1
|
Marshall SK, Saelim B, Taweesap M, Pachana V, Panrak Y, Makchuchit N, Jaroenpakdee P. Anti-EGFR Targeted Multifunctional I-131 Radio-Nanotherapeutic for Treating Osteosarcoma: In Vitro 3D Tumor Spheroid Model. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3517. [PMID: 36234645 PMCID: PMC9565722 DOI: 10.3390/nano12193517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The systemic delivery of doxorubicin (DOX) to treat osteosarcoma requires an adequate drug concentration to be effective, but in doing so, it raises the risk of increasing organ off-target toxicity and developing drug resistance. Herein, this study reveals a multiple therapeutic nanocarrier delivery platform that overcomes off-target toxicity by providing good specificity and imparting enhanced tumor penetration in a three-dimensional (3D) human MG-63 spheroid model. By synthesizing PEG-PLGA nanoparticles by the double emulsion method, encapsulating DOX and Na131I in the inner core, and conjugating with an epidermal growth factor receptor (EGFR) antibody, it is intended to specifically target human MG-63 cells. The nanocarrier is biocompatible with blood and has good stability characteristics. Na131I encapsulation efficiency was >96%, and radiochemical purity was >96% over 96 h. A DOX encapsulation efficacy of ~80% was achieved, with a drug loading efficiency of ~3%, and a sustained DOX release over 5 days. The nanocarrier EGFR antibody achieved a ~80-fold greater targeting efficacy to MG-63 cells (EGFR+) than fibroblast cells (EGFR−). The targeted multiple therapeutic DIE-NPs have a higher penetration and uptake of Na131I to the 3D model and a ~3-fold higher cytotoxicity than the DOX monotherapy (D-NPs). The co-administration of DOX and Na131I (DIE-NPs) disrupts DNA repair and generates free radicals resulting in DNA damage, triggering the activation of apoptosis pathways. This leads to inhibition of MG-63 cell proliferation and promotes cell cycle arrest in the G0/G1 phase. Furthermore, the PEGylated anti-EGFR functionalized DIE-NPs were found to be biocompatible with red blood cells and to have no adverse effects. This anti-EGFR targeted multifunctional I-131 radio-nanotherapeutic signifies a customizable specific targeted treatment for osteosarcoma.
Collapse
Affiliation(s)
- Suphalak Khamruang Marshall
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Molecular Imaging and Cyclotron Center, Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Boonyisa Saelim
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Maneerat Taweesap
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Verachai Pachana
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Yada Panrak
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naritsara Makchuchit
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Passara Jaroenpakdee
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Habli Z, Deen NNA, Malaeb W, Mahfouz N, Mermerian A, Talhouk R, Mhanna R. Biomimetic sulfated glycosaminoglycans maintain differentiation markers of breast epithelial cells and preferentially inhibit proliferation of cancer cells. Acta Biomater 2021; 122:186-198. [PMID: 33444795 DOI: 10.1016/j.actbio.2020.12.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAG) are key elements involved in various physiological and pathological processes including cancer. Several GAG-based drugs have been developed showing significant results and potential use as cancer therapeutics. We previously reported that alginate sulfate (AlgSulf), a GAG-mimetic, reduces the proliferation of lung adenocarcinoma cells. In this study, we evaluated the preferential effect of AlgSulf on tumorigenic and nontumorigenic mammary epithelial cells in 2D, 3D, and coculture conditions. AlgSulf were synthesized with different degrees of sulfation (DSs) varying from 0 to 2.7 and used at 100 µg/mL on HMT-3522 S1 (S1) nontumorigenic mammary epithelial cells and their tumorigenic counterparts HMT-3522 T4-2 (T4-2) cells. The anti-tumor properties of AlgSulf were assessed using trypan blue and bromodeoxyuridine proliferation (BrdU) assays, immunofluorescence staining and transwell invasion assay. Binding of insulin and epidermal growth factor (EGF) to sulfated substrates was measured using QCM-D and ELISA. In 2D, the cell growth rate of cells treated with AlgSulf was consistently lower compared to untreated controls (p<0.001) and surpassed the effect of the native GAG heparin (positive control). In 3D, AlgSulf preferentially hindered the growth rate and the invasion potential of tumorigenic T4-2 nodules while maintaining the formation of differentiated polarized nontumorigenic S1 acini. The preferential growth inhibition of tumorigenic cells by AlgSulf was confirmed in a coculture system (p<0.001). In the ELISA assay, a trend of EGF binding was detected for sulfated polysaccharides while QCM-D analysis showed negligible binding of insulin and EGF to sulfated substrates. The preferential effect mediated by the mimetic sulfated GAGs on cancer cells may in part be growth factor dependent. Our findings suggest a potential anticancer therapeutic role of AlgSulf for the development of anticancer drugs.
Collapse
|
3
|
Termini CM, Gillette JM. Tetraspanins Function as Regulators of Cellular Signaling. Front Cell Dev Biol 2017; 5:34. [PMID: 28428953 PMCID: PMC5382171 DOI: 10.3389/fcell.2017.00034] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
Tetraspanins are molecular scaffolds that distribute proteins into highly organized microdomains consisting of adhesion, signaling, and adaptor proteins. Many reports have identified interactions between tetraspanins and signaling molecules, finding unique downstream cellular consequences. In this review, we will explore these interactions as well as the specific cellular responses to signal activation, focusing on tetraspanin regulation of adhesion-mediated (integrins/FAK), receptor-mediated (EGFR, TNF-α, c-Met, c-Kit), and intracellular signaling (PKC, PI4K, β-catenin). Additionally, we will summarize our current understanding for how tetraspanin post-translational modifications (palmitoylation, N-linked glycosylation, and ubiquitination) can regulate signal propagation. Many of the studies outlined in this review suggest that tetraspanins offer a potential therapeutic target to modulate aberrant signal transduction pathways that directly impact a host of cellular behaviors and disease states.
Collapse
Affiliation(s)
- Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| |
Collapse
|
4
|
Mercier F. Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell Mol Life Sci 2016; 73:4661-4674. [PMID: 27475964 PMCID: PMC11108427 DOI: 10.1007/s00018-016-2314-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/22/2016] [Accepted: 07/21/2016] [Indexed: 12/18/2022]
Abstract
The stem cell niche refers to a specific microenvironment where stem cells proliferate and differentiate to produce new specialized cells throughout an organism's adulthood. Growth factors are crucial signaling molecules that diffuse through the extracellular space, reach the stem cell niche, and ultimately promote stem cell proliferation and differentiation. However, it is not well known how multiple growth factors, often with antagonistic activities, work together in the stem cell niche to select target stem cell populations and determine stem cell fate. There is accumulating evidence suggesting that extracellular matrix (ECM) molecules play an important role in promoting growth factor access and activity in the stem cell niche. In the adult brain neurogenic zone, where neural stem cells (NSCs) reside, there exist specialized ECM structures, which we have named fractones. The processes of NSC allow them to come into contact with fractones and interact with its individual components, which include heparan sulfate proteoglycans (HSPGs) and laminins. We have demonstrated that fractone-associated HSPGs bind growth factors and regulate NSC proliferation in the neurogenic zone. Moreover, emerging results show that fractones are structurally altered in animal models with autism and adult hydrocephalus, as demonstrated by changes in fractone size, quantity, or HSPG content. Interestingly, ECM structures similar to fractones have been found throughout β-amyloid plaques in the brain of patients with Alzheimer's disease. Pathological fractones may cause imbalances in growth factor activity and impair neurogenesis, leading to inflammation and disorder. Generally speaking, these stem cell niche structures play a potentially vital role in controlling growth factor activity during both health and disease.
