1
|
Dho SE, Othman K, Zhang Y, McGlade CJ. NUMB alternative splicing and isoform-specific functions in development and disease. J Biol Chem 2025; 301:108215. [PMID: 39863103 PMCID: PMC11889595 DOI: 10.1016/j.jbc.2025.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multifunctional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over 2 decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation. In this review we consolidate the literature that has directly addressed individual NUMB isoform functions, as well as interpret other functional studies through the lens of the specific isoforms that were utilized. We also summarize the emerging literature on the mechanisms that regulate alternative splicing of NUMB, and how this is subverted in disease. Finally, the importance of relative NUMB isoform expression as a determinant of activity and considerations for future studies of NUMB isoforms as unique proteins with distinct functions are discussed.
Collapse
Affiliation(s)
- Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kamal Othman
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yangjing Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Tyr198 is the Essential Autophosphorylation Site for STK16 Localization and Kinase Activity. Int J Mol Sci 2019; 20:ijms20194852. [PMID: 31574902 PMCID: PMC6801969 DOI: 10.3390/ijms20194852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022] Open
Abstract
STK16, reported as a Golgi localized serine/threonine kinase, has been shown to participate in multiple cellular processes, including the TGF-β signaling pathway, TGN protein secretion and sorting, as well as cell cycle and Golgi assembly regulation. However, the mechanisms of the regulation of its kinase activity remain underexplored. It was known that STK16 is autophosphorylated at Thr185, Ser197, and Tyr198 of the activation segment in its kinase domain. We found that STK16 localizes to the cell membrane and the Golgi throughout the cell cycle, but mutations in the auto-phosphorylation sites not only alter its subcellular localization but also affect its kinase activity. In particular, the Tyr198 mutation alone significantly reduced the kinase activity of STK16, abolished its Golgi and membrane localization, and affected the cell cycle progression. This study demonstrates that a single site autophosphorylation of STK16 could affect its localization and function, which provides insights into the molecular regulatory mechanism of STK16's kinase activity.
Collapse
|
3
|
Wang J, Ji X, Liu J, Zhang X. Serine/Threonine Protein Kinase STK16. Int J Mol Sci 2019; 20:ijms20071760. [PMID: 30974739 PMCID: PMC6480182 DOI: 10.3390/ijms20071760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
STK16 (Ser/Thr kinase 16, also known as Krct/PKL12/MPSK1/TSF-1) is a myristoylated and palmitoylated Ser/Thr protein kinase that is ubiquitously expressed and conserved among all eukaryotes. STK16 is distantly related to the other kinases and belongs to the NAK kinase family that has an atypical activation loop architecture. As a membrane-associated protein that is primarily localized to the Golgi, STK16 has been shown to participate in the TGF-β signaling pathway, TGN protein secretion and sorting, as well as cell cycle and Golgi assembly regulation. This review aims to provide a comprehensive summary of the progress made in recent research about STK16, ranging from its distribution, molecular characterization, post-translational modification (fatty acylation and phosphorylation), interactors (GlcNAcK/DRG1/MAL2/Actin/WDR1), and related functions. As a relatively underexplored kinase, more studies are encouraged to unravel its regulation mechanisms and cellular functions.
Collapse
Affiliation(s)
- Junjun Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei 230601, China.
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
4
|
Wei R, Kaneko T, Liu X, Liu H, Li L, Voss C, Liu E, He N, Li SSC. Interactome Mapping Uncovers a General Role for Numb in Protein Kinase Regulation. Mol Cell Proteomics 2018; 17:2216-2228. [PMID: 29217616 PMCID: PMC6210222 DOI: 10.1074/mcp.ra117.000114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/04/2017] [Indexed: 12/24/2022] Open
Abstract
Cellular functions are frequently regulated by protein-protein interactions involving the binding of a modular domain in one protein to a specific peptide sequence in another. This mechanism may be explored to identify binding partners for proteins harboring a peptide-recognition domain. Here we report a proteomic strategy combining peptide and protein microarray screening with biochemical and cellular assays to identify modular domain-mediated protein-protein interactions in a systematic manner. We applied this strategy to Numb, a multi-functional protein containing a phosphotyrosine-binding (PTB) domain. Through the screening of a protein microarray, we identified >100 protein kinases, including both Tyr and Ser/Thr kinases, that could potentially interact with the Numb PTB domain, suggesting a general role for Numb in regulating kinase function. The putative interactions between Numb and several tyrosine kinases were subsequently validated by GST pull-down and/or co-immunoprecipitation assays. Furthermore, using the Oriented Peptide Array Library approach, we defined the specificity of the Numb PTB domain which, in turn, allowed us to predict binding partners for Numb at the genome level. The combination of the protein microarray screening with computer-aided prediction produced the most expansive interactome for Numb to date, implicating Numb in regulating phosphorylation signaling through protein kinases and phosphatases. Not only does the data generated from this study provide an important resource for hypothesis-driven research to further define the function of Numb, the proteomic strategy described herein may be employed to uncover the interactome for other peptide-recognition domains whose consensus motifs are known or can be determined.
