1
|
Zhang S, Yang L, Duoji Z, Qiangba D, Hu X, Jiang Z, Hou D, Hu Z, Basang Z. DNA Methylation Changes and Phenotypic Adaptations Induced Repeated Extreme Altitude Exposure at 8848 Meters. Int J Mol Sci 2024; 25:12652. [PMID: 39684363 DOI: 10.3390/ijms252312652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 12/18/2024] Open
Abstract
Repeated extreme environmental training (RET) enhances adaptability and induces lasting methylation modifications. We recruited 64 participants from a high-altitude region (4700 m), including 32 volunteers with repeated high-altitude exposure, reaching up to 8848 m and as many as 11 exposures. By analyzing 741,489 CpG loci and 39 phenotypes, we identified significant changes in 13 CpG loci (R2 > 0.8, ACC > 0.75) and 15 phenotypes correlated with increasing RET exposures. The phenotypic Bayesian causal network and phenotypic-CpG interaction networks showed greater robustness (node correlation) with more RET exposures, particularly in systolic blood pressure (SP), platelet count (PLT), and neutrophil count (NEUT). Six CpG sites were validated as significantly associated with hypoxia exposure using the GEO public da-taset (AltitudeOmics). Furthermore, dividing the participants into two groups based on the number of RET exposures (n = 9 and 4) revealed six CpG sites significantly corre-lated with PLT and red cell distribution width-standard deviation (RDW.SD). Our findings suggest that increased RET exposures strengthen the interactions between phenotypes and CpG sites, indicating that critical extreme adaptive states may alter methylation patterns, co-evolving with phenotypes such as PLT, RDW.SD, and NEUT.
Collapse
Affiliation(s)
- Shixuan Zhang
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - La Yang
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| | - Zhuoma Duoji
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| | - Danzeng Qiangba
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| | - Xiaoxi Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Zeyu Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Dandan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Zixin Hu
- Artificial Intelligence Innovation and Incubation Institute of Fudan University, Shanghai 200438, China
| | - Zhuoma Basang
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| |
Collapse
|
2
|
Abstract
BET proteins have recently become recognized for their role in a broad range of cancers and are defined by the presence of two acetyl-histone reading bromodomains and an ET domain. This family of proteins includes BRD2, BRD3, BRD4, and BRDT. BRD4 is the most-studied BET protein in cancer, and normally serves as an epigenetic reader that links active chromatin marks to transcriptional elongation through activation of RNA polymerase II. The role of BRD3 and BRD4 first became known in cancer as mutant oncoproteins fused to the p300-recruiting NUT protein in a rare aggressive subtype of squamous cell cancer known as NUT midline carcinoma (NMC). BET inhibitors are acetyl-histone mimetics that specifically bind BET bromodomains, competitively inhibiting its engagement with chromatin. The antineoplastic effects of BET inhibitors were first demonstrated in NMC and have since been shown to be effective at inhibiting the growth of many different cancers, particularly acute leukemia. BET inhibitors have also been instrumental as tool compounds that have demonstrated the key role of BRD4 in driving NMC and non-NMC cancer growth. Many clinical trials enrolling patients with hematologic and solid tumors are ongoing, with encouraging preliminary findings. BET proteins BRD2, BRD3, and BRD4 are expressed in nearly all cells of the body, so there are concerns of toxicity with BET inhibitors, as well as the development of resistance. Toxicity and resistance may be overcome by combining BET inhibitors with other targeted inhibitors, or through the use of novel BET inhibitor derivatives.
Collapse
Affiliation(s)
- C A French
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Lahiji A, Kucerová-Levisohn M, Lovett J, Holmes R, Zúñiga-Pflücker JC, Ortiz BD. Complete TCR-α gene locus control region activity in T cells derived in vitro from embryonic stem cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:472-9. [PMID: 23720809 DOI: 10.4049/jimmunol.1300521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Locus control regions (LCRs) are cis-acting gene regulatory elements with the unique, integration site-independent ability to transfer the characteristics of their locus-of-origin's gene expression pattern to a linked transgene in mice. LCR activities have been discovered in numerous T cell lineage-expressed gene loci. These elements can be adapted to the design of stem cell gene therapy vectors that direct robust therapeutic gene expression to the T cell progeny of engineered stem cells. Currently, transgenic mice provide the only experimental approach that wholly supports all the critical aspects of LCR activity. In this study, we report the manifestation of all key features of mouse TCR-α gene LCR function in T cells derived in vitro from mouse embryonic stem cells. High-level, copy number-related TCR-α LCR-linked reporter gene expression levels are cell type restricted in this system, and upregulated during the expected stage transition of T cell development. We also report that de novo introduction of TCR-α LCR-linked transgenes into existing T cell lines yields incomplete LCR activity. These data indicate that establishing full TCR-α LCR activity requires critical molecular events occurring prior to final T lineage determination. This study also validates a novel, tractable, and more rapid approach for the study of LCR activity in T cells, and its translation to therapeutic genetic engineering.
Collapse
Affiliation(s)
- Armin Lahiji
- Department of Biological Sciences, City University of New York, Hunter College, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
4
|
Bulger M, Groudine M. Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev Biol 2010; 339:250-7. [PMID: 20025863 PMCID: PMC3060611 DOI: 10.1016/j.ydbio.2009.11.035] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/24/2009] [Accepted: 11/30/2009] [Indexed: 12/25/2022]
Abstract
Transcriptional control in mammals and Drosophila is often mediated by regulatory sequences located far from gene promoters. Different classes of such elements - particularly enhancers, but also locus control regions and insulators - have been defined by specific functional assays, although it is not always clear how these assays relate to the function of these elements within their native loci. Recent advances in genomics suggest, however, that such elements are highly abundant within the genome and may represent the primary mechanism by which cell- and developmental-specific gene expression is accomplished. In this review, we discuss the functional parameters of enhancers as defined by specific assays, along with the frequency with which they occur in the genome. In addition, we examine the available evidence for the mechanism by which such elements communicate or interact with the promoters they regulate.
Collapse
Affiliation(s)
- Michael Bulger
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA.
| | | |
Collapse
|
5
|
Abstract
Coregulation of lymphoid-specific gene sets is achieved by a series of epigenetic mechanisms. Association with higher-order chromosomal structures (nuclear subcompartments repressing or favouring gene expression) and locus control regions affects recombination and transcription of clonotypic antigen receptors and expression of a series of other lymphoid-specific genes. Locus control regions can regulate DNA methylation patterns in their vicinity. They may induce tissue- and site-specific DNA demethylation and affect, thereby, accessibility to recombination-activating proteins, transcription factors, and enzymes involved in histone modifications. Both DNA methylation and the Polycomb group of proteins (PcG) function as alternative systems of epigenetic memory in lymphoid cells. Complexes of PcG proteins mark their target genes by covalent histone tail modifications and influence lymphoid development and rearrangement of IgH genes. Ectopic expression of protein noncoding microRNAs may affect the generation of B-lineage cells, too, by guiding effector complexes to sites of heterochromatin assembly. Coregulation of lymphoid and viral promoters is also possible. EBNA 2, a nuclear protein encoded by episomal Epstein-Barr virus genomes, binds to the cellular protein CBF1 (C promoter binding factor 1) and operates, thereby, a regulatory network to activate latent viral promoters and cellular promoters associated with CBF1 binding sites.Key words : lymphoid cells, coregulation of gene batteries, epigenetic regulation, nuclear subcompartment switch, locus control region, DNA methylation, Polycomb group of proteins, histone modifications, microRNA, Epstein-Barr virus, EBNA 2, regulatory network.
Collapse
Affiliation(s)
- Ildikó Györy
- Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary
| | | |
Collapse
|
6
|
Microarray and comparative genomics-based identification of genes and gene regulatory regions of the mouse immune system. BMC Genomics 2004; 5:82. [PMID: 15504237 PMCID: PMC534115 DOI: 10.1186/1471-2164-5-82] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 10/25/2004] [Indexed: 12/30/2022] Open
Abstract
Background In this study we have built and mined a gene expression database composed of 65 diverse mouse tissues for genes preferentially expressed in immune tissues and cell types. Using expression pattern criteria, we identified 360 genes with preferential expression in thymus, spleen, peripheral blood mononuclear cells, lymph nodes (unstimulated or stimulated), or in vitro activated T-cells. Results Gene clusters, formed based on similarity of expression-pattern across either all tissues or the immune tissues only, had highly significant associations both with immunological processes such as chemokine-mediated response, antigen processing, receptor-related signal transduction, and transcriptional regulation, and also with more general processes such as replication and cell cycle control. Within-cluster gene correlations implicated known associations of known genes, as well as immune process-related roles for poorly described genes. To characterize regulatory mechanisms and cis-elements of genes with similar patterns of expression, we used a new version of a comparative genomics-based cis-element analysis tool to identify clusters of cis-elements with compositional similarity among multiple genes. Several clusters contained genes that shared 5–6 cis-elements that included ETS and zinc-finger binding sites. cis-Elements AP2 EGRF ETSF MAZF SP1F ZF5F and AREB ETSF MZF1 PAX5 STAT were shared in a thymus-expressed set; AP4R E2FF EBOX ETSF MAZF SP1F ZF5F and CREB E2FF MAZF PCAT SP1F STAT cis-clusters occurred in activated T-cells; CEBP CREB NFKB SORY and GATA NKXH OCT1 RBIT occurred in stimulated lymph nodes. Conclusion This study demonstrates a series of analytic approaches that have allowed the implication of genes and regulatory elements that participate in the differentiation, maintenance, and function of the immune system. Polymorphism or mutation of these could adversely impact immune system functions.