Collapse
Affiliation(s)
- Frederic Mercier
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
5
|
Amphiregulin activates regulatory T lymphocytes and suppresses CD8+ T cell-mediated anti-tumor response in hepatocellular carcinoma cells. Oncotarget 2016; 6:32138-53. [PMID: 26451607 PMCID: PMC4741664 DOI: 10.18632/oncotarget.5171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/24/2015] [Indexed: 01/16/2023] Open
Abstract
CD8+ T cell-mediated immune response plays an important role in inhibiting progression of hepatocellular carcinoma (HCC). For strategic immunotherapy, it is critical to understand why some of the tumor cells escape from this immune attack. In this study, we investigated how HCC cells alter endogenous anti-tumor immunity and their related signaling pathways. We found that HCC cells, both in vitro and in vivo, substantially secret and express amphiregulin (AR). AR in turn activates immunosuppressive function of intratumoral CD4+Foxp3+ regulatory T cells (Tregs), a major inhibitor of CD8+ T cells. Using either lentiviral siRNA, or AR neutralizing antibody, we blocked the expression and function of AR to test the specificity of AR mediated activation of Tregs, Biochemical and cell biology studies were followed and confirmed that blocking of AR inhibited Tregs activation. In addition, we found that AR can trigger the activation of rapamycin complex 1(mTORC1) signaling in Tregs. The mTORC1 inhibitor rapamycin treatment led to compromise Treg function and resulted in enhancing anti-tumor function of CD8+ T cells. Blocking AR/EGFR signaling in Tregs with Gefitinib also enhanced anti-tumor immunity and decreased tumor size in a mouse xenograft tumor model. Taken together, our study suggested a novel mechanism of functional interaction between HCC and Tregs for regulating anti-tumor function of CD8+ T cells.
Collapse
|
6
|
So WK, Fan Q, Lau MT, Qiu X, Cheng JC, Leung PCK. Amphiregulin induces human ovarian cancer cell invasion by down-regulating E-cadherin expression. FEBS Lett 2014; 588:3998-4007. [PMID: 25261255 DOI: 10.1016/j.febslet.2014.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 11/17/2022]
Abstract
Aberrant epidermal growth factor receptor (EGFR) activation is associated with ovarian cancer progression. In this study, we report that the EGFR ligand amphiregulin (AREG) stimulates cell invasion and down-regulates E-cadherin expression in two human ovarian cancer cell lines, SKOV3 and OVCAR5. In addition, AREG increases the expression of transcriptional repressors of E-cadherin including SNAIL, SLUG and ZEB1. siRNA targeting SNAIL or SLUG abolishes AREG-induced cell invasion. Moreover, ERK1/2 and AKT pathways are involved in AREG-induced E-cadherin down-regulation and cell invasion. Finally, we show that three EGFR ligands, AREG, epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), exhibit comparable effects in down-regulating E-cadherin and promoting cell invasion. This study demonstrates that AREG induces ovarian cancer cell invasion by down-regulating E-cadherin expression.
Collapse
Affiliation(s)
- Wai-Kin So
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Qianlan Fan
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Man-Tat Lau
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Xin Qiu
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
7
|
Douet V, Kerever A, Arikawa‐Hirasawa E, Mercier F. Fractone-heparan sulphates mediate FGF-2 stimulation of cell proliferation in the adult subventricular zone. Cell Prolif 2013; 46:137-45. [PMID: 23510468 PMCID: PMC6495915 DOI: 10.1111/cpr.12023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/07/2012] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Fractones are extracellular matrix structures that form a niche for neural stem cells and their immediate progeny in the subventricular zone of the lateral ventricle (SVZa), the primary neurogenic zone in the adult brain. We have previously shown that heparan sulphates (HS) associated with fractones bind fibroblast growth factor-2 (FGF-2), a powerful mitotic growth factor in the SVZa. Here, our objective was to determine whether the binding of FGF-2 to fractone-HS is implicated in the mechanism leading to cell proliferation in the SVZa. MATERIALS AND METHODS Heparitinase-1 was intracerebroventricularly injected with FGF-2 to N-desulfate HS proteoglycans and determine whether the loss of HS and of FGF-2 binding to fractones modifies FGF-2 effect on cell proliferation. We also examined in vivo the binding of Alexa-Fluor-FGF-2 in relationship with the location of HS immunoreactivity in the SVZa. RESULTS Heparatinase-1 drastically reduced the stimulatory effect of FGF-2 on cell proliferation in the SVZa. Alexa-Fluor-FGF-2 binding was strictly co-localized with HS immunoreactivity in fractones and adjacent vascular basement membranes in the SVZa. CONCLUSIONS Our results demonstrate that FGF-2 requires HS to stimulate cell proliferation in the SVZa and suggest that HS associated with fractones and vascular basement membranes are responsible for activating FGF-2. Therefore, fractones and vascular basement membranes may function as a HS niche to drive cell proliferation in the adult neurogenic zone.
Collapse
Affiliation(s)
- V. Douet
- Department of Tropical Medicine, Medical Microbiology and PharmacologyJohn A. Burns School of MedicineUniversity of HawaiiHonoluluHI96822USA
| | - A. Kerever
- Department of NeurologyResearch Institute for Diseases of Old AgeJuntendo University Faculty of MedicineTokyo113‐8421Japan
| | - E. Arikawa‐Hirasawa
- Department of NeurologyResearch Institute for Diseases of Old AgeJuntendo University Faculty of MedicineTokyo113‐8421Japan
| | - F. Mercier
- Department of Tropical Medicine, Medical Microbiology and PharmacologyJohn A. Burns School of MedicineUniversity of HawaiiHonoluluHI96822USA
| |
Collapse
|
8
|
Kim TI, Poulin EJ, Blask E, Bukhalid R, Whitehead RH, Franklin JL, Coffey RJ. Myofibroblast keratinocyte growth factor reduces tight junctional integrity and increases claudin-2 levels in polarized Caco-2 cells. Growth Factors 2012; 30:320-32. [PMID: 22946653 PMCID: PMC3594790 DOI: 10.3109/08977194.2012.717076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The colonic epithelium is composed of a polarized monolayer sheathed by a layer of pericryptal myofibroblasts (PCMFs). We mimicked these cellular compartments in vitro to assess the effects of paracrine-acting PCMF-derived factors on tight junction (TJ) integrity, as measured by transepithelial electrical resistance (TER). Coculture with 18Co PCMFs, or basolateral administration of 18Co conditioned medium, significantly reduced TER of polarized Caco-2 cells. Among candidate paracrine factors, only keratinocyte growth factor (KGF) reduced Caco-2 TER; basolateral KGF treatment led to time- and concentration-dependent increases in claudin-2 levels. We also demonstrate that amphiregulin (AREG), produced largely by Caco-2 cells, increased claudin-2 levels, leading to epidermal growth factor receptor-mediated TER reduction. We propose that colonic epithelial TJ integrity can be modulated by paracrine KGF and autocrine AREG through increased claudin-2 levels. KGF-regulated claudin-2 induction may have implications for inflammatory bowel disease, where both KGF and claudin-2 are upregulated.
