transcription factors are present within 2368 bp of the 5'-flanking region. This region and deletions thereof were fused to the luciferase reporter gene and used for transient transfection experiments. In Jurkat leukemic T cells, which express PGDH endogenously, the transfected PGDH promoter was strongly induced by phorbol ester. Induction was reversed by coexpression of A-Fos, a dominant negative to AP-1. In primary cultures of myometrial smooth muscle cells (SMC), the Ets family members Ets-1, Ets-2, and PEA3 potently stimulated transcriptional activity of the PGDH promoter. PEA3-mediated activation was partially repressed by A-Fos, suggesting an involvement of AP-1 proteins, which might be conferred by a distal and a proximal Ets/ AP-1 composite element. The distal Ets/AP-1 element is flanked by two CRE-like sequences. Cotransfection of A-CREB, a dominant negative to CREB, inhibited stimulation of PGDH-2368/luc3 by PEA3 in myometrial SMC, whereas treatment with 8-bromo-cAMP moderately enhanced promoter activity. Progesterone is believed to be an important stimulus for PGDH expression in the utero-placental unit, thus contributing to the maintenance of a quiescent uterus during pregnancy. In myometrial SMC, both isoforms of the progesterone receptor, PR-B and PR-A, caused a ligand-dependent activation of PGDH-2368/luc3. Transcriptional activity of PR-B, but not PR-A, was further enhanced by the addition of 8-bromo-cAMP. We could not confirm a recently proposed transcriptional control of PGDH by mineralocorticoid receptor. No effect of mineralocorticoid receptor, in the absence or presence of aldosterone, with or without 8-bromo-cAMP, was observed on PGDH-2368/luc3. Taken together, these findings demonstrate control of the PGDH promoter by multiple pathways and provide evidence for cross-talk among Ets, AP-1, cAMP, and PR-mediated signaling, suggesting complex regulatory mechanisms for the expression of PGDH.
Collapse
Affiliation(s)
- K J Greenland
- IHF Institute for Hormone and Fertility Research, University of Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Matsumura T, Sakai M, Matsuda K, Furukawa N, Kaneko K, Shichiri M. Cis-acting DNA elements of mouse granulocyte/macrophage colony-stimulating factor gene responsive to oxidized low density lipoprotein. J Biol Chem 1999; 274:37665-72. [PMID: 10608823 DOI: 10.1074/jbc.274.53.37665] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that the induction of granulocyte/macrophage colony-stimulating factor (GM-CSF) played an important role in oxidized low density lipoprotein (Ox-LDL)-induced macrophage growth as a growth priming factor. The present study was undertaken to elucidate the transcriptional regulation of the GM-CSF gene using Raw 264.7 cells, a mouse macrophage cell line. Transient transfection into Raw 264.7 cells of several 5'-flanking regions of GM-CSF gene-luciferase fusion plasmids revealed the presence of two positive regulatory sites in regions spanning from -97 to -59 and from -59 to -37 and one negative regulatory site from -120 to -97 in unstimulated cells. When cells were stimulated by Ox-LDL, there was one positive responsive site from -225 to -120 and one negative responsive site from -97 to -59, which contained the NF-kappaB binding site. Computer analysis revealed the presence of a putative AP-2 binding site from -169 to -160. Mutagenesis of a putative AP-2 binding site and tandem repeat of this site in plasmid resulted in a complete loss and increased responsiveness to Ox-LDL, respectively. Electrophoretic mobility shift assay showed that Ox-LDL increased the binding of certain nuclear protein(s) to a putative AP-2 binding site but decreased their binding to NF-kappaB binding site. Supershift assay showed that nuclear proteins bound to NF-kappaB binding site contained, at least, p50 and p65 but could not demonstrate nuclear protein(s) bound to a putative AP-2 binding site. Our results suggested that a putative AP-2 binding site from -169 to -160 was a positive responsive element to Ox-LDL and that the NF-kappaB binding site from -91 to -82 was a negative responsive element in Ox-LDL-induced GM-CSF transcription.
