1
|
Shao M, Wang Q, Lv Q, Zhang Y, Gao G, Lu S. Advances in the research on myokine-driven regulation of bone metabolism. Heliyon 2024; 10:e22547. [PMID: 38226270 PMCID: PMC10788812 DOI: 10.1016/j.heliyon.2023.e22547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The traditional view posits that bones and muscles interact primarily through mechanical coupling. However, recent studies have revealed that myokines, proteins secreted by skeletal muscle cells, play a crucial role in the regulation of bone metabolism. Myokines are widely involved in bone metabolism, influencing bone resorption and formation by interacting with factors related to bone cell secretion or influencing bone metabolic pathways. Here, we review the research progress on the myokine regulation of bone metabolism, discuss the mechanism of myokine regulation of bone metabolism, explore the pathophysiological relationship between sarcopenia and osteoporosis, and provide future perspectives on myokine research, with the aim of identify potential specific diagnostic markers and therapeutic entry points.
Collapse
Affiliation(s)
- MingHong Shao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiYang Wang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiuNan Lv
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - YuQiong Zhang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - GuoXi Gao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Lu
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
2
|
Tong X, Shen CY, Jeon HL, Li Y, Shin JY, Chan SC, Yiu KH, Pratt NL, Ward M, Lau CS, Wong IC, Li X, Lai ECC. Cardiovascular risk in rheumatoid arthritis patients treated with targeted synthetic and biological disease-modifying antirheumatic drugs: A multi-centre cohort study. J Intern Med 2023; 294:314-325. [PMID: 37282790 DOI: 10.1111/joim.13681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND This study aimed to compare the cardiovascular safety of interleukin-6 inhibitors (IL-6i) and Janus Kinase inhibitors (JAKi) to tumour necrosis factor inhibitors (TNFi). METHODS We conducted a retrospective cohort study using population-based electronic databases from Hong Kong, Taiwan and Korea. We identified newly diagnosed patients with rheumatoid arthritis (RA) who received b/tsDMARDs first time. We followed patients from b/tsDMARD initiation to the earliest outcome (acute coronary heart disease, stroke, heart failure, venous thromboembolism and systemic embolism) or censoring events (death, transformation of b/tsDMARDs on different targets, discontinuation and study end). Using TNFi as reference, we applied generalized linear regression for the incidence rate ratio estimation adjusted by age, sex, disease duration and comorbidities. Random effects meta-analysis was used for pooled analysis. RESULTS We identified 8689 participants for this study. Median (interquartile range) follow-up years were 1.45 (2.77) in Hong Kong, 1.72 (2.39) in Taiwan and 1.45 (2.46) in Korea. Compared to TNFi, the adjusted incidence rate ratios (aIRRs) (95% confidence interval [CI]) of IL-6i in Hong Kong, Taiwan and Korea are 0.99 (0.25, 3.95), 1.06 (0.57, 1.98) and 1.05 (0.59, 1.86) and corresponding aIRR of JAKi are 1.50 (0.42, 5.41), 0.60 (0.26, 1.41), and 0.81 (0.38, 1.74), respectively. Pooled aIRRs showed no significant risk of cardiovascular events (CVEs) associated with IL-6i (1.05 [0.70, 1.57]) nor JAKi (0.80 [0.48, 1.35]) compared to TNFi. CONCLUSION There was no difference in the risk of CVE among RA patients initiated with IL-6i, or JAKi compared to TNFi. The finding is consistent in Hong Kong, Taiwan and Korea.
Collapse
Affiliation(s)
- Xinning Tong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chin-Yao Shen
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ha-Lim Jeon
- School of Pharmacy, Jeonbuk National University, Jeonju, South Korea
| | - Yihua Li
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Seoul, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Seoul, South Korea
| | - Shirley Cw Chan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kai Hang Yiu
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nicole L Pratt
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael Ward
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Chak Sing Lau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ian Ck Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Aston School of Pharmacy, Aston University, Birmingham, UK
| | - Xue Li
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Edward Chia-Cheng Lai
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Prado DS, Damasceno LEA, Sonego AB, Rosa MH, Martins TV, Fonseca MDM, Cunha TM, Cunha FQ, Alves-Filho JC. Pitavastatin ameliorates autoimmune neuroinflammation by regulating the Treg/Th17 cell balance through inhibition of mevalonate metabolism. Int Immunopharmacol 2021; 91:107278. [PMID: 33341737 DOI: 10.1016/j.intimp.2020.107278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022]
Abstract
While Treg cells are responsible for self-tolerance and immune homeostasis, pathogenic autoreactive Th17 cells produce pro-inflammatory cytokines that lead to tissue damage associated with autoimmunity, as observed in multiple sclerosis. Therefore, the immunological balance between Th17 and Treg cells may represent a promising option for immune therapy. Statin drugs are used to treat dyslipidemia; however, besides their effects on preventing cardiovascular diseases, statins also have anti-inflammatory effects. Here, we investigated the role of pitavastatin on experimental autoimmune encephalomyelitis (EAE) and the differentiation of Treg and Th17 cells. EAE was induced by immunizing C57BL/6 mice with MOG35-55. EAE severity was determined by analyzing the clinical score and inflammatory parameters in the spinal cord. Naive CD4 T cells were cultured under Treg and Th17-skewing conditions in vitro in the presence of pitavastatin. We found that pitavastatin decreased EAE development, which was accompanied by a reduction of all parameters investigated. Pitavastatin also reduced the expression of IBA1 and pSTAT3 (Y705 and S727) in the spinal cords of EAE mice. Interestingly, the reduction of Th17 cell frequency in the draining lymph nodes of EAE mice treated with pitavastatin was followed by an increase of Treg cells. Indeed, pitavastatin directly affects T cell differentiation in vitro by decreasing Th17 and increasing Treg cell differentiation. Mechanistically, pitavastatin effects are dependent on mevalonate synthesis. Thus, our data show the potential anti-inflammatory effect of pitavastatin on the pathogenesis of the experimental neuroinflammation by modulating the Th17/Treg axis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Cell Differentiation/drug effects
- Cells, Cultured
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Inflammation Mediators/metabolism
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Male
- Mevalonic Acid/metabolism
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Quinolines/pharmacology
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
Collapse
Affiliation(s)
- D S Prado
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - L E A Damasceno
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - A B Sonego
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - M H Rosa
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - T V Martins
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - M D M Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - T M Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - F Q Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - J C Alves-Filho
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
4
|
Yu Y, Xu F, Shen H, Wu J. Chronic Candida infection, bronchiectasis, immunoglobulin abnormalities, and stunting: a case report of a natural mutation of STAT1 (c.986C>G) in an adolescent male. BMC Infect Dis 2021; 21:38. [PMID: 33413180 PMCID: PMC7792061 DOI: 10.1186/s12879-020-05734-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
Background Chronic mucocutaneous candidiasis (CMC) is the most common clinical symptom of singer transducer and signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations. Bronchiectasis is a chronic lung disease that is characterized by permanent bronchiectasis, causing cough, expectoration, and even haemoptysis. The underlying pathogeny is not yet clear. Immunoglobulin (Ig) A is derived from memory B cells and correlates with immune-related diseases. STAT1 is closely associated with signal transmission and immune regulation. Case presentation We report a 17-year-old male patient carrying a GOF mutation in STAT1. The variant led to CMC, bronchiectasis, and elevated serum IgA levels, as well as stunting. Whole-exome sequencing (WES) revealed a c.986C>G (p.P329R) heterozygous mutation in the STAT1 gene. Conclusion Further Sanger sequencing analysis of STAT1 in the patient and his parents showed that the patient harboured a de novo mutation.
Collapse
Affiliation(s)
- Yali Yu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan City, Hubei Province, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan City, Hubei Province, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan City, Hubei Province, China
| | - Jiang Wu
- Department of Hematology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan City, Hubei Province, China.