Collapse
Affiliation(s)
- Tae Il Kim
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emily J. Poulin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Robert H. Whitehead
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L. Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37232-2279, USA
- Corresponding Author: Robert J. Coffey, M.D., Epithelial Biology Center, 2213 Garland Avenue, 10415 MRB IV -0441, Vanderbilt University, Nashville, TN 37232, Tel: 615-343-6228, Fax: 615-343-1591,
| |
Collapse
|
9
|
Löfmark S, de Klerk N, Aro H. Neisseria gonorrhoeae infection induces altered amphiregulin processing and release. PLoS One 2011; 6:e16369. [PMID: 21298020 PMCID: PMC3029346 DOI: 10.1371/journal.pone.0016369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/25/2010] [Indexed: 11/18/2022] Open
Abstract
Adhesion of the human pathogen Neisseria gonorrhoeae has established effects on the host cell and evokes a variety of cellular events including growth factor activation. In the present study we report that infection with N. gonorrhoeae causes altered amphiregulin processing and release in human epithelial cells. Amphiregulin is a well-studied growth factor with functions in various cell processes and is upregulated in different forms cancer and proliferative diseases. The protein is prototypically cleaved on the cell surface in response to external stimuli. We demonstrate that upon infection, a massive upregulation of amphiregulin mRNA is seen. The protein changes its subcellular distribution and is also alternatively cleaved at the plasma membrane, which results in augmented release of an infection-specific 36 kDa amphiregulin product from the surface of human cervical epithelial cells. Further, using antibodies directed against different domains of the protein we could determine the impact of infection on pro-peptide processing. In summary, we present data showing that the infection of N. gonorrhoeae causes an alternative amphiregulin processing, subcellular distribution and release in human epithelial cervical cells that likely contribute to the predisposition cellular abnormalities and anti-apoptotic features of N. gonorrhoeae infections.
Collapse
Affiliation(s)
- Sonja Löfmark
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, Stockholm, Sweden
| | - Nele de Klerk
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, Stockholm, Sweden
| | - Helena Aro
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
10
|
Shinde U, Thomas G. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Methods Mol Biol 2011; 768:59-106. [PMID: 21805238 DOI: 10.1007/978-1-61779-204-5_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prokaryotic subtilisins and eukaryotic proprotein convertases (PCs) are two homologous protease subfamilies that belong to the larger ubiquitous super-family called subtilases. Members of the subtilase super-family are produced as zymogens wherein their propeptide domains function as dedicated intramolecular chaperones (IMCs) that facilitate correct folding and regulate precise activation of their cognate catalytic domains. The molecular and cellular determinants that modulate IMC-dependent folding and activation of PCs are poorly understood. In this chapter we review what we have learned from the folding and activation of prokaryotic subtilisin, discuss how this has molded our understanding of furin maturation, and foray into the concept of pH sensors, which may represent a paradigm that PCs (and possibly other IMC-dependent eukaryotic proteins) follow for regulating their biological functions using the pH gradient in the secretory pathway.
Collapse
Affiliation(s)
- Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97229, USA.
| | | |
Collapse
|
11
|
Willmarth NE, Ethier SP. Amphiregulin as a novel target for breast cancer therapy. J Mammary Gland Biol Neoplasia 2008; 13:171-9. [PMID: 18437539 DOI: 10.1007/s10911-008-9081-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022] Open
Abstract
Amphiregulin, an EGF family growth factor, binds and activates the epidermal growth factor receptor (EGFR or ErbB1). Activation of the EGFR by amphiregulin can occur through autocrine, paracrine and juxtacrine mechanisms. Amphiregulin plays a role in several biological processes including nerve regeneration, blastocyst implantation, and bone formation. Amphiregulin also plays an important role in mammary duct formation as well as the outgrowth and branching of several other human tissues such as the lung, kidney and prostate. This effect is most likely due to the induction of genes involved in invasion and migration such as cytokines and matrix metalloproteases. Clinical studies have suggested that amphiregulin also plays a role in human breast cancer progression and its expression has been associated with aggressive disease. Therefore, amphiregulin may be a novel and effective target for the treatment of breast cancer and could represent an alternative to targeting the EGFR.
Collapse
Affiliation(s)
- Nicole E Willmarth
- Cancer Biology, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA, USA
| | | |
Collapse
|
12
|
Chung HS, Yoon CS, Kwon MJ, Kim MK, Lee SH, Ko KS, Rhee BD, Park JH. Cloning of Novel Epidermal Growth Factor (EGF) Plasmid for Gene Therapy on Diabetic Foot Ulcer. KOREAN DIABETES JOURNAL 2008. [DOI: 10.4093/kdj.2008.32.2.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hye Sook Chung
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
| | - Chang Shin Yoon
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
| | - Min Jeong Kwon
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
- Department of Internal Medicine, Inje College of Medicine, Korea
| | - Mi Kyung Kim
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
- Department of Internal Medicine, Maryknoll General Hospital, Korea
| | - Soon Hee Lee
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
- Department of Internal Medicine, Inje College of Medicine, Korea
| | - Kyung Soo Ko
- Department of Internal Medicine, Inje College of Medicine, Korea
| | - Byung Doo Rhee
- Department of Internal Medicine, Inje College of Medicine, Korea
| | - Jeong Hyun Park
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
- Department of Internal Medicine, Inje College of Medicine, Korea
| |
Collapse
|
13
|
Gu L, Li B, Yang X, Hu X, Huang X, Hertz L, Peng L. Depolarization-induced, glutamate receptor–mediated, and transactivation-dependent extracellular-signal regulated kinase phosphorylation in cultured cerebellar granule neurons. Neuroscience 2007; 147:342-53. [PMID: 17544586 DOI: 10.1016/j.neuroscience.2007.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 12/21/2022]
Abstract
Depolarization of 7-8-day-old mouse cerebellar granule neurons in primary cultures, a glutamatergic preparation, by elevation of the extracellular potassium ion concentration ([K+]e) to 45 mM induces an increase of phosphorylation of extracellular-signal regulated kinase 1 and 2 (ERK1/2) at two time periods: 20 min and 60 min after the [K+]e increase. This effect can be mimicked by 5 min of exposure to 50 microM glutamate, suggesting that ERK1/2 phosphorylation in response to the depolarization is brought about by the resulting glutamate release. This concept is supported by the observation that the K+ -mediated stimulation of phosphorylation at both times is inhibited by MK-801, an NMDA antagonist, and by CNQX, an AMPA/kainate antagonist. These antagonists also inhibit the response to glutamate. Both increases in ERK1/2 phosphorylation are also inhibited by GM 6001 (a metalloproteinase inhibitor, preventing 'shedding' of growth factors), by AG 1478 (a receptor tyrosine kinase inhibitor, preventing epidermal growth factor [EGF] receptor activation), and also partly by heparin (inactivating heparin-binding epidermal growth factor [HB-EGF]), suggesting transactivation of epidermal growth factor receptors (EGFR). Transactivation is an intracellular/extracellular signal transduction pathway in which release from receptor- or depolarization-stimulated cells of EGFR ligand(s) (including HB-EGF), catalyzed by a metalloproteinase, stimulates receptor tyrosine kinases on the same (an autocrine effect) or adjacent (a paracrine effect) cells. The expression of HB-EGF as well as of transforming growth factor-alpha (TGF-alpha), two of the EGFR ligands, in the cells was confirmed by reverse transcription polymerase chain reaction, and the only partial inhibition by heparin suggests that both of these EGFR agonists are involved. Such a transactivation may play a major role in glutamate-mediated signaling and plasticity.
Collapse
Affiliation(s)
- L Gu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Dreux AC, Lamb DJ, Modjtahedi H, Ferns GAA. The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. Atherosclerosis 2005; 186:38-53. [PMID: 16076471 DOI: 10.1016/j.atherosclerosis.2005.06.038] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 12/12/2022]
Abstract
The epidermal growth factor receptor is a member of type-I growth factor receptor family with tyrosine kinase activity that is activated following the binding of multiple cognate ligands. Several members of the EGF family of ligands are expressed by cells involved in atherogenesis. EGF receptor mediated processes have been well characterised within epithelial, smooth muscle and tumour cell lines in vitro, and the EGF receptor has been identified immunocytochemically on intimal smooth muscle cells within atherosclerotic plaques. There is also limited evidence for the expression of the EGF receptor family on leukocytes, although their function has yet to be clarified. In this review, we will discuss the biological functions of this receptor and its ligands and their potential to modulate the function of cells involved in the atherosclerotic process.