Collapse
|
7
|
McKee BD. Homologous pairing and chromosome dynamics in meiosis and mitosis. ACTA ACUST UNITED AC 2004; 1677:165-80. [PMID: 15020057 DOI: 10.1016/j.bbaexp.2003.11.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 11/18/2003] [Indexed: 10/26/2022]
Abstract
Pairing of homologous chromosomes is an essential feature of meiosis, acting to promote high levels of recombination and to ensure segregation of homologs. However, homologous pairing also occurs in somatic cells, most regularly in Dipterans such as Drosophila, but also to a lesser extent in other organisms, and it is not known how mitotic and meiotic pairing relate to each other. In this article, I summarize results of recent molecular studies of pairing in both mitosis and meiosis, focusing especially on studies using fluorescent in situ hybridization (FISH) and GFP-tagging of single loci, which have allowed investigators to assay the pairing status of chromosomes directly. These approaches have permitted the demonstration that pairing occurs throughout the cell cycle in mitotic cells in Drosophila, and that the transition from mitotic to meiotic pairing in spermatogenesis is accompanied by a dramatic increase in pairing frequency. Similar approaches in mammals, plants and fungi have established that with few exceptions, chromosomes enter meiosis unpaired and that chromosome movements involving the telomeric, and sometimes centromeric, regions often precede the onset of meiotic pairing. The possible roles of proteins involved in homologous recombination, synapsis and sister chromatid cohesion in homolog pairing are discussed with an emphasis on those for which mutant phenotypes have permitted an assessment of effects on homolog pairing. Finally, I consider the question of the distribution and identity of chromosomal pairing sites, using recent data to evaluate possible relationships between pairing sites and other chromosomal sites, such as centromeres, telomeres, promoters and heterochromatin. I cite evidence that may point to a relationship between matrix attachment sites and homologous pairing sites.
Collapse
Affiliation(s)
- Bruce D McKee
- Department of Biochemistry and Cellular and Molecular Biology and Genome Sciences and Technology Program, University of Tennessee, Knoxville, M407 Walters Life Sciences Building, Knoxville, TN 37996-0840, USA.
| |
Collapse
|
8
|
Chua YL, Watson LA, Gray JC. The transcriptional enhancer of the pea plastocyanin gene associates with the nuclear matrix and regulates gene expression through histone acetylation. THE PLANT CELL 2003; 15:1468-79. [PMID: 12782737 PMCID: PMC156380 DOI: 10.1105/tpc.011825] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 04/11/2003] [Indexed: 05/17/2023]
Abstract
The influence of the transcriptional enhancer of the pea plastocyanin gene (PetE) on the acetylation of histones was examined with chromatin immunoprecipitation (ChIP) experiments using antibodies that recognize acetylated or nonacetylated histones H3 and H4. In transgenic tobacco plants containing the pea PetE promoter fused to uidA, both acetylated and nonacetylated histones H3 and H4 were present on the integrated transgene. Linking the PetE enhancer to the transgene resulted in increased beta-glucuronidase activity and increased amounts of acetylated histones H3 and H4 present on the promoter, suggesting that the enhancer may increase transcription by mediating the acetylation of histones. Trichostatin A and sodium butyrate, which are potent inhibitors of histone deacetylases (HDAs), activated expression from the PetE promoter by fourfold, with a concomitant increase in the acetylation states of histones H3 and H4, as determined by ChIP, indicating that the acetylation of histones has a direct positive effect on transcription. The HDA inhibitors did not increase expression from the PetE promoter when it was linked to the enhancer, consistent with preexisting hyperacetylated histones on the transgene. Mapping of histone acetylation states along the reporter gene indicated that the histones H3 and H4 associated with the promoter and the 5' region of uidA were hyperacetylated in the presence of the PetE enhancer. The PetE enhancer bound to isolated tobacco nuclear matrices in vitro and was associated with the nuclear matrix in nuclei isolated from transgenic tobacco plants. These results suggest that the pea PetE enhancer activates transcription by associating with the nuclear matrix, mediating the acetylation of histones on the promoter and the nearby coding region and resulting in an altered chromatin structure.
Collapse
Affiliation(s)
- Yii Leng Chua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | |
Collapse
|
9
|
Wells S, Murphy D. Transgenic studies on the regulation of the anterior pituitary gland function by the hypothalamus. Front Neuroendocrinol 2003; 24:11-26. [PMID: 12609498 DOI: 10.1016/s0091-3022(02)00103-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The anterior pituitary gland is composed of five different cell types secreting hormones whose functions include the regulation of post-natal growth (growth hormone, GH), lactation (prolactin, PRL), reproduction (luteinising hormone, LH, and follicle stimulating hormone, FSH), metabolism (thyroid stimulating hormone, TSH), and stress (adrenocorticotrophic hormone, ACTH). The synthesis and secretion of the anterior pituitary hormones is under the control of neuropeptides released from the hypothalamus into a capillary portal plexus which flows through the external zone of the median eminence to the anterior lobe. This review describes the ways that gene transfer technologies have been applied to whole animals in order to study the regulation of anterior pituitary function by the hypothalamus. The extensive studies on these neuronal systems, within the context of the physiological integrity of the intact organism, not only exemplify the successful application of transgenic technologies to neuroendocrine systems, but also illustrate the problems that have been encountered, and the challenges that lie ahead.
Collapse
Affiliation(s)
- Sara Wells
- Molecular Neuroendocrinology Research Group, University Research Centre for Neuroendocrinology, University of Bristol, Bristol Royal Infirmary, UK
| | | |
Collapse
|
10
|
Jegga AG, Sherwood SP, Carman JW, Pinski AT, Phillips JL, Pestian JP, Aronow BJ. Detection and visualization of compositionally similar cis-regulatory element clusters in orthologous and coordinately controlled genes. Genome Res 2002; 12:1408-17. [PMID: 12213778 PMCID: PMC186658 DOI: 10.1101/gr.255002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Accepted: 07/18/2002] [Indexed: 02/02/2023]
Abstract
Evolutionarily conserved noncoding genomic sequences represent a potentially rich source for the discovery of gene regulatory regions. However, detecting and visualizing compositionally similar cis-element clusters in the context of conserved sequences is challenging. We have explored potential solutions and developed an algorithm and visualization method that combines the results of conserved sequence analyses (BLASTZ) with those of transcription factor binding site analyses (MatInspector) (http://trafac.chmcc.org). We define hits as the density of co-occurring cis-element transcription factor (TF)-binding sites measured within a 200-bp moving average window through phylogenetically conserved regions. The results are depicted as a Regulogram, in which the hit count is plotted as a function of position within each of the two genomic regions of the aligned orthologs. Within a high-scoring region, the relative arrangement of shared cis-elements within compositionally similar TF-binding site clusters is depicted in a Trafacgram. On the basis of analyses of several training data sets, the approach also allows for the detection of similarities in composition and relative arrangement of cis-element clusters within nonorthologous genes, promoters, and enhancers that exhibit coordinate regulatory properties. Known functional regulatory regions of nonorthologous and less-conserved orthologous genes frequently showed cis-element shuffling, demonstrating that compositional similarity can be more sensitive than sequence similarity. These results show that combining sequence similarity with cis-element compositional similarity provides a powerful aid for the identification of potential control regions.
Collapse
Affiliation(s)
- Anil G Jegga
- Divisions of Pediatric Informatics, University of Cincinnati, Cincinnati, Ohio, 45229 USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Ortiz BD, Harrow F, Cado D, Santoso B, Winoto A. Function and factor interactions of a locus control region element in the mouse T cell receptor-alpha/Dad1 gene locus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3836-45. [PMID: 11564801 DOI: 10.4049/jimmunol.167.7.3836] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Locus control regions (LCRs) refer to cis-acting elements composed of several DNase I hypersensitive sites, which synergize to protect transgenes from integration-site dependent effects in a tissue-specific manner. LCRs have been identified in many immunologically important gene loci, including one between the TCRdelta/TCRalpha gene segments and the ubiquitously expressed Dad1 gene. Expression of a transgene under the control of all the LCR elements is T cell specific. However, a subfragment of this LCR is functional in a wide variety of tissues. How a ubiquitously active element can participate in tissue-restricted LCR activity is not clear. In this study, we localize the ubiquitously active sequences of the TCR-alpha LCR to an 800-bp region containing a prominent DNase hypersensitive site. In isolation, the activity in this region suppresses position effect transgene silencing in many tissues. A combination of in vivo footprint examination of this element in widely active transgene and EMSAs revealed tissue-unrestricted factor occupancy patterns and binding of several ubiquitously expressed transcription factors. In contrast, tissue-specific, differential protein occupancies at this element were observed in the endogenous locus or full-length LCR transgene. We identified tissue-restricted AML-1 and Elf-1 as proteins that potentially act via this element. These data demonstrate that a widely active LCR module can synergize with other LCR components to produce tissue-specific LCR activity through differential protein occupancy and function and provide evidence to support a role for this LCR module in the regulation of both TCR and Dad1 genes.