Collapse
Affiliation(s)
- Ran Wei
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Tomonori Kaneko
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Xuguang Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Huadong Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- §Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shanxi, China
| | - Lei Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- ¶School of Basic Medical Sciences, Qingdao University, Qingdao 266021, Shangdong, China
- ‖College of Pharmacy, Qingdao University, Qingdao 26601, Shangdong, China
| | - Courtney Voss
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Eric Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ningning He
- ¶School of Basic Medical Sciences, Qingdao University, Qingdao 266021, Shangdong, China
- ‖College of Pharmacy, Qingdao University, Qingdao 26601, Shangdong, China
| | - Shawn S-C Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada;
- **Department of Oncology and Child Health Research Institute, Western University
| |
Collapse
|
5
|
García-Alegría E, Lafita-Navarro MC, Aguado R, García-Gutiérrez L, Sarnataro K, Ruiz-Herguido C, Martín F, Bigas A, Canelles M, León J. NUMB inactivation confers resistance to imatinib in chronic myeloid leukemia cells. Cancer Lett 2016; 375:92-99. [PMID: 26944313 DOI: 10.1016/j.canlet.2016.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/21/2023]
Abstract
Chronic myeloid leukemia (CML) progresses from a chronic to a blastic phase, where the leukemic cells are proliferative and undifferentiated. The CML is nowadays successfully treated with BCR-ABL kinase inhibitors as imatinib and its derivatives. NUMB is an evolutionary well-conserved protein initially described as a functional antagonist of NOTCH function. NUMB is an endocytic protein associated with receptor internalization, involved in multiple cellular functions. It has been reported that MSI2 protein, a NUMB inhibitor, is upregulated in CML blast crisis, whereas NUMB itself is downregulated. This suggest that NUMB plays a role in the malignant progression of CML. Here we have generated K562 cells (derived from CML in blast crisis) constitutively expressing a dominant negative form of NUMB (dnNUMB). We show that dnNUMB expression confers a high proliferative phenotype to the cells. Importantly, dnNUMB triggers a partial resistance to imatinib in these cells, antagonizing the apoptosis mediated by the drug. Interestingly, imatinib resistance is not linked to p53 status or NOTCH signaling, as K562 lack p53 and imatinib resistance is reproduced in the presence of NOTCH inhibitors. Taken together, our data support the hypothesis that NUMB activation could be a new therapeutic target in CML.
Collapse
Affiliation(s)
- Eva García-Alegría
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Carmen Lafita-Navarro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Rocío Aguado
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, Granada, Spain
| | - Lucia García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Kyle Sarnataro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | | - Anna Bigas
- Stem Cells and Cancer Group. IMIM, Barcelona, Spain
| | - Matilde Canelles
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, Granada, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Dpto. de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
6
|
XIE CHENGZHI, LU ZHENHUI, LIU GUOXING, FANG YU, LIU JIEFENG, HUANG ZHAO, WANG FUSHENG, WU XIAOLONG, LEI XIAOHUA, LI XIAOCHENG, ZHANG YUEMING, HU ZECHENG, QIAN KE, HU JIXIONG, HUANG SHENGFU, ZHONG DEWU, XU XUNDI. Numb downregulation suppresses cell growth and is associated with a poor prognosis of human hepatocellular carcinoma. Int J Mol Med 2015; 36:653-60. [PMID: 26165304 PMCID: PMC4533774 DOI: 10.3892/ijmm.2015.2279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
Numb, an endocytic adaptor, is a known cell fate determinant that participates in asymmetric cell division. The present study aimed to explore the potential roles of Numb in hepatocarcinogenesis. Numb expression was investigated in hepatocellular carcinomas (HCC) with reverse transcription‑quantitative polymerase chain reaction and immunohistochemical examination; its association with the prognosis of HCC patients was analyzed. In addition, the effects of Numb deletion on proliferation of HCC cells and its relevant molecules were evaluated in Huh7 and HepG2 cells. Numb overexpression was observed in 62% of adjacent non‑tumor tissues and 46% of tumor tissues. Overexpression of Numb in HCC was associated with histological grade, portal vein invasion and the number of tumors (P=0.001, 0.022 and 0.034 respectively). Multivariate analysis revealed that Numb expression was an independent prognostic indicator of HCC patients. Methylation of the Numb promoter contributed to hepatocarcinogenesis. In vitro assays demonstrated that Numb silencing resulted in inhibition of cell proliferation, induction of apoptosis, downregulation of cyclin‑dependent protein kinase 4 (CDK4) and S‑phase kinase‑associated protein 2 (SKP2), and upregulation of Bcl‑2 homologous antagonist/killer (BAK) and cyclin‑dependent kinase inhibitor 1 (p21). The present study suggests that downregulation of Numb inhibits colony formation and cell proliferation, induces apoptosis of HCC cells and independently predicts the poor prognosis of HCC patients. Thus, Numb has a potential role in the development and progression of HCC.