Collapse
Affiliation(s)
- Alys C Dreux
- Centre for Clinical Science & Measurement, School of Biomedical & Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | |
Collapse
|
15
|
Dong J, Opresko LK, Chrisler W, Orr G, Quesenberry RD, Lauffenburger DA, Wiley HS. The membrane-anchoring domain of epidermal growth factor receptor ligands dictates their ability to operate in juxtacrine mode. Mol Biol Cell 2005; 16:2984-98. [PMID: 15829568 PMCID: PMC1142441 DOI: 10.1091/mbc.e04-11-0994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
All ligands of the epidermal growth factor (EGF) receptor (EGFR) are synthesized as membrane-anchored precursors. Previous work has suggested that some ligands, such as EGF, must be proteolytically released to be active, whereas others, such as heparin-binding EGF-like growth factor (HB-EGF) can function while still anchored to the membrane (i.e., juxtacrine signaling). To explore the structural basis for these differences in ligand activity, we engineered a series of membrane-anchored ligands in which the core, receptor-binding domain of EGF was combined with different domains of both EGF and HB-EGF. We found that ligands having the N-terminal extension of EGF could not bind to the EGFR, even when released from the membrane. Ligands lacking an N-terminal extension, but possessing the membrane-anchoring domain of EGF, still required proteolytic release for activity, whereas ligands with the membrane-anchoring domain of HB-EGF could elicit full biological activity while still membrane anchored. Ligands containing the HB-EGF membrane anchor, but lacking an N-terminal extension, activated EGFR during their transit through the Golgi apparatus. However, cell-mixing experiments and fluorescence resonance energy transfer studies showed that juxtacrine signaling typically occurred in trans at the cell surface, at points of cell-cell contact. Our data suggest that the membrane-anchoring domain of ligands selectively controls their ability to participate in juxtacrine signaling and thus, only a subclass of EGFR ligands can act in a juxtacrine mode.
Collapse
Affiliation(s)
- Jianying Dong
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah, Salt Lake City, UT 84133, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Deshmukh HS, Case LM, Wesselkamper SC, Borchers MT, Martin LD, Shertzer HG, Nadel JA, Leikauf GD. Metalloproteinases mediate mucin 5AC expression by epidermal growth factor receptor activation. Am J Respir Crit Care Med 2004; 171:305-14. [PMID: 15531749 DOI: 10.1164/rccm.200408-1003oc] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chronic obstructive pulmonary disease is marked by alveolar enlargement and excess production of airway mucus. Acrolein, a component of cigarette smoke, increases mucin 5AC (MUC5AC), a prevalent airway mucin in NCI-H292 cells by transcriptional activation, but the signal transduction pathways involved in acrolein-induced MUC5AC expression are unknown. Acrolein depleted cellular glutathione at doses of 10 muM or greater, higher than those sufficient (0.03 muM) to increase MUC5AC mRNA, suggesting that MUC5AC expression was independent of oxidative stress. In contrast, acrolein increased MUC5AC mRNA levels by phosphorylating epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase 3/2, or MAPK 3/2(ERK1/2). Pretreating the cells with an EGFR-neutralizing antibody, or a metalloproteinase inhibitor, decreased the acrolein-induced MUC5AC mRNA increase. Small, interfering RNA directed against ADAM17 or MMP9 inhibited the acrolein-induced MUC5AC mRNA increase. Acrolein increased the release and subsequent activation of pro-MMP9. Acrolein increased MMP9 and decreased tissue inhibitor of metalloproteinase 3 (TIMP3), an endogenous inhibitor of ADAM17, transcripts. Together, these data suggest that acrolein induces MUC5AC expression via an initial ligand-dependent activation of EGFR mediated by ADAM17 and MMP9. In addition, a prolonged effect of acrolein may be mediated by altering MMP9 and TIMP3 transcription.
Collapse
Affiliation(s)
- Hitesh S Deshmukh
- University of Cincinnati, P.O. Box 670056, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim JG, Vallet JL, Christenson RK. Molecular cloning and endometrial expression of porcine amphiregulin. Mol Reprod Dev 2003; 65:366-72. [PMID: 12840809 DOI: 10.1002/mrd.10314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The porcine amphiregulin gene was previously reported to be within the quantitative trait locus (QTL) for uterine capacity on chromosome 8. Because amphiregulin stimulates cell proliferation, the amphiregulin gene might be responsible for this QTL. The objectives of this study were to clone amphiregulin cDNA and compare endometrial expression of its mRNA in pregnant Meishan (M) and White composite (WC) pigs. We obtained two amphiregulin cDNAs, one with 1,221 bp and another with 1,109 bp. The 112 bp difference corresponded to exon 5 of the human amphiregulin gene, which codes for the cytoplasmic domain. Endometrial mRNA expression of amphiregulin was significantly lower in M pigs than in WC pigs during early pregnancy (day 15 - 40 of gestation). Amphiregulin mRNA expression in the endometrium of both M and WC pigs increased (P < 0.01) from days 15 to 20, decreased (P = 0.01) from days 20 to 30, and did not change between days 30 and 40. This may result in reduced amphiregulin protein production leading to the slower development of M conceptuses, contributing to greater uterine capacity and litter size in prolific Chinese M pigs. Porcine genomic sequences isolated from a bacterial artificial chromosome genomic library contained exon 5, suggesting that the deletion of exon 5 in the mRNA may be due to differential splicing. The amphiregulin gene consisted of six exons and five introns spanning 10.3 kb. Mol.
Collapse
Affiliation(s)
- Jong G Kim
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| | | | | |
Collapse
|
18
|
Elias PM, Ghadially R. The aged epidermal permeability barrier: basis for functional abnormalities. Clin Geriatr Med 2002; 18:103-20, vii. [PMID: 11913735 DOI: 10.1016/s0749-0690(03)00037-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aged epidermis develops an abnormality in permeability barrier homeostasis, which is accentuated further in photoaged skin. The biochemical basis is a global reduction in stratum corneum lipids and profound abnormality in cholesterol synthesis. Various cytokine/growth factor signaling pathways are abnormal in aged skin, particularly in the interleukin-1 family. Barrier repair therapy can be effective in restoring normal function if a cholesterol-dominant mixture of the three key physiologic lipids, including ceramides and free fatty acids, is emphasized.