| |
Collapse
|
5
|
Liu Y, Liao S, Bennett S, Tang H, Song D, Wood D, Zhan X, Xu J. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif 2020; 54:e12974. [PMID: 33382511 PMCID: PMC7848963 DOI: 10.1111/cpr.12974] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of seven STAT family members involved with the regulation of cellular growth, differentiation and survival. STAT proteins are conserved among eukaryotes and are important for biological functions of embryogenesis, immunity, haematopoiesis and cell migration. STAT3 is widely expressed and located in the cytoplasm in an inactive form. STAT3 is rapidly and transiently activated by tyrosine phosphorylation by a range of signalling pathways, including cytokines from the IL‐6 family and growth factors, such as EGF and PDGF. STAT3 activation and subsequent dimer formation initiates nuclear translocation of STAT3 for the regulation of target gene transcription. Four STAT3 isoforms have been identified, which have distinct biological functions. STAT3 is considered a proto‐oncogene and constitutive activation of STAT3 is implicated in the development of various cancers, including multiple myeloma, leukaemia and lymphomas. In this review, we focus on recent progress on STAT3 and osteosarcoma (OS). Notably, STAT3 is overexpressed and associated with the poor prognosis of OS. Constitutive activation of STAT3 in OS appears to upregulate the expression of target oncogenes, leading to OS cell transformation, proliferation, tumour formation, invasion, metastasis, immune evasion and drug resistance. Taken together, STAT3 is a target for cancer therapy, and STAT3 inhibitors represent potential therapeutic candidates for the treatment of OS.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spine and Osteopathic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Haijun Tang
- Department of Orthopedic, Guangxi hospital for nationalities, Nanning, Guangxi, China
| | - Dezhi Song
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - David Wood
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xinli Zhan
- Department of Spine and Osteopathic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Hu Z, Li Y, Du H, Ren J, Zheng X, Wei K, Liu J. Transcriptome analysis reveals modulation of the STAT family in PEDV-infected IPEC-J2 cells. BMC Genomics 2020; 21:891. [PMID: 33317444 PMCID: PMC7734901 DOI: 10.1186/s12864-020-07306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is a causative agent of serious viral enteric disease in suckling pigs. Such diseases cause considerable economic losses in the global swine industry. Enhancing our knowledge of PEDV-induced transcriptomic responses in host cells is imperative to understanding the molecular mechanisms involved in the immune response. Here, we analyzed the transcriptomic profile of intestinal porcine epithelial cell line J2 (IPEC-J2) after infection with a classical strain of PEDV to explore the host response. RESULTS In total, 854 genes were significantly differentially expressed after PEDV infection, including 716 upregulated and 138 downregulated genes. Functional annotation analysis revealed that the differentially expressed genes were mainly enriched in the influenza A, TNF signaling, inflammatory response, cytokine receptor interaction, and other immune-related pathways. Next, the putative promoter regions of the 854 differentially expressed genes were examined for the presence of transcription factor binding sites using the MEME tool. As a result, 504 sequences (59.02%) were identified as possessing at least one binding site of signal transducer and activator of transcription (STAT), and five STAT transcription factors were significantly induced by PEDV infection. Furthermore, we revealed the regulatory network induced by STAT members in the process of PEDV infection. CONCLUSION Our transcriptomic analysis described the host genetic response to PEDV infection in detail in IPEC-J2 cells, and suggested that STAT transcription factors may serve as key regulators in the response to PEDV infection. These results further our understanding of the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Zhengzheng Hu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuchen Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junxiao Ren
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kejian Wei
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Mirzaei S, Gholami MH, Mahabady MK, Nabavi N, Zabolian A, Banihashemi SM, Haddadi A, Entezari M, Hushmandi K, Makvandi P, Samarghandian S, Zarrabi A, Ashrafizadeh M, Khan H. Pre-clinical investigation of STAT3 pathway in bladder cancer: Paving the way for clinical translation. Biomed Pharmacother 2020; 133:111077. [PMID: 33378975 DOI: 10.1016/j.biopha.2020.111077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Effective cancer therapy requires identification of signaling networks and investigating their potential role in proliferation and invasion of cancer cells. Among molecular pathways, signal transducer and activator of transcription 3 (STAT3) has been of importance due to its involvement in promoting proliferation, and invasion of cancer cells, and mediating chemoresistance. In the present review, our aim is to reveal role of STAT3 pathway in bladder cancer (BC), as one of the leading causes of death worldwide. In respect to its tumor-promoting role, STAT3 is able to enhance the growth of BC cells via inhibiting apoptosis and cell cycle arrest. STAT3 also contributes to metastasis of BC cells via upregulating of MMP-2 and MMP-9 as well as genes in the EMT pathway. BC cells obtain chemoresistance via STAT3 overexpression and its inhibition paves the way for increasing efficacy of chemotherapy. Different molecular pathways such as KMT1A, EZH2, DAB2IP and non-coding RNAs including microRNAs and long non-coding RNAs can function as upstream mediators of STAT3 that are discussed in this review article.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- IstitutoItaliano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, OrtaMahalle, ÜniversiteCaddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| |
Collapse
|
8
|
STAT3: Versatile Functions in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12051107. [PMID: 32365499 PMCID: PMC7281271 DOI: 10.3390/cancers12051107] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) activation is frequently found in non-small cell lung cancer (NSCLC) patient samples/cell lines and STAT3 inhibition in NSCLC cell lines markedly impairs their survival. STAT3 also plays a pivotal role in driving tumor-promoting inflammation and evasion of anti-tumor immunity. Consequently, targeting STAT3 either directly or by inhibition of upstream regulators such as Interleukin-6 (IL-6) or Janus kinase 1/2 (JAK1/2) is considered as a promising treatment strategy for the management of NSCLC. In contrast, some studies also report STAT3 being a tumor suppressor in a variety of solid malignancies, including lung cancer. Here, we provide a concise overview of STAT3‘s versatile roles in NSCLC and discuss the yins and yangs of STAT3 targeting therapies.
Collapse
|
9
|
Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A, Smits EL, Lardon F, van Dam PA. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 2020; 60:41-56. [DOI: 10.1016/j.semcancer.2019.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
|
10
|
Strainic MG, Pohlmann E, Valley CC, Sammeta A, Hussain W, Lidke DS, Medof ME. RTK signaling requires C3ar1/C5ar1 and IL-6R joint signaling to repress dominant PTEN, SOCS1/3 and PHLPP restraint. FASEB J 2019; 34:2105-2125. [PMID: 31908021 DOI: 10.1096/fj.201900677r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/26/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
How receptor tyrosine kinase (RTK) growth signaling is controlled physiologically is incompletely understood. We have previously provided evidence that the survival and mitotic activities of vascular endothelial cell growth factor receptor-2 (VEGFR2) signaling are dependent on C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 joint signaling in a physically interactive platform. Herein, we document that the platelet derived and epidermal growth factor receptors (PDGFR and EGFR) are regulated by the same interconnection and clarify the mechanism underlying the dependence. We show that the joint signaling is required to overcome dominant restraint on RTK function by the combined repression of tonically activated PHLPP, SOCS1/SOCS3, and CK2/Fyn dependent PTEN. Signaling studies showed that augmented PI-3Kɣ activation is the process that overcomes the multilevel growth restraint. Live-cell flow cytometry and single-particle tracking indicated that blockade of C3ar1/C5ar1 or IL-6R signaling suppresses RTK growth factor binding and RTK complex formation. C3ar1/C5ar1 blockade abrogated growth signaling of four additional RTKs. Active relief of dominant growth repression via joint C3ar1/C5ar1 and IL-6R joint signaling thus enables RTK mitotic/survival signaling.
Collapse
Affiliation(s)
- Michael G Strainic
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Elliot Pohlmann
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Christopher C Valley
- Department of Pathology and Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ajay Sammeta
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Wasim Hussain
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Diane S Lidke
- Department of Pathology and Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - M Edward Medof
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
11
|
Hwang MS, Strainic MG, Pohlmann E, Kim H, Pluskota E, Ramirez-Bergeron DL, Plow EF, Medof ME. VEGFR2 survival and mitotic signaling depends on joint activation of associated C3ar1/C5ar1 and IL-6R-gp130. J Cell Sci 2019; 132:jcs.219352. [PMID: 30765465 DOI: 10.1242/jcs.219352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
Purified vascular endothelial cell (EC) growth factor receptor-2 (VEGFR2) auto-phosphorylates upon VEGF-A occupation in vitro, arguing that VEGR2 confers its mitotic and viability signaling in and of itself. Herein, we show that, in ECs, VEGFR2 function requires concurrent C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 co-signaling. C3ar1/C5ar1 or IL-6R blockade totally abolished VEGFR2 auto-phosphorylation, downstream Src, ERK, AKT, mTOR and STAT3 activation, and EC cell cycle entry. VEGF-A augmented production of C3a/C5a/IL-6 and their receptors via a two-step p-Tyk2/p-STAT3 process. Co-immunoprecipitation analyses, confocal microscopy, ligand pulldown and bioluminescence resonance energy transfer assays all indicated that the four receptors are physically interactive. Angiogenesis in murine day 5 retinas and in adult tissues was accelerated when C3ar1/C5ar1 signaling was potentiated, but repressed when it was disabled. Thus, C3ar1/C5ar1 and IL-6R-gp130 joint activation is needed to enable physiological VEGFR2 function.
Collapse
Affiliation(s)
- Ming-Shih Hwang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael G Strainic
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elliot Pohlmann
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Haesuk Kim
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195, USA
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute and University Hospitals, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, Ohio 44106, USA
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195, USA
| | - M Edward Medof
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
STAT3 is activated in multicellular spheroids of colon carcinoma cells and mediates expression of IRF9 and interferon stimulated genes. Sci Rep 2019; 9:536. [PMID: 30679726 PMCID: PMC6345781 DOI: 10.1038/s41598-018-37294-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/30/2018] [Indexed: 01/27/2023] Open
Abstract
Three-dimensional cell cultures, such as multicellular spheroids (MCS), reflect the in vivo architecture of solid tumours and multicellular drug resistance. We previously identified interferon regulatory factor 9 (IRF9) to be responsible for the up-regulation of a subset of interferon (IFN)-stimulated genes (ISGs) in MCS of colon carcinoma cells. This set of ISGs closely resembled a previously identified IFN-related DNA-damage resistance signature (IRDS) that was correlated to resistance to chemo- and radiotherapy. In this study we found that transcription factor STAT3 is activated upstream of IRF9 and binds to the IRF9 promoter in MCS of HCT116 colorectal carcinoma cells. Transferring conditioned media (CM) from high cell density conditions to non-confluent cells resulted in STAT3 activation and increased expression of IRF9 and a panel of IRDS genes, also observed in MCS, suggesting the involvement of a soluble factor. Furthermore, we identified gp130/JAK signalling to be responsible for STAT3 activation, IRF9, and IRDS gene expression in MCS and by CM. Our data suggests a novel mechanism where STAT3 is activated in high cell density conditions resulting in increased expression of IRF9 and, in turn, IRDS genes, underlining a mechanism by which drug resistance is regulated.