Collapse
Affiliation(s)
- CHENGZHI XIE
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Department of General Surgery, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - ZHENHUI LU
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - GUOXING LIU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - YU FANG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - JIEFENG LIU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - ZHAO HUANG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - FUSHENG WANG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - XIAOLONG WU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - XIAOHUA LEI
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - XIAOCHENG LI
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - YUEMING ZHANG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - ZECHENG HU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - KE QIAN
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - JIXIONG HU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - SHENGFU HUANG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - DEWU ZHONG
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - XUNDI XU
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
7
|
Gray EJ, Petsalaki E, James DA, Bagshaw RD, Stacey MM, Rocks O, Gingras AC, Pawson T. Src homology 2 domain containing protein 5 (SH2D5) binds the breakpoint cluster region protein, BCR, and regulates levels of Rac1-GTP. J Biol Chem 2014; 289:35397-408. [PMID: 25331951 DOI: 10.1074/jbc.m114.615112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SH2D5 is a mammalian-specific, uncharacterized adaptor-like protein that contains an N-terminal phosphotyrosine-binding domain and a C-terminal Src homology 2 (SH2) domain. We show that SH2D5 is highly enriched in adult mouse brain, particularly in Purkinjie cells in the cerebellum and the cornu ammonis of the hippocampus. Despite harboring two potential phosphotyrosine (Tyr(P)) recognition domains, SH2D5 binds minimally to Tyr(P) ligands, consistent with the absence of a conserved Tyr(P)-binding arginine residue in the SH2 domain. Immunoprecipitation coupled to mass spectrometry (IP-MS) from cultured cells revealed a prominent association of SH2D5 with breakpoint cluster region protein, a RacGAP that is also highly expressed in brain. This interaction occurred between the phosphotyrosine-binding domain of SH2D5 and an NxxF motif located within the N-terminal region of the breakpoint cluster region. siRNA-mediated depletion of SH2D5 in a neuroblastoma cell line, B35, induced a cell rounding phenotype correlated with low levels of activated Rac1-GTP, suggesting that SH2D5 affects Rac1-GTP levels. Taken together, our data provide the first characterization of the SH2D5 signaling protein.
Collapse
Affiliation(s)
- Elizabeth J Gray
- From the Department of Molecular Genetics, University of Toronto, Ontario M5S1A8, Canada, the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada,
| | - Evangelia Petsalaki
- the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - D Andrew James
- the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada, Sanofi Pasteur, Toronto, Ontario M2R3T4, Canada, and
| | - Richard D Bagshaw
- the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Melissa M Stacey
- the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Oliver Rocks
- the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada, the Max Delbrück Center for Molecular Medicine Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Anne-Claude Gingras
- From the Department of Molecular Genetics, University of Toronto, Ontario M5S1A8, Canada, the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada,
| | - Tony Pawson
- From the Department of Molecular Genetics, University of Toronto, Ontario M5S1A8, Canada, the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| |
Collapse
|
8
|
Lee HKP, Cording A, Vielmetter J, Zinn K. Interactions between a receptor tyrosine phosphatase and a cell surface ligand regulate axon guidance and glial-neuronal communication. Neuron 2013; 78:813-26. [PMID: 23764287 DOI: 10.1016/j.neuron.2013.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
We developed a screening method for orphan receptor ligands, in which cell-surface proteins are expressed in Drosophila embryos from GAL4-dependent insertion lines and ligand candidates identified by the presence of ectopic staining with receptor fusion proteins. Stranded at second (Sas) binds to the receptor tyrosine phosphatase Ptp10D in embryos and in vitro. Sas and Ptp10D can interact in trans when expressed in cultured cells. Interactions between Sas and Ptp10D on longitudinal axons are required to prevent them from abnormally crossing the midline. Sas is expressed on both neurons and glia, whereas Ptp10D is restricted to CNS axons. We conducted epistasis experiments by overexpressing Sas in glia and examining how the resulting phenotypes are changed by removal of Ptp10D from neurons. We find that neuronal Ptp10D restrains signaling by overexpressed glial Sas, which would otherwise produce strong glial and axonal phenotypes.
Collapse
Affiliation(s)
- Hyung-Kook Peter Lee
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
9
|
Saccharomyces cerevisiae Env7 is a novel serine/threonine kinase 16-related protein kinase and negatively regulates organelle fusion at the lysosomal vacuole. Mol Cell Biol 2012; 33:526-42. [PMID: 23166297 DOI: 10.1128/mcb.01303-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane fusion depends on conserved components and is responsible for organelle biogenesis and vesicular trafficking. Yeast vacuoles are dynamic structures analogous to mammalian lysosomes. We report here that yeast Env7 is a novel palmitoylated protein kinase ortholog that negatively regulates vacuolar membrane fusion. Microscopic and biochemical studies confirmed the localization of tagged Env7 at the vacuolar membrane and implicated membrane association via the palmitoylation of its N-terminal Cys13 to -15. In vitro kinase assays established Env7 as a protein kinase. Site-directed mutagenesis of the Env7 alanine-proline-glutamic acid (APE) motif Glu269 to alanine results in an unstable kinase-dead allele that is stabilized and redistributed to the detergent-resistant fraction by interruption of the proteasome system in vivo. Palmitoylation-deficient Env7C13-15S is also kinase dead and mislocalizes to the cytoplasm. Microscopy studies established that env7Δ is defective in maintaining fragmented vacuoles during hyperosmotic response and in buds. ENV7 function is not redundant with a similar role of vacuolar membrane kinase Yck3, as the two do not share a substrate, and ENV7 is not a suppressor of yck3Δ. Bayesian phylogenetic analyses strongly support ENV7 as an ortholog of the gene encoding human STK16, a Golgi apparatus protein kinase with undefined function. We propose that Env7 function in fusion/fission dynamics may be conserved within the endomembrane system.
Collapse
|
10
|
Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth. Neuron 2011; 72:285-99. [PMID: 22017988 DOI: 10.1016/j.neuron.2011.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
Abstract
VIDEO ABSTRACT During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites.
Collapse
|
11
|
Gupta-Rossi N, Ortica S, Meas-Yedid V, Heuss S, Moretti J, Olivo-Marin JC, Israël A. The adaptor-associated kinase 1, AAK1, is a positive regulator of the Notch pathway. J Biol Chem 2011; 286:18720-30. [PMID: 21464124 PMCID: PMC3099689 DOI: 10.1074/jbc.m110.190769] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 03/04/2011] [Indexed: 11/06/2022] Open
Abstract
The Notch pathway is involved in cell-cell signaling during development and adulthood from invertebrates to higher eukaryotes. Activation of the Notch receptor by its ligands relies upon a multi-step processing. The extracellular part of the receptor is removed by a metalloprotease of the ADAM family and the remaining fragment is cleaved within its transmembrane domain by a presenilin-dependent γ-secretase activity. γ-Secretase processing of Notch has been shown to depend upon monoubiquitination as well as clathrin-mediated endocytosis (CME). We show here that AAK1, the adaptor-associated kinase 1, directly interacts with the membrane-tethered active form of Notch released by metalloprotease cleavage. Active AAK1 acts upstream of the γ-secretase cleavage by stabilizing both the membrane-tethered activated form of Notch and its monoubiquitinated counterpart. We propose that AAK1 acts as an adaptor for Notch interaction with components of the clathrin-mediated pathway such as Eps15b. Moreover, transfected AAK1 increases the localization of activated Notch to Rab5-positive endocytic vesicles, while AAK1 depletion or overexpression of Numb, an inhibitor of the pathway, interferes with this localization. These results suggest that after ligand-induced activation of Notch, the membrane-tethered form can be directed to different endocytic pathways leading to distinct fates.
Collapse
Affiliation(s)
- Neetu Gupta-Rossi
- Unité de Signalisation Moléculaire et Activation Cellulaire, CNRS URA 2582, CNRS URA 2582, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kawai K, Kitamura SY, Maehira K, Seike JI, Yagisawa H. START-GAP1/DLC1 is localized in focal adhesions through interaction with the PTB domain of tensin2. ACTA ACUST UNITED AC 2009; 50:202-15. [PMID: 19895840 DOI: 10.1016/j.advenzreg.2009.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Katsuhisa Kawai
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo-ken 978-1297, Japan
| | | | | | | | | |
Collapse
|
13
|
Zhang Y, Wang YG, Zhang Q, Liu XJ, Liu X, Jiao L, Zhu W, Zhang ZH, Zhao XL, He C. Interaction of Mint2 with TrkA is involved in regulation of nerve growth factor-induced neurite outgrowth. J Biol Chem 2009; 284:12469-79. [PMID: 19265194 DOI: 10.1074/jbc.m809214200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TrkA receptor signaling is essential for nerve growth factor (NGF)-induced survival and differentiation of sensory neurons. To identify possible effectors or regulators of TrkA signaling, yeast two-hybrid screening was performed using the intracellular domain of TrkA as bait. We identified muc18-1-interacting protein 2 (Mint2) as a novel TrkA-binding protein and found that the phosphotyrosine binding domain of Mint2 interacted with TrkA in a phosphorylation- and ligand-independent fashion. Coimmunoprecipitation assays showed that endogenous TrkA interacted with Mint2 in rat tissue homogenates, and immunohistochemical evidence revealed that Mint2 and TrkA colocalized in rat dorsal root ganglion neurons. Furthermore, Mint2 overexpression inhibited NGF-induced neurite outgrowth in both PC12 and cultured dorsal root ganglion neurons, whereas inhibition of Mint2 expression by RNA interference facilitated NGF-induced neurite outgrowth. Moreover, Mint2 was found to promote the retention of TrkA in the Golgi apparatus and inhibit its surface sorting. Taken together, our data provide evidence that Mint2 is a novel TrkA-regulating protein that affects NGF-induced neurite outgrowth, possibly through a mechanism involving retention of TrkA in the Golgi apparatus.
Collapse
Affiliation(s)
- Yong Zhang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schlüter T, Knauth P, Wald S, Boland S, Bohnensack R. Numb3 is an endocytosis adaptor for the inflammatory marker P-selectin. Biochem Biophys Res Commun 2009; 379:909-13. [PMID: 19138666 DOI: 10.1016/j.bbrc.2008.12.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 12/25/2008] [Indexed: 11/30/2022]
Abstract
The endocytic protein Numb3 was found to bind to the cytosolic tail of the leukocyte adhesion receptor P-selectin. The N-terminal phosphotyrosine-binding (PTB) domain of Numb3 is responsible for this activity. An alanine scan revealed the FTNAAFD sequence as recognition region in P-selectin. Structural modeling of the interaction between the Numb PTB domain and the P-selectin tail suggests that both phenylalanines within the recognition sequence fit into hydrophobic cavities of the PTB surface. Their exchange for alanine gave Numb-negative mutants detaining the inhibition of P-selectin endocytosis by Numb PTB overexpression. Cells stable expressing P-selectins internalized the negative mutants markedly slower than the wild type. Consistent with other reports on the phosphorylation of Numb, we found that only the dephospho-Numb is able to bind P-selectin. Our observations demonstrate that Numb3 is an endocytic receptor for P-selectin and may be responsible for the rapid internalization of P-selectin when endothelial activation ends.
Collapse
Affiliation(s)
- Thomas Schlüter
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
15
|
Lau KF, Chan WM, Perkinton MS, Tudor EL, Chang RCC, Chan HYE, McLoughlin DM, Miller CCJ. Dexras1 interacts with FE65 to regulate FE65-amyloid precursor protein-dependent transcription. J Biol Chem 2008; 283:34728-37. [PMID: 18922798 PMCID: PMC3259905 DOI: 10.1074/jbc.m801874200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 10/14/2008] [Indexed: 12/23/2022] Open
Abstract
FE65 is an adaptor protein that binds to and forms a transcriptionally active complex with the gamma-secretase-derived amyloid precursor protein (APP) intracellular domain. The regulatory mechanisms of FE65-APP-mediated transcription are still not clear. In this report, we demonstrate that Dexras1, a Ras family small G protein, binds to FE65 PTB2 domain and potently suppresses the FE65-APP-mediated transcription. The suppression is not via competition for binding of FE65 between Dexras1 and APP because the two proteins can simultaneously bind to the FE65 PTB2 domain. Phosphorylation of FE65 tyrosine 547 within the PTB2 domain has been shown to enhance FE65-APP-mediated transcription but not to influence binding to APP. Here we find that this phosphorylation event reduces the binding between Dexras1 and FE65. We also demonstrate that Dexras1 inhibits the FE65-APP-mediated transcription of glycogen synthase kinase