Collapse
Affiliation(s)
- Peter M Elias
- Department of Dermatology, University of California, San Francisco, USA.
| | | |
Collapse
|
19
|
Brown CL, Coffey RJ, Dempsey PJ. The proamphiregulin cytoplasmic domain is required for basolateral sorting, but is not essential for constitutive or stimulus-induced processing in polarized Madin-Darby canine kidney cells. J Biol Chem 2001; 276:29538-49. [PMID: 11382759 DOI: 10.1074/jbc.m102114200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the role of the amphiregulin precursor (pro-AR) cytoplasmic domain in the basolateral sorting and cell-surface processing of pro-AR in polarized epithelial cells has been investigated using Madin-Darby canine kidney cells stably expressing various human pro-AR forms. Our results demonstrate that newly synthesized wild-type pro-AR (50 kDa) is delivered directly to the basolateral membrane domain with >95% efficiency, where it is sequentially cleaved within the ectodomain to release several soluble amphiregulin (AR) forms. Analyses of a pro-AR cytoplasmic domain truncation mutant (ARTL27) and two pro-AR secretory mutants (ARsec184 and ARsec190) indicated that the pro-AR cytoplasmic domain is not required for efficient delivery to the plasma membrane, but does contain essential basolateral sorting information. We show that the pro-AR cytoplasmic domain truncation mutant (ARTL27) is not sorted in polarized Madin-Darby canine kidney cells, with approximately 65% of the newly synthesized protein delivered to the apical cell surface. Under base-line conditions, ARTL27 was preferentially cleaved from the basolateral surface with 4-fold greater efficiency compared with cleavage from the apical membrane domain. However, ARTL27 ectodomain cleavage could be stimulated equivalently from either membrane domain by a variety of different stimuli. The metalloprotease inhibitor BB-94 could inhibit both base-line and stimulus-induced ectodomain cleavage of wild-type pro-AR and ARTL27. These results indicate that the pro-AR cytoplasmic domain is required for basolateral sorting, but is not essential for ectodomain processing. Preferential constitutive cleavage of ARTL27 from the basolateral cell surface also suggests that the metalloprotease activity involved in base-line and stimulus-induced ARTL27 ectodomain cleavage may be regulated differently in the apical and basolateral membrane domains of polarized epithelial cells.
Collapse
Affiliation(s)
- C L Brown
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
20
|
Fu X, Inouye M, Shinde U. Folding pathway mediated by an intramolecular chaperone. The inhibitory and chaperone functions of the subtilisin propeptide are not obligatorily linked. J Biol Chem 2000; 275:16871-8. [PMID: 10828069 DOI: 10.1074/jbc.275.22.16871] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The subtilisin propeptide functions as an intramolecular chaperone (IMC) that facilitates correct folding of the catalytic domain while acting like a competitive inhibitor of proteolytic activity. Upon completion of folding, subtilisin initiates IMC degradation to complete precursor maturation. Existing data suggest that the chaperone and inhibitory functions of the subtilisin IMC domain are interdependent during folding. Based on x-ray structure of the IMC-subtilisin complex, we introduce a point mutation (E112A) to disrupt three hydrogen bonds that stabilize the interface between the protease and its IMC domain. This mutation within subtilisin does not alter the folding kinetics but dramatically slows down autoprocessing of the IMC domain. Inhibition of E112A-subtilisin activity by the IMC added in trans is 35-fold weaker than wild-type subtilisin. Although the IMC domain displays substantial loss of inhibitory function, its ability to chaperone E112A-subtilisin folding remains intact. Our results show that (i) the chaperone activity of the IMC domain is not obligatorily linked with its ability to bind with and inhibit active subtilisin; (ii) degradation and not autoprocessing of the IMC domain is the rate-limiting step in precursor maturation; and (iii) the Glu(112) residue within the IMC-subtilisin interface is not crucial for initiating folding but is important in maintaining the IMC structure capable of binding subtilisin.
Collapse
Affiliation(s)
- X Fu
- Department of Biochemistry, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
21
|
Kömüves LG, Feren A, Jones AL, Fodor E. Expression of epidermal growth factor and its receptor in cirrhotic liver disease. J Histochem Cytochem 2000; 48:821-30. [PMID: 10820155 DOI: 10.1177/002215540004800610] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polypeptide growth factors, including epidermal growth factor (EGF), play a central role in regulating hepatocyte growth both in vivo and in primary culture. To characterize EGF gene expression in the pathogenesis of regenerative cirrhotic fibrosis, we employed biotinylated antisense oligonucleotide probes to localize hepatic mRNA transcripts in situ. In control tissue and regenerative hepatic nodules, EGF receptor (EGFR) mRNA transcripts were expressed constitutively. In contrast, oligonucleotide probes targeting the human EGF coding region showed that EGF transcription was extremely low in control liver but was highly elevated and localized to regenerative hepatic nodules and bile duct epithelia of cirrhotic liver. To determine whether EGF mRNA accumulation accompanied a comparable increase in the EGF peptide, we performed immunohistochemistry using an antibody specific for the nonprocessed peptide aminoterminus. We observed that positive localized EGF staining paralleled its mRNA transcript. These results indicate that EGF upregulation is a characteristic of cirrhotic liver disease and suggest that persistent de novo ligand synthesis and its signaling contribute to an autocrine-mediated hepatocyte proliferation within the regenerative nodule.
Collapse
Affiliation(s)
- L G Kömüves
- Departments of Dermatology, University of California-San Francisco, San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
22
|
Shinde U, Inouye M. Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin Cell Dev Biol 2000; 11:35-44. [PMID: 10736262 DOI: 10.1006/scdb.1999.0349] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several prokaryotic and eukaryotic proteins are synthesized as precursors in the form of pre-pro-proteins. While the pre-regions function as signal peptides that are involved in transport, the propeptides can often catalyze correct folding of their associated proteins. Such propeptides have been termed intramolecular chaperones. In cases where propeptides may not directly catalyze the folding reaction, it appears that they can facilitate processes such as structural organization and oligomerization, localization, sorting and modulation of enzymatic activity and stability of proteins. Based on the available literature it appears that propeptides may actually function as 'post-translational modulators' of protein structure and function. Propeptides can be classified into two broad categories: Class I propeptides that function as intramolecular chaperones and directly catalyze the folding reaction; and Class II propeptides that are not directly involved in folding.
Collapse
Affiliation(s)
- U Shinde
- Department of Biochemistry, UMDNJ-RWJMS, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
23
|
Liu J, Tzou P, Hill RJ, Sternberg PW. Structural requirements for the tissue-specific and tissue-general functions of the Caenorhabditis elegans epidermal growth factor LIN-3. Genetics 1999; 153:1257-69. [PMID: 10545457 PMCID: PMC1460807 DOI: 10.1093/genetics/153.3.1257] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Caenorhabditis elegans lin-3 encodes a homolog of the epidermal growth factor (EGF) family of growth factors. LIN-3 is the inductive signal for hermaphrodite vulval differentiation, and it is required for animal viability, hermaphrodite fertility, and the specification of anterior cell fates in the male B cell lineage. We describe the cloning of a lin-3 homolog from C. briggsae, sequence comparison of C. elegans lin-3 with C. briggsae lin-3, and the determination of molecular lesions in alleles of C. elegans lin-3, including three new alleles. We also analyzed the severity of phenotypes caused by the new and existing alleles of lin-3. Correlation of mutant phenotypes and their molecular lesions, as well as sequence comparison between two species, reveal that the EGF motif and the N-terminal portion of the cytoplasmic domain are important for the functions of LIN-3 in all tissues, while the C-terminal portion of the cytoplasmic domain is involved in the tissue-specific functions of lin-3. We discuss how the structure of lin-3 contributes to its functions in multiple developmental processes.
Collapse
Affiliation(s)
- J Liu
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
24
|
Wiley HS, Woolf MF, Opresko LK, Burke PM, Will B, Morgan JR, Lauffenburger DA. Removal of the membrane-anchoring domain of epidermal growth factor leads to intracrine signaling and disruption of mammary epithelial cell organization. J Cell Biol 1998; 143:1317-28. [PMID: 9832559 PMCID: PMC2133076 DOI: 10.1083/jcb.143.5.1317] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1998] [Revised: 09/11/1998] [Indexed: 11/22/2022] Open
Abstract
Autocrine EGF-receptor (EGFR) ligands are normally made as membrane-anchored precursors that are proteolytically processed to yield mature, soluble peptides. To explore the function of the membrane-anchoring domain of EGF, we expressed artificial EGF genes either with or without this structure in human mammary epithelial cells (HMEC). These cells require activation of the EGFR for cell proliferation. We found that HMEC expressing high levels of membrane- anchored EGF grew at a maximal rate that was not increased by exogenous EGF, but could be inhibited by anti-EGFR antibodies. In contrast, when cells expressed EGF lacking the membrane-anchoring domain (sEGF), their proliferation rate, growth at clonal densities, and receptor substrate phosphorylation were not affected by anti-EGFR antibodies. The sEGF was found to be colocalized with the EGFR within small cytoplasmic vesicles. It thus appears that removal of the membrane-anchoring domain converts autocrine to intracrine signaling. Significantly, sEGF inhibited the organization of HMEC on Matrigel, suggesting that spatial restriction of EGF access to its receptor is necessary for organization. Our results indicate that an important role of the membrane-anchoring domain of EGFR ligands is to restrict the cellular compartments in which the receptor is activated.