Collapse
|
13
|
Mori R, Wauman J, Icardi L, Van der Heyden J, De Cauwer L, Peelman F, De Bosscher K, Tavernier J. TYK2-induced phosphorylation of Y640 suppresses STAT3 transcriptional activity. Sci Rep 2017; 7:15919. [PMID: 29162862 PMCID: PMC5698428 DOI: 10.1038/s41598-017-15912-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
STAT3 is a pleiotropic transcription factor involved in homeostatic and host defense processes in the human body. It is activated by numerous cytokines and growth factors and generates a series of cellular effects. Of the STAT-mediated signal transduction pathways, STAT3 transcriptional control is best understood. Jak kinase dependent activation of STAT3 relies on Y705 phosphorylation triggering a conformational switch that is stabilized by intermolecular interactions between SH2 domains and the pY705 motif. We here show that a second tyrosine phosphorylation within the SH2 domain at position Y640, induced by Tyk2, negatively controls STAT3 activity. The Y640F mutation leads to stabilization of activated STAT3 homodimers, accelerated nuclear translocation and superior transcriptional activity following IL-6 and LIF stimulation. Moreover, it unlocks type I IFN-dependent STAT3 signalling in cells that are normally refractory to STAT3 transcriptional activation.
Collapse
Affiliation(s)
- Raffaele Mori
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Joris Wauman
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Laura Icardi
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Università vita-salute San Raffaele, Via Olgettina Milano, 58, 20132, Milano, Italy
| | - José Van der Heyden
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lode De Cauwer
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Argenx BVBA Industriepark Zwijnaarde 7, 9052 Zwijnaarde, Ghent, Belgium
| | - Frank Peelman
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Tavernier
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium.
- Department of Biochemistry, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
14
|
Hepatitis B Virus Activates Signal Transducer and Activator of Transcription 3 Supporting Hepatocyte Survival and Virus Replication. Cell Mol Gastroenterol Hepatol 2017; 4:339-363. [PMID: 28884137 PMCID: PMC5581872 DOI: 10.1016/j.jcmgh.2017.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The human hepatitis B virus (HBV) is a major cause of chronic hepatitis and hepatocellular carcinoma, but molecular mechanisms driving liver disease and carcinogenesis are largely unknown. We therefore studied cellular pathways altered by HBV infection. METHODS We performed gene expression profiling of primary human hepatocytes infected with HBV and proved the results in HBV-replicating cell lines and human liver tissue using real-time polymerase chain reaction and Western blotting. Activation of signal transducer and activator of transcription (STAT3) was examined in HBV-replicating human hepatocytes, HBV-replicating mice, and liver tissue from HBV-infected individuals using Western blotting, STAT3-luciferase reporter assay, and immunohistochemistry. The consequences of STAT3 activation on HBV infection and cell survival were studied by chemical inhibition of STAT3 phosphorylation and small interfering RNA-mediated knockdown of STAT3. RESULTS Gene expression profiling of HBV-infected primary human hepatocytes detected no interferon response, while genes encoding for acute phase and antiapoptotic proteins were up-regulated. This gene regulation was confirmed in liver tissue samples of patients with chronic HBV infection and in HBV-related hepatocellular carcinoma. Pathway analysis revealed activation of STAT3 to be the major regulator. Interleukin-6-dependent and -independent activation of STAT3 was detected in HBV-replicating hepatocytes in cell culture and in vivo. Prevention of STAT3 activation by inhibition of Janus tyrosine kinases as well as small interfering RNA-mediated knockdown of STAT3-induced apoptosis and reduced HBV replication and gene expression. CONCLUSIONS HBV activates STAT3 signaling in hepatocytes to foster its own replication but also to prevent apoptosis of infected cells. This very likely supports HBV-related carcinogenesis.
Collapse
Key Words
- APR, acute phase response
- Apoptosis
- CRP, C-reactive protein
- DMSO, dimethyl sulfoxide
- FCS, fetal calf serum
- HBV pg RNA, hepatitis B pregenomic RNA
- HBV, Hepatitis B virus
- HBVtg, hepatitis B transgenic
- HBeAg, hepatitis B early antigen
- HCC, hepatocellular carcinoma
- HNF, hepatocyte nuclear factor
- Hepatitis B Virus Infection
- Hepatocellular Carcinoma
- IFN, interferon
- IL-6, interleukin 6
- IRF3, interferon regulatory factor 3
- NAC, N-acetyl-L-cysteine
- PCR, polymerase chain reaction
- PHH, primary human hepatocyte
- ROS, reactive oxygen species
- RT, reverse transcription
- STAT3 Signaling
- STAT3, signal transducer and activator of transcription 3
- cDNA, complementary DNA
- cRNA, complementary RNA
- cccDNA, covalently closed circular DNA
- mRNA, messenger RNA
- p.i., postinfection
- pSTAT3, phosphorylated signal transducer and activator of transcription 3
- pgRNA, pregenomic RNA
- siRNA, small interfering RNA
Collapse
|
15
|
Kameyama H, Kudoh S, Hatakeyama J, Matuo A, Ito T. Significance of Stat3 Signaling in Epithelial Cell Differentiation of Fetal Mouse Lungs. Acta Histochem Cytochem 2017; 50:1-9. [PMID: 28386145 PMCID: PMC5374098 DOI: 10.1267/ahc.16032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
To study the significance of signal transducer and activator of transcription (Stat) 3 in lung epithelial development of fetal mice, we examined fetal mouse lungs, focusing on the expression of Clara cell secretory protein (CCSP), Forkhead box protein J1 (Foxj1), calcitonin gene-related peptide (CGRP), phosphorylated Stat3 (Tyr705), and hairy/enhancer of split (Hes) 1, and observed cultured fetal lungs upon treatment with IL-6, a Stat3 activator, or cucurbitacin I, a Stat3 inhibitor. Moreover, the interaction of Stat3 signaling and Hes1 was studied using Hes1 gene-deficient mice. Phosphorylated Stat3 was detected in fetal lungs and, immunohistochemically, phosphorylated Stat3 was found to be co-localized in developing Clara cells, but not in ciliated cells. In the organ culture studies, upon treatment with IL-6, quantitative RT-PCR revealed that CCSP mRNA increased with increasing Stat3 phosphorylation, while cucurbitacin I decreased Hes1, CCSP, Foxj1 and CGRP mRNAs with decreasing Stat3 phosphorylation. In the lungs of Hes1 gene-deficient mice, Stat3 phosphorylation was not markedly different from wild-type mice, the expression of CCSP and CGRP was enhanced, and the treatment of IL-6 or cucurbitacin I induced similar effects on mouse lung epithelial differentiation regardless of Hes1 expression status. Stat3 signaling acts in fetal mouse lung development, and seems to regulate Clara cell differentiation positively. Hes1 could regulate Clara cell differentiation in a manner independent from Stat3 signaling.
Collapse
Affiliation(s)
- Hiroki Kameyama
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
- Division of Pathology, Kumamoto Health Science University
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University
| | - Akira Matuo
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| |
Collapse
|
16
|
Feng J, Yu SY, Li CZ, Li ZY, Zhang YZ. Integrative proteomics and transcriptomics revealed that activation of the IL-6R/JAK2/STAT3/MMP9 signaling pathway is correlated with invasion of pituitary null cell adenomas. Mol Cell Endocrinol 2016; 436:195-203. [PMID: 27465831 DOI: 10.1016/j.mce.2016.07.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 01/05/2023]
Abstract
Non-functioning pituitary adenomas (NFPAs) are a highly heterogeneous group, but few studies have explored the invasion mechanism of specific subtypes of NFPAs. The objective of this study was to investigate the differential molecular expression patterns and the critical biological signaling pathways involved in the invasion of pituitary null cell adenomas (PNCAs) through integrative proteomics and transcriptomics. A total of 1160 genes and 283 proteins were found to be differentially expressed in invasive and non-invasive PNCAs. The differentially expressed molecules related to invasion were enriched in 15 canonical signaling pathways, 15 clusters of diseases or biological functions and 5 upstream molecules. Among them, the majority of the differentially expressed molecules were found to be involved in transport of molecule, migration of cells and cell movement. Notably, IL-6 was a significantly activated upstream regulator, and the IL6R/JAK2/STAT3 cascade was found to play a critical role in acute phase response signaling, which was the most significant canonical signaling pathway. Furthermore, we validated the overexpression of IL-6R, JAK2, STAT3, p-STAT3 and MMP9 in invasive PNCAs. Our data suggest that overactivation of the IL-6R/JAK2/STAT3/MMP9 pathway is critical for the invasion of PNCAs.
Collapse
Affiliation(s)
- Jie Feng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, 100050, China
| | - Sheng-Yuan Yu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, 100050, China; Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Chu-Zhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Zhen-Ye Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Ya-Zhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
17
|
Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine Growth Factor Rev 2016; 31:1-15. [PMID: 27185365 PMCID: PMC5050093 DOI: 10.1016/j.cytogfr.2016.05.001] [Citation(s) in RCA: 500] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022]
Abstract
The transcriptional regulator STAT3 has key roles in vertebrate development and mature tissue function including control of inflammation and immunity. Mutations in human STAT3 associate with diseases such as immunodeficiency, autoimmunity and cancer. Strikingly, however, either hyperactivation or inactivation of STAT3 results in human disease, indicating tightly regulated STAT3 function is central to health. Here, we attempt to summarize information on the numerous and distinct biological actions of STAT3, and highlight recent discoveries, with a specific focus on STAT3 function in the immune and hematopoietic systems. Our goal is to spur investigation on mechanisms by which aberrant STAT3 function drives human disease and novel approaches that might be used to modulate disease outcome.
