1
|
Safe S, Zhang L. The Role of the Aryl Hydrocarbon Receptor (AhR) and Its Ligands in Breast Cancer. Cancers (Basel) 2022; 14:5574. [PMID: 36428667 PMCID: PMC9688153 DOI: 10.3390/cancers14225574] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a complex disease which is defined by numerous cellular and molecular markers that can be used to develop more targeted and successful therapies. The aryl hydrocarbon receptor (AhR) is overexpressed in many breast tumor sub-types, including estrogen receptor -positive (ER+) tumors; however, the prognostic value of the AhR for breast cancer patient survival is not consistent between studies. Moreover, the functional role of the AhR in various breast cancer cell lines is also variable and exhibits both tumor promoter- and tumor suppressor- like activity and the AhR is expressed in both ER-positive and ER-negative cells/tumors. There is strong evidence demonstrating inhibitory AhR-Rα crosstalk where various AhR ligands induce ER degradation. It has also been reported that different structural classes of AhR ligands, including halogenated aromatics, polynuclear aromatics, synthetic drugs and other pharmaceuticals, health promoting phytochemical-derived natural products and endogenous AhR-active compounds inhibit one or more of breast cancer cell proliferation, survival, migration/invasion, and metastasis. AhR-dependent mechanisms for the inhibition of breast cancer by AhR agonists are variable and include the downregulation of multiple genes/gene products such as CXCR4, MMPs, CXCL12, SOX4 and the modulation of microRNA levels. Some AhR ligands, such as aminoflavone, have been investigated in clinical trials for their anticancer activity against breast cancer. In contrast, several publications have reported that AhR agonists and antagonists enhance and inhibit mammary carcinogenesis, respectively, and differences between the anticancer activities of AhR agonists in breast cancer may be due in part to cell context and ligand structure. However, there are reports showing that the same AhR ligand in the same breast cancer cell line gives opposite results. These differences need to be resolved in order to further develop and take advantage of promising agents that inhibit mammary carcinogenesis by targeting the AhR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
2
|
Burman A, Garcia-Milian R, Whirledge S. Gene X environment: the cellular environment governs the transcriptional response to environmental chemicals. Hum Genomics 2020; 14:19. [PMID: 32448403 PMCID: PMC7247264 DOI: 10.1186/s40246-020-00269-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
Background An individual’s response to environmental exposures varies depending on their genotype, which has been termed the gene-environment interaction. The phenotype of cell exposed can also be a key determinant in the response to physiological cues, indicating that a cell-gene-environment interaction may exist. We investigated whether the cellular environment could alter the transcriptional response to environmental chemicals. Publicly available gene expression array data permitted a targeted comparison of the transcriptional response to a unique subclass of environmental chemicals that alter the activity of the estrogen receptor, xenoestrogens. Results Thirty xenoestrogens were included in the analysis, for which 426 human gene expression studies were identified. Comparisons were made for studies that met the predefined criteria for exposure length, concentration, and experimental replicates. The cellular response to the phytoestrogen genistein resulted in remarkably unique transcriptional profiles in breast, liver, and uterine cell-types. Analysis of gene regulatory networks and molecular pathways revealed that the cellular context mediated the activation or repression of functions important to cellular organization and survival, including opposing effects by genistein in breast vs. liver and uterine cell-types. When controlling for cell-type, xenoestrogens regulate unique gene networks and biological functions, despite belonging to the same class of environmental chemicals. Interestingly, the genetic sex of the cell-type also strongly influenced the transcriptional response to xenoestrogens in the liver, with only 22% of the genes significantly regulated by genistein common between male and female cells. Conclusions Our results demonstrate that the transcriptional response to environmental chemicals depends on a variety of factors, including the cellular context, the genetic sex of a cell, and the individual chemical. These findings highlight the importance of evaluating the impact of exposure across cell-types, as the effect is responsive to the cellular environment. These comparative genetic results support the concept of a cell-gene-environment interaction.
Collapse
Affiliation(s)
- Andreanna Burman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 310 Cedar St, PO Box 208063, New Haven, CT, 06520, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 310 Cedar St, PO Box 208063, New Haven, CT, 06520, USA.
| |
Collapse
|
3
|
Yin P, Liu Q, Pan Y, Yang W, Yang S, Wei W, Chen X, Hong Y, Bai D, Li XJ, Li S. Phosphorylation of myelin regulatory factor by PRKG2 mediates demyelination in Huntington's disease. EMBO Rep 2020; 21:e49783. [PMID: 32270922 PMCID: PMC9336218 DOI: 10.15252/embr.201949783] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/09/2022] Open
Abstract
Demyelination is a common pathological feature of a large number of neurodegenerative diseases including multiple sclerosis and Huntington's disease (HD). Laquinimod (LAQ) has been found to have therapeutic effects on multiple sclerosis and HD. However, the mechanism underlying LAQ's therapeutic effects remains unknown. Using HD mice that selectively express mutant huntingtin in oligodendrocytes and show demyelination, we found that LAQ reduces the Ser259 phosphorylation on myelin regulatory factor (MYRF), an oligodendrocyte-specific transcription factor promoting the expression of myelin-associated genes. The reduced MYRF phosphorylation inhibits MYRF's binding to mutant huntingtin and increases the expression of myelin-associated genes. We also found that PRKG2, a cGMP-activated protein kinase subunit II, promotes the Ser259-MYRF phosphorylation and that knocking down PRKG2 increased myelin-associated protein's expression in HD mice. Our findings suggest that PRKG2-regulated phosphorylation of MYRF is involved in demyelination and can serve as a potential therapeutic target for reducing demyelination.
Collapse
Affiliation(s)
- Peng Yin
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Qiong Liu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongcheng Pan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weili Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Su Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wenjie Wei
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingxing Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Physiology and Pathophysiology, Brain and Cognition Research Institute, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Hong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dazhang Bai
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shihua Li
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Yoshida I, Ishida K, Yoshikawa H, Kitamura S, Hiromori Y, Nishioka Y, Ido A, Kimura T, Nishikawa JI, Hu J, Nagase H, Nakanishi T. In vivo profiling of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced estrogenic/anti-estrogenic effects in female estrogen-responsive reporter transgenic mice. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121526. [PMID: 31732351 DOI: 10.1016/j.jhazmat.2019.121526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), commonly referred to simply as "dioxin", is a persistent environmental pollutant. Because of its high environmental persistence and biological accumulation, humans and animals are often exposed to TCDD. Therefore, the harmful effects on humans and animals is a major concern. Although studies have elucidated the adverse estrogenic and anti-estrogenic effects of TCDD, it is unclear in which tissues TCDD exerts these effects in vivo. To investigate the estrogen-related effects of TCDD in various tissues, we generated an improved estrogen-responsive reporter transgenic mouse in which the luciferase gene luc2 is expressed in response to estrogenic signals. Using these mice, we clarified that TCDD inhibits estrogenic signaling in liver and kidney but enhances estrogenic signaling in the pituitary gland in the same individual. Expression of aryl hydrocarbon receptor, aryl hydrocarbon receptor nuclear translocator, and estrogen receptor alpha mRNA was detected in liver, kidney, and pituitary gland, suggesting that the effects of TCDD on estrogenic signaling in these organs is independent of the expression pattern of these receptors. Thus, our results indicate that TCDD exerts both estrogenic and anti-estrogenic tissue-specific effects within the same individual.
Collapse
Affiliation(s)
- Ichiro Yoshida
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Keishi Ishida
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Hiroshi Yoshikawa
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Sho Kitamura
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie, 513-8670, Japan
| | - Yasushi Nishioka
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Akiko Ido
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Tomoki Kimura
- Faculty of Science and Engineering, Setsunan University, 17-8 Ikedanakamachi, Neyagawa, 572-8508, Japan
| | - Jun-Ichi Nishikawa
- Laboratory of Health Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo, 663-8179, Japan
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hisamitsu Nagase
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan.