Collapse
Affiliation(s)
- T Matsumura
- Department of Metabolic Medicine, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Nishiyama C, Yokota T, Okumura K, Ra1 C. The Transcription Factors Elf-1 and GATA-1 Bind to Cell-Specific Enhancer Elements of Human High-Affinity IgE Receptor α-Chain Gene. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Key regulatory regions necessary for the expression of the gene encoding FcεRI α-chain, a component of the high-affinity IgE receptor primarily responsible for IgE-dependent allergic response, were investigated. Two regions, −74/−69 and −55/−47, which contained binding motifs for proteins belonging to the Ets family and the GATA family, respectively, were shown to be necessary for the activation of the α-chain promoter. Both the regulatory elements enhanced the promoter activity only in α-chain-producing cells PT18 and RBL-2H3 (mast cell lines), indicating that the elements required specific trans-acting proteins present in the α-chain-producing cells. EMSA using nuclear extracts and in vitro-translated proteins revealed that Elf-1 and GATA-1 bound to the enhancer elements. This is the first report describing the regulation in the expression of the FcεRI α-chain.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- *Bioscience Research and Development Laboratory, Asahi Breweries, Ibaraki, Japan; and
| | - Toyokazu Yokota
- *Bioscience Research and Development Laboratory, Asahi Breweries, Ibaraki, Japan; and
| | | | - Chisei Ra1
- †Department of Immunology and
- ‡Allergy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
Sakai M, Biwa T, Matsumura T, Takemura T, Matsuda H, Anami Y, Sasahara T, Kobori S, Shichiri M. Glucocorticoid inhibits oxidized LDL-induced macrophage growth by suppressing the expression of granulocyte/macrophage colony-stimulating factor. Arterioscler Thromb Vasc Biol 1999; 19:1726-33. [PMID: 10397691 DOI: 10.1161/01.atv.19.7.1726] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glucocorticoid, an anti-inflammatory agent, inhibits the development of atherosclerosis in various experimental animal models. This is partially explained by its ability to inhibit smooth muscle cell migration and proliferation in the intima and to reduce chemotaxis of circulating monocytes and leukocytes into the subendothelial spaces. We have recently demonstrated that oxidized LDL (Ox-LDL) has a mitogenic activity for macrophages in vitro in which Ox-LDL-induced granulocyte/macrophage colony-stimulating factor (GM-CSF) production plays an important role. Proliferation of cellular components is one of the characteristic events in the development and progression of atherosclerotic lesions. In the present study, we investigated the effects of glucocorticoids on Ox-LDL-induced macrophage growth. Dexamethasone, prednisolone, and cortisol inhibited Ox-LDL-induced thymidine incorporation into macrophages by 85%, 70%, and 50%, respectively. Ox-LDL induced a significant production of GM-CSF by macrophages, which was effectively inhibited by dexamethasone, prednisolone, and cortisol by 80%, 65%, and 50%, respectively. Dexamethasone-mediated inhibition of Ox-LDL-induced GM-CSF mRNA expression and macrophage growth was significantly abrogated by RU-486, a glucocorticoid receptor antagonist. Our results suggest that the inhibitory effects of glucocorticoids on macrophage growth may be due to the inhibition of Ox-LDL-induced GM-CSF production through transactivation of the glucocorticoid receptor.
Collapse
Affiliation(s)
- M Sakai
- Department of Metabolic Medicine, Kumamoto University School of Medicine, Division of Cardiology, Kumamoto National Hospital, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hoare S, Copland JA, Wood TG, Jeng YJ, Izban MG, Soloff MS. Identification of a GABP alpha/beta binding site involved in the induction of oxytocin receptor gene expression in human breast cells, potentiation by c-Fos/c-Jun. Endocrinology 1999; 140:2268-79. [PMID: 10218980 DOI: 10.1210/endo.140.5.6710] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxytocin (OT) receptors (OTRs) mediate reproductive functions, including the initiation of labor and milk ejection. OTR messenger RNA levels are highly regulated, reaching the greatest concentration in the uterus at the end of gestation, and in the mammary gland during lactation. Factors directly effecting changes in OTR gene expression in the mammary gland are not known, so the present studies were done to elucidate possible regulators by characterizing the human OTR gene promoter and 5'-flanking sequence. By analyzing expression of promoter-luciferase constructs, we localized a region between -85 and -65 that was required for both basal and serum-induced expression in a mammary tumor cell line (Hs578T) that expresses inducible, endogenous OTRs. This DNA region contains an ets family target sequence (5'-GGA-3'), and a CRE/AP-1-like motif. The specific Ets factor binding to the OTR promoter was identified, by electrophoretic mobility immunoshift assays, to be GABP alpha/beta. Co-transfection of a -85 OTR/luciferase construct with vectors expressing GABP alpha and GABP beta1 had only a modest effect on expression, but cotransfection with GABP alpha/beta- with c-Fos/c-Jun-expressing plasmids resulted in an increase of almost 10-fold in luciferase activity. Mutation of either the GABP- or CRE-like binding sites obliterated the induction. These findings are consistent with the involvement of protein kinase C activity in serum induction of the endogenous gene in Hs578T cells. We showed the requirement for GABP alpha/beta and c-Fos/c-Jun in endogenous OTR gene expression, using oligonucleotide GABP and AP-1 binding decoys to inhibit serum-induced increases in 125I-labeled OT antagonist binding to Hs578T cells. Our work is the first characterization of the proximal promoter region of the human OTR gene, and it sets the stage for studying regulation of OTR expression in breast cells.