Collapse
Affiliation(s)
- H S Wiley
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Piepkorn M, Pittelkow MR, Cook PW. Autocrine regulation of keratinocytes: the emerging role of heparin-binding, epidermal growth factor-related growth factors. J Invest Dermatol 1998; 111:715-21. [PMID: 9804327 DOI: 10.1046/j.1523-1747.1998.00390.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although originally conceived as a basis for malignant cell growth, autocrine signaling networks are currently known to be activated during tissue repair and with in vitro cultivation. In human epidermal keratinocytes, activation of the epidermal growth factor receptor by cognate ligands mediates the majority of the autonomous replicative capacity of these cells and is necessary to inhibit differentiation and apoptosis. The importance of heparin-binding growth factors in activation of this receptor was first suggested by the strong anti-proliferative effects of soluble heparin-like molecules on keratinocyte growth. This and related evidence led to the identification of amphiregulin as a major autocrine factor for keratinocytes. The binding of amphiregulin and its homolog, heparin-binding epidermal growth factor-like growth factor, to the receptor is potentially amplified by autoinduction and cross-signaling through epidermal growth factor-related polypeptides and by transmodulation of other ErbB-family receptors (HER-2, -3, -4) in cells expressing these receptors. Heparan sulfate proteoglycans and the tetraspanin family of membrane-associated proteins appear to act as cofactors in amphiregulin-driven mitogenesis mediated by the epidermal growth factor receptor, but amphiregulin's immunolocalization to keratinocyte nuclei and to filopodia may indicate other potentially novel effects. Following from the observation that amphiregulin is overexpressed in lesional psoriatic epidermis, the importance of amphiregulin in hyperproliferative skin diseases has been further supported by recent studies of the targeted expression of a transgene encoding keratin 14 promoter-driven human amphiregulin to the basal epidermis of mice. Founder transgenic mice displayed a morphologic and microscopic cutaneous phenotype that shares characteristics with psoriasis. Pharmacologic regulation of amphiregulin's expression and receptor signaling may eventually prove to be an effective strategy in the treatment of hyperproliferative skin diseases.
Collapse
Affiliation(s)
- M Piepkorn
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | | | | |
Collapse
|
26
|
Vecchi M, Rudolph-Owen LA, Brown CL, Dempsey PJ, Carpenter G. Tyrosine phosphorylation and proteolysis. Pervanadate-induced, metalloprotease-dependent cleavage of the ErbB-4 receptor and amphiregulin. J Biol Chem 1998; 273:20589-95. [PMID: 9685416 DOI: 10.1074/jbc.273.32.20589] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enhancement of tyrosine phosphorylation in cells by the application of pervanadate, an extremely potent phosphotyrosine phosphatase inhibitor, provokes the rapid metalloprotease-dependent cleavage of ErbB-4, a transmembrane receptor tyrosine kinase. The pervanadate-induced proteolysis occurs in NIH 3T3 cells expressing transfected human ErbB-4 and in several cell lines that express endogenous ErbB-4. One product of this proteolytic event is a membrane-anchored molecule of approximately 80 kDa, which is heavily tyrosine phosphorylated and which possesses tyrosine kinase catalytic activity toward an exogenous substrate in vitro. This response to pervanadate is not dependent on protein kinase C activation, which has previously been demonstrated to also activate ErbB-4 cleavage. Hence, the pervanadate and 12-O-tetradecanoylphorbol-13-acetate-induced proteolytic cleavage of ErbB-4 seem to proceed by different mechanisms, although both require metalloprotease activity. Moreover, pervanadate activation of ErbB-4 cleavage, but not that of 12-O-tetradecanoylphorbol-13-acetate , is blocked by the oxygen radical scavenger pyrrolidine dithiocarbomate. A second phosphotyrosine phosphatase inhibitor, phenylarsine oxide, also stimulates a similar cleavage of ErbB-4 but, unlike pervanadate, is not sensitive to pyrrolidine dithiocarbomate. Last, pervanadate is shown to stimulate the proteolytic cell surface processing of a second and unrelated transmembrane molecule: the precursor for amphiregulin, an epidermal growth factor-related molecule. Amphiregulin cleavage by pervanadate occurred in the absence of a cytoplasmic domain and tyrosine phosphorylation of this substrate.
Collapse
Affiliation(s)
- M Vecchi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | |
Collapse
|
27
|
Brown CL, Meise KS, Plowman GD, Coffey RJ, Dempsey PJ. Cell surface ectodomain cleavage of human amphiregulin precursor is sensitive to a metalloprotease inhibitor. Release of a predominant N-glycosylated 43-kDa soluble form. J Biol Chem 1998; 273:17258-68. [PMID: 9642297 DOI: 10.1074/jbc.273.27.17258] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biosynthesis and processing of amphiregulin (AR) have been investigated in human colorectal (HCA-7, Caco-2) and mammary (MCF-7) cancer cell lines, as well as in Madin-Darby canine kidney cells stably expressing various human AR precursor (pro-AR) forms. Both cells expressing endogenous and transfected AR produce multiple cellular and soluble forms of AR with an N-glycosylated 50-kDa pro-AR form being predominant. Our results demonstrate that sequential proteolytic cleavage within the ectodomain of the 50-kDa pro-AR form leads to release of a predominant N-glycosylated 43-kDa soluble AR, as well as the appearance of other cellular and soluble AR forms. Cell surface biotinylation studies using a C-terminal epitope-tagged pro-AR indicate that all cell surface forms are membrane-anchored and support that AR is released by ectodomain cleavage of pro-AR at the plasma membrane. We also show that pro-AR ectodomain cleavage is a regulated process, which can be stimulated by phorbol 12-myristate 13-acetate and inhibited by the metalloprotease inhibitor, batimastat. In addition, we provide evidence that high molecular mass AR forms may retain the full-length N-terminal pro-region, which may influence the biological activities of these forms.
Collapse
Affiliation(s)
- C L Brown
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279, USA
| | | | | | | | | |
Collapse
|
28
|
Loukianov EV, Loukianova T, Wiedlocha A, Olsnes S. Variation in the proregion structure of heparin-binding EGF-like growth factor precursors. Gene X 1998; 212:1-4. [PMID: 9661657 DOI: 10.1016/s0378-1119(98)00139-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In a previous study, we have isolated and characterized cDNA encoding a novel 'short form' of heparin-binding EGF-like growth factor (SF HB-EGF) (Loukianov et al., 1997). In the present work, we have found that cDNA for SF HB-EGF and for full-length HB-EGF are each represented by two variants, which we refer to as L and P forms. The L form is the previously known form of HB-EGF cDNA and encodes a leucine in position 33. The P form described in this report, encodes a proline in codon 33. The L33P substitution is predicted to cause a significant alteration in the proregion structure of SF HB-EGF and HB-EGF.