| |
Collapse
|
5
|
Hassan A, Bagu ET, Levesque M, Patten SA, Benhadjeba S, Edjekouane L, Villemure I, Tremblay A, Moldovan F. The 17β-estradiol induced upregulation of the adhesion G-protein coupled receptor (ADGRG7) is modulated by ESRα and SP1 complex. Biol Open 2019; 8:bio037390. [PMID: 30598481 PMCID: PMC6361214 DOI: 10.1242/bio.037390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
The physiological role and the regulation of ADGRG7 are not yet elucidated. The functional involvement of this receptor was linked with different physiological process such as reduced body weight, gastrointestinal function and recently, a gene variant in ADGRG7 was observed in patients with adolescent idiopathic scoliosis. Here, we identify the ADGRG7 as an estrogen-responsive gene under the regulation of estrogen receptor ERα in scoliotic osteoblasts and other cells lines. We found that ADGRG7 expression was upregulated in response to estrogen (E2) in adolescent idiopathic scoliosis (AIS) cells. ADGRG7 promoter studies indicate the presence of an ERα response half site in close vicinity of a specificity protein 1 (SP1) binding site. Mutation of the SP1 site completely abrogated the response to E2, indicating its essential requirement. ChIP confirmed the binding of SP1 and ERα to the ADGRG7 promoter. Our results identify the ADGRG7 gene as an estrogen-responsive gene under the control of ERα and SP1 tethered actions, suggesting a possible role of estrogens in the regulation of ADGRG7 This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amani Hassan
- CHU Sainte Justine Research Center, Montréal H3T 1C5, Canada
| | - Edward T Bagu
- Department of Basic Biomedical Sciences, Sanford Medical School, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | | | | - Isabelle Villemure
- Department of Mechanical Engineering, Ecole Polytechnique de Montréal, Montréal H3T 1J4, Canada
| | - André Tremblay
- CHU Sainte Justine Research Center, Montréal H3T 1C5, Canada
| | - Florina Moldovan
- CHU Sainte Justine Research Center, Montréal H3T 1C5, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal H3C 3J7, Canada
| |
Collapse
|
6
|
Gilbert J, De Iuliis GN, Tarleton M, McCluskey A, Sakoff JA. ( Z)-2-(3,4-Dichlorophenyl)-3-(1 H-Pyrrol-2-yl)Acrylonitrile Exhibits Selective Antitumor Activity in Breast Cancer Cell Lines via the Aryl Hydrocarbon Receptor Pathway. Mol Pharmacol 2018; 93:168-177. [PMID: 29269419 DOI: 10.1124/mol.117.109827] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023] Open
Abstract
We have previously reported the synthesis and breast cancer selectivity of (Z)-2-(3,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile (ANI-7) in cancer cell lines. To further evaluate the selectivity of ANI-7, we have expanded upon the initial cell line panel to now include the breast cancer cell lines (MCF7, MCF7/VP16, BT474, T47D, ZR-75-1, SKBR3, MDA-MB-468, BT20, MDA-MB-231); normal breast cells (MCF-10A); and cell lines derived from colon (HT29), ovarian (A2780), lung (H460), skin (A431), neuronal (BE2C), glial (U87, SJG2), and pancreatic (MIA) cancers. We now show that ANI-7 is up to 263-fold more potent at inhibiting the growth of breast cancer cell lines (MCF7, MCF7/VP16, BT474, T47D, ZR-75-1, SKBR3, MDA-MB-468) than normal breast cells (MCF-10A) or cell lines derived from other tumor types. Measures of growth inhibition, cell cycle analysis, morphologic assessment, Western blotting, receptor binding, gene expression, small interfering RNA technology, reporter activity, and enzyme inhibition assays were exploited to define the mechanism of action of ANI-7. In this work, we report that ANI-7 mediates its effects via the activation of the aryl hydrocarbon receptor (AhR) pathway and the subsequent induction of CYP1-metabolizing mono-oxygenases. The metabolic conversion of ANI-7 induces DNA damage, checkpoint activation, S-phase cell cycle arrest, and cell death in sensitive breast cancer cell lines. Basal expression of AhR, the AhR nuclear translocator, and the CYP1 family members do not predict for sensitivity; however, inherent expression of the phase II-metabolizing enzyme sulfur transferase 1A1 does. For the first time, we identify (Z)-2-(3,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile as a new AhR ligand.
Collapse
Affiliation(s)
- Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Geoffry N De Iuliis
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Tarleton
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Adam McCluskey
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
7
|
Helle J, Keiler AM, Zierau O, Dörfelt P, Vollmer G, Lehmann L, Chittur SV, Tenniswood M, Welsh J, Kretzschmar G. Effects of the aryl hydrocarbon receptor agonist 3-methylcholanthrene on the 17β-estradiol regulated mRNA transcriptome of the rat uterus. J Steroid Biochem Mol Biol 2017; 171:133-143. [PMID: 28285017 DOI: 10.1016/j.jsbmb.2017.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion of organic compounds, abundant in exhaust fumes and cigarette smoke. They act by binding to the aryl hydrocarbon receptor (AHR) which induces expression of phase 1 and phase 2 enzymes in the liver. PAH induced AHR activation may also lead to adverse effects by modulating other pathways, for example estrogen receptor (ER) signaling in the female reproductive tract. We have investigated the effects of the PAH 3-methylcholanthrene (3-MC) on 17β-estradiol (E2) dependent signaling in the uterus of ovariectomized rats to characterize the cross talk between AHR and ER on an mRNA transcriptome wide scale. A standard three day uterotrophic assay was performed in young adult Lewis rats. Treatment induced effects were analyzed using histology, immunohistochemistry and gene expression analysis by microarray and qPCR. 3-MC shows broad E2 antagonistic effects on uterine mRNA transcription of the vast majority of E2 regulated genes, significantly altering prostaglandin biosynthesis, complement activation, coagulation pathways and other inflammatory response pathways. The regulation of ER expression in the uterus, but not the regulation of E2 metabolism in the liver, was identified as a potentially important factor in mediating this general antiestrogenic effect. The regulation of prostaglandin biosynthesis by E2 is important for inflammation-like events during pregnancy including the initiation of birth. Our results suggest that adverse effects of PAHs on prostaglandin related pathways are likely caused by the interference with E2 signaling, specifically by inhibiting the E2 mediated downregulation of PGF2α. Characterization of the generalized antagonistic effect of 3-MC on E2 dependent signaling in the rat uterus thus contributes to a better understanding of molecular mechanisms of the toxicity of PAHs in female reproductive organs.
Collapse
Affiliation(s)
- Janina Helle
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Annekathrin M Keiler
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Oliver Zierau
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Peggy Dörfelt
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Günter Vollmer
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Leane Lehmann
- Institute of Pharmacy and Food Chemistry, Universität Würzburg, 97070 Würzburg, Germany
| | - Sridar V Chittur
- Cancer Research Center and Department of Biomedical Sciences, University at Albany, NY 12144-2345, United States
| | - Martin Tenniswood
- Cancer Research Center and Department of Biomedical Sciences, University at Albany, NY 12144-2345, United States
| | - JoEllen Welsh
- Cancer Research Center and Department of Biomedical Sciences, University at Albany, NY 12144-2345, United States
| | - Georg Kretzschmar
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
8
|
Regulations and Advisories. Toxicol Ind Health 2016. [DOI: 10.1177/074823370001600312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Huang J, Lu H, Lu Y, Hung P, Lin Y, Lin C, Yang C, Wong T, Lu S, Lin C. Enhancement of the genotoxicity of benzo[a]pyrene by arecoline through suppression of DNA repair in HEp-2 cells. Toxicol In Vitro 2016; 33:80-7. [DOI: 10.1016/j.tiv.2016.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/06/2016] [Accepted: 02/13/2016] [Indexed: 01/02/2023]
|
10
|
Xiao H, Kuckelkorn J, Nüßer LK, Floehr T, Hennig MP, Roß-Nickoll M, Schäffer A, Hollert H. The metabolite 3,4,3',4'-tetrachloroazobenzene (TCAB) exerts a higher ecotoxicity than the parent compounds 3,4-dichloroaniline (3,4-DCA) and propanil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 551-552:304-316. [PMID: 26878642 DOI: 10.1016/j.scitotenv.2016.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
3,4,3',4'-tetrachloroazobenzene (TCAB) is not commercially manufactured but formed as an unwanted by-product in the manufacturing of 3,4-dichloroaniline (3,4-DCA) or metabolized from the degradation of chloranilide herbicides, like propanil. While a considerable amount of research has been done concerning the toxicological and ecotoxicological effects of propanil and 3,4-DCA, limited information is available on TCAB. Our study examined the toxicity of TCAB in comparison to its parent compounds propanil and 3,4-DCA, using a battery of bioassays including in vitro with aryl hydrocarbon receptor (AhR) mediated activity by the 7-ethoxyresorufin-O-deethylase (EROD) assay and micro-EROD, endocrine-disrupting activity with chemically activated luciferase gene expression (CALUX) as well as in vivo with fish embryo toxicity (FET) assays with Danio rerio. Moreover, the quantitative structure activity response (QSAR) concepts were applied to simulate the binding affinity of TCAB to certain human receptors. It was shown that TCAB has a strong binding affinity to the AhR in EROD and micro-EROD induction assay, with the toxic equivalency factor (TEF) of 8.7×10(-4) and 1.2×10(-5), respectively. TCAB presented to be a weak endocrine disrupting compound with a value of estradiol equivalence factor (EEF) of 6.4×10(-9) and dihydrotestosterone equivalency factor (DEF) of 1.1×10(-10). No acute lethal effects of TCAB were discovered in FET test after 96h of exposure. Major sub-lethal effects detected were heart oedema, yolk malformation, as well as absence of blood flow and tail deformation. QSAR modelling suggested an elevated risk to environment, particularly with respect to binding to the AhR. An adverse effect potentially triggering ERβ, mineralocorticoid, glucocorticoid and progesterone receptor activities might be expected. Altogether, the results obtained suggest that TCAB exerts a higher toxicity than both propanil and 3,4-DCA. This should be considered when assessing the impact of these compounds for the environment and also for regulatory decisions.
Collapse
Affiliation(s)
- Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Jochen Kuckelkorn
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Leonie Katharina Nüßer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Tilman Floehr
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Michael Patrick Hennig
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400715, People's Republic of China.
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, People's Republic of China; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400715, People's Republic of China.
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, People's Republic of China; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400715, People's Republic of China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China.
| |
Collapse
|
11
|
Lin CS, Chiou WY, Lee KW, Chen TF, Lin YJ, Huang JL. Xeroderma pigmentosum, complementation group D expression in H1299 lung cancer cells following benzo[a]pyrene exposure as well as in head and neck cancer patients. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:39-47. [PMID: 26731659 DOI: 10.1080/15287394.2015.1104271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA repair genes play critical roles in response to carcinogen-induced and anticancer therapy-induced DNA damage. Benzo[a]pyrene (BaP), the most carcinogenic polycyclic aromatic hydrocarbon (PAH), is classified as a group 1 carcinogen by International Agency for Research on Cancer. The aims of this study were to (1) evaluate the effects of BaP on DNA repair activity and expression of DNA repair genes in vitro and (2) examine the role of xeroderma pigmentosum, complementation group D (XPD) mRNA expression in human head and neck cancers. Host cell reactivation assay showed that BaP inhibited nucleotide excision repair in H1299 lung cancer cells. DNA repair through the non-homologous end-joining pathway was not affected by BaP. Real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) and Western blot demonstrated that XPD was downregulated by BaP treatment. BaP exposure did not apparently affect expression of another 11 DNA repair genes. BaP treatment increased the DNA damage marker γ-H2AX and ultraviolet (UV) sensitivity, supporting an impairment of DNA repair in BaP-treated cells. XPD expression was also examined by quantitative RT-PCR in 68 head and neck cancers, and a lower XPD mRNA level was found in smokers' cancer specimens. Importantly, reduced XPD expression was correlated with patient 5-year overall survival rate (35 vs. 56%) and was an independent prognostic factor (hazard ratio: 2.27). Data demonstrated that XPD downregulation was correlated with BaP exposure and human head and neck cancer survival.