Collapse
Affiliation(s)
- B D Ortiz
- Department of Biological Sciences, City University of New York, Hunter College, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
12
|
Webb C, Zong RT, Lin D, Wang Z, Kaplan M, Paulin Y, Smith E, Probst L, Bryant J, Goldstein A, Scheuermann R, Tucker P. Differential regulation of immunoglobulin gene transcription via nuclear matrix-associated regions. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:109-18. [PMID: 11232275 DOI: 10.1101/sqb.1999.64.109] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- C Webb
- Department of Immunobiology and Cancer, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Si-Hoe SL, Wells S, Murphy D. Production of transgenic rodents by the microinjection of cloned DNA into fertilized one-cell eggs. Mol Biotechnol 2001; 17:151-82. [PMID: 11395864 DOI: 10.1385/mb:17:2:151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transgenic technologies that enable rapid movement between genotype and phenotype through specific loss-of-function, overexpression, or misexpression phenotypes will be crucial in the elucidation of gene sequences emerging from genome projects. This article describes detailed procedures for the generation of transgenic mice and rats by the injection of cloned DNA into the pronuclei of fertilized one-cell eggs.
Collapse
Affiliation(s)
- S L Si-Hoe
- Molecular Neuroendocrinology Research Group, Univ. Res. Centre for Neuroendocrinology, Univ. Bristol, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8HW, UK
| | | | | |
Collapse
|
14
|
Dusing MR, Brickner AG, Lowe SY, Cohen MB, Wiginton DA. A duodenum-specific enhancer regulates expression along three axes in the small intestine. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1080-93. [PMID: 11053006 DOI: 10.1152/ajpgi.2000.279.5.g1080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine deaminase (ADA) is expressed at high levels in the epithelium of proximal small intestine. Transgenic mice were used to characterize the regulatory region governing this activation. A duodenum-specific enhancer is located in intron 2 of the human ADA gene at the central site among a cluster of seven DNase I-hypersensitive sites present in duodenal DNA. Flanking DNA, including the remaining hypersensitive sites, is required for consistent high-level enhancer function. The enhancer activates expression in a pattern identical to endogenous ADA along both the anterior-posterior axis of the small intestine and the crypt-villus differentiation axis of the intestinal epithelium. Timing of activation by the central enhancer mimics endogenous mouse ADA activation, occurring at 2-3 wk of age. However, two upstream DNA segments, one proximal and one distal, collaborate to change enhancer activation to a perinatal time point. Studies with duodenal nuclear extracts identified five distinct DNase I footprints within the enhancer. Protected regions encompass six putative binding sites for the transcription factor PDX-1, as well as proposed CDX, hepatocyte nuclear factor-4, and GATA-type sites.
Collapse
Affiliation(s)
- M R Dusing
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
15
|
Bonifer C. Developmental regulation of eukaryotic gene loci: which cis-regulatory information is required? Trends Genet 2000; 16:310-5. [PMID: 10858661 DOI: 10.1016/s0168-9525(00)02029-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is becoming increasingly accepted that gene loci comprise an extensive cis-regulatory system that encodes different layers of regulatory information, all of which are necessary to achieve and maintain tissue-specific gene expression in ontogeny. To gain a detailed understanding of developmental processes, it is clearly necessary to unravel the molecular basis behind the different regulatory processes that control gene expression. This information is also of utmost importance for any practical application that uses gene transfer technology.
Collapse
Affiliation(s)
- C Bonifer
- Molecular Medicine Unit, University of Leeds, St James's University Hospital, Leeds, UK.
| |
Collapse
|
16
|
Locus control region activity by 5′HS3 requires a functional interaction with β-globin gene regulatory elements: expression of novel β/γ-globin hybrid transgenes. Blood 2000. [DOI: 10.1182/blood.v95.10.3242] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The human β-globin locus control region (LCR) contains chromatin opening and transcriptional enhancement activities that are important to include in β-globin gene therapy vectors. We previously used single-copy transgenic mice to map chromatin opening activity to the 5′HS3 LCR element. Here, we test novel hybrid globin genes to identify β-globin gene sequences that functionally interact with 5′HS3. First, we show that an 850-base pair (bp) 5′HS3 element activates high-level β-globin gene expression in fetal livers of 17 of 17 transgenic mice, including 3 single-copy animals, but fails to reproducibly activate Aγ-globin transgenes. To identify the β-globin gene sequences required for LCR activity by 5′HS3, we linked the 815-bp β-globin promoter to Aγ-globin coding sequences (BGT34), together with either the β-globin intron 2 (BGT35), the β-globin 3′ enhancer (BGT54), or both intron 2 and the 3′ enhancer (BGT50). Of these transgenes, only BGT50 reproducibly expresses Aγ-globin RNA (including 7 of 7 single-copy animals, averaging 71% per copy). Modifications to BGT50 show that LCR activity is detected after replacing the β-globin promoter with the 700-bp Aγ-globin promoter, but is abrogated when an AT-rich region is deleted from β-globin intron 2. We conclude that LCR activity by 5′HS3 on globin promoters requires the simultaneous presence of β-globin intron 2 sequences and the 260-bp 3′ β-globin enhancer. The BGT50 construct extends the utility of the 5′HS3 element to include erythroid expression of nonadult β-globin coding sequences in transgenic animals and its ability to express antisickling γ-globin coding sequences at single copy are ideal characteristics for a gene therapy cassette.
Collapse
|
17
|
Locus control region activity by 5′HS3 requires a functional interaction with β-globin gene regulatory elements: expression of novel β/γ-globin hybrid transgenes. Blood 2000. [DOI: 10.1182/blood.v95.10.3242.010k27_3242_3249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human β-globin locus control region (LCR) contains chromatin opening and transcriptional enhancement activities that are important to include in β-globin gene therapy vectors. We previously used single-copy transgenic mice to map chromatin opening activity to the 5′HS3 LCR element. Here, we test novel hybrid globin genes to identify β-globin gene sequences that functionally interact with 5′HS3. First, we show that an 850-base pair (bp) 5′HS3 element activates high-level β-globin gene expression in fetal livers of 17 of 17 transgenic mice, including 3 single-copy animals, but fails to reproducibly activate Aγ-globin transgenes. To identify the β-globin gene sequences required for LCR activity by 5′HS3, we linked the 815-bp β-globin promoter to Aγ-globin coding sequences (BGT34), together with either the β-globin intron 2 (BGT35), the β-globin 3′ enhancer (BGT54), or both intron 2 and the 3′ enhancer (BGT50). Of these transgenes, only BGT50 reproducibly expresses Aγ-globin RNA (including 7 of 7 single-copy animals, averaging 71% per copy). Modifications to BGT50 show that LCR activity is detected after replacing the β-globin promoter with the 700-bp Aγ-globin promoter, but is abrogated when an AT-rich region is deleted from β-globin intron 2. We conclude that LCR activity by 5′HS3 on globin promoters requires the simultaneous presence of β-globin intron 2 sequences and the 260-bp 3′ β-globin enhancer. The BGT50 construct extends the utility of the 5′HS3 element to include erythroid expression of nonadult β-globin coding sequences in transgenic animals and its ability to express antisickling γ-globin coding sequences at single copy are ideal characteristics for a gene therapy cassette.
Collapse
|
18
|
Scott KC, Taubman AD, Geyer PK. Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. Genetics 1999; 153:787-98. [PMID: 10511558 PMCID: PMC1460797 DOI: 10.1093/genetics/153.2.787] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insulators are specialized DNA sequences that prevent enhancer-activated transcription only when interposed between an enhancer and its target promoter. The Drosophila gypsy retrotransposon contains an insulator composed of 12 degenerate binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein that are separated by AT-rich DNA possessing sequence motifs common to matrix/scaffold attachment regions (MARs/SARs). To further understand mechanisms of insulator function, the parameters required for the gypsy insulator to prevent enhancer-activated transcription were examined. Synthetic binding regions were created by reiteration of a single Su(Hw) binding site that lacked the MAR/SAR motifs. These synthetic binding regions reconstituted insulator activity, suggesting that the property of enhancer blocking may be distinct from matrix association. We found that the number and spacing of Su(Hw) binding sites within the gypsy insulator, as well as the strength of the enhancer to be blocked, were important determinants of insulator function. These results provide a link between transcription and insulation, suggesting that these processes may be mechanistically interconnected.