Collapse
Affiliation(s)
- S Hoare
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston 77555-1062, USA
| | | | | | | | | | | |
Collapse
|
48
|
Blumenthal SG, Aichele G, Wirth T, Czernilofsky AP, Nordheim A, Dittmer J. Regulation of the human interleukin-5 promoter by Ets transcription factors. Ets1 and Ets2, but not Elf-1, cooperate with GATA3 and HTLV-I Tax1. J Biol Chem 1999; 274:12910-6. [PMID: 10212281 DOI: 10.1074/jbc.274.18.12910] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interleukin-5 (IL-5), expressed primarily by type-2 T helper (Th2) cells, plays an important role in the development of allergic diseases, such as allergic asthma. Studying the regulation of IL-5 gene expression by Ets transcription factors, we found that Ets1 and Ets2, but not Elf-1, were able to activate the human IL-5 promoter in Jurkat T-cells. This required the presence of either phorbol 12-myristate acetate (PMA) plus ionomycin or PMA plus the viral protein HTLV-I Tax1. By mutation studies, it could be shown that Ets1 and Ets2 exerted their effects on the IL-5 promoter through a GGAA motif within the Cle0 element. In myeloid Kasumi cells, Ets1 and Ets2 failed to stimulate IL-5 promoter activity, unless the T-cell specific transcription factor GATA3 was added. These results show, for the first time, that Ets1 and Ets2 are able to cooperate with GATA3. Both ionomycin and Tax1 increased the combined effect of GATA3 with Ets1 and Ets2 in the presence of PMA. The data further demonstrate that, in addition to Ets1, Ets2 is also able to functionally cooperate with Tax1. The synergism of GATA3 with either Ets1 or Ets2 may play an important role in calcium- or Tax1-dependent regulation of IL-5 expression in Th2 cells or in HTLV-I transformed adult T-cell leukemia cells, respectively.
Collapse
Affiliation(s)
- S G Blumenthal
- Institut für Zellbiologie, Abteilung Molekularbiologie, Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Hettmann T, DiDonato J, Karin M, Leiden JM. An essential role for nuclear factor kappaB in promoting double positive thymocyte apoptosis. J Exp Med 1999; 189:145-58. [PMID: 9874571 PMCID: PMC1887697 DOI: 10.1084/jem.189.1.145] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/1998] [Revised: 10/05/1998] [Indexed: 12/15/2022] Open
Abstract
To examine the role of nuclear factor (NF)-kappaB in T cell development and activation in vivo, we produced transgenic mice that express a superinhibitory mutant form of inhibitor kappaB-alpha (IkappaB-alphaA32/36) under the control of the T cell-specific CD2 promoter and enhancer (mutant [m]IkappaB-alpha mice). Thymocyte development proceeded normally in the mIkappaB-alpha mice. However, the numbers of peripheral CD8(+) T cells were significantly reduced in these animals. The mIkappaB-alpha thymocytes displayed a marked proliferative defect and significant reductions in interleukin (IL)-2, IL-3, and granulocyte/macrophage colony-stimulating factor production after cross-linking of the T cell antigen receptor. Perhaps more unexpectedly, double positive (CD4(+)CD8(+); DP) thymocytes from the mIkappaB-alpha mice were resistant to alpha-CD3-mediated apoptosis in vivo. In contrast, they remained sensitive to apoptosis induced by gamma-irradiation. Apoptosis of wild-type DP thymocytes after in vivo administration of alpha-CD3 mAb was preceded by a significant reduction in the level of expression of the antiapoptotic gene, bcl-xL. In contrast, the DP mIkappaB-alpha thymocytes maintained high level expression of bcl-xL after alpha-CD3 treatment. Taken together, these results demonstrated important roles for NF-kappaB in both inducible cytokine expression and T cell proliferation after TCR engagement. In addition, NF-kappaB is required for the alpha-CD3-mediated apoptosis of DP thymocytes through a pathway that involves the regulation of the antiapoptotic gene, bcl-xL.
Collapse
Affiliation(s)
- T Hettmann
- Departments of Medicine and Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|