Collapse
Affiliation(s)
- Chang-Shen Lin
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
- b Department of Biological Sciences , National Sun Yat-sen University , Kaohsiung , Taiwan
| | - Wen-Yen Chiou
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Ka-Wo Lee
- c Department of Otolaryngology, Faculty of Medicine , College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
- d Department of Otolaryngology , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Tzu-Fen Chen
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yuan-Jen Lin
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Jau-Ling Huang
- e Department of Bioscience Technology , College of Health Science, Chang Jung Christian University , Tainan , Taiwan
| |
Collapse
|
12
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
13
|
Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2) exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Rep 2014; 1:1029-1036. [PMID: 28962316 PMCID: PMC5598243 DOI: 10.1016/j.toxrep.2014.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/11/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023] Open
Abstract
The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR) by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα) signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study investigated TCDD's impact on the transcriptional cross-talk between AhR and ERα and its modulation by 17β-estradiol (E2) in the human hepatoma cell line HepG2, which is AhR-responsive but ERα-negative. Transient transfection assays with co-transfection of hERα and supplementation of receptor antagonists showed anti-estrogenic action of TCDD via down-regulation of E2-induced ERα signaling. In contrast, enhancement of AhR signaling dependent on ERα was observed providing evidence for increased cytochrome P450 (CYP) induction to promote E2 metabolism. However, relative mRNA levels of major E2-metabolizing CYP1A1 and 1B1 and the main E2-detoxifying catechol-O-methyltransferase were not affected by the co-treatments. This study provides new evidence of a TCDD-activated AhR-mediated molecular AhR/ERα cross-talk mechanism at transcriptional level via indirect inhibition of ERα and enhanced transcriptional activity of AhR in HepG2 cells.
Collapse
Key Words
- 17β-estradiol
- AhR
- AhR, aryl hydrocarbon receptor
- COMT, catechol-O-methyltransferase
- CPRG, chlorophenol red β-d-galactopyranoside
- CYP, cytochrome P450
- Ct, cycle threshold
- DMSO, dimethyl sulfoxide
- Dioxin
- E, strogen receptor
- E2, 17β-estradiol
- ERE, estrogen response element
- Estrogen receptor
- Gene reporter assay
- Human hepatoma cell line HepG2
- TCDD
- TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin
- XRE, xenobiotic response element
- α-NF, α-naphthoflavone
Collapse
|
14
|
L'Héritier F, Marques M, Fauteux M, Gaudreau L. Defining molecular sensors to assess long-term effects of pesticides on carcinogenesis. Int J Mol Sci 2014; 15:17148-61. [PMID: 25257533 PMCID: PMC4200861 DOI: 10.3390/ijms150917148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/11/2014] [Accepted: 09/22/2014] [Indexed: 12/04/2022] Open
Abstract
The abundance of dioxins and dioxin-like pollutants has massively increased in the environment due to human activity. These chemicals are particularly persistent and accumulate in the food chain, which raises major concerns regarding long-term exposure to human health. Most dioxin-like pollutants activate the aryl hydrocarbon receptor (AhR) transcription factor, which regulates xenobiotic metabolism enzymes that belong to the cytochrome P450 1A family (that includes CYP1A1 and CYP1B1). Importantly, a crosstalk exists between estrogen receptor α (ERα) and AhR. More specifically, ERα represses the expression of the CYP1A1 gene, which encodes an enzyme that converts 17β-estradiol into 2-hydroxyestradiol. However, (ERα) does not repress the CYP1B1 gene, which encodes an enzyme that converts 17β-estradiol into 4-hydroxyestradiol, one of the most genotoxic estrogen metabolites. In this review, we discuss how chronic exposure to xenobiotic chemicals, such as pesticides, might affect the expression of genes regulated by the AhR–ERα crosstalk. Here, we focus on recent advances in the understanding of molecular mechanisms that mediate this crosstalk repression, and particularly on how ERα represses the AhR target gene CYP1A1, and could subsequently promote breast cancer. Finally, we propose that genes implicated in this crosstalk could constitute important biomarkers to assess long-term effects of pesticides on human health.
Collapse
Affiliation(s)
- Fanny L'Héritier
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Maud Marques
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Myriam Fauteux
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Luc Gaudreau
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
15
|
Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription. Nat Commun 2014; 5:4738. [PMID: 25141024 DOI: 10.1038/ncomms5738] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/18/2014] [Indexed: 12/13/2022] Open
Abstract
NLRP3 inflammasome is a multi-protein complex, which plays crucial roles in host defense against pathogens. The NLRP3 protein level is considered rate limiting for the activation of the inflammasome, thus its expression must be tightly controlled to maintain immune homeostasis. However, the molecular mechanisms that modulate NLRP3 expression, especially at the transcriptional level, remain largely unknown. In the present study, we show that aryl hydrocarbon receptor (AhR) activation inhibits NLRP3 expression, caspase-1 activation and subsequent IL-1β secretion in peritoneal macrophages, whereas siRNA knockdown of AhR has opposite effects. AhR could bind to the xenobiotic response element (XRE) in the NLRP3 promoter and inhibit NLRP3 transcription. Furthermore, AhR activation suppresses Alum-induced peritonitis in vivo. Therefore, we identified AhR as a negative regulator of NLRP3 inflammasome activity by inhibiting the transcription of NLRP3 and suggested AhR as a potential target for the intervention of diseases with uncontrolled inflammasome activation.
Collapse
|
16
|
Kuo LC, Cheng LC, Lin CJ, Li LA. Dioxin and estrogen signaling in lung adenocarcinoma cells with different aryl hydrocarbon receptor/estrogen receptor α phenotypes. Am J Respir Cell Mol Biol 2014; 49:1064-73. [PMID: 23855798 DOI: 10.1165/rcmb.2012-0497oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Evidence suggests that estrogen affects the pulmonary response to carcinogenic pollutants, such as dioxins. In this study, we examined dioxin and estrogen signaling cross-talk in lung adenocarcinoma cell lines that were engineered to exhibit different aryl hydrocarbon receptor (AhR)/estrogen receptor (ER) α phenotypes. Data showed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) weakly antagonized estrogen-activated ERα activity in cells expressing abundant ERα, but little AhR. Increase of AhR expression or presence of a dioxin-responsive element in proximity silenced the antiestrogenic effect of TCDD. AhR was bound to dioxin-responsive element and transcriptionally active in both TCDD-untreated and -treated lung adenocarcinoma cells. 17β-estradiol (E2) reduced basal and TCDD-induced AhR activity only in ERα-positive cells. AhR and ERα exhibited a protein-protein interaction in the presence of E2. Cotreatment with TCDD moderated this protein interaction. Colocalization of ERα and AhR at the estrogen-responsive site under E2 and TCDD/E2 treatments implied that E2 ∣ ERα might hijack AhR away from the dioxin-responsive site. Increasing the relative expression of AhR to ERα counteracted inhibition of AhR activity by E2 ∣ ERα. When AhR and ERα were both highly expressed, TCDD and E2 up-regulated expression of dual-responsive genes cytochrome P450 (CYP) 1A1 and CYP1B1 in a cumulative manner, increasing the danger of metabolic activation of carcinogens. Whereas TCDD ∣ AhR and E2 ∣ ERα appeared to regulate CYP1B1 separately through their binding sites, E2 ∣ ERα increased the TCDD responsiveness and mRNA expression of CYP1A1 in a noncanonical way. In conclusion, AhR/ERα expression pattern, estrogen level, and promoter context determine the genomic action of dioxin in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Lun-Cheng Kuo
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | | | | | | |
Collapse
|
17
|
DeGroot DE, Denison MS. Nucleotide specificity of DNA binding of the aryl hydrocarbon receptor:ARNT complex is unaffected by ligand structure. Toxicol Sci 2014; 137:102-13. [PMID: 24136190 PMCID: PMC3924043 DOI: 10.1093/toxsci/kft234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/07/2013] [Indexed: 11/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxic and biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and a wide variety of structurally diverse ligands through its ability to translocate into the nucleus and bind to a specific DNA recognition site (the dioxin-responsive element [DRE]) adjacent to responsive genes. Although the sequence of the DRE is well defined, several reports suggested that the nucleotide specificity of AhR DNA binding may vary depending on the structure of its bound ligand. Given the potential toxicological significance of this hypothesis, an unbiased DNA-selection-and-PCR-amplification approach was utilized to directly determine whether binding and activation of the AhR by structurally diverse agonists alter its nucleotide specificity of DNA binding. Guinea pig hepatic cytosolic AhR activated in vitro by equipotent concentrations of TCDD, 3-methylcholanthrene, β-naphthoflavone, indirubin, L-kynurenine, or YH439 was incubated with a pool of DNA oligonucleotides containing a 15-base pair variable region consisting of all possible nucleotides. The AhR-bound oligonucleotides isolated by immunoprecipitation were PCR amplified and used in subsequent rounds of selection. Sequence analysis of a total of 196 isolated oligonucleotides revealed that each ligand-activated AhR:ARNT complex only bound to DRE-containing DNA oligonucleotides; no non-DRE-containing DNA oligonucleotides were identified. These results demonstrate that the binding and activation of the AhR by structurally diverse agonists do not appear to alter its nucleotide specificity of DNA binding and suggest that stimulation of gene expression mediated by direct DNA binding of ligand-activated AhR:ARNT complexes is DRE dependent.
Collapse
Affiliation(s)
- Danica E. DeGroot
- Department of Environmental Toxicology, University of California, Davis, California 95616
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, California 95616
| |
Collapse
|
18
|
Marques M, Laflamme L, Gaudreau L. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation. Nucleic Acids Res 2013; 41:8094-106. [PMID: 23828038 PMCID: PMC3783176 DOI: 10.1093/nar/gkt595] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/16/2013] [Accepted: 06/13/2013] [Indexed: 11/14/2022] Open
Abstract
Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells.