Collapse
Affiliation(s)
- Emily J Hillmer
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Pasquin S, Sharma M, Gauchat JF. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev 2015; 26:507-15. [PMID: 26187860 DOI: 10.1016/j.cytogfr.2015.07.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is the most extensively studied member of the cytokine family that signal through intracellular chains of the gp130/LIFRβ receptor. The severe phenotype in patients suffering from mutations inactivating LIFRβ indicates that members of this cytokine family play key, non-redundant roles during development. Accordingly, three decades of research has revealed potent and promising trophic and regulatory activities of CNTF in neurons, oligodendrocytes, muscle cells, bone cells, adipocytes and retinal cells. These findings led to clinical trials to test the therapeutic potential of CNTF and CNTF derivatives for treating neurodegenerative and metabolic diseases. Promising results have encouraged continuation of studies for treating retinal degenerative diseases. Results of some clinical trials showed that side-effects may limit the systemically administrated doses of CNTF. Therefore, therapies being currently tested rely on local delivery of CNTF using encapsulated cytokine-secreting implants. Since the side effects of CNTF might be linked to its ability to activate the alternative IL6Rα-LIFRβ-gp130 receptor, CNTFR-specific mutants of CNTF have been developed that bind to the CNTFRα-LIFRβ-gp130 receptor. These developments may prove to be a breakthrough for therapeutic applications of systemically administered CNTF in pathologies such as multiple sclerosis or Alzheimer's disease. The "designer cytokine approach" offers future opportunities to further enhance specificity by conjugating mutant CNTF with modified soluble CNTFRα to target therapeutically relevant cells that express gp130-LIFRβ and a specific cell surface marker.
Collapse
Affiliation(s)
- Sarah Pasquin
- Département de Pharmacologie, Université de Montréal, 2900 Édouard Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mukut Sharma
- Renal Division, KCVA Medical Center, 4801 Linwood Blvd, Kansas City, MO 64128, USA
| | - Jean-François Gauchat
- Département de Pharmacologie, Université de Montréal, 2900 Édouard Montpetit, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
19
|
Paoletti I, De Gregorio V, Baroni A, Tufano MA, Donnarumma G, Perez JJ. Amygdalin analogues inhibit IFN-γ signalling and reduce the inflammatory response in human epidermal keratinocytes. Inflammation 2014; 36:1316-26. [PMID: 23933845 DOI: 10.1007/s10753-013-9670-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Peptide T (PT), an octapeptide fragment located in the V2 region of the HIV-1 gp120-coating protein, appears to be beneficial in the treatment of psoriasis. Our previous investigations suggest that keratinocytes play a key role in conditioning the therapeutic effects of PT in psoriasis. The aim of this study was to explore the effects of PT and the peptidomimetic natural products, Dhurrin and Prunasin, on the expression of the IL-6, IL-8, IL-23, HSP70 and ICAM-1 on IFN-γ and TNF-α-NHEK activated cells. Moreover, we analysed the interference of PT and its analogues through STAT-3 activation. Our results show that the analogues tested exhibit the beneficial biological effects of PT, suggesting the primary role of keratinocytes upon which PT and the peptidomimetics act directly, by reducing proinflammatory responses. Its reduction appears to be important for therapeutic approach in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Iole Paoletti
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Via Costantinopoli, 16, 80100, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
20
|
González-Rodríguez Á, Reibert B, Amann T, Constien R, Rondinone CM, Valverde ÁM. In vivo siRNA delivery of Keap1 modulates death and survival signaling pathways and attenuates concanavalin-A-induced acute liver injury in mice. Dis Model Mech 2014; 7:1093-100. [PMID: 24997191 PMCID: PMC4142729 DOI: 10.1242/dmm.015537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress contributes to the progression of acute liver failure (ALF). Transcription factor nuclear factor-erythroid 2-related factor (Nrf2) serves as an endogenous regulator by which cells combat oxidative stress. We have investigated liver damage and the balance between death and survival signaling pathways in concanavalin A (ConA)-mediated ALF using in vivo siRNA delivery targeting Keap1 in hepatocytes. For that goal, mice were injected with Keap1- or luciferase-siRNA-containing liposomes via the tail vein. After 48 hours, ALF was induced by ConA. Liver histology, pro-inflammatory mediators, antioxidant responses, cellular death, and stress and survival signaling were assessed. Keap1 mRNA and protein levels significantly decreased in livers of Keap1-siRNA-injected mice. In these animals, histological liver damage was less evident than in control mice when challenged with ConA. Likewise, markers of cellular death (FasL and caspases 8, 3 and 1) decreased at 4 and 8 hours post-injection. Nuclear Nrf2 and its target, hemoxygenase 1 (HO1), were elevated in Keap1-siRNA-injected mice compared with control animals, resulting in reduced oxidative stress in the liver. Similarly, mRNA levels of pro-inflammatory cytokines were reduced in livers from Keap1-siRNA-injected mice. At the molecular level, activation of c-jun (NH2) terminal kinase (JNK) was ameliorated, whereas the insulin-like growth factor I receptor (IGFIR) survival pathway was maintained upon ConA injection in Keap1-siRNA-treated mice. In conclusion, our results have revealed a potential therapeutic use of in vivo siRNA technology targeted to Keap1 to combat oxidative stress by modulating Nrf2-mediated antioxidant responses and IGFIR survival signaling during the progression of ALF.
Collapse
Affiliation(s)
- Águeda González-Rodríguez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain Instituto de Investigaciones Biomédicas "Alberto Sols" (Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid), 28029 Madrid, Spain
| | | | | | | | | | - Ángela M Valverde
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| |
Collapse
|
21
|
Liu T, Fei Z, Gangavarapu KJ, Agbenowu S, Bhushan A, Lai JCK, Daniels CK, Cao S. Interleukin-6 and JAK2/STAT3 signaling mediate the reversion of dexamethasone resistance after dexamethasone withdrawal in 7TD1 multiple myeloma cells. Leuk Res 2013; 37:1322-8. [PMID: 23871159 DOI: 10.1016/j.leukres.2013.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022]
Abstract
We previously reported the establishment and characteristics of a DXM-resistant cell line (7TD1-DXM) generated from the IL6-dependent mouse B cell hybridoma, 7TD1 cell line. After withdrawing DXM from 7TD1-DXM cells over 90 days, DXM significantly inhibited the cell growth and induced apoptosis in the cells (7TD1-WD) compared with 7TD1-DXM cells. Additionally, IL-6 reversed while IL-6 antibody and AG490 enhanced the effects of growth inhibition and apoptosis induced by DXM in 7TD1-WD cells. Our study demonstrates that 7TD1-DXM cells become resensitized to DXM after DXM withdrawal, and IL-6 and JAK2/STAT3 pathways may regulate the phenomenon.
Collapse
Affiliation(s)
- Tuoen Liu
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Imai S, Ikegami D, Yamashita A, Shimizu T, Narita M, Niikura K, Furuya M, Kobayashi Y, Miyashita K, Okutsu D, Kato A, Nakamura A, Araki A, Omi K, Nakamura M, James Okano H, Okano H, Ando T, Takeshima H, Ushijima T, Kuzumaki N, Suzuki T, Narita M. Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain. Brain 2013; 136:828-43. [DOI: 10.1093/brain/aws330] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
23
|
Yan C, Qu P, Du H. Myeloid-specific expression of Stat3C results in conversion of bone marrow mesenchymal stem cells into alveolar type II epithelial cells in the lung. SCIENCE CHINA-LIFE SCIENCES 2012; 55:576-90. [PMID: 22864832 PMCID: PMC8530440 DOI: 10.1007/s11427-012-4339-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 06/12/2012] [Indexed: 01/01/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) and myeloid lineage cells originate from the bone marrow, and influence each other in vivo. To elucidate the mechanism that controls the interrelationship between these two cell types, the signaling pathway of signal transducer and activator of transcription 3 (Stat3) was activated by overexpressing Stat3C in a newly established c-fms-rtTA/(TetO)(7)-CMV-Stat3C bitransgenic mouse model. In this system, Stat3C-Flag fusion protein was overexpressed in myeloid lineage cells after doxycycline treatment. Stat3C overexpression induced systematic elevation of macrophages and neutrophils in multiple organs. In the lung, tissue neoplastic pneumocyte proliferation was observed. After in vitro cultured hSP-B 1.5-kb lacZ BMSCs were injected into the bitransgenic mice, BMSCs were able to repopulate in multiple organs, self-renew in the bone marrow and spleen, and convert into alveolar type II epithelial cells. The bone marrow transplantation study indicated that increases of myeloid lineage cells and BMSC-AT II cell conversion were due to malfunction of myeloid progenitor cells as a result of Stat3C overexpression. The study supports the concept that activation of the Stat3 pathway in myeloid cells plays an important role in BMSC function, including homing, repopulating and converting into residential AT II epithelial cells in the lung.