Collapse
Affiliation(s)
- E V Loukianov
- Department of Biochemistry, Norwegian Radium Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- E D Adamson
- Burnham Institute, La Jolla Cancer Research Center, California 92037, USA
| | | |
Collapse
|
30
|
Funatomi H, Itakura J, Ishiwata T, Pastan I, Thompson SA, Johnson GR, Korc M. Amphiregulin antisense oligonucleotide inhibits the growth of T3M4 human pancreatic cancer cells and sensitizes the cells to EGF receptor-targeted therapy. Int J Cancer 1997; 72:512-7. [PMID: 9247297 DOI: 10.1002/(sici)1097-0215(19970729)72:3<512::aid-ijc21>3.0.co;2-c] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human pancreatic cancers overexpress the epidermal growth factor (EGF) receptor (EGFR) and all 5 ligands that bind to this receptor, including amphiregulin. It is not known, however, whether amphiregulin contributes in an autocrine manner to enhance pancreatic cancer cell growth. Therefore, we used an amphiregulin antisense oligonucleotide (AR-AS) to suppress amphiregulin expression in T3M4 human pancreatic cancer cells. These cells express high levels of EGFR and amphiregulin. AR-AS abolished amphiregulin immunoreactivity in T3M4 cells, decreased amphiregulin release into the medium and inhibited cell growth in a dose-dependent manner. Exogenous amphiregulin reversed AR-AS-mediated growth inhibition. A random oligonucleotide (AR-R) did not alter either cell growth or cellular amphiregulin immunoreactivity. AR-AS also increased cellular EGFR protein levels and enhanced the growth-inhibitory actions of TP40, a chimeric protein consisting of transforming growth factor-alpha coupled to Pseudomonas exotoxin that internalizes into cells via EGFR. These findings indicate that there is an important EGFR/ amphiregulin autocrine loop in T3M4 cells and raise the possibility that modalities aimed at abrogating amphiregulin action may prove useful in pancreatic cancer, especially when used in conjunction with EGFR-targeted therapy.
Collapse
Affiliation(s)
- H Funatomi
- Department of Medicine, University of California, Irvine 92697, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Inui S, Higashiyama S, Hashimoto K, Higashiyama M, Yoshikawa K, Taniguchi N. Possible role of coexpression of CD9 with membrane-anchored heparin-binding EGF-like growth factor and amphiregulin in cultured human keratinocyte growth. J Cell Physiol 1997; 171:291-8. [PMID: 9180898 DOI: 10.1002/(sici)1097-4652(199706)171:3<291::aid-jcp7>3.0.co;2-j] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD9 is a protein with 4 transmembrane domains, and functions as a cell surface antigen. We have previously reported that CD9 functions as an up-regulator of membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) activity, which is a potent mitogen as well as a soluble HB-EGF. Anti-CD9 antibodies can neutralize the juxtacrine activity of proHB-EGF when both CD9 and proHB-EGF are coexpressed. We demonstrated here: (1) the CD9 gene was transcribed and translated in the cultured human keratinocytes; (2) anti-CD9 antibody inhibited the approximately 50% growth of human keratinocytes in culture; (3) CD9 was coprecipitated with proHB-EGF and membrane-anchored amphiregulin (proAR), and (4) the transient coexpression of CD9 with proHB-EGF or proAR in mouse L cells up-regulated their juxtacrine growth factor activities. These results suggest that CD9 would make a heterodimer and/or trimer complex with proHB-EGF and proAR, and might cooperate with proHB-EGF and proAR for human keratinocyte growth in a juxtacrine manner.
Collapse
Affiliation(s)
- S Inui
- Department of Biochemistry, Osaka University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The reverse transcription-polymerase chain reaction (RT-PCR) was used to amplify, from sheep mammary gland total RNA, a 280 bp sequence of amphiregulin cDNA. Cloned and sequenced, it corresponded to the 78 amino acids of the major secreted form of amphiregulin, showing 81, 70 and 69% identity with human, rat and mouse amphiregulin, respectively. Expression of amphiregulin was detected by RT-PCR in the mammary gland at several developmental stages (fetal, lamb, early and late pregnant and lactating ewes) and in isolated myoepithelial cells. By Western blotting with an antiserum to human amphiregulin, two molecular weight forms, 27 and 51 kDa were detected in sheep mammary gland microsomal preparations, in a mammary gland extract after heparin affinity chromatography and in a medium conditioned by mammary epithelial cells. By immunocytochemistry, amphiregulin was detected in the cytoplasm and nuclei of luminal epithelial cells, myoepithelial cells and in intralobular stroma. An autocrine/paracrine role in sheep mammary growth is indicated.
Collapse
Affiliation(s)
- I A Forsyth
- Department of Cellular Physiology, Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|
33
|
Martinez-Lacaci I, Johnson GR, Salomon DS, Dickson RB. Characterization of a novel amphiregulin-related molecule in 12-O-tetradecanoylphorbol-13-acetate-treated breast cancer cells. J Cell Physiol 1996; 169:497-508. [PMID: 8952699 DOI: 10.1002/(sici)1097-4652(199612)169:3<497::aid-jcp10>3.0.co;2-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amphiregulin (AR) can be induced at the mRNA level by 17-beta-estradiol (E2) or the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). This study compares the effects of TPA and E2 on the regulation of processing of AR isoforms and on subcellular localization in human MCF-7 breast cancer cells. AR was localized in the nucleus of MCF-7 cells after E2 treatment, whereas it was predominantly secreted after TPA treatment. AR isoforms of 28, 18, and 10 kDa and an additional species of approximately 55-60 kDa were detected in the cellular conditioned media after TPA stimulation. Expression of this unusual AR isoform was inhibited by protein kinase C (PKC) inhibitors such as bryostatin or H-7. The biochemical properties of this isoform are consistent with it being an N-linked glycosylated form of the AR precursor that contains unprocessed mannose residues. The size of this large isoform is reduced to approximately 40 kDa after treating the TPA-induced MCF-7 cells with tunicamycin or treating the conditioned media of such cells with N-glycosidase F or with endoglycosidase H. Moreover, this isoform is able to blind several lectins with specificity for mannose residues. The 55-60 kDa glycosylated AR isoform, like lower Mr AR isoforms, is able to bind to heparin and to stimulate the growth of MCF-10A cells by interacting with the EGF receptor. These data suggest that TPA activation of PKC may be involved in post-translational modifications of AR, such as glycosylation, and in alteration of its subcellular routing to predominantly a secretory pathway.
Collapse
|
34
|
Riese DJ, Kim ED, Elenius K, Buckley S, Klagsbrun M, Plowman GD, Stern DF. The epidermal growth factor receptor couples transforming growth factor-alpha, heparin-binding epidermal growth factor-like factor, and amphiregulin to Neu, ErbB-3, and ErbB-4. J Biol Chem 1996; 271:20047-52. [PMID: 8702723 DOI: 10.1074/jbc.271.33.20047] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The epidermal growth factor (EGF) family hormones amphiregulin (AR), transforming growth factor-alpha (TGF-alpha), and heparin-binding EGF-like growth factor (HB-EGF) are thought to play significant roles in the genesis or progression of a number of human malignancies. However, the ability of these ligands to activate all four erbB family receptors has not been evaluated. Therefore, we have assessed the stimulation of erbB family receptor tyrosine phosphorylation by these hormones in a panel of mouse Ba/F3 cell lines expressing the four erbB family receptors, singly and in pairwise combinations. We also measured the stimulation of interleukin-3-independent survival or proliferation in this panel of Ba/F3 cell lines to compare the patterns of erbB family receptor coupling to physiologic responses induced by these peptides. EGF, TGF-alpha, AR, and HB-EGF all stimulated qualitatively similar patterns of erbB family receptor tyrosine phosphorylation and coupling to physiologic responses. Therefore, EGF, TGF-alpha, AR, and HB-EGF are functionally identical in this model system and behave differently from the EGF family hormones betacellulin and neuregulins.