Collapse
Affiliation(s)
| | | | - Luc Gaudreau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
19
|
Safe S, Lee SO, Jin UH. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol Sci 2013; 135:1-16. [PMID: 23771949 PMCID: PMC3748760 DOI: 10.1093/toxsci/kft128] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is highly expressed in multiple organs and tissues, and there is increasing evidence that the AHR plays an important role in cellular homeostasis and disease. The AHR is expressed in multiple tumor types, in cancer cell lines, and in tumors from animal models, and the function of the AHR has been determined by RNA interference, overexpression, and inhibition studies. With few exceptions, knockdown of the AHR resulted in decreased proliferation and/or invasion and migration of cancer cell lines, and in vivo studies in mice overexpressing the constitutively active AHR exhibited enhanced stomach and liver cancers, suggesting a pro-oncogenic role for the AHR. In contrast, loss of the AHR in transgenic mice that spontaneously develop colonic tumors and in carcinogen-induced liver tumors resulted in increased carcinogenesis, suggesting that the receptor may exhibit antitumorigenic activity prior to tumor formation. AHR ligands also either enhanced or inhibited tumorigenesis, and these effects were highly tumor specific, demonstrating that selective AHR modulators that exhibit agonist or antagonist activities represent an important new class of anticancer agents that can be directed against multiple tumors.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | | | |
Collapse
|
20
|
Safe S. Endocrine disruptors and falling sperm counts: lessons learned or not! Asian J Androl 2013; 15:191-194. [PMID: 23001442 PMCID: PMC3739165 DOI: 10.1038/aja.2012.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/15/2012] [Indexed: 11/09/2022] Open
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA.
| |
Collapse
|
21
|
Bussmann UA, Pérez Sáez JM, Bussmann LE, Barañao JL. Aryl hydrocarbon receptor activation leads to impairment of estrogen-driven chicken vitellogenin promoter activity in LMH cells. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:111-8. [PMID: 23103859 DOI: 10.1016/j.cbpc.2012.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/20/2012] [Accepted: 10/20/2012] [Indexed: 01/05/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates most of the toxic effects of environmental contaminants. Among the multiple pleiotropic responses elicited by AHR agonists, the antiestrogenic and endocrine-disrupting action of the receptor activation is one of the most studied. It has been demonstrated that some AHR agonists disrupt estradiol-induced vitellogenin synthesis in the fish liver via a mechanism that involves crosstalk between the AHR and the estrogen receptor (ER). Chicken hepatocytes have become a model for the study of AHR action in birds and the induction of the signal and its effect in these cells are well established. However, the impact of AHR activation on estradiol-regulated responses in the chicken liver remains to be demonstrated. The aim of the present study was, therefore, to determine the effect of AHR action on ER-driven transcription in a convenient model of chicken liver cells. For this purpose, we designed a reporter construct bearing the 5' regulatory region of the chicken vitellogenin II gene and used it to transfect chicken hepatoma LMH cells. We found that β-naphthoflavone represses ER-driven vitellogenin promoter activity and that this action is mediated by the AHR. This inhibitory crosstalk between both pathways appears to be unidirectional, since estradiol did not alter the transcript levels of an AHR target gene. Besides, and highly relevant, we show that LMH cell line transfected with a reporter construct bearing the chicken vitellogenin promoter sequence is a useful and convenient model for the study of AHR-ER interaction in chicken liver-derived cells.
Collapse
|
22
|
Possible aryl hydrocarbon receptor-independent pathway of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced antiproliferative response in human breast cancer cells. Toxicol Lett 2012; 211:257-65. [PMID: 22521833 DOI: 10.1016/j.toxlet.2012.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/03/2012] [Accepted: 04/06/2012] [Indexed: 11/20/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a ligand with high affinity for the aryl hydrocarbon receptor (AhR). It suppresses 17β-estradiol (E2)-induced cell proliferation in human breast cancer cells. Although it has been theorized that the AhR is involved in TCDD-induced antiestrogenic activity and antiproliferation in human breast cancer cells, some evidence suggests that these activities of chlorinated aromatic compounds also occur by AhR-independent pathways. Here, we investigated the possibility of TCDD-induced antiproliferative responses in human breast cancer cells through AhR-independent pathways. Compared with that in vehicle-treated controls, DNA synthesis was significantly suppressed in MCF-7 cells and ZR75-1 cells treated with TCDD at a very low concentration (0.01 nM), whereas that in human ovarian carcinoma OVCAR3 cells, human cervical carcinoma HeLa cells and human choriocarcinoma JEG-3 cells was unaffected, even by exposure to 10 nM TCDD. The suppression induced by TCDD was not associated with the estrogen receptor α-signaling pathway. Another AhR agonist, 3,3',4,4',5-pentachlorobiphenyl, had no effect on DNA synthesis in MCF-7 cells at concentrations high enough to induce the transactivation function of the AhR. Furthermore, in MCF-7 cells, knockdown of the AhR by RNA interference had no effect on TCDD-induced antiproliferation. These findings suggest that the principal pathways of TCDD-induced antiproliferation in breast cancer cells are not AhR dependent.
Collapse
|
23
|
Brunnberg S, Andersson P, Poellinger L, Hanberg A. The constitutively active Ah receptor (CA-AhR) mouse as a model for dioxin exposure - effects in reproductive organs. CHEMOSPHERE 2011; 85:1701-1706. [PMID: 22014662 DOI: 10.1016/j.chemosphere.2011.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 08/25/2011] [Accepted: 09/22/2011] [Indexed: 05/31/2023]
Abstract
The dioxin/aryl hydrocarbon receptor (AhR) mediates most toxic effects of dioxins. In utero/lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) impairs fetal/neonatal development and the developing male reproductive tract are among the most sensitive tissues. TCDD causes antiestrogenic responses in rodent mammary gland and uterus and in human breast cancer cell lines in the presence of estrogen. Also, more recently an estrogen-like effect of TCDD/AhR has been suggested in the absence of estrogen. A transgenic mouse expressing a constitutively active AhR (CA-AhR) was developed as a model mimicking a situation of constant exposure to AhR agonists. Male and female reproductive tissues of CA-AhR mice were characterized for some of the effects commonly seen after dioxin exposure. Sexually mature CA-AhR female mice showed decreased uterus weight, while an uterotrophic assay in immature CA-AhR mice resulted in increased uterus weight. In immature mice, both TCDD-exposure and CA-AhR increased the expression of the estrogen receptor target gene Cathepsin D. When co-treated with 17β-estradiol no increase in Cathepsin D levels occurred in either TCDD-exposed or CA-AhR mice. In sexually mature male CA-AhR mice the weights of testis and ventral prostate were decreased and the epididymal sperm reserve was reduced. The results of the present study are in accordance with previous studies on dioxin-exposed rodents in that an activated AhR (here CA-AhR) leads to antiestrogenic effects in the presence of estrogen, but to estrogenic effects in the absence of estrogen. These results suggest the CA-AhR mouse model as a useful tool for studies of continuous low activity of the AhR from early development, resembling the human exposure situation.
Collapse
Affiliation(s)
- Sara Brunnberg
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
24
|
Madak-Erdogan Z, Katzenellenbogen BS. Aryl hydrocarbon receptor modulation of estrogen receptor α-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicol Sci 2011; 125:401-11. [PMID: 22071320 DOI: 10.1093/toxsci/kfr300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although crosstalk between aryl hydrocarbon receptor (AhR) and estrogen receptor α (ERα) is well established, the mechanistic basis and involvement of other proteins in this process are not known. Because we observed an enrichment of AhR-binding motifs in ERα-binding sites of many estradiol (E2)-regulated genes, we investigated how AhR might modulate ERα-mediated gene transcription in breast cancer cells. Gene regulations were categorized based on their pattern of stimulation by E2 and/or dioxin and were denoted E2-responsive, dioxin-responsive, or responsive to either ligand. ERα, AhR, aryl hydrocarbon receptor translocator, and receptor interacting protein 140 (RIP140) were recruited to gene regulatory regions in a gene-specific and E2/dioxin ligand-specific manner. Knockdown of AhR markedly increased the expression of ERα-mediated genes upon E2 treatment. This was not attributable to a change in ERα level, or recruitment of ERα, phosphoSer5-RNA Pol II, or several coregulators but rather was associated with greatly diminished recruitment of the coregulator RIP140 to gene regulatory sites. Changing the cellular level of RIP140 revealed coactivator or corepressor roles for this coregulator in E2- and dioxin-mediated gene regulation, the choice of which was determined by the presence or absence of ERα at gene regulatory sites. Coimmunoprecipitation and chromatin immunoprecipitation (ChIP)-reChIP studies documented that E2- or dioxin-promoted formation of a multimeric complex of ERα, AhR, and RIP140 at ERα-binding sites of genes regulated by either E2 or dioxin. Our findings highlight the importance of cross-regulation between AhR and ERα and a novel mechanism by which AhR controls, through modulating the recruitment of RIP140 to ERα-binding sites, the kinetics and magnitude of ERα-mediated gene stimulation.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
25
|
Fu J, Fang H, Paulsen M, Ljungman M, Kocarek TA, Runge-Morris M. Regulation of estrogen sulfotransferase expression by confluence of MCF10A breast epithelial cells: role of the aryl hydrocarbon receptor. J Pharmacol Exp Ther 2011; 339:597-606. [PMID: 21828262 PMCID: PMC3199978 DOI: 10.1124/jpet.111.185173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/08/2011] [Indexed: 01/26/2023] Open
Abstract
Estrogen sulfotransferase (SULT1E1) catalyzes the sulfonation of estrogens, which limits estrogen mitogenicity. We recently reported that SULT1E1 expression is low in preconfluent MCF10A human breast epithelial cells but increases when the cells become confluent. Pulse-chase labeling experiments with 5-bromouridine demonstrated that the confluence-mediated increase in SULT1E1 expression was due to increased mRNA synthesis. Because aryl hydrocarbon receptor (AhR) activation has been shown to suppress SULT1E1 expression and loss of cell-cell contact has been shown to activate the AhR in other cell types, we tested whether the confluence-associated changes in SULT1E1 expression were mediated by the AhR. Relative to confluent MCF10A cells, preconfluent cells had higher levels of CYP1A1 mRNA and greater activation of an AhR-responsive luciferase reporter, demonstrating that the AhR was active in the preconfluent cells. AhR and aryl hydrocarbon receptor nuclear translocator mRNA and protein levels were also higher in preconfluent than in confluent cultures. Treatment of preconfluent cells with the AhR antagonist, 3'-methoxy-4'-nitroflavone (MNF), or AhR knockdown significantly increased SULT1E1 expression. MCF10A cells stably transfected with a luciferase reporter containing ∼7 kilobases of the SULT1E1 5'-flanking region showed both MNF- and confluence-inducible luciferase expression. Preconfluent cells transiently transfected with the reporter showed both MNF treatment- and AhR knockdown-mediated luciferase induction, but mutation of a computationally predicted dioxin response element (DRE) at nucleotide (nt) -3476 did not attenuate these effects. These results demonstrate that SULT1E1 expression in MCF10A cells is transcriptionally regulated by confluence through a suppressive action of the AhR, which is not mediated through a DRE at nt -3476.