Collapse
Affiliation(s)
- Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5188, USA.
| | | | | |
Collapse
|
24
|
Abstract
We look back on the discoveries that the tyrosine kinases TYK2 and JAK1 and the transcription factors STAT1, STAT2, and IRF9 are required for the cellular response to type I interferons. This initial description of the JAK-STAT pathway led quickly to additional discoveries that type II interferons and many other cytokines signal through similar mechanisms. This well-understood pathway now serves as a paradigm showing how information from protein-protein contacts at the cell surface can be conveyed directly to genes in the nucleus. We also review recent work on the STAT proteins showing the importance of several different posttranslational modifications, including serine phosphorylation, acetylation, methylation, and sumoylation. These remarkably proficient proteins also provide noncanonical functions in transcriptional regulation and they also function in mitochondrial respiration and chromatin organization in ways that may not involve transcription at all.
Collapse
Affiliation(s)
- George R. Stark
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - James E. Darnell
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, NY 10065-6399, USA
| |
Collapse
|
25
|
Bode JG, Albrecht U, Häussinger D, Heinrich PC, Schaper F. Hepatic acute phase proteins--regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. Eur J Cell Biol 2011; 91:496-505. [PMID: 22093287 DOI: 10.1016/j.ejcb.2011.09.008] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 12/16/2022] Open
Abstract
The function of the liver as an important constituent of the immune system involved in innate as well as adaptive immunity is warranted by different highly specialized cell populations. As the major source of acute phase proteins, including secreted pathogen recognition receptors (PRRs), short pentraxins, components of the complement system or regulators of iron metabolism, hepatocytes are essential constituents of innate immunity and largely contribute to the control of a systemic inflammatory response. The production of acute phase proteins in hepatocytes is controlled by a variety of different cytokines released during the inflammatory process with IL-1- and IL-6-type cytokines as the leading regulators operating both as a cascade and as a network having additive, inhibitory, or synergistic regulatory effects on acute phase protein expression. Hence, IL-1β substantially modifies IL-6-induced acute phase protein production as it almost completely abrogates production of acute phase proteins such as γ-fibrinogen, α(2)-macroglobulin or α(1)-antichymotrypsin, whereas production of for example hepcidin, C-reactive protein and serum amyloid A is strongly up-regulated. This switch-like regulation of IL-6-induced acute phase protein production by IL-1β is due to a complex processing of the intracellular signaling events activated in response to IL-6 and/or IL-1β, with the crosstalk between STAT3- and NF-κB-mediated signal transduction being of particular importance. Recent data suggest that in this context complex formation between STAT3 and the p65 subunit of NF-κB might be of key importance. The present review summarizes the regulation of acute phase protein production focusing on the role of the crosstalk of STAT3- and NF-κB-driven pathways for transcriptional control of acute phase gene expression.
Collapse
Affiliation(s)
- Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty, Heinrich-Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
26
|
Wang K, Zhou B, Zhang J, Xin Y, Lai T, Wang Y, Hou Q, Song Y, Chen Y, Quan Y, Xi M, Zhang L. Association of Signal Transducer and Activator of Transcription 3 Gene Polymorphisms with Cervical Cancer in Chinese Women. DNA Cell Biol 2011; 30:931-6. [PMID: 21668356 DOI: 10.1089/dna.2010.1179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Kana Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Zhang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Province People's Hospital, Chengdu, Sichuan, China
| | - Yalan Xin
- Department of Gynecology and Obstetrics, Meishan City Women and Child Care Hospital, Meishan, Sichuan, China
| | - Ting Lai
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyun Wang
- Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qiannan Hou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaping Song
- Laboratory of Molecular Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Chen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Quan
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Smit LS, Meyer DJ, Argetsinger LS, Schwartz J, Carter‐Su C. Molecular Events in Growth Hormone–Receptor Interaction and Signaling. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Abstract
IL-20 was discovered 10 years ago as a new member of the IL-10 family of cytokines. IL-20 shares the highest amino-acid sequence identity with IL-10, IL-24 and IL-19. IL-20 is secreted by immune cells and activated epithelial cells like keratinocytes. A high expression of the corresponding IL-20 receptor chains is detected on epithelial cells. In terms of function, IL-20 might therefore mediate a crosstalk between epithelial cells and tissue-infiltrating immune cells under inflammatory conditions. Transgenic and knockout mouse models for some cytokines and receptors of the IL-10-type cytokines have provided new insights into the biology of this family. This review will focus on the biological functions of IL-20 and its receptors within the IL-10 cytokine network.
Collapse
|
29
|
Discrimination and evaluation of lactoferrin and delta-lactoferrin gene expression levels in cancer cells and under inflammatory stimuli using TaqMan real-time PCR. Biometals 2010; 23:441-52. [DOI: 10.1007/s10534-010-9305-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/03/2010] [Indexed: 01/11/2023]
|
30
|
Feingold KR, Shigenaga JK, Patzek SM, Chui LG, Moser A, Grunfeld C. Endotoxin, zymosan, and cytokines decrease the expression of the transcription factor, carbohydrate response element binding protein, and its target genes. Innate Immun 2010; 17:174-82. [PMID: 20100709 DOI: 10.1177/1753425909357578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Carbohydrate response element binding protein (ChREBP) is a recently discovered transcription factor whose levels and activity are increased by glucose leading to the activation of target genes, which include acetyl-CoA carboxylase, fatty acid synthase, and liver-type pyruvate kinase. Here, we demonstrate that lipopolysaccharide (LPS) treatment causes a marked decrease in ChREBP mRNA and protein levels in the liver of mice fed a normal chow diet or in mice fasted for 24 h and then re-fed a high carbohydrate diet. This decrease occurs rapidly and is a sensitive response (half-maximal dose 0.1 μg/mouse). The decrease in ChREBP is accompanied by a decrease in the expression of ChREBP target genes. Zymosan and turpentine treatment also decrease hepatic ChREBP levels and the expression of its target genes. Additionally, tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) decrease liver ChREBP expression both in vivo and in Hep3B cells in culture. Finally, LPS decreased ChREBP expression in muscle and adipose tissue. These studies demonstrate that ChREBP is down-regulated during the acute phase response resulting in alterations in the expression of ChREBP regulated target genes. Thus, ChREBP joins a growing list of transcription factors that are regulated during the acute phase response.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Department of Veterans Affairs Medical Center, University of California-San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Peerani R, Onishi K, Mahdavi A, Kumacheva E, Zandstra PW. Manipulation of signaling thresholds in "engineered stem cell niches" identifies design criteria for pluripotent stem cell screens. PLoS One 2009; 4:e6438. [PMID: 19649273 PMCID: PMC2713412 DOI: 10.1371/journal.pone.0006438] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 06/30/2009] [Indexed: 12/22/2022] Open
Abstract
In vivo, stem cell fate is regulated by local microenvironmental parameters. Governing parameters in this stem cell niche include soluble factors, extra-cellular matrix, and cell-cell interactions. The complexity of this in vivo niche limits analyses into how individual niche parameters regulate stem cell fate. Herein we use mouse embryonic stem cells (mESC) and micro-contact printing (microCP) to investigate how niche size controls endogenous signaling thresholds. microCP is used to restrict colony diameter, separation, and degree of clustering. We show, for the first time, spatial control over the activation of the Janus kinase/signal transducer and activator of transcription pathway (Jak-Stat). The functional consequences of this niche-size-dependent signaling control are confirmed by demonstrating that direct and indirect transcriptional targets of Stat3, including members of the Jak-Stat pathway and pluripotency-associated genes, are regulated by colony size. Modeling results and empirical observations demonstrate that colonies less than 100 microm in diameter are too small to maximize endogenous Stat3 activation and that colonies separated by more than 400 microm can be considered independent from each other. These results define parameter boundaries for the use of ESCs in screening studies, demonstrate the importance of context in stem cell responsiveness to exogenous cues, and suggest that niche size is an important parameter in stem cell fate control.
Collapse
Affiliation(s)
- Raheem Peerani
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alborz Mahdavi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Eugenia Kumacheva
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peter W. Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
Wiesinger MY, Haan S, Wüller S, Kauffmann ME, Recker T, Küster A, Heinrich PC, Müller-Newen G. Development of an IL-6 Inhibitor Based on the Functional Analysis of Murine IL-6Rα1. ACTA ACUST UNITED AC 2009; 16:783-94. [DOI: 10.1016/j.chembiol.2009.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 05/28/2009] [Accepted: 06/24/2009] [Indexed: 12/17/2022]
|
33
|
Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, Yu S, Stephens LC, Cui X, Murrow G, Coombes K, Muller W, Hung MC, Perou CM, Lee AV, Fang X, Mills GB. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 2009; 15:539-50. [PMID: 19477432 PMCID: PMC4157573 DOI: 10.1016/j.ccr.2009.03.027] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/05/2009] [Accepted: 03/26/2009] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) acts through high-affinity G protein-coupled receptors to mediate a plethora of physiological and pathological activities associated with tumorigenesis. LPA receptors and autotaxin (ATX/LysoPLD), the primary enzyme producing LPA, are aberrantly expressed in multiple cancer lineages. However, the role of ATX and LPA receptors in the initiation and progression of breast cancer has not been evaluated. We demonstrate that expression of ATX or each edg family LPA receptor in mammary epithelium of transgenic mice is sufficient to induce a high frequency of late-onset, estrogen receptor (ER)-positive, invasive, and metastatic mammary cancer. Thus, ATX and LPA receptors can contribute to the initiation and progression of breast cancer.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Animals
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cloning, Molecular
- Female
- Humans
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lymphatic Metastasis
- Male
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Neoplasm Invasiveness
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Phosphodiesterase I/genetics
- Phosphodiesterase I/metabolism
- Phosphoric Diester Hydrolases
- Pyrophosphatases/genetics
- Pyrophosphatases/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Shuying Liu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Makiko Umezu-Goto
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Mandi Murph
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fan Zhang
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuangxing Yu
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Clifton Stephens
- Department of Veterinary Medicine & Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaojiang Cui
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Houston, TX 77030, USA
- Department of Molecular Oncology, John Wayne Cancer Institute Saint John's Health Center, Santa Monica, CA 90404, USA
| | - George Murrow
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin Coombes
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian V. Lee
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Houston, TX 77030, USA
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: Dr. Gordon B. Mills, Department of Systems Biology, M D Anderson Cancer Center 1515 Holcombe Blvd., Houston, TX 77030, USA, , Tel (713) 563-4200, Fax (713) 563-4235
| |
Collapse
|
34
|
Zins EL, Rochut S, Pepe C. Theoretical and experimental studies of cationized uracil complexes in the gas phase. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:40-49. [PMID: 18698558 DOI: 10.1002/jms.1468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cationized uracil clusters were generated in the gas phase by electrospray ionization (ESI). Mass spectrometry experiments showed that with particular experimental conditions, decameric uracil clusters are magic number clusters. MS/MS experiments demonstrated that the structure of these decameric uracil clusters depends substantially on the size and the charge of the cation. On the basis of the ab initio and density functional theory (DFT) quantum chemistry calculations, structures for these decameric clusters were proposed. These structures are in agreement with the experimental mass spectra of modified nucleobases. Theoretical calculations showed that complexes experimentally observed using ESI-MS techniques, are not naturally the most stable in the gas phase.