Collapse
Affiliation(s)
- D J Riese
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520-8023, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Mishima K, Asai A, Sugiyama A, Miyagi Y, Kitanaka C, Kagaya S, Kirino T, Kuchino Y. Increased expression of schwannoma-derived growth factor (SDGF) mRNA in rat tumor cells: involvement of SDGF in the growth promotion of rat gliomas. Int J Cancer 1996; 66:352-7. [PMID: 8621257 DOI: 10.1002/(sici)1097-0215(19960503)66:3<352::aid-ijc15>3.0.co;2-d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Schwannoma-derived growth factor (SDGF) is a member of the epidermal growth factor (EGF) family, having mitogenic activity on rat astrocytes, fibroblasts and Schwann cells. The SDGF gene is significantly expressed in the newborn rat lung and in the adult rat sciatic nerve. However, except for one rat schwannoma cell line, from which SDGF and its cDNA were isolated, nothing is known about SDGF expression in established tumor cell lines. We examined the expression level of the SDGF gene in a variety of rat tumor cell lines by Northern blotting and found that it was increased in 11 of 25 established lines. The most abundant SDGF mRNA, which was about 50-fold higher than in the newborn rat lung, was expressed in rat liver adenoma dRLa74 cells. In rat glioma cell lines, such as C6, 9L and T9, and in the rat hepatoma dRLh84 and H411E cells, the SDGF expression level was about 10-fold higher than in the newborn rat lung. In 8 of 13 cell lines expressing SDGF mRNA, the EGF receptor (EGFR) gene, the product of which is regarded as a functional receptor of SDGF, was co-expressed. In addition, transfected gene-dependent anti-sense SDGF RNA expression under the control of the human metallothionein promoter significantly suppressed the in vitro growth as well as in vivo tumorigenicity of 9L glioma cells. Our results suggest that SDGF acts as an autocrine growth factor in the development and growth of rat tumors such as gliomas.
Collapse
Affiliation(s)
- K Mishima
- Biophysics Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
We have previously shown that the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AR) exhibits low potency as a result of its C-terminal truncation. This led us to investigate whether its inability to promote anchorage-independent growth (AIG) of normal cells arose because of its compromised interaction with EGFR. Wild type AR(1-84) was tested in AIG and mitogenesis assays using NRK-49F or NR6/HER fibroblasts. In contrast to NR6/HER cells, the response of NRK-49F fibroblasts to AR was much lower than expected. As the effect of AR was heparin-insensitive, contributions from heparan sulphate proteoglycan interactions could not explain the differing sensitivities of the cells. Comparison of the effects of AR on two additional cell lines indicated that low EGFR number correlated with AR insensitivity: this suggested that the low potency of AR precluded activation of sufficient receptors to elicit a response. Consistent with this proposal, a modified form of AR (AR[1-90(leu86)]) with enhanced potency was able to induce AIG of NRK-49F fibroblasts. Thus, the ability of AR to promote AIG is determined both by ligand potency and the EGFR complement of cells.
Collapse
|
37
|
Martinez-Lacaci I, Dickson RB. Dual regulation of the epidermal growth factor family of growth factors in breast cancer by sex steroids and protein kinase C. J Steroid Biochem Mol Biol 1996; 57:1-11. [PMID: 8645607 DOI: 10.1016/0960-0760(95)00245-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There has been increased interest in the last few years in seeking a better understanding of the local regulation of polypeptide growth factors by systemic hormones, such as sex steroids and by polypeptide hormones. Growth factors and systemic hormones play pivotal roles in hormone-regulated cancers such as breast cancer. In this review, we discuss the regulation of members of the epidermal growth factor (EGF) family by sex steroids and by regulators of the polypeptide hormone signal transduction enzyme termed protein kinase C (PKC). Regulation of the EGF family of genes will be discussed as a model system to evaluate interactions between these two important types of regulatory pathways in breast cancer.
Collapse
Affiliation(s)
- I Martinez-Lacaci
- Vincent T. Lombardi Cancer Center, Georgetown University, Washingotn, DC 20007, USA
| | | |
Collapse
|
38
|
Kenney NJ, Smith GH, Maroulakou IG, Green JH, Muller WJ, Callahan R, Salomon DS, Dickson RB. Detection of amphiregulin and Cripto-1 in mammary tumors from transgenic mice. Mol Carcinog 1996; 15:44-56. [PMID: 8561865 DOI: 10.1002/(sici)1098-2744(199601)15:1<44::aid-mc7>3.0.co;2-s] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epidermal growth factor family members are widely expressed in human breast cancer and are thought to play an important dual role in mammary gland development and tumorigenesis. Overexpression of two relatively new members of this family, amphiregulin (AR) and Cripto-1 (CR-1), has been previously shown to transform immortalized human and mouse mammary epithelial cells. Here, we extend these results and address the disregulated expression of AR and CR-1 in many types of transgenic neoplastic mouse mammary tissues. Transgenic mouse strains overexpressing the oncogenes transforming growth factor-alpha, neu, int-3, polyoma virus middle T antigen, and simian virus 40 large T antigen have been previously shown to develop spontaneous mammary neoplasia. These models were each examined for mammary-tumor expression of AR and CR-1 by reverse transcription-polymerase chain reaction, western blot, and immunocytochemical analyses. Mammary tumors from each source expressed AR and CR-1. Western blot analysis revealed that, in all mammary tumors, AR and CR-1 protein species were processed differently than in virgin and lactating mouse mammary tissue. In addition, immunohistochemical detection of AR and CR-1 in tumor tissue revealed different patterns of growth-factor localization in different types of transgenic mouse mammary-derived tumors. These findings are consistent with the possibility of widespread roles for AR and CR-1 in the promotion and/or progression stages of mouse mammary tumorigenesis.
Collapse
Affiliation(s)
- N J Kenney
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kato M, Mizuguchi M, Takashima S. Developmental changes of epidermal growth factor-like immunoreactivity in the human fetal brain. J Neurosci Res 1995; 42:486-92. [PMID: 8568935 DOI: 10.1002/jnr.490420407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the immunohistochemical localization of epidermal growth factor (EGF) in the developing human brain from 6 weeks of gestation to 3 months postpartum. EGF-like immunoreactivity varied in its localization and intensity according to the stage of development. At 10 - 20 weeks of gestation, EGF-like immunoreactivity appeared in proliferating and migrating cells in the cerebrum, disappeared thereafter, and appeared again in cortical neurons after 27 weeks of gestation. Astrocytes also showed EGF-like immunoreactivity from 27 weeks of gestation. These results suggest developmental regulation of EGF expression in the human brain, suggesting its physiological role in both neuronal and glial cells.
Collapse
Affiliation(s)
- M Kato
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | |
Collapse
|
40
|
Abstract
Many proteins, including proteases and growth factors, are synthesized as precursors in the form of pre-pro-proteins. Whereas the pre-sequences usually act as signal peptides for transport, the pro-sequences of an increasing number of these proteins have been found to be essential for the correct folding of their associated proteins. In contrast to the action of molecular chaperones, pro-sequences appear to catalyse the protein-folding reaction directly. The similarity between the pro-sequence-assisted folding mechanisms of different proteases supports the hypothesis that a common folding mechanism has developed through convergent evolution. Further, the frequent requirement of the pro-sequences for both folding and intracellular transport or secretion suggests that these two functionalities are intimately related.
Collapse
Affiliation(s)
- J Eder
- MRC Unit for Protein Function and Design, University Chemical Laboratory, Cambridge, UK
| | | |
Collapse
|