Collapse
Affiliation(s)
- Jiaqi Fu
- Institute of Environmental Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
26
|
Brooks J, Eltom SE. Malignant transformation of mammary epithelial cells by ectopic overexpression of the aryl hydrocarbon receptor. Curr Cancer Drug Targets 2011; 11:654-69. [PMID: 21486221 DOI: 10.2174/156800911795655967] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/03/2011] [Indexed: 01/13/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand activated basic helix-loop-helix transcription factor that binds to environmental poly aromatic hydrocarbons (PAH) and mediates their toxic and carcinogenic responses. There is ample documentation for the role of AhR in PAH-induced carcinogenicity. However, in this report we addressed whether overexpression of AhR alone is sufficient to induce carcinogenic transformation in human mammary epithelial cells (HMEC). Retroviral expression vectors were used to develop a series of stable cell lines expressing varying levels of AhR protein in an immortalized normal HMEC with relatively low endogenous AhR expression. The resulting increase in AhR expression and activity correlated with the development of cellular malignant phenotypes, most significantly epithelial-to-mesenchymal transition. Clones overexpressing AhR by more than 3-fold, exhibited a 50% decrease in population doubling time. Cell cycle analysis revealed that this increase in proliferation rates was due to an enhanced cell cycle progression by increasing the percentage of cells transiting into S- and G2/M phases. Cells overexpressing AhR exhibited enhanced motility and migration. Importantly, these cells acquired the ability to invade matrigel matrix, where more than 80% of plated cells invaded the matrigel matrix within 24 h, whereas none of parental or the vector control HMEC were able to invade matrigel. Collectively, these data provide evidence for a direct role of AhR in the progression of breast carcinoma. The results suggest a novel therapeutic target that could be considered for treatment and prevention of breast cancer progression.
Collapse
Affiliation(s)
- J Brooks
- Graduate Program in Pharmacology, Department of Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | |
Collapse
|
27
|
Paulose T, Hernández-Ochoa I, Basavarajappa MS, Peretz J, Flaws JA. Increased sensitivity of estrogen receptor alpha overexpressing antral follicles to methoxychlor and its metabolites. Toxicol Sci 2011; 120:447-59. [PMID: 21252393 DOI: 10.1093/toxsci/kfr011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methoxychlor (MXC), an organochlorine pesticide, and its metabolites, mono-hydroxy MXC (MOH) and bis-hydroxy MXC (HPTE) are known ovarian toxicants and can cause inhibition of antral follicle growth. Since these chemicals bind to estrogen receptor alpha (ESR1), we hypothesized that ovaries overexpressing ESR1 (ESR1 OE) would be more susceptible to toxicity induced by MXC and its metabolites because the chemicals can bind to more ESR1 in the antral follicles. We cultured antral follicles from controls and ESR1 OE mouse ovaries with either the vehicle dimethylsulfoxide (DMSO), MXC, MOH, or HPTE. The data show that at 96 h, the cultured antral follicles from ESR1 OE antral follicles are more susceptible to toxicity induced by MXC, MOH, and HPTE because low doses of these chemicals cause follicle growth inhibition in ESR1 OE mice but not in control mice. On comparing gene expression levels of nuclear receptors in the cultured antral follicles of ESR1 OE and control follicles, we found differential messenger RNA (mRNA) expression of Esr1, estrogen receptor beta (Esr2), androgen receptor (Ar), progesterone receptor (Pr), and aryl hydrocarbon receptor (Ahr) between the genotypes. We also analyzed mRNA levels of Cyp3a41a, the enzyme metabolizing MOH and HPTE, in the cultured follicles and found that Cyp3a41a was significantly lower in DMSO-treated ESR1 OE follicles compared with controls. In ESR1 OE livers, we found that Cyp3a41a levels were significantly lower compared with control livers. Collectively, these data suggest that MXC and its metabolites cause differential gene expression in ESR1 OE mice compared with controls. The results also suggest that the increased sensitivity of ESR1 OE mouse ovaries to toxicity induced by MXC and its metabolites is due to low clearance of the metabolites by the liver and ovary.
Collapse
Affiliation(s)
- Tessie Paulose
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | |
Collapse
|
28
|
Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol 2010; 24:6-19. [PMID: 21053929 DOI: 10.1021/tx100231n] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and nongenomic ER activity through direct interactions with ERs, indirectly through transcription factors such as the aryl hydrocarbon receptor (AhR), or through modulation of metabolic enzymes that are critical for normal estrogen synthesis and metabolism. Many EDCs act through multiple mechanisms as exemplified by chemicals that bind both AhR and ER, such as 3-methylcholanthrene. Other EDCs that target ER signaling include phytoestrogens, bisphenolics, and organochlorine pesticides, and many alter normal ER signaling through multiple mechanisms. EDCs can also display tissue-selective ER agonist and antagonist activities similar to selective estrogen receptor modulators (SERMs) designed for pharmaceutical use. Thus, biological effects of EDCs need to be carefully interpreted because EDCs can act through complex tissue-selective modulation of ERs and other signaling pathways in vivo. Current requirements by the U.S. Environmental Protection Agency require some in vitro and cell-based assays to identify EDCs that target ER signaling through direct and metabolic mechanisms. Additional assays may be useful screens for identifying EDCs that act through alternative mechanisms prior to further in vivo study.
Collapse
Affiliation(s)
- Erin K Shanle
- McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
29
|
Dietrich C, Kaina B. The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis 2010; 31:1319-28. [PMID: 20106901 PMCID: PMC6276890 DOI: 10.1093/carcin/bgq028] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/21/2010] [Accepted: 01/24/2010] [Indexed: 01/26/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor, which is activated by a large group of environmental pollutants including polycyclic aromatic hydrocarbons, dioxins and planar polychlorinated biphenyls. Ligand binding leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes, such as cytochrome P4501A1 and glutathione-S-transferase, respectively. Since phase I enzymes convert inert carcinogens to active genotoxins, the AhR plays a key role in tumor initiation. Besides this classical route, the AhR mediates tumor promotion and recent evidence suggests that the AhR also plays a role in tumor progression. To date, no mechanistic link could be established between the canonical pathway involving xenobiotic metabolism and AhR-dependent tumor promotion and progression. A hallmark of tumor promotion is unbalanced proliferation, whereas tumor progression is characterized by dedifferentiation, increased motility and metastasis of tumor cells. Tumor progression and presumably also tumor promotion are triggered by loss of cell-cell contact. Cell-cell contact is known to be a critical regulator of proliferation, differentiation and cell motility in vitro and in vivo. Increasing evidence suggests that activation of the AhR may lead to deregulation of cell-cell contact, thereby inducing unbalanced proliferation, dedifferentiation and enhanced motility. In line with this is the finding of increased AhR expression and malignancy in some animal and human cancers. Here, we summarize our current knowledge on non-canonical AhR-driven pathways being involved in deregulation of cell-cell contact and discuss the data with respect to tumor initiation, promotion and progression.
Collapse
Affiliation(s)
- Cornelia Dietrich
- Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | | |
Collapse
|
30
|
Diotel N, Le Page Y, Mouriec K, Tong SK, Pellegrini E, Vaillant C, Anglade I, Brion F, Pakdel F, Chung BC, Kah O. Aromatase in the brain of teleost fish: expression, regulation and putative functions. Front Neuroendocrinol 2010; 31:172-92. [PMID: 20116395 DOI: 10.1016/j.yfrne.2010.01.003] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/24/2010] [Indexed: 12/25/2022]
Abstract
Unlike that of mammals, the brain of teleost fish exhibits an intense aromatase activity due to the strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. In situ hybridization, immunohistochemistry and expression of GFP (green fluorescent protein) in transgenic tg(cyp19a1b-GFP) fish demonstrate that aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. Although aromatase B-positive radial glial cells are most abundant in the preoptic area and the hypothalamus, they are observed throughout the entire central nervous system and spinal cord. In agreement with the fact that brain aromatase activity is correlated to sex steroid levels, the high expression of cyp19a1b is due to an auto-regulatory loop through which estrogens and aromatizable androgens up-regulate aromatase expression. This mechanism involves estrogen receptor binding on an estrogen response element located on the cyp19a1b promoter. Cell specificity is achieved by a mandatory cooperation between estrogen receptors and unidentified glial factors. Given the emerging roles of estrogens in neurogenesis, the unique feature of the adult fish brain suggests that, in addition to classical functions on brain sexual differentiation and sexual behaviour, aromatase expression in radial glial cells could be part of the mechanisms authorizing the maintenance of a high proliferative activity in the brain of fish.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis And OEstrogens, UMR CNRS 6026, IFR 140, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kanno Y, Takane Y, Izawa T, Nakahama T, Inouye Y. The inhibitory effect of aryl hydrocarbon receptor repressor (AhRR) on the growth of human breast cancer MCF-7 cells. Biol Pharm Bull 2010; 29:1254-7. [PMID: 16755028 DOI: 10.1248/bpb.29.1254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The variant cell lines stably expressing aryl hydrocarbon receptor repressor (AhRR), MCFRR1 and MCFRR4, were established from human breast cancer MCF-7 cells by transfecting with AhRR-expression construct followed by selection, in order to analyze the effect of AhRR on the cell growth and expression of cell cycle-related genes. The variant cells showed higher levels of AhRR mRNA compared with the parental cells. MCFRR4 cells grew slowly compared with MCF-7 in both cell number and proliferation rate measured by the MTS method. Among cell cycle-related genes such as E2F, cyclin E1, cyclin D1, PCNA, p53, Rb, c-myc and p27Kip1, and estrogen responsive genes such as cathepsin D and hsp27, the expression levels of E2F, cyclin E1, PCNA and cathepsin D mRNA in MCFRR4 cells were lower than those in MCF-7 cells, while those of Rb, p27Kip1, c-myc and hsp27 mRNA were not significantly affected and that of cyclin D1 mRNA was enhanced in variant cells. Based on these results, AhRR might be suppressive on cell growth of MCF-7 by disturbing the transcriptional and/or posttranscriptional regulations of estrogen-responsive and cell cycle-related genes.