Collapse
Affiliation(s)
- Emilie-Laure Zins
- Université Pierre et Marie Curie, Paris 6, Laboratoire de Dynamique, Interactions et Réactivité, CNRS, UMR 7075, Paris, France.
| | | | | |
Collapse
|
35
|
Gangavarapu KJ, Olbertz JL, Bhushan A, Lai JCK, Daniels CK. Apoptotic resistance exhibited by dexamethasone-resistant murine 7TD1 cells is controlled independently of interleukin-6 triggered signaling. Apoptosis 2008; 13:1394-400. [PMID: 18819004 DOI: 10.1007/s10495-008-0265-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Interleukin-6 (IL6)-mediated signaling is known to play a role in pathogenesis and resistance in several cancers like multiple myeloma (MM). In this report we used the IL6-dependent 7TD1 murine B-cell hybridoma as an in vitro model to study the interactions between IL6-signaling pathways and the development of dexamethasone resistance. Though in initial stages, 7TD1 cells grew IL6-dependent and were sensitive to dexamethasone-induced apoptosis, chronic exposure to dexamethasone led to a dexamethasone-resistant phenotype (7TD1-Dxm) that grew independent of exogenous IL6. While IL6-mediated JAK/STAT3 and PI3K/AKT signaling was important for proliferation of both cell lines, as shown in proliferation assays using the respective pathway inhibitors, AG490 and LY294002, the resistant cells were insensitive to induction of apoptosis using the same. STAT3 was constitutively phosphorylated in resistant cells and inhibition of its dimerization induced apoptosis but did not alter their insensitivity to dexamethasone. Our results suggest a role of entities downstream of IL6-mediated JAK/STAT3 signaling in development of dexamethasone resistance by 7TD1-Dxm cells.
Collapse
Affiliation(s)
- Kalyan J Gangavarapu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Campus Box 8334, Pocatello, ID 83209, USA
| | | | | | | | | |
Collapse
|
36
|
Hosui A, Hennighausen L. Genomic dissection of the cytokine-controlled STAT5 signaling network in liver. Physiol Genomics 2008; 34:135-43. [PMID: 18460640 DOI: 10.1152/physiolgenomics.00048.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Growth hormone (GH) controls the physiology and pathophysiology of the liver, and its signals are conducted by two members of the family of signal transducers and activators of transcription, STAT5A and STAT5B. Mice in which the Stat5a/b locus has been inactivated specifically in hepatocytes display GH resistance, the sex-specific expression of genes associated with liver metabolism and the cytochrome P-450 system is lost, and they develop hepatosteatosis. Several groups have shown by global gene expression profiling that a cadre of STAT5A/B target genes identify genetic cascades induced by GH and other cytokines. Evidence is accumulating that in the absence of STAT5A/B GH aberrantly activates STAT1 and STAT3 and their downstream target genes and thereby offers a partial explanation of some of the physiological alterations observed in Stat5a/b-null mice and human patients. We hypothesize that phenotypic changes observed in the absence of STAT5A/B are due to two distinct molecular consequences: first, the failure of STAT5A/B target genes to be activated by GH and second, the rerouting of GH signaling to other members of the STAT family. Rerouting of GH signaling to STAT1 and STAT3 might partially compensate for the loss of STAT5A/B, but it certainly activates biological programs distinct from STAT5A/B. Here we discuss the extent to which studies on global gene expression profiling have fostered a better understanding of the biology behind cytokine-STAT5A/B networks in hepatocytes. We also explore whether this wealth of information on gene activity can be used to further understand the roles of cytokines in liver disease.
Collapse
Affiliation(s)
- Atsushi Hosui
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0822, USA
| | | |
Collapse
|
37
|
Ura H, Usuda M, Kinoshita K, Sun C, Mori K, Akagi T, Matsuda T, Koide H, Yokota T. STAT3 and Oct-3/4 control histone modification through induction of Eed in embryonic stem cells. J Biol Chem 2008; 283:9713-23. [PMID: 18201968 DOI: 10.1074/jbc.m707275200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mouse embryonic stem (ES) cells can self-renew in the presence of leukemia inhibitory factor (LIF). Several essential transcription factors have been identified for the self-renewal of mouse ES cells, including STAT3, Oct-3/4, and Nanog. The molecular mechanism of ES cell self-renewal, however, is not fully understood. In the present study, we identified Eed, a core component of Polycomb repressive complex 2, as a downstream molecule of STAT3 and Oct-3/4. Artificial activation of STAT3 resulted in increased expression of Eed, whereas expression of a dominant negative mutant of STAT3 or suppression of Oct-3/4 expression led to down-regulation of Eed. Reporter, chromatin immunoprecipitation, and electrophoretic mobility shift assays revealed that STAT3 and Oct-3/4 directly bind to the promoter region of Eed, suggesting that Eed is a common target molecule of STAT3 and Oct-3/4. We also found that suppression of STAT3, Oct-3/4, or Eed causes induction of differentiation-associated genes as well as loss of Lys(27)-trimethylated histone H3 at the promoter regions of the differentiation-associated genes. Suppression of STAT3 and Oct-3/4 also resulted in the absence of Eed at the promoter regions. These results suggest that STAT3 and Oct-3/4 maintain silencing of differentiation-associated genes through up-regulation of Eed in self-renewing ES cells.
Collapse
Affiliation(s)
- Hiroki Ura
- Department of Stem Cell Biology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vougier S, Cheung SH, Li L, Hodgson G, Shaw PE. Anomalous behaviour of the STAT3 binding site in the human c-myc P2 promoter. Biochem Biophys Res Commun 2007; 364:627-32. [PMID: 17959148 DOI: 10.1016/j.bbrc.2007.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 11/21/2022]
Abstract
The Signal Transducer and Activator of Transcription 3 (STAT3) is necessary for ES cell renewal, plays critical roles during vertebrate development, and has oncogenic potential. STAT3 also mediates cytokine responses notably in the induction of acute phase response genes in the liver. Thus STAT3 is a pleiotropic regulator during cell proliferation and a cell-specific mediator of pro-inflammatory responses. How STAT3 fulfils both roles is unclear. To address this question we attempted to characterise pre-initiation complexes (PICs) on STAT3-responsive promoters containing the c-myc P2 promoter element (P2E) or c-fos Serum-Inducible Element (SIE). Although both promoters mediated cytokine responses in HepG2 cells, poor binding of STAT1 and STAT3 in vitro precluded isolation of active promoter complexes on the P2E. The inability of STAT3 to bind the P2E in vitro correlated with failure of the P2E to mediate cytokine-responsive gene expression in several other cell types. Thus the c-myc P2E behaves as a dual-purpose STAT3 element with anomalous characteristics in HepG2 cells.
Collapse
Affiliation(s)
- Stéphanie Vougier
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
39
|
Murata H, Yagi T, Iwagaki H, Ogino T, Sadamori H, Matsukawa H, Umeda Y, Haga S, Takaka N, Ozaki M. Mechanism of impaired regeneration of fatty liver in mouse partial hepatectomy model. J Gastroenterol Hepatol 2007; 22:2173-80. [PMID: 18031377 DOI: 10.1111/j.1440-1746.2006.04798.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM The mechanism of injury in steatotic liver under pathological conditions been extensively examined. However, the mechanism of an impaired regeneration is still not well understood. The aim of this study was to analyze the mechanism of impaired regeneration of steatotic liver after partial hepatectomy (PH). METHODS db/db fatty mice and lean littermates were used for the experiments. Following 70% PH, the survival rate and recovery of liver mass were examined. Liver tissue was histologically examined and analyzed by western blotting and RT-PCR. RESULTS Of 35 db/db mice, 25 died within 48 h of PH, while all of the control mice survived. Liver regeneration of surviving db/db mice was largely impaired. In db/db mice, mitosis of hepatocytes after PH was disturbed, even though proliferating cell nuclear antigen (PCNA) expression (G1 to S phase marker) in hepatocytes was equally observed in both mice groups. Interestingly, phosphorylation of Cdc2 in db/db mice was suppressed by reduced expression of Wee1 and Myt1, which phosphorylate Cdc2 in S to G2 phase. CONCLUSIONS In steatotic liver, cell-cycle-related proliferative disorders occurred at mid-S phase after PCNA expression. Reduced expression of Wee1 and Myt1 kinases may therefore maintain Cdc2 in an unphosphorylated state and block cell cycle progression in mid-S phase. These kinases may be critical factors involved in the impaired liver regeneration in fatty liver.