Collapse
Affiliation(s)
- K C Scott
- Department of Biochemistry, University of Iowa, College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
19
|
Abstract
Several different types of regulatory mechanisms contribute to the tissue- and development-specific regulation of a gene. It is now well established that, in addition to promoters, upstream cis-regulatory elements, which bind a variety of trans-acting factors, are essential for correct gene activation. In the last few years, however, it has become evident that the chromatin structure of eukaryotic genes is an important additional regulatory layer that is essential for correct gene expression during development. Chromatin is essentially a repressive environment for transcription factors; hence, much effort in recent years has been devoted to the elucidation of how these repressive forces are overcome during the process of gene locus activation. A particular interesting question in this context is: what are the molecular mechanisms by which extensive regions of chromatin, in many cases far outside the coding region, are reorganized during development? In this review, I summarize data from recent investigations that have uncovered a surprising variety of factors involved in this process.
Collapse
Affiliation(s)
- C Bonifer
- University of Leeds, Molecular Medicine Unit, St. James's University Hospital, UK.
| |
Collapse
|
20
|
Baker JE, Kang J, Xiong N, Chen T, Cado D, Raulet DH. A novel element upstream of the Vgamma2 gene in the murine T cell receptor gamma locus cooperates with the 3' enhancer to act as a locus control region. J Exp Med 1999; 190:669-79. [PMID: 10477551 PMCID: PMC2195622 DOI: 10.1084/jem.190.5.669] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1999] [Accepted: 06/28/1999] [Indexed: 12/16/2022] Open
Abstract
Transgenic expression constructs were employed to identify a cis-acting transcription element in the T cell receptor (TCR)-gamma locus, called HsA, between the Vgamma5 and Vgamma2 genes. In constructs lacking the previously defined enhancer (3'E(Cgamma1)), HsA supports transcription in mature but not immature T cells in a largely position-independent fashion. 3'E(Cgamma1), without HsA, supports transcription in immature and mature T cells but is subject to severe position effects. Together, the two elements support expression in immature and mature T cells in a copy number-dependent, position-independent fashion. Furthermore, HsA was necessary for consistent rearrangement of transgenic recombination substrates. These data suggest that HsA provides chromatin-opening activity and, together with 3'E(Cgamma1), constitutes a T cell-specific locus control region for the TCR-gamma locus.
Collapse
Affiliation(s)
- Jeanne E. Baker
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - Joonsoo Kang
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - Na Xiong
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - Tempe Chen
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - Dragana Cado
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - David H. Raulet
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| |
Collapse
|
21
|
Crowe AJ, Sang L, Li KK, Lee KC, Spear BT, Barton MC. Hepatocyte nuclear factor 3 relieves chromatin-mediated repression of the alpha-fetoprotein gene. J Biol Chem 1999; 274:25113-20. [PMID: 10455192 DOI: 10.1074/jbc.274.35.25113] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The alpha-fetoprotein gene (AFP) is tightly regulated at the tissue-specific level, with expression confined to endoderm-derived cells. We have reconstituted AFP transcription on chromatin-assembled DNA templates in vitro. Our studies show that chromatin assembly is essential for hepatic-specific expression of the AFP gene. While nucleosome-free AFP DNA is robustly transcribed in vitro by both cervical (HeLa) and hepatocellular (HepG2) carcinoma extracts, the general transcription factors and transactivators present in HeLa extract cannot relieve chromatin-mediated repression of AFP. In contrast, preincubation with either HepG2 extract or HeLa extract supplemented with recombinant hepatocyte nuclear factor 3 alpha (HNF3alpha), a hepatic-enriched factor expressed very early during liver development, is sufficient to confer transcriptional activation on a chromatin-repressed AFP template. Transient transfection studies illustrate that HNF3alpha can activate AFP expression in a non-liver cellular environment, confirming a pivotal role for HNF3alpha in establishing hepatic-specific gene expression. Restriction enzyme accessibility assays reveal that HNF3alpha promotes the assembly of an open chromatin structure at the AFP promoter. Combined, these functional and structural data suggest that chromatin assembly establishes a barrier to block inappropriate expression of AFP in non-hepatic tissues and that tissue-specific factors, such as HNF3alpha, are required to alleviate the chromatin-mediated repression.
Collapse
Affiliation(s)
- A J Crowe
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | | | | | | | | | |
Collapse
|
22
|
Fernández LA, Winkler M, Forrester W, Jenuwein T, Grosschedl R. Nuclear matrix attachment regions confer long-range function upon the immunoglobulin mu enhancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:515-24. [PMID: 10384316 DOI: 10.1101/sqb.1998.63.515] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- L A Fernández
- Howard Hughes Medical Institute, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
23
|
Xu PA, Winston JH, Datta SK, Kellems RE. Regulation of forestomach-specific expression of the murine adenosine deaminase gene. J Biol Chem 1999; 274:10316-23. [PMID: 10187819 DOI: 10.1074/jbc.274.15.10316] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maturation of stratified squamous epithelium of the upper gastrointestinal tract is a highly ordered process of development and differentiation. Information on the molecular basis of this process is, however, limited. Here we report the identification of the first murine forestomach regulatory element using the murine adenosine deaminase (Ada) gene as a model. In the adult mouse, Ada is highly expressed in the terminally differentiated epithelial layer of upper gastrointestinal tract tissues. The data reported here represent the identification and detailed analysis of a 1. 1-kilobase (kb) sequence located 3.4-kb upstream of the transcription initiation site of the murine Ada gene, which is sufficient to target cat reporter gene expression to the forestomach in transgenic mice. This 1.1-kb fragment is capable of directing cat reporter gene expression mainly to the forestomach of transgenic mice, with a level comparable to the endogenous Ada gene. This expression is localized to the appropriate cell types, confers copy number dependence, and shows the same developmental regulation. Mutational analysis revealed the functional importance of multiple transcription factor-binding sites.
Collapse
Affiliation(s)
- P A Xu
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
24
|
Gerbitz A, Mautner J, Geltinger C, Hörtnagel K, Christoph B, Asenbauer H, Klobeck G, Polack A, Bornkamm GW. Deregulation of the proto-oncogene c-myc through t(8;22) translocation in Burkitt's lymphoma. Oncogene 1999; 18:1745-53. [PMID: 10208435 DOI: 10.1038/sj.onc.1202468] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Burkitt's lymphoma (BL) cells the proto-oncogene c-myc is juxtaposed to one of the immunoglobulin (Ig) loci on chromosomes 2, 14, or 22. The c-myc gene becomes transcriptionally activated as a consequence of the chromosomal translocation and shows preferential usage of promoter P1 over P2, a phenomenon referred to as promoter shift. In order to define the responsible regulatory elements within the Ig lambda locus, we studied the effect of the human Ig lambda enhancer (HuE lambda) on c-myc expression after stable transfection into BL cells. A 12 kb genomic fragment encompassing HuE lambda, but not HuE lambda alone, strongly activated c-myc expression and induced the promoter shift. To identify additional elements involved in c-myc deregulation, we mapped DNaseI hypersensitive sites within the 12 kb lambda fragment on the construct. Besides one hypersensitive site corresponding to HuE lambda, three additional sites were detected. Two of these elements displayed enhancer activity after transient transfection. The third element did not activate c-myc transcription, but was required for full c-myc activation and promoter shift. Deletion analyses of the c-myc promoter identified the immediate promoter region as sufficient for activation by the Ig lambda. locus, but also revealed that induction of the promoter shift requires additional upstream elements.
Collapse
Affiliation(s)
- A Gerbitz
- Dana Farber Cancer Institute, Pediatric Oncology, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ortiz BD, Cado D, Winoto A. A new element within the T-cell receptor alpha locus required for tissue-specific locus control region activity. Mol Cell Biol 1999; 19:1901-9. [PMID: 10022877 PMCID: PMC83983 DOI: 10.1128/mcb.19.3.1901] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Locus control regions (LCRs) are cis-acting regulatory elements thought to provide a tissue-specific open chromatin domain for genes to which they are linked. The gene for T-cell receptor alpha chain (TCRalpha) is exclusively expressed in T cells, and the chromatin at its locus displays differentially open configurations in expressing and nonexpressing tissues. Mouse TCRalpha exists in a complex locus containing three differentially regulated genes. We previously described an LCR in this locus that confers T-lineage-specific expression upon linked transgenes. The 3' portion of this LCR contains an unrestricted chromatin opening activity while the 5' portion contains elements restricting this activity to T cells. This tissue-specificity region contains four known DNase I hypersensitive sites, two located near transcriptional silencers, one at the TCRalpha enhancer, and another located 3' of the enhancer in a 1-kb region of unknown function. Analysis of this region using transgenic mice reveals that the silencer regions contribute negligibly to LCR activity. While the enhancer is required for complete LCR function, its removal has surprisingly little effect on chromatin structure or expression outside the thymus. Rather, the region 3' of the enhancer appears responsible for the tissue-differential chromatin configurations observed at the TCRalpha locus. This region, herein termed the "HS1' element," also increases lymphoid transgene expression while suppressing ectopic transgene activity. Thus, this previously undescribed element is an integral part of the TCRalphaLCR, which influences tissue-specific chromatin structure and gene expression.