Collapse
Affiliation(s)
- Yuichiro Kanno
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | | | | | | | | |
Collapse
|
32
|
Monostory K, Pascussi JM, Kóbori L, Dvorak Z. Hormonal regulation of CYP1A expression. Drug Metab Rev 2009; 41:547-72. [DOI: 10.1080/03602530903112284] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Wihlén B, Ahmed S, Inzunza J, Matthews J. Estrogen receptor subtype- and promoter-specific modulation of aryl hydrocarbon receptor-dependent transcription. Mol Cancer Res 2009; 7:977-86. [PMID: 19470599 DOI: 10.1158/1541-7786.mcr-08-0396] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we examined the role of estrogen receptors (ER) in aryl hydrocarbon receptor (AHR)-dependent transactivation. Chromatin immunoprecipitation assays showed that AHR agonists differentially induced recruitment of ERalpha to the AHR target genes CYP1A1 and CYP1B1. Cotreatment with 17beta-estradiol significantly increased beta-naphthoflavone (BNF)- and 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced recruitment of ERalpha to CYP1A1, whereas 3,3'-diindolylmethane induced promoter occupancy of ERalpha at CYP1A1 that was unaffected by cotreatment with 17beta-estradiol. Cyclical recruitment of AHR and ERalpha to CYP1A1 was only observed in cells treated with BNF. Stable and subtype-specific knockdown of ERalpha or ERbeta using shRNA showed that suppression of ERalpha significantly reduced, whereas knockdown of ERbeta significantly enhanced, AHR agonist-induced Cyp1a1 expression in HC11 mouse mammary epithelial cells. AHR agonist-induced Cyp1b1 expression was reduced by ERbeta knockdown but unaffected by ERalpha knockdown. The siRNA-mediated knockdown of ERalpha in MCF-7 human breast cancer cells did not affect 2,3,7,8-tetrachlorodibenzo-p-dioxin-dependent regulation of CYP1A1 and CYP1B1 mRNA expression. In agreement with our in vitro findings in the HC11 cells, ERalpha knockout mice exhibit reduced BNF-dependent induction of Cyp1a1 mRNA. These results establish ligand- and promoter-specific influences on the cyclical recruitment patterns for AHR and show ER species-, subtype-, and promoter-specific modulation of AHR-dependent transcription.
Collapse
Affiliation(s)
- Björn Wihlén
- Department of Biosciences and Nutrition at Novum, Karolinska Institutet, Huddinge, Sweden
| | | | | | | |
Collapse
|
34
|
The active form of human aryl hydrocarbon receptor (AHR) repressor lacks exon 8, and its Pro 185 and Ala 185 variants repress both AHR and hypoxia-inducible factor. Mol Cell Biol 2009; 29:3465-77. [PMID: 19380484 DOI: 10.1128/mcb.00206-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) repressor (AHRR) inhibits AHR-mediated transcription and has been associated with reproductive dysfunction and tumorigenesis in humans. Previous studies have characterized the repressor function of AHRRs from mice and fish, but the human AHRR ortholog (AHRR(715)) appeared to be nonfunctional in vitro. Here, we report a novel human AHRR cDNA (AHRRDelta8) that lacks exon 8 of AHRR(715). AHRRDelta8 was the predominant AHRR form expressed in human tissues and cell lines. AHRRDelta8 effectively repressed AHR-dependent transactivation, whereas AHRR(715) was much less active. Similarly, AHRRDelta8, but not AHRR(715), formed a complex with AHR nuclear translocator (ARNT). Repression of AHR by AHRRDelta8 was not relieved by overexpression of ARNT or AHR coactivators, suggesting that competition for these cofactors is not the mechanism of repression. AHRRDelta8 interacted weakly with AHR but did not inhibit its nuclear translocation. In a survey of transcription factor specificity, AHRRDelta8 did not repress the nuclear receptor pregnane X receptor or estrogen receptor alpha but did repress hypoxia-inducible factor (HIF)-dependent signaling. AHRRDelta8-Pro(185) and -Ala(185) variants, which have been linked to human reproductive disorders, both were capable of repressing AHR or HIF. Together, these results identify AHRRDelta8 as the active form of human AHRR and reveal novel aspects of its function and specificity as a repressor.
Collapse
|
35
|
DasBanerjee T, Middleton FA, Berger DF, Lombardo JP, Sagvolden T, Faraone SV. A comparison of molecular alterations in environmental and genetic rat models of ADHD: a pilot study. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1554-63. [PMID: 18937310 PMCID: PMC2587509 DOI: 10.1002/ajmg.b.30877] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common neurobehavioral disorder in school-aged children. In addition to genetic factors, environmental influences or gene x environmental interactions also play an important role in ADHD. One example of a well studied environmental risk factor for ADHD is exposure to polychlorinated biphenyls (PCBs). In this study, we investigated whether the well-established genetic model of ADHD based on the spontaneously hypertensive rat (SHR) and a well established PCB-based model of ADHD exhibited similar molecular changes in brain circuits involved in ADHD. The brains from 28 male rats (8 SHR, 8 Sprague-Dawley (SD) controls, 8 Wistar/Kyoto (WKY) controls, and 4 PCB-exposed SD rats) were harvested at postnatal days (PNDs) 55-65 and RNA was isolated from six brain regions of interest. The RNA was analyzed for differences in expression of a set of 308 probe sets interrogating 218 unique genes considered highly relevant to ADHD or epigenetic gene regulation using the Rat RAE230 2.0 GeneChip (Affymetrix). Selected observations were confirmed by real-time quantitative RT-PCR. The results show that the expression levels of genes Gnal, COMT, Adrbk1, Ntrk2, Hk1, Syt11, and Csnk1a1 were altered in both the SHR rats and the PCB-exposed SD rats. Arrb2, Stx12, Aqp6, Syt1, Ddc, and Pgk1 expression levels were changed only in the PCB-exposed SD rats. Genes with altered expression only in the SHRs included Oprm1, Calcyon, Calmodulin, Lhx1, and Hes6. The epigenetic genes Crebbp, Mecp2, and Hdac5 are significantly altered in both models. The data provide strong evidence that genes and environment can affect different set of genes in two different models of ADHD and yet result in the similar disease-like symptoms.
Collapse
Affiliation(s)
- Tania DasBanerjee
- Department of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank A. Middleton
- Department of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA, Department of Psychiatry, SUNY Upstate Medical University, USA
| | - David F. Berger
- Department of Psychology, SUNY College at Cortland, Cortland, NY 13045, USA
| | - John P. Lombardo
- Department of Psychology, SUNY College at Cortland, Cortland, NY 13045, USA
| | - Terje Sagvolden
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stephen V. Faraone
- Department of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA, Department of Psychiatry, SUNY Upstate Medical University, USA
| |
Collapse
|
36
|
Le Page Y, Menuet A, Kah O, Pakdel F. Characterization of a cis-acting element involved in cell-specific expression of the zebrafish brain aromatase gene. Mol Reprod Dev 2008; 75:1549-57. [PMID: 18288647 DOI: 10.1002/mrd.20892] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cytochrome P450 Aromatase is the key enzyme catalyzing the conversion of androgens into estrogens. In zebrafish, the brain aromatase is encoded by cyp19b. Expression of cyp19b is restricted to radial glial cells bordering forebrain ventricles and is strongly stimulated by estrogens during development. At the promoter level, we have previously shown that an estrogen responsive element (ERE) is required for induction by estrogens. Here, we investigated the role of ERE flanking regions in the control of cell-specific expression. First, we show that a 20 bp length motif, named G x RE (glial x responsive element), acts in synergy with the ERE to mediate the estrogenic induction specifically in glial cells. Second, we demonstrate that, in vitro, this sequence binds factors exclusively present in glial or neuro-glial cells and is able to confer a glial specificity to an artificial estrogen-dependent gene. Taken together, these results contribute to the understanding of the molecular mechanisms allowing cyp19b regulation by estrogens and allowed to identify a promoter sequence involved in the strong estrogen inducibility of cyp19b which is specific for glial cells. The exceptional aromatase activity measured in the brain of teleost fish could rely on such mechanisms.