Collapse
Affiliation(s)
- Hiroshi Murata
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine and Dentistry, Shikata, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li Y, Du H, Qin Y, Roberts J, Cummings OW, Yan C. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res 2007; 67:8494-503. [PMID: 17875688 DOI: 10.1158/0008-5472.can-07-0647] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lung is an organ for host defense to clear up pathogens through innate and adaptive immunity. This process involves up-regulation of proinflammatory cytokines and chemokines that lead to activation of the signal transducers and activators of the transcription 3 (Stat3) signaling pathway. Overexpression of Stat3C in alveolar type II epithelial cells of CCSP-rtTA/(tetO)(7)-Stat3C bitransgenic mice leads to severe pulmonary inflammation, including immune cell infiltration and up-regulation of proinflammatory cytokines and chemokines in the lung. As a consequence, spontaneous lung bronchoalveolar adenocarcinoma was observed in bitransgenic mice. Aberrantly expressed genes in the bitransgenic model were identified and served as biomarkers for human bronchoalveolar adenocarcinoma. During tumorigenesis, genes that are critical to epithelial cell proliferation in lung development were reactivated. Therefore, Stat3 is a potent proinflammatory molecule that directly causes spontaneous lung cancer in vivo.
Collapse
Affiliation(s)
- Yuan Li
- The Center for Immunobiology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
41
|
Zhu Q, Jing N. Computational study on mechanism of G-quartet oligonucleotide T40214 selectively targeting Stat3. J Comput Aided Mol Des 2007; 21:641-8. [PMID: 18034310 DOI: 10.1007/s10822-007-9147-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 11/01/2007] [Indexed: 12/22/2022]
Abstract
The mounting evidences have shown that signal transducer and activator of transcription 3 (Stat3) is a critical target for cancer therapy. Recently, we developed a G-quartet oligonucleotide T40214 as a novel and potent Stat3 inhibitor. T40214 specifically inhibited DNA-binding activity of Stat3 and significantly suppressed the growth of many tumor xenografts in nude mice. To determine the mechanism of GQ-ODNs selectively targeting Stat3, we established a 3D model of complex T40214/p-Stat3 dimer based on experimental evidences. The binding site of T40214 within Stat3 dimer was determined by statistical docking analysis. The results indicated that T40214 strongly interacted within the region from residue E638 through E652 of Stat3 dimer. The binding model refined by Hex docking disclosed that T40214 binds to SH2 domain of Stat3 and forms H-bonds with residues Q643, Q644, N646, and N647, which are critical for the binding interaction. The 3D models also suggested that T40214 inhibits Stat3 activity through disrupting the binding interaction between Stat3 dimer and DNA duplex for transcription. Our computational studies provided a platform for future structure-based drug design of novel Stat3 inhibitors.
Collapse
Affiliation(s)
- Qiqing Zhu
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, N1317.05, Houston, TX 77030, USA
| | | |
Collapse
|
42
|
Wegenka UM, Dikopoulos N, Reimann J, Adler G, Wahl C. The murine liver is a potential target organ for IL-19, IL-20 and IL-24: Type I Interferons and LPS regulate the expression of IL-20R2. J Hepatol 2007; 46:257-65. [PMID: 17069926 DOI: 10.1016/j.jhep.2006.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 08/03/2006] [Accepted: 08/17/2006] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS The biological functions of the recently discovered IL-10-related cytokines IL-19, IL-20, IL-22, IL-24 and their receptors IL-20R1, IL-20R2 and IL-22R are not clear. Therefore, the expression of these cytokines and their receptors in the hepatic acute phase response to LPS was analysed. Type I interferons have important immunomodulatory functions in bacterial infections. We investigated if they influence release and organ-specific expression of TNF, IL-6 and IL-10 and the responsiveness of liver to IL-10 related cytokines during the reaction to LPS in vivo. METHODS B6 and congenic IFNAR-/- mice were intraperitoneally injected with 5mg/kg LPS. Systemic release of cytokines was quantified by ELISA. Organ-specific expression of cytokines and their receptors was evaluated by (semi quantitative or quantitative) RT-PCR. RESULTS The cytokines IL-19, IL-22 and the IL-20R2 receptor subunit are up-regulated by LPS in the liver of normal mice. IFNalpha/beta enhance the secretion and expression of IL-6 and IL-10 during the response to LPS, but also the up-regulation of IL-20R2 expression. CONCLUSIONS We show that the liver is a potential target for IL-19, IL-20 and IL-24. During an LPS response, IFNalpha/beta influence cytokine secretion and expression and possibly the response to IL-19 and IL-24.
Collapse
Affiliation(s)
- Ursula Maria Wegenka
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strasse 8, D-89081 Ulm, Germany.
| | | | | | | | | |
Collapse
|
43
|
Mezzache S, Alves S, Paumard JP, Pepe C, Tabet JC. Theoretical and gas-phase studies of specific cationized purine base quartet. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:1075-82. [PMID: 17310504 DOI: 10.1002/rcm.2934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Guanine tetraplexes are biological non-covalent systems stabilized by alkali cations. Thus, self-clustering of guanine, xanthine and hypoxanthine with alkali cations (Na(+), K(+) and Li(+)) is investigated by electrospray ionization mass spectrometry (ESI-MS) in order to provide new insights into G-quartets, hydrogen-bonded complexes. ESI assays displayed magic numbers of tetramer adducts with Na(+), Li(+) and K(+), not only for guanine, but also for xanthine bases. The optimized structures of guanine and xanthine quartets have been determined by B3LYP hybrid density functional theory calculations. Complexes of metal ions with quartets are classified into different structure types. The optimized structures obtained for each quartet explain the gas-phase results. The gas-phase binding sequence between the monovalent cations and the xanthine quartet follows the order Li(+) > Na(+) > K(+), which is consistent with that obtained for the guanine quartet in the literature. The smallest stabilization energy of K(+) and its position versus the other alkali metal ions in guanine and xanthine quartets is consistent with the fact that the potassium cation can be located between two guanine or xanthine quartets, for providing a [gua(or (xan))(8)+K](+) octamer adduct. Even if an abundant octamer adduct with K(+) for xanthine was detected by ESI-MS, it was not the case for guanine.
Collapse
Affiliation(s)
- Sakina Mezzache
- Université Pierre et Marie Curie-Paris 6, CNRS Synthèse, Structure et Fonction de Molécules Bioactives, UMR 7613, 4 place Jussieu, 75252 Cedex Paris, France
| | | | | | | | | |
Collapse
|
44
|
Cao Y, Brombacher F, Tunyogi-Csapo M, Glant TT, Finnegan A. Interleukin-4 regulates proteoglycan-induced arthritis by specifically suppressing the innate immune response. ACTA ACUST UNITED AC 2007; 56:861-70. [PMID: 17330244 DOI: 10.1002/art.22422] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Interleukin-4 (IL-4) is an antiinflammatory cytokine that inhibits the onset and severity of proteoglycan-induced arthritis (PGIA). To distinguish the role of IL-4 in the innate immune response versus the adaptive immune response, we generated mice with a specific deletion of the IL-4 receptor alpha-chain (IL-4Ralpha) in macrophages and neutrophils. METHODS To obtain mice in which IL-4Ralpha is deleted in macrophages and neutrophils, we intercrossed mice carrying a loxP-flanked (floxed) IL-4Ralpha allele and Cre recombinase expressed under control of the regulatory region for the lysozyme M gene (LysM(cre) mice) with conditional IL-4Ralpha(flox/flox) mice and then mated them to complete IL-4Ralpha(-/-) mice to obtain hemizygous LysM(cre)IL-4Ralpha(flox/-) mice. LysM(cre)-negative IL-4Ralpha(flox/-) mice (IL-4Ralpha(flox/-) mice) were used as control mice. PGIA was induced by immunization with human PG in adjuvant. The onset, incidence, and severity of arthritis were monitored over time. Levels of proinflammatory cytokines were measured in the sera of PG-immunized mice, and cytokine and chemokine transcripts were measured in joints. RESULTS The severity of PGIA was exacerbated in IL-4Ralpha(-/-) and LysM(cre)IL-4Ralpha(flox/-) mice in comparison with control (IL-4Ralpha(flox/-)) mice. The increase in arthritis susceptibility in IL-4Ralpha(-/-) and LysM(cre)IL-4Ralpha(flox/-) mice correlated with elevated serum levels of the proinflammatory cytokines IL-1beta and IL-6 and with elevated cytokine (IL-1beta and IL-6) and chemokine (macrophage inflammatory protein 1alpha [MIP-1alpha] and MIP-2) transcripts from joints. However, arthritis susceptibility did not correlate with IL-2 or interferon-gamma (IFNgamma) concentrations or with PG-specific antibody IgG2a isotype, since levels of IL-2, IFNgamma, or PG-specific antibody IgG2a isotype in control (IL-4Ralpha(flox/-)) and LysM(cre)IL-4Ralpha(flox/-) mice were reduced in comparison with those in IL-4Ralpha(-/-) mice. CONCLUSION These findings indicate that IL-4 functions as a major antiinflammatory cytokine in PGIA by governing the activity of macrophages/neutrophils and less so by controlling T cell activity and autoantibody isotype expression.