Collapse
MESH Headings
- Animals
- Chromatin
- Enhancer Elements, Genetic
- Locus Control Region
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Tissue Distribution
- Transcription, Genetic
- Transgenes
Collapse
Affiliation(s)
- B D Ortiz
- Department of Molecular and Cell Biology, Cancer Research Laboratory and Division of Immunology, University of California, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
26
|
Ess KC, Witte DP, Bascomb CP, Aronow BJ. Diverse developing mouse lineages exhibit high-level c-Myb expression in immature cells and loss of expression upon differentiation. Oncogene 1999; 18:1103-11. [PMID: 10023687 DOI: 10.1038/sj.onc.1202387] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The c-myb gene encodes a sequence specific transactivator that is required for fetal hematopoiesis, but its potential role in other tissues is less clear because of the early fetal demise of mice with targeted deletions of the c-myb gene and incomplete of knowledge about c-myb's expression pattern. In the hematopoietic system, c-Myb protein acts on target genes whose expression is restricted to individual lineages, despite Myb's presence and role in multiple immature lineages. This suggests that c-Myb actions within different cell type-specific contexts are strongly affected by combinatorial interactions. To consider the possibility of similar c-Myb actions could extend into non-hematopoietic systems in other cell and tissue compartments, we characterized c-myb expression in developing and adult mice using in situ hybridization and correlated this with stage-specific differentiation and mitotic activity. Diverse tissues exhibited strong c-myb expression during development, notably tooth buds, the thyroid primordium, developing trachea and proximal branching airway epithelium, hair follicles, hematopoietic cells, and gastrointestinal crypt epithelial cells. The latter three of these all maintained high expression into adulthood, but with characteristic restriction to immature cell lineages prior to their terminal differentiation. In all sites, during fetal and adult stages, loss of c-Myb expression correlated strikingly with the initiation of terminal differentiation, but not the loss of mitotic activity. Based on these data, we hypothesize that c-Myb's function during cellular differentiation is both an activator of immature gene expression and a suppressor of terminal differentiation in diverse lineages.
Collapse
Affiliation(s)
- K C Ess
- Division of Molecular and Developmental Biology Children's Hospital Research Foundation, University of Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
27
|
Ward SB, Hernandez-Hoyos G, Chen F, Waterman M, Reeves R, Rothenberg EV. Chromatin remodeling of the interleukin-2 gene: distinct alterations in the proximal versus distal enhancer regions. Nucleic Acids Res 1998; 26:2923-34. [PMID: 9611237 PMCID: PMC147656 DOI: 10.1093/nar/26.12.2923] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Known transcription factor-DNA interactions in the minimal enhancer of the murine interleukin-2 gene (IL-2) do not easily explain the T cell specificity of IL-2 regulation. To seek additional determinants of cell type specificity, in vivo methodologies were employed to examine chromatin structure 5' and 3' of the 300 bp IL-2 proximal promoter/enhancer region. Restriction enzyme accessibility revealed that until stimulation the IL-2 proximal promoter/enhancer exists in a closed conformation in resting T and non-T cells alike. Within this promoter region, DMS and DNase I genomic footprinting also showed no tissue-specific differences prior to stimulation. However, DNase I footprinting of the distal -600 to -300 bp region revealed multiple tissue-specific and stimulation-independent DNase I hypersensitive sites. Gel shift assays detected T cell-specific complexes binding within this region, which include TCF/LEF or HMG family and probable Oct family components. Upon stimulation, new DNase I hypersensitive sites appeared in both the proximal and distal enhancer regions, implying that there may be a functional interaction between these two domains. These studies indicate that a region outside the established IL-2 minimal enhancer may serve as a stable nucleation site for tissue-specific factors and as a potential initiation site for activation-dependent chromatin remodeling.
Collapse
Affiliation(s)
- S B Ward
- Division of Biology MC156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
28
|
Sternfeld M, Patrick JD, Soreq H. Position effect variegations and brain-specific silencing in transgenic mice overexpressing human acetylcholinesterase variants. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:249-55. [PMID: 9789818 DOI: 10.1016/s0928-4257(98)80028-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Position effect variegations as well as brain-specific silencing were observed in novel transgenic mouse pedigrees expressing human acetylcholinesterase (AChE) variants. Muscle AChE activities varied between 1.6- and 350-fold of control in these lines, one carrying insertion-inactivated InE6-AChE and two with 'readthrough' I4/E5 AChE, all under control of the ubiquitous CMV promoter. In contrast, brain AChE levels remained within a range of 1.5-fold over control, suggesting an upper limit of brain AChE which is compatible with life.
Collapse
Affiliation(s)
- M Sternfeld
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
29
|
Asselbergs FA, Grossenbacher R, Ortmann R, Hengerer B, McMaster GK, Sutter E, Widmer R, Buxton F. Position-independent expression of a human nerve growth factor-luciferase reporter gene cloned on a yeast artificial chromosome vector. Nucleic Acids Res 1998; 26:1826-33. [PMID: 9512559 PMCID: PMC147460 DOI: 10.1093/nar/26.7.1826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two yeast artificial chromosomes containing the entire human nerve growth factor gene were isolated and mapped. By homologous recombination a luciferase gene was precisely engineered into the coding portion of the NGF gene and a neomycin selection marker was placed adjacent to one of the YAC telomeres. Expression of the YAC-based NGF reporter gene and a plasmid-based NGF reporter gene were compared with the regulation of endogenous mouse NGF protein in mouse L929 fibroblasts. In contrast to the plasmid-based reporter gene, expression and regulation of the YAC-based reporter gene was independent of the site of integration of the transgene. Basic fibroblast growth factor and okadaic acid stimulated expression of the YAC transgene, whereas transforming growth factor-beta and dexamethasone inhibited it. Although cyclic AMP strongly stimulated production of the endogenous mouse NGF, no effect was seen on the human NGF reporter genes. Downregulation of the secretion of endogenous mouse NGF already occurred at an EC50 of 1-2 nM dexamethasone, but downregulation of the expression of NGF reporter genes occurred only at EC50 of 10 nM. This higher concentration was also required for upregulation of luciferase genes driven by the dexamethasone-inducible promoter of the mouse mammary tumor virus in L929 fibroblasts.
Collapse
Affiliation(s)
- F A Asselbergs
- Pharma Research Department, Novartis Pharma Inc., CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Du H, Duanmu M, Rosa LR. Mouse lysosomal acid lipase: characterization of the gene and analysis of promoter activity. Gene X 1998; 208:285-95. [PMID: 9524282 DOI: 10.1016/s0378-1119(98)00019-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lysosomal acid lipase (LAL) is required for the hydrolysis of intracellular cholesteryl esters and triglycerides that are delivered to lysosomes by low density lipoprotein (LDL) receptor-mediated endocytosis. To understand that the expression of LAL mRNA and protein is tissue and cell specifically regulated in mice, genomic clones for the mouse lysosomal acid lipase (mLAL) gene were isolated and characterized. The 6.8 kb of the mLAL gene 5'-flanking region was sequenced. Comparisons of mouse and human LAL genes organization revealed identical intron/exon boundaries, except for intron 1 of the mouse gene, and identical exonic length of exons 3-9. The transcription start sites and exon 1 of mLAL were characterized by 5'-RACE-PCR and S1 nuclease mapping. Transfection of 5' flanking deletions of mLAL luciferase reporter gene construct identified positive and negative regulatory elements that varied with cell type. Transfection of three progressively smaller pieces of intron 1 inserted into an SV40 promoter and luciferase reporter gene revealed an enhancer-like activity in intron 1 that is also cell type specific. These studies provide insight into the basis for regulation of this critical enzyme in lipid metabolism.
Collapse
Affiliation(s)
- H Du
- Division of Human Genetics, Children's Hospital Research Foundation, Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | |
Collapse
|
31
|
Samson SL, Gedamu L. Molecular analyses of metallothionein gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 59:257-88. [PMID: 9427845 DOI: 10.1016/s0079-6603(08)61034-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metallothionein (MT) genes encode small proteins that chelate metal ions through metal-thiolate bonds with cysteine residues. MTs may have a role in cellular zinc homeostasis and metal detoxification. Congruent with these putative functions, MT gene transcription is induced by metals via multiple metal-responsive elements (MREs) present in the MT gene 5'-regulatory regions. This chapter mainly is focused on studies of the functional and physical interactions of MRE binding proteins with MT promoters from human and rainbow trout. In addition to mediating zinc induction, MREs may make important contributions to nonmetal induced promoter activity. In part, differential basal activity of MREs appears to be determined by sequence and position in the promoter. During zinc induction, increased functional MRE activity correlates with increased activity of mammalian MRE binding proteins by zinc treatment in vivo or in vitro, as detected by electrophoretic mobility shift assays. Interestingly, the addition of cadmium in vitro or in vivo has no detectable effect even though it strongly induces MT gene expression in the same time course. This raises questions about how the effects of cadmium are mediated by MREs. The molecular masses and MRE complex migration of the zinc-responsive factors we detect are consistent with mouse and human metal-responsive transcription factor (MTF) and expression of the MTF cDNAs increases co-transfected MT promoter activity in both mammalian and trout cell lines underlining the conservation of MRE binding factor function among diverse species.
Collapse
Affiliation(s)
- S L Samson
- Department of Biological Sciences, University of Calgary, Alberta
| | | |
Collapse
|
32
|
Scholz H, Bossone SA, Cohen HT, Akella U, Strauss WM, Sukhatme VP. A far upstream cis-element is required for Wilms' tumor-1 (WT1) gene expression in renal cell culture. J Biol Chem 1997; 272:32836-46. [PMID: 9407061 DOI: 10.1074/jbc.272.52.32836] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To identify novel cis-regulatory elements responsible for the tissue-restricted expression pattern of the Wilms' tumor-1 (WT1) gene, we mapped a total of 11 DNase I-hypersensitive sites in the 5'-flanking region and first intron of the human gene, six of which were specific for WT1 expressing cell lines. A 1.4-kilobase (kb) fragment from the mouse wt1 5'-flanking region contained cross-hybridizing sequence with significant homology to a region of DNase I hypersensitivity in the human WT1 gene which bound to nuclear matrix in human fetal kidney 293 cells. None of the DNase I-hypersensitive sites/matrix attachment regions, either alone or in combination, were sufficient for tissue-specific WT1 expression in transient and stably transfected cell lines. However, stable transfection of an approximately 620-kb yeast artificial chromosome (YAC) that carried the entire mouse wt1 locus into 293 cells resulted in wt1 (trans)gene expression at a level of approximately 30% of the endogenous human gene. Deletion of the 1.4-kb cross-hybridizing mouse fragment, located approximately 15 kb upstream of the transcription start site, caused complete loss of wt1 gene expression in the YAC-transfected 293 cells. In summary, we have identified a far upstream element that contains a region of DNase I hypersensitivity and that binds to nuclear matrix. This element includes phylogenetically conserved sequence and is required, although not sufficient, for mouse wt1 gene expression in human fetal kidney cells in culture.
Collapse
Affiliation(s)
- H Scholz
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
33
|
Pinaud E, Aupetit C, Chauveau C, Cogné M. Identification of a homolog of the C alpha 3'/hs3 enhancer and of an allelic variant of the 3'IgH/hs1,2 enhancer downstream of the human immunoglobulin alpha 1 gene. Eur J Immunol 1997; 27:2981-5. [PMID: 9394827 DOI: 10.1002/eji.1830271134] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although four regulatory elements are known downstream of the mouse IgH alpha gene, a single enhancer homologous to hs1,2 has been thus far described downstream of each human alpha gene (Chen, C. and Birshtein, B. K., J. Immunol. 1997. 159: 1310). We characterized a 10-kb region downstream of the human alpha 1 gene. Two B cell-specific regulatory elements homologous to the murine C alpha 3'/hs3 and hs1,2,3' enhancers were found, which are duplicated downstream of alpha 2. The hs1,2 element is in inverted orientation by comparison with a recently reported alpha 1 hs1,2 element: it appears as a common allelic variant carrying an internal tandem repeat insertion and its prevalence in the human population is 60%. As in the mouse, the human hs1,2 enhancer is flanked with long inverted repeats which may have promoted inversion events through homologous recombination. Although the palindromic organization of the region is maintained in human, sequence identity with rodents focuses on core enhancer elements rather than on flanking repeats. Concerted divergence of both sides of the dyad symmetry suggests that inverted repeats are not just evolutionary remnants but rather play an architectural role in the LCR function.
Collapse
Affiliation(s)
- E Pinaud
- Laboratoire d'Immunologie, CNRS EP118, Limoges, France
| | | | | | | |
Collapse
|
34
|
Dusing MR, Brickner AG, Thomas MB, Wiginton DA. Regulation of duodenal specific expression of the human adenosine deaminase gene. J Biol Chem 1997; 272:26634-42. [PMID: 9334245 DOI: 10.1074/jbc.272.42.26634] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Formation of the mammalian gastrointestinal tract is an ordered process of development and differentiation. Yet, the adult small intestine also retains the plasticity to respond to cues both internal and environmental to modulate intestinal function. The components that regulate this development, differentiation, and modulation at the molecular level are only now being elucidated. We have used the human adenosine deaminase (ADA) gene as a model to identify potential cis-regulatory components involved in these processes within the small intestine. In mammals, high levels of ADA in the small intestine are limited specifically to the differentiated enterocytes within the duodenal region. These studies describe the identification of a region of the human ADA gene, completely distinct from the previously identified T-cell enhancer, which is capable of directing the human intestinal expression pattern in the intestine of transgenic mice. The reporter gene expression pattern observed in these transgenic mice is identical to the endogenous gene along both the cephalocaudal and crypt/villus axis of development. Timing of this transgene activation, however, varies from that of the endogenous mouse gene in that the transgene is activated approximately 2 weeks earlier in development. Even so, this precocious activation is also limited to the epithelium of the developing villi strictly within the duodenal region of the small intestine.
Collapse
Affiliation(s)
- M R Dusing
- Department of Pediatrics, Division of Developmental Biology, University of Cincinnati College of Medicine and Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
35
|
Kioussis D, Festenstein R. Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals. Curr Opin Genet Dev 1997; 7:614-9. [PMID: 9388777 DOI: 10.1016/s0959-437x(97)80008-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Differentiation of specific cell types during the development of mammals requires the selective silencing or activation of tissue-specific genes. Locus control regions (LCRs) are gene regulatory elements that act in cis to ensure that active transcriptional units are established in all cells of a given cell lineage. Over the past year, it has become clear that this process takes place at the level of chromatin remodelling, and that LCRs ensure that this decision is made by both alleles in every cell. Studies on LCRs and analysis of gene expression in transgenic mice at the single cell level has revealed that the breakdown in LCR function accompanying the deletion of specific sequences results in a phenomenon known as position effect variegation, described in detail in yeast and Drosophila. Thus, when located in close proximity to heterochromatin a transgene linked to a disabled LCR is randomly silenced in a proportion of cells. This finding implies that all subregions within an LCR are necessary to ensure the establishment of an open chromatin configuration of a gene even when the latter is located in a highly heterochromatic region.
Collapse
Affiliation(s)
- D Kioussis
- National Institute for Medical Research, Division of Molecular Immunology, London, UK.
| | | |
Collapse
|
36
|
Abstract
Techniques that allow modification of the mammalian genome have made a considerable contribution to many areas of biological science. Despite these achievements, challenges remain in two principal areas of transgenic technology, namely gene regulation and efficient transgenic livestock production. Obtaining reliable and sophisticated expression that rivals that of endogenous genes is frequently problematic. Transgenic science has played an important part in increasing understanding of the complex processes that underlie gene regulation, and this in turn has assisted in the design of transgene constructs expressed in a tightly regulated and faithful manner. The production of transgenic livestock is an inefficient process compared to that of laboratory models, and the lack of totipotential embryonic stem (ES) cell lines in farm animal species hampers the development of this area of work. This article highlights recent progress in efficient trans gene expression systems, and the current efforts being made to find alternative means of generating transgenic livestock.
Collapse
Affiliation(s)
- E R Cameron
- Department of Veterinary Clinical Studies, Glasgow University Veterinary School.
| |
Collapse
|
37
|
Lauzurica P, Zhong XP, Krangel MS, Roberts JL. Regulation of T cell receptor delta gene rearrangement by CBF/PEBP2. J Exp Med 1997; 185:1193-201. [PMID: 9104806 PMCID: PMC2196263 DOI: 10.1084/jem.185.7.1193] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/1996] [Indexed: 02/04/2023] Open
Abstract
We have analyzed transgenic mice carrying versions of a human T cell receptor (TCR)-delta gene minilocus to study the developmental control of VDJ (variable/diversity/joining) recombination. Previous data indicated that a 1.4-kb DNA fragment carrying the TCR-delta enhancer (E(delta)) efficiently activates minilocus VDJ recombination in vivo. We tested whether the transcription factor CBF/PEBP2 plays an important role in the ability of E(delta) to activate VDJ recombination by analyzing VDJ recombination in mice carrying a minilocus in which the deltaE3 element of E(delta) includes a mutated CBF/PEBP2 binding site. The enhancer-dependent VD to J step of minilocus rearrangement was dramatically inhibited in three of four transgenic lines, arguing that the binding of CBF/PEBP2 plays a role in modulating local accessibility to the VDJ recombinase in vivo. Because mutation of the deltaE3 binding site for the transcription factor c-Myb had previously established a similar role for c-Myb, and because a 60-bp fragment of E(delta) carrying deltaE3 and deltaE4 binding sites for CBF/PEBP2, c-Myb, and GATA-3 displays significant enhancer activity in transient transfection experiments, we tested whether this fragment of E(delta) is sufficient to activate VDJ recombination in vivo. This fragment failed to efficiently activate the enhancer-dependent VD to J step of minilocus rearrangement in all three transgenic lines examined, indicating that the binding of CBF/PEBP2 and c-Myb to their cognate sites within E(delta), although necessary, is not sufficient for the activation of VDJ recombination by E(delta). These results imply that CBF/PEBP2 and c-Myb collaborate with additional factors that bind elsewhere within E(delta) to modulate local accessibility to the VDJ recombinase in vivo.
Collapse
Affiliation(s)
- P Lauzurica
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
38
|
Oeltjen JC, Malley TM, Muzny DM, Miller W, Gibbs RA, Belmont JW. Large-scale comparative sequence analysis of the human and murine Bruton's tyrosine kinase loci reveals conserved regulatory domains. Genome Res 1997; 7:315-29. [PMID: 9110171 DOI: 10.1101/gr.7.4.315] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Large-scale genomic DNA sequencing of orthologous and paralogous loci in different species should contribute to a basic understanding of the evolution of both the protein-coding regions and noncoding regulatory elements. We compared 93 kb of human sequence to 89 kb of mouse sequence in the Bruton's tyrosine kinase (BTK) region. In addition to showing the conservation of both position and orientation of the five functionally unrelated genes in the region (BTK, alpha-D-galactosidase A, L44L, FTP-3, and FCI-12), the comparison revealed conservation of clusters of noncoding sequence flanking the first exon of each gene. Furthermore, in the sequence comparison at the BTK locus, the conservation of clusters of noncoding sequence extends throughout the locus; the noncoding sequence is more highly conserved in the BTK locus in comparison to the flanking loci. This suggests a correlation with the complex developmental regulation of expression of btk. To determine whether a highly conserved 3.5-kb segment flanking the first exon of BTK contains transcriptional regulatory signals, we tested various portions of the segment for promoter and expression activity in several appropriate cell lines. The results demonstrate the contribution of the conserved region flanking the first exon to the cell lineage-specific expression pattern of btk. These data show the usefulness of large scale sequence comparisons to focus investigation on regions of noncoding sequence that play essential roles in complex gene regulation.
Collapse
Affiliation(s)
- J C Oeltjen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
39
|
Lien LL, Lee Y, Orkin SH. Regulation of the myeloid-cell-expressed human gp91-phox gene as studied by transfer of yeast artificial chromosome clones into embryonic stem cells: suppression of a variegated cellular pattern of expression requires a full complement of distant cis elements. Mol Cell Biol 1997; 17:2279-90. [PMID: 9121478 PMCID: PMC232077 DOI: 10.1128/mcb.17.4.2279] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Identifying the full repertoire of cis elements required for gene expression in mammalian cells (or animals) is challenging, given the moderate sizes of many loci. To study how the human gp91-phox gene is expressed specifically in myeloid hematopoietic cells, we introduced yeast artificial chromosome (YAC) clones and derivatives generated in yeast into mouse embryonic stem cells competent to differentiate to myeloid cells in vitro or into mouse chimeras. Fully appropriate regulation was recapitulated with a 130-kb YAC containing 60 and 30 kb of 5' and 3' flanking sequences, respectively. Immunodetection of human gp91-phox protein revealed uniform expression in individual myeloid cells. The removal of upstream sequences led to decreased overall expression which reflected largely a variegated pattern of expression, such that cells were either "on" or "off," rather than pancellular loss of expression. The proportion of clones displaying marked variegation increased with progressive deletion. DNase I mapping of chromatin identified two hypersensitive clusters, consistent with the presence of multiple regulatory elements. Our findings point to cooperative interactions of complex regulatory elements and suggest that the presence of an incomplete set of elements reduces the probability that an open chromatin domain (or active transcriptional complex) may form or be maintained in the face of repressive influences of neighboring chromatin.
Collapse
Affiliation(s)
- L L Lien
- Division of Hematology/Oncology, Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
40
|
Tumas-Brundage KM, Vora KA, Manser T. Evaluation of the role of the 3'alpha heavy chain enhancer [3'alpha E(hs1,2)] in Vh gene somatic hypermutation. Mol Immunol 1997; 34:367-78. [PMID: 9293770 DOI: 10.1016/s0161-5890(97)00065-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous work on the cis-acting elements that control heavy chain variable region (VH) gene somatic hypermutation has indicated the presence of an as yet unidentified element(s) 3' of the intron enhancer that is necessary for high rate mutation. Examination of cis-acting elements involved in kappa light chain V gene hypermutation has demonstrated a requirement for both the intronic and 3' kappa enhancers in this process. To examine whether the 3'alpha heavy chain enhancer [3'alpha E(hs1,2)] is required for somatic hypermutation of VH genes, we generated two types of transgenic mice. One type was generated using a construct containing a VH promoter, a rearranged VDJ, the heavy chain intronic enhancer, and the murine heavy chain 3'alpha E(hs1,2). The transgenes in the second lines were similar to the transgenes in the first with the addition of a second complete matrix attachment region (MAR) 3' of the heavy chain intronic enhancer, and splice acceptor and polyadenylation sites between the two enhancers. Analysis of both transgenes revealed levels of mutation at least 10-fold lower than endogenous VH genes. These data suggest that the 3'alpha E(hs1,2) does not play a role analogous to the 3' kappa enhancer in the regulation of the hypermutation process. Moreover, in one of the transgenes, the presence of the 3'alpha E(hs1,2) resulted in a lack of transcription in vivo, suggesting a negative regulatory role for this enhancer in certain contexts.
Collapse
Affiliation(s)
- K M Tumas-Brundage
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson Medical College, Philadelphia, PA 19107, U.S.A
| | | | | |
Collapse
|
41
|
Subramanian PS, Chinault AC. Replication timing properties of the human HPRT locus on active, inactive and reactivated X chromosomes. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:97-109. [PMID: 9330638 DOI: 10.1007/bf02679969] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
X chromosome inactivation is associated with a highly asynchronous pattern of DNA replication at most X-linked loci in females. We studied the human HPRT locus, which is subject to X inactivation and expressed from only the active homolog, with the goal of comparing replication properties between the active and inactive homologs in this region using a fluorescence in situ hybridization approach. We found that in normal female lymphoblasts this locus is replicated in a highly asynchronous manner across a broad, discrete 500-600 kb zone with earliest replication appearing at the gene coding sequence. This general timing profile is maintained in normal male lymphoblasts, as well as in hamster x human hybrid cells containing the active human X chromosome. However, the inactive human X chromosome in the hamster cell background does not appear to function in a fully equivalent manner to the normal inactive X chromosome in female cells. Furthermore, reactivation of the inactive human X chromosome in a hamster x human hybrid system by 5-azacytidine treatment and HAT selection restores early replication at the HPRT gene itself, but does not change the overall domain behavior.
Collapse
Affiliation(s)
- P S Subramanian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
42
|
Jenuwein T, Forrester WC, Fernández-Herrero LA, Laible G, Dull M, Grosschedl R. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 1997; 385:269-72. [PMID: 9000077 DOI: 10.1038/385269a0] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcription of the variable region of the rearranged immunoglobulin mu gene is dependent on an enhancer sequence situated within one of the introns of the gene. Experiments with transgenic mice have shown that activation of the promoter controlling this transcription also requires the matrix-attachment regions (MARs) that flank the intronic enhancer. As this mu gene enhancer can establish local areas of accessible chromatin, we investigated whether the MARs can extend accessibility to more distal positions. We eliminated interactions between enhancer- and promoter-bound factors by linking mu enhancer/MAR fragments to the binding sites for bacteriophage RNA polymerases that were either close to or one kilobase distal to the enhancer. The mu enhancer alone mediated chromatin accessibility at the proximal site but required a flanking MAR to confer accessibility upon the distal promoter. This long-range accessibility correlates with extended demethylation of the gene construct but not with whether it is being actively transcribed. MARs thus collaborate with the mu enhancer to generate an extended domain of accessible chromatin.
Collapse
Affiliation(s)
- T Jenuwein
- Howard Hughes Medical Institute, University of California, San Francisco 94143-0414, USA
| | | | | | | | | | | |
Collapse
|
43
|
Haynes TL, Thomas MB, Dusing MR, Valerius MT, Potter SS, Wiginton DA. An enhancer LEF-1/TCF-1 site is essential for insertion site-independent transgene expression in thymus. Nucleic Acids Res 1996; 24:5034-44. [PMID: 9016677 PMCID: PMC146351 DOI: 10.1093/nar/24.24.5034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcriptional activation of eukaryotic genes involves assembly of specific multiprotein complexes on the promoters and enhancers of the genes. Recently, it has been proposed that the role of some of the proteins in the complex may be architectural, involving DNA bending, orchestration of protein-protein interaction and modulation of nucleosome structure. This role has been proposed for the HMG proteins LEF-1 and TCF-1. We examined the role of a LEF-1/TCF-1 binding site in the human adenosine deaminase (ADA) thymic enhancer. Mutational analysis demonstrated that a functional LEF-1/TCF-1 binding site is not required for enhancer-mediated transcriptional activation in transient transfection studies, but is essential for enhancer function in the in vivo chromatin context of transgenic mice. Mutation of the LEF-1/TCF-1 site destroyed the ability of the ADA enhancer/locus control region to specify high level, insertion site-independent transgene expression in thymus. DNase I and DpnII accessibility experiments indicated dramatic changes in the chromatin organization of the ADA enhancer in transgenic mice with a mutated LEF-1/TCF-1 site. This supports the hypothesis that factors binding the LEF-1/TCF-1 site play an architectural role during the in vivo activation of the ADA enhancer, possibly involving chromatin modification.
Collapse
Affiliation(s)
- T L Haynes
- Department of Pediatrics, University of Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Rao MV, Donoghue MJ, Merlie JP, Sanes JR. Distinct regulatory elements control muscle-specific, fiber-type-selective, and axially graded expression of a myosin light-chain gene in transgenic mice. Mol Cell Biol 1996; 16:3909-22. [PMID: 8668209 PMCID: PMC231388 DOI: 10.1128/mcb.16.7.3909] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The fast alkali myosin light chain 1f/3f (MLC1f/3f) gene is developmentally regulated, muscle specific, and preferentially expressed in fast-twitch fibers. A transgene containing an MLC1f promoter plus a downstream enhancer replicates this pattern of expression in transgenic mice. Unexpectedly, this transgene is also expressed in a striking (approximately 100-fold) rostrocaudal gradient in axial muscles (reviewed by J. R. Sanes, M. J. Donoghue, M. C. Wallace, and J. P. Merlie, Cold Spring Harbor Symp. Quant. Biol. 57:451-460, 1992). Here, we analyzed the expression of mutated transgenes to map sites necessary for muscle-specific, fiber-type-selective, and axially graded expression. We show that two E boxes (myogenic factor binding sites), a homeodomain (hox) protein binding site, and an MEF2 site, which are clustered in an approximately 170-bp core enhancer, are all necessary for maximal transgene activity in muscle but not for fiber-type- or position-dependent expression. A distinct region within the core enhancer promotes selective expression of the transgene in fast-twitch muscles. Sequences that flank the core enhancer are also necessary for high-level activity in transgenic mice but have little influence on activity in transfected cells, suggesting the presence of regions resembling matrix attachment sites. Truncations of the MLC1f promoter affected position-dependent expression of the transgene, revealing distinct regions that repress transgene activity in neck muscles and promote differential expression among intercostal muscles. Thus, the whole-body gradient of expression displayed by the complete transgene may reflect the integrated activities of discrete elements that regulate expression in subsets of muscles. Finally, we show that transgene activity is not significantly affected by deletion or overexpression of the myoD gene, suggesting that intermuscular differences in myogenic factor levels do not affect patterns of transgene expression. Together, our results provide evidence for at least nine distinct sites that exert major effects on the levels and patterns of MLC1f expression in adult muscles.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chloramphenicol O-Acetyltransferase/biosynthesis
- Crosses, Genetic
- DNA Footprinting
- DNA Primers
- Deoxyribonuclease I
- Embryo, Mammalian/cytology
- Embryo, Mammalian/physiology
- Embryonic and Fetal Development
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Molecular Sequence Data
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Mutagenesis, Site-Directed
- Myosin Light Chains/biosynthesis
- Myosin Light Chains/genetics
- Organ Specificity
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Recombinant Proteins/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Transfection
Collapse
Affiliation(s)
- M V Rao
- Department of Molecular Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
46
|
Winston JH, Hong L, Datta SK, Kellems RE. An intron 1 regulatory region from the murine adenosine deaminase gene can activate heterologous promoters for ubiquitous expression in transgenic mice. SOMATIC CELL AND MOLECULAR GENETICS 1996; 22:261-78. [PMID: 9000171 DOI: 10.1007/bf02369566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ubiquitously expressed genes contain regulatory features which allow expression in virtually all cell types. In an effort to understand the molecular basis for this regulatory feature, the chromatin structure of the murine adenosine deaminase gene was examined by DNase I digestion in nuclei of several tissues. The promoter contained a strong hypersensitive site in all tissues examined, including those with very high and very low levels of ADA expression. Transgenic mouse studies revealed that a 3.3 kb EcoRI (3.3EE) fragment from intron I was required to generate a strong promoter DNase I hypersensitive site, and to produce ubiquitous expression. The 3.3EE fragment also contained a thymic enhancer activity which mapped to sequences conserved with the human ADA gene T-lymphocyte enhancer. Mutational analysis indicated that ubiquitous expression was not dependent on the presence of a functional thymic enhancer. Both the thymic enhancer and the ubiquitous activator within the 3.3EE fragment functioned with heterologous promoters in transgenic mice.
Collapse
Affiliation(s)
- J H Winston
- Verna and Mars McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
47
|
Iyengar A, Müller F, Maclean N. Regulation and expression of transgenes in fish -- a review. Transgenic Res 1996; 5:147-66. [PMID: 8673142 DOI: 10.1007/bf01969704] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transgenic fish, owing to a number of advantages which they offer over other species, are proving to be valuable model systems for the study of gene regulation and development genetics in addition to being useful targets for the genetic manipulation of commercially important traits. Despite having begun only a decade ago, the production of transgenic fish has become commonplace in a number of laboratories world-wide and considerable progress has been made. In this review, we initially consider the various regulatory elements and coding genes which have been used in fish, and subsequently discuss and compare both the transient and long-term fate and expression patterns of injected DNA sequences in the context of the different factors which are likely to have an effect on the expression of transgenes.
Collapse
Affiliation(s)
- A Iyengar
- Department of Biology, School of Biological Sciences, University of Southampton, UK
| | | | | |
Collapse
|
48
|
Abstract
Recent progress in understanding boundary and insulator elements has concentrated on the identification of their protein components. BEAF-32 is a protein present in the scs' element of Drosophila that is also localized to most interband regions and puffs of polytene chromosomes, suggesting a role in the organization of structural chromosomal domains. The suppressor of Hairy-wing and modifier of mdg4 proteins have been characterized as components of the gypsy insulator. The latter seems to play a crucial role in conferring on the insulator its ability to unidirectionally affect enhancer function.
Collapse
Affiliation(s)
- T I Gerasimova
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
49
|
Chu YY, Tu KH, Lee YC, Kuo ZJ, Lai HL, Chern Y. Characterization of the rat A2a adenosine receptor gene. DNA Cell Biol 1996; 15:329-37. [PMID: 8639269 DOI: 10.1089/dna.1996.15.329] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To understand the molecular basis for the regulation of rat A2a adenosine receptor (A2a-R) expression, we have characterized the rat A2a-R gene and defined its promoter regions. Through a combination of restriction mapping and sequence analysis, we have demonstrated that the rat A2a-R gene is composed of two exons interrupted by a 7.2-kb intron. Primer extension and RNase protection on RNA isolated from PC12 cells suggested that the A2a-R gene encoded two clusters of alternative transcripts. The most upstream transcription start site was designated as +1. The sequence of the proximal 1.5 kb of 5'-flanking region demonstrated no potential TATA box, CCAAT box, or initiator element in the appropriate location. Varying lengths of 5'-flanking regions were inserted into a transient expression vector (pGL2-basic), which contained bacterial luciferase as the reporter gene, to determine its promoter region(s) in PC12 cells, CHOP cells, and C6 cells. Consistent with two clusters of transcription start sites, two independent functional promoter regions (designated P1, -67/-1; and P2, +272/+304) for the rat A2a-R gene were identified. Although both promoters are in use in PC12 cells, only P2 is active in CHOP cells, indicating possible cell line-specific usage of these two promoters.
Collapse
Affiliation(s)
- Y Y Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | | | | | | | | | | |
Collapse
|
50
|
Dey R, Naik S, Patel MS. Tissue-specific expression of the human pyruvate dehydrogenase alpha (Pdha-1)/chloramphenicol acetyltransferase fusion gene in transgenic mice. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1305:189-95. [PMID: 8597605 DOI: 10.1016/0167-4781(95)00216-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A chimeric gene (-763/+33Pdha-1/CAT) containing -763/+33 nucleotides o f the human pyruvate dehydrogenase gene (Pdha-1) and the structural gene of chloramphenicol acetyltransferase (CAT) was used to generate transgenic mice. CAT activity was detected predominantly in the brain followed in decreasing order by adipose tissue, spleen, heart, kidney and liver. Developmental expression of CAT activity in the testes was similar to that of the endogenous Pdha-1 subunit expression in the testes. Dietary regulation of the transgene was comparable to the expression of endogenous pyruvate dehydrogenase complex in kidney and adipose tissue. Thus, the -763/+33 bp segment of the human Pdha-1 gene is transcriptionally active in vivo and can direct the expression of CAT in several tissues.
Collapse
Affiliation(s)
- R Dey
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA
| | | | | |
Collapse
|