Collapse
Affiliation(s)
- Yann Le Page
- Université de Rennes 1, UMR CNRS 6026, Interactions Cellulaires et Moléculaires, Rennes, France
| | | | | | | |
Collapse
|
37
|
Safe S, Kim K. Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J Mol Endocrinol 2008; 41:263-275. [PMID: 18772268 PMCID: PMC2582054 DOI: 10.1677/jme-08-0103] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
17beta-estradiol binds to the estrogen receptor (ER) to activate gene expression or repression and this involves both genomic (nuclear) and non-genomic (extranuclear) pathways. Genomic pathways include the classical interactions of ligand-bound ER dimers with estrogen-responsive elements in target gene promoters. ER-dependent activation of gene expression also involves DNA-bound ER that subsequently interacts with other DNA-bound transcriptions factors and direct ER-transcription factor (protein-protein) interactions where ER does not bind promoter DNA. Ligand-induced activation of ER/specificity protein (Sp) and ER/activating protein-1 [(AP-1); consisting of jun/fos] complexes are important pathways for modulating expression of a large number of genes. This review summarizes some of the characteristics of ER/Sp- and ER/AP-1-mediated transactivation, which are dependent on ligand structure, cell context, ER-subtype (ERalpha and ERbeta), and Sp protein (SP1, SP3, and SP4) and demonstrates that this non-classical genomic pathway is also functional in vivo.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | |
Collapse
|
38
|
Pascussi JM, Gerbal-Chaloin S, Drocourt L, Assénat E, Larrey D, Pichard-Garcia L, Vilarem MJ, Maurel P. Cross-talk between xenobiotic detoxication and other signalling pathways: clinical and toxicological consequences. Xenobiotica 2008; 34:633-64. [PMID: 15672753 DOI: 10.1080/00498250412331285454] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. Recent investigations on nuclear receptors and other transcription factors involved in the regulation of genes encoding xenobiotic metabolizing and transport systems reveal that xenobiotic-dependent signalling pathways are embedded in, and establish functional interactions with, a tangle of regulatory networks involving the glucocorticoid and oestrogen receptors, the hypoxia-inducible factor, the vitamin D receptor and other transcription factors/nuclear receptors controlling cholesterol/bile salt homeostasis and liver differentiation. 2. Such functional interferences provide new insight, first for understanding how xenobiotics might exert adverse effects, and second how physiopathological stimuli affect xenobiotic metabolism.
Collapse
Affiliation(s)
- J M Pascussi
- INSERM U632, Hepatic Physiopathology, Montpellier F-34293, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lawrence BP, Denison MS, Novak H, Vorderstrasse BA, Harrer N, Neruda W, Reichel C, Woisetschläger M. Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound. Blood 2008; 112:1158-65. [PMID: 18270326 PMCID: PMC2515129 DOI: 10.1182/blood-2007-08-109645] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/06/2008] [Indexed: 12/19/2022] Open
Abstract
VAF347 is a low-molecular-weight compound that inhibits allergic lung inflammation in vivo. This effect is likely the result of a block of dendritic cell (DC) function to generate proinflammatory T-helper (Th) cells because VAF347 inhibits interleukin (IL)-6, CD86, and human leukocyte antigen (HLA)-DR expression by human monocyte-derived DC, 3 relevant molecules for Th-cell generation. Here we demonstrate that VAF347 interacts with the aryl hydrocarbon receptor (AhR) protein, resulting in activation of the AhR signaling pathway. Functional AhR is responsible for the biologic activity of VAF347 because (1) other AhR agonists display an identical activity profile in vitro, (2) gene silencing of wild-type AhR expression or forced overexpression of a trans-dominant negative AhR ablates VAF347 activity to inhibit cytokine induced IL-6 expression in a human monocytic cell line, and (3) AhR-deficient mice are resistant to the compound's ability to block allergic lung inflammation in vivo. These data identify the AhR protein as key molecular target of VAF347 and its essential role for mediating the anti-inflammatory effects of the compound in vitro and in vivo.
Collapse
Affiliation(s)
- B Paige Lawrence
- Department of Environmental Medicine, University of Rochester, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bretschneider N, Kangaspeska S, Seifert M, Reid G, Gannon F, Denger S. E2-mediated cathepsin D (CTSD) activation involves looping of distal enhancer elements. Mol Oncol 2008; 2:182-90. [PMID: 19383337 PMCID: PMC5527762 DOI: 10.1016/j.molonc.2008.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/19/2008] [Accepted: 05/21/2008] [Indexed: 12/24/2022] Open
Abstract
Estrogen receptor alpha (ERalpha) is a ligand dependent transcription factor that regulates the expression of target genes through interacting with cis-acting estrogen response elements (EREs). However, only a minority of ERalpha binding sites are located within the proximal promoter regions of responsive genes. Here we report the characterization of an ERE located 9kbp upstream of the TSS of the cathepsin D gene (CTSD) that up-regulates CTSD expression upon estrogen stimulation in MCF-7 cells. Using ChIP, we show recruitment of ERalpha and phosphorylated PolII at the CTSD distal enhancer region. Moreover, we determine the kinetics of transient CpG methylation on the promoter region of CTSD and for the first time, at a distal enhancer element. We show that ERalpha is crucial for long-distance regulation of CTSD expression involving a looping mechanism.
Collapse
Affiliation(s)
- Nancy Bretschneider
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 2008; 18:207-50. [PMID: 18540824 DOI: 10.1615/critreveukargeneexpr.v18.i3.20] [Citation(s) in RCA: 561] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription.
Collapse
Affiliation(s)
- Timothy V Beischlag
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
42
|
Hillegass JM, Murphy KA, Villano CM, White LA. The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease. Biol Chem 2008; 387:1159-73. [PMID: 16972783 DOI: 10.1515/bc.2006.144] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aryl hydrocarbon receptor (AhR) was identified as the receptor for polycyclic aromatic hydrocarbons and related compounds. However, novel data indicate that the AhR binds a variety of unrelated endogenous and exogenous compounds. Although AhR knockout mice demonstrate that this receptor has a role in normal development and physiology, the function of this receptor is still unclear. Recent evidence suggests that AhR signaling also alters the expression of genes involved in matrix metabolism, specifically the matrix metalloproteinases (MMPs). MMP expression and activity is critical to normal physiological processes that require tissue remodeling, as well as in mediating the progression of a variety of diseases. MMPs not only degrade structural proteins, but are also important mediators of cell signaling near or at the cell membrane through exposure of cryptic sites, release of growth factors, and cleavage of receptors. Therefore, AhR modulation of MMP expression and activity may be critical, not only in pathogenesis, but also in understanding the endogenous function of the AhR. In this review we will examine the data indicating a role for the AhR-signaling pathway in the regulation of matrix remodeling, and discuss potential molecular mechanisms.
Collapse
Affiliation(s)
- Jedd M Hillegass
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
43
|
Singhal R, Shankar K, Badger TM, Ronis MJ. Estrogenic status modulates aryl hydrocarbon receptor—mediated hepatic gene expression and carcinogenicity. Carcinogenesis 2008; 29:227-36. [DOI: 10.1093/carcin/bgm288] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
44
|
Boverhof DR, Burgoon LD, Williams KJ, Zacharewski TR. Inhibition of estrogen-mediated uterine gene expression responses by dioxin. Mol Pharmacol 2008; 73:82-93. [PMID: 17942748 DOI: 10.1124/mol.107.040451] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exhibits antiestrogenic properties, including the inhibition of estrogen-induced uterine growth and proliferation. The inhibition of estrogen-mediated gene expression through ER/AhR cross-talk has been proposed as a plausible mechanism; however, only a limited number of inhibited responses have been investigated that are unlikely to fully account for the antiuterotrophic effects of TCDD. Therefore, the effects of TCDD on ethynyl estradiol (EE)-mediated uterine gene expression were investigated using cDNA microarrays with complementary physiological and histological phenotypic anchoring. Mice were gavaged with vehicle, 3 daily doses of 10 mug/kg EE, a single dose of 30 mug/kg TCDD, or a combination of EE plus TCDD and sacrificed after 4, 12, 24, and 72 h. TCDD cotreatment inhibited EE-induced uterine wet weight by 37, 23, and 45% at 12, 24, and 72 h, respectively. TCDD cotreatment also reduced EE-mediated stromal edema, hypertrophy, and hyperplasia and induced marked luminal epithelial cell apoptosis. A 2 x 2 factorial microarray design was used to identify EE- and TCDD-specific differential gene expression responses as well as their interactive effects. Only 133 of the 2753 EE-mediated differentially expressed genes were significantly modulated by TCDD cotreatment, indicating a gene-specific inhibitory response. The EE-mediated induction of many genes, including trefoil factor 1 and keratin 14, were inhibited by greater than 90% by TCDD. Functional annotation of inhibited responses was associated with cell proliferation, water and ion transport, and maintenance of cellular structure and integrity. These inhibited responses correlate with the observed histological alterations and may contribute to the antiuterotrophic effects of TCDD.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Michigan State University, Department of Biochemistry and Molecular Biology, 224 Biochemistry Building, Wilson Road, East Lansing, MI 48824-1319, USA
| | | | | | | |
Collapse
|
45
|
King Heiden TC, Struble CA, Rise ML, Hessner MJ, Hutz RJ, Carvan MJ. Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: insights into TCDD-induced endocrine disruption and reproductive toxicity. Reprod Toxicol 2008; 25:47-57. [PMID: 17884332 PMCID: PMC2693207 DOI: 10.1016/j.reprotox.2007.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 07/24/2007] [Accepted: 07/31/2007] [Indexed: 12/19/2022]
Abstract
TCDD is a reproductive toxicant and endocrine disruptor, yet the mechanisms by which it causes these reproductive alterations are not fully understood. In order to provide additional insight into the molecular mechanisms that underlie TCDD's reproductive toxicity, we assessed TCDD-induced transcriptional changes in the ovary as they relate to previously described impacts on serum estradiol concentrations and altered follicular development in zebrafish. In silico computational approaches were used to correlate candidate regulatory motifs with observed changes in gene expression. Our data suggest that TCDD inhibits follicle maturation via attenuated gonadotropin responsiveness and/or depressed estradiol biosynthesis, and that interference of estrogen-regulated signal transduction may also contribute to TCDD's impacts on follicular development. TCDD may also alter ovarian function by disrupting various signaling pathways such as glucose and lipid metabolism, and regulation of transcription. Furthermore, events downstream from initial TCDD molecular-targets likely contribute to ovarian toxicity following chronic exposure to TCDD. Data presented here provide further insight into the mechanisms by which TCDD disrupts follicular development and reproduction in fish, and can be used to formulate new hypotheses regarding previously documented ovarian toxicity.