Collapse
Affiliation(s)
- Yanxia Cao
- Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
Stat3 is constitutively activated in many human cancers where it functions as a critical mediator of oncogenic signaling through transcriptional activation of genes encoding apoptosis inhibitors (e.g. Bcl-x(L), Mcl-1 and survivin), cell-cycle regulators (e.g. cyclin D1 and c-Myc) and inducers of angiogenesis (e.g. vascular endothelial growth factor). This article reviews several approaches that have been pursued for targeting Stat3 in cancer therapy including antisense strategies, tyrosine kinase inhibition, decoy phosphopeptides, decoy duplex oligonucleotides and G-quartet oligodeoxynucleotides (GQ-ODN). The GQ-ODN strategy is reviewed in somewhat greater detail than the others because it includes a novel system that effectively delivers drug into cells and tissues, addresses successfully the issue of specificity of targeting Stat3 versus Stat1, and has demonstrated efficacy in vivo.
Collapse
Affiliation(s)
- Naijie Jing
- Department of Medicine and Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
47
|
Lian X, Qin Y, Hossain SA, Yang L, White A, Xu H, Shipley JM, Li T, Senior RM, Du H, Yan C. Overexpression of Stat3C in pulmonary epithelium protects against hyperoxic lung injury. THE JOURNAL OF IMMUNOLOGY 2005; 174:7250-6. [PMID: 15905571 DOI: 10.4049/jimmunol.174.11.7250] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute lung injury is a side effect of therapy with a high concentration of inspired oxygen in patients. The molecular mechanism underlining this effect is poorly understood. In this study, we report that overexpression of Stat3C, a constitutive active form of STAT3, in respiratory epithelial cells of a doxycycline-controlled double-transgenic mouse system protects lung from inflammation and injury caused by hyperoxia. In this mouse line, >50% of transgenic mice survived exposure to 95% oxygen at day 7, compared with 0% survival of wild-type mice. Overexpression of STAT3C delays acute capillary leakage and neutrophil infiltration into the alveolar region. This protection is mediated at least partially through inhibition of hyperoxia-induced synthesis and release of matrix metalloproteinase (MMP)-9 and MMP-12 by neutrophils and alveolar resident cells. In some MMP-9(-/-) mice, prolonged survival was observed under hyperoxic condition. The finding supports a concept that activation of the Stat3 pathway plays a role to prevent hyperoxia-induced inflammation and injury in the lung.
Collapse
Affiliation(s)
- Xuemei Lian
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Militi S, Chiapparino C, Testa U, Carminati P, De Santis R, Serlupi-Crescenzi O. Role of IL-6 and CD23 in the resistance to growth arrest and apoptosis in LCL41 B lymphoma cells. Cytokine 2005; 31:314-23. [PMID: 16009564 DOI: 10.1016/j.cyto.2005.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 05/10/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Interleukin-6 (IL-6) is a growth and survival factor in Epstein-Barr virus (EBV)-infected B lymphoma cells and IL-6 antagonists have been used in clinical practice for this pathology. We thus wanted to investigate the effect of the IL-6 receptor antagonist Sant7 on proliferative and anti-apoptotic signals in the IL-6-secreting LCL41 B lymphoid cells, taken from a patient with EBV-induced lymphoproliferative disorder. Results show efficient inhibition of constitutive Stat3 activation by Sant7. However, this inhibition is associated with marginal induction of apoptosis and with minor decrease of cell proliferation, contrary to the effect of the Jak kinase inhibitor AG490, which down-regulates both proliferation and Stat3 activation. Anti-apoptotic markers such as Bcl-xL or Mcl-1 are constitutively expressed in these cells, and their expression is not affected by Sant7 treatment. Inhibition of Stat3 activation is therefore not sufficient to prevent proliferation and to induce apoptosis in these cells. In addition, low cell density is a condition favouring inhibition of cell clustering and anti-proliferative Sant7 activity. A marked inhibition of cell cluster formation and proliferation is achieved by antibody treatment against the CD23 mature B cell surface marker expressed in LCL41 cells. These findings may thus contribute to the identification of possible resistance mechanisms to growth arrest in B cell lymphoproliferative conditions.
Collapse
Affiliation(s)
- Stefania Militi
- Department of Immunology, Sigma-Tau SpA R&D, Via Pontina Km 30400, Pomezia, 00040 Rome, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Zheng J, Ather JL, Sonstegard TS, Kerr DE. Characterization of the infection-responsive bovine lactoferrin promoter. Gene 2005; 353:107-17. [PMID: 15935571 DOI: 10.1016/j.gene.2005.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 03/09/2005] [Accepted: 04/01/2005] [Indexed: 11/30/2022]
Abstract
The concentration of lactoferrin in bovine milk is dramatically increased in response to infection. The high levels of lactoferrin may have a role in the prevention of microbial infection of the mammary gland. However, molecular mechanisms of how the lactoferrin gene is regulated in the mammary gland in response to infection remain unknown. In this study, we isolated and characterized the 5' flanking region of the bovine lactoferrin gene. An 8.2 kilobase (kb) fragment of the bovine lactoferrin gene, containing 4.4 kb of 5' flanking region, exon 1, intron 1, and exon 2, was isolated from a bovine genomic library on two overlapping bacterial artificial chromosome (BAC) clones. Sequence analysis of the isolated lactoferrin gene revealed that the promoter region contains a high GC content, a non-canonical TATA box, multiple stimulating protein 1 (SP1)/GC elements, and other putative binding sites for transcription factors including nuclear factor-kappaB (NF-kappaB), activator protein 1 (AP1), signal transducer and activator of transcriptions 3 and 5 (STAT3 and STAT5), and steroid hormone receptors. To demonstrate that the isolated promoter is functional, 4.4 kb of 5' flanking region was inserted upstream from the firefly luciferase gene and the chimeric construct was transiently transfected into murine mammary epithelial cells. Transfection studies showed that the basal promoter activity is quite potent, being similar in strength to that of the simian virus 40 (SV40) promoter/enhancer. In addition, a 24-h treatment with Escherichia coli lipopolysaccharide (LPS) significantly stimulated its activity up to 2.3-fold in a dose-dependent manner. Furthermore, promoter deletion analysis indicated that the sequence up to -543 was sufficient for basal activity, whereas the sequence up to -1029 was required for maximal basal activity. The basal activity of the promoter is affected by both positive regulatory regions (-2462/-1879 and -1029/-75) and a negative regulatory region (-1407/-1029). LPS-responsive regions of the promoter were localized to the region from -1029 to -543 containing one STAT3 site and two NF-kappaB sites, and the region from -4355 to -2462 containing three AP1 sites and six NF-kappaB sites. Taken together, our findings suggested that the lactoferrin promoter responds to infection via the NF-kappaB pathway.
Collapse
Affiliation(s)
- Jiamao Zheng
- Lactation and Mammary Gland Biology Group, Department of Animal Science, 213 Terrill Hall, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
50
|
Jing N, Li Y, Xiong W, Sha W, Jing L, Tweardy DJ. G-quartet oligonucleotides: a new class of signal transducer and activator of transcription 3 inhibitors that suppresses growth of prostate and breast tumors through induction of apoptosis. Cancer Res 2004; 64:6603-9. [PMID: 15374974 DOI: 10.1158/0008-5472.can-03-4041] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stat3 is a signaling molecular and oncogene activated frequently in many human malignancies including the majority of prostate, breast, and head and neck cancers; yet, no current chemotherapeutic approach has been implemented clinically that specifically targets Stat3. We recently developed G-rich oligodeoxynucleotides, which form intramolecular G-quartet structures (GQ-ODN), as a new class of Stat3 inhibitor. GQ-ODN targeted Stat3 protein directly inhibiting its ability to bind DNA. When delivered into cells using polyethyleneimine as vehicle, GQ-ODN blocked ligand-induced Stat3 activation and Stat3-mediated transcription of antiapoptotic genes. To establish the effectiveness of GQ-ODN as a potential new chemotherapeutic agent, we systemically administered GQ-ODN (T40214 or T40231) plus polyethyleneimine or polyethyleneimine alone (placebo) by tail-vein injection into nude mice with prostate and breast tumor xenografts. Whereas the mean volume of breast tumor xenografts in placebo-treated mice increased >7-fold over 18 days, xenografts in the GQ-ODN-treated mice remained unchanged. Similarly, whereas the mean volume of prostate tumor xenografts in placebo-treated mice increased 9-fold over 10 days, xenografts in GQ-ODN-treated mice increased by only 2-fold. Biochemical examination of tumors from GQ-ODN-treated mice demonstrated a significant reduction in Stat3 activation, levels of the antiapoptotic proteins Bcl-2 and Bcl-xL, and an 8-fold increase in the number of apoptotic cells compared with the tumors of placebo-treated mice. Thus, GQ-ODN targeting Stat3 induces tumor cell apoptosis when delivered into tumor xenografts and represents a novel class of chemotherapeutic agents that holds promise for the systemic treatment of many forms of metastatic cancer.
Collapse
Affiliation(s)
- Naijie Jing
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|