Collapse
Affiliation(s)
- Tisha C. King Heiden
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
- Marine & Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI
| | | | - Matthew L. Rise
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI
| | - Martin J. Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Reinhold J. Hutz
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
- Marine & Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Michael J. Carvan
- Marine & Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI
| |
Collapse
|
46
|
Khan S, Liu S, Stoner M, Safe S. Cobaltous chloride and hypoxia inhibit aryl hydrocarbon receptor-mediated responses in breast cancer cells. Toxicol Appl Pharmacol 2007; 223:28-38. [PMID: 17599377 PMCID: PMC1986799 DOI: 10.1016/j.taap.2007.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/08/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is expressed in estrogen receptor (ER)-positive ZR-75 breast cancer cells. Treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 protein and mRNA levels and also activates inhibitory AhR-ERalpha crosstalk associated with hormone-induced reporter gene expression. In ZR-75 cells grown under hypoxia, induction of these AhR-mediated responses by TCDD was significantly inhibited. This was not accompanied by decreased nuclear AhR levels or decreased interaction of the AhR complex with the CYP1A1 gene promoter as determined in a chromatin immunoprecipitation assay. Hypoxia-induced loss of Ah-responsiveness was not associated with induction of hypoxia-inducible factor-1alpha or other factors that sequester the AhR nuclear translocation (Arnt) protein, and overexpression of Arnt under hypoxia did not restore Ah-responsiveness. The p65 subunit of NFkappaB which inhibits AhR-mediated transactivation was not induced by hypoxia and was primarily cytosolic in ZR-75 cells grown under hypoxic and normoxic conditions. In ZR-75 cells maintained under hypoxic conditions for 24 h, BRCA1 (an enhancer of AhR-mediated transactivation in breast cancer cells) was significantly decreased and this contributed to loss of Ah-responsiveness. In cells grown under hypoxia for 6 h, BRCA1 was not decreased, but induction of CYP1A1 by TCDD was significantly decreased. Cotreatment of ZR-75 cells with TCDD plus the protein synthesis inhibitor cycloheximide for 6 h enhanced CYP1A1 expression in cells grown under hypoxia and normoxia. These results suggest that hypoxia rapidly induces protein(s) that inhibit Ah-responsiveness and these may be similar to constitutively expressed inhibitors of Ah-responsiveness (under normoxia) that are also inhibited by cycloheximide.
Collapse
Affiliation(s)
- Shaheen Khan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Shengxi Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303
| | - Matthew Stoner
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303
| |
Collapse
|
47
|
Yeager KM, Santschi PH, Rifai HS, Suarez MP, Brinkmeyer R, Hung CC, Schindler KJ, Andres MJ, Weaver EA. Dioxin chronology and fluxes in sediments of the Houston Ship Channel, Texas: influences of non-steady-state sediment transport and total organic carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:5291-8. [PMID: 17822093 DOI: 10.1021/es062917p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans (dioxins) are persistent contaminants that bioaccumulate and pose serious risks to humans. The primary objective of this study was to determine the history and mechanisms of dioxin accumulation in sediments of the Houston Ship Channel (HSC) using analytical data on natural and anthropogenic radionuclides (7Be, 137Cs, and 210Pb) and dioxins. Results showed that present-day sedimentary dioxin accumulation rates are orders of magnitude higher than atmospheric inputs to the HSC. Most stations showed dioxin peaks in the near surface, indicating continuing inputs despite federal regulations. Stations with high dioxin inventories reflect accentuated accumulation in the HSC as one moves west toward Houston, at the confluence of the HSC and the San Jacinto River and upstream in the San Jacinto River. These results indicate that a significant quantity of dioxins continues to be released into the environment here or that sedimentary storage and release of previously supplied dioxins is significant, or both. The results support the interpretation that the HSC is influenced by episodic sediment resuspension, erosion and lateral transport processes driven by tides, wind, shipping, and dredging, which can cause intermittently high accumulations of dioxins, and underscores the need for additional research on the roles of sedimentary processes in organic contaminant bioavailability.
Collapse
Affiliation(s)
- Kevin M Yeager
- Department of Marine Science, University of Southern Mississippi, 1020 Balch Boulevard, Stennis Space Center, Mississippi 39529, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Han EH, Kim JY, Jeong HG. Effect of biochanin A on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Arch Pharm Res 2006; 29:570-6. [PMID: 16903077 DOI: 10.1007/bf02969267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Phytoestrogen biochanin A is an isoflavone derivative isolated from red clover Trifolium pratense with anticarcinogenic properties. This study examined the action of biochanin A with the carcinogen activation pathway that is mediated by the aryl hydrocarbon receptor (AhR) in MCF-7 breast carcinoma cells. Treating the cells with biochanin A alone caused the accumulation of CYP1A1 mRNA and an increase in CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity in a dose dependent manner. A concomitant treatment with 7,12-dimethylbenz[a]anthracene (DMBA) and biochanin A markedly reduced the DMBA-inducible EROD activity and CYP1A1 mRNA level. In addition, the biochanin A treatment alone activated the DNA-binding capacity of the AhR for the dioxin-response element (DRE) of CYP1A1, as measured by the electrophoretic-mobility shift assay (EMSA). EMSA revealed that biochanin A reduced the level of the DMBA-inducible AhR-DRE binding complex. Furthermore, biochanin A competed with the prototypical AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), for binding to the AhR in an isolated rat cytosol. The biochanin A competitively inhibited the metabolic activation of DMBA, as measured by the formation of the DMBA-DNA adducts. These results suggest that biochanin A may thus be a natural ligand to bind on AhR. Therefore, biochanin A may be due to act an antagonist/agonist of the AhR pathway.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/metabolism
- 9,10-Dimethyl-1,2-benzanthracene/pharmacology
- Animals
- Antineoplastic Agents, Phytogenic/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Binding, Competitive
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Carcinogens/metabolism
- Carcinogens/pharmacology
- Cell Line, Tumor
- Cytochrome P-450 CYP1A1/antagonists & inhibitors
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- DNA/metabolism
- DNA Adducts
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Neoplastic/drug effects
- Genistein/metabolism
- Genistein/pharmacology
- Humans
- Liver/drug effects
- Liver/metabolism
- Male
- Oxazines/metabolism
- Polychlorinated Dibenzodioxins/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Aryl Hydrocarbon/drug effects
- Receptors, Aryl Hydrocarbon/metabolism
Collapse
Affiliation(s)
- Eun Hee Han
- Department of Pharmacy, College of Pharmacy, Research Center for Proteineous Materials, Chosun University, Kwangju, Korea
| | | | | |
Collapse
|
49
|
Ramadoss P, Marcus C, Perdew GH. Role of the aryl hydrocarbon receptor in drug metabolism. Expert Opin Drug Metab Toxicol 2006; 1:9-21. [PMID: 16922649 DOI: 10.1517/17425255.1.1.9] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that regulates the transcription of certain key enzymes involved in the metabolism of xenobiotic substances including some drugs. The AhR can be activated by a wide range of classes of compounds (e.g. polycyclic aromatic hydrocarbons, benzimidazoles and flavonoids), and interacts with a number of other proteins, including nuclear hormone receptors such as the oestrogen and androgen receptors. Activation of the AhR antagonises the oestrogen receptor and can lead to modulation of its transcriptional activity; thus, activating the AhR may serve as a target for breast cancer therapy. Disruption of normal signalling by drug interactions with the AhR or downstream components of this pathway could result in adverse effects, such as the bioactivation of procarcinogens or the disruption of normal homeostasis. The cytochrome P450s CYP1A1, -1B1, -1A2 and -2S1 are regulated by the AhR, and they are all involved in the metabolism of endogenous substrates as well as xenobiotics. Polymorphisms in the AhR, or polymorphisms in enzymes regulated by the AhR, may cause variations in response to certain drugs in different individuals; this needs to be taken into consideration when administering drugs that interact with this pathway.
Collapse
Affiliation(s)
- Preeti Ramadoss
- The Pennsylvania State University, Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary Science, University Park, PA 16802, USA
| | | | | |
Collapse
|
50
|
Khan S, Barhoumi R, Burghardt R, Liu S, Kim K, Safe S. Molecular mechanism of inhibitory aryl hydrocarbon receptor-estrogen receptor/Sp1 cross talk in breast cancer cells. Mol Endocrinol 2006; 20:2199-2214. [PMID: 16675542 DOI: 10.1210/me.2006-0100] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The trifunctional carbamoylphosphate synthetase/aspartate transcarbamyltransferase/dihydroorotase (CAD) gene is hormone responsive in MCF-7 and ZR-75 breast cancer cells, and this response is inhibited by the aryl hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Estrogen-dependent induction of CAD mRNA and reporter gene activity in cells transfected with constructs (pCAD) containing hormone-responsive GC-rich CAD promoter inserts involves estrogen receptor alpha (ERalpha)/Sp1 interactions with these proximal GC-rich motifs. TCDD also inhibits hormone-induced transactivation in MCF-7 and ZR-75 cells transfected with pCAD constructs. The mechanism of inhibitory AhR-ERalpha/Sp1 cross talk was further investigated by chromatin immunoprecipitation (ChIP), and the results show that ERalpha/Sp1 and the AhR are constitutively bound to the CAD gene promoter and only minor changes are observed after treatment with 17beta-estradiol, TCDD, or their combination. However, examination of interactions of these transcription factors by fluorescence resonance energy transfer shows that E2 enhances ERalpha-Sp1 interactions, whereas cotreatment with TCDD significantly decreases interaction of these proteins. These results suggest that inhibitory AhR-ERalpha/Sp1 cross talk is due, in part, to enhanced association of AhR and ERalpha (also determined by fluorescence resonance energy transfer), which coordinately dissociates ER and Sp1 and decreases ERalpha/Sp1-mediated transactivation, whereas remaining associated with the CAD promoter. This represents a novel interaction between two ligand activated receptors where one receptor inhibits activation of the second receptor.
Collapse
Affiliation(s)
- Shaheen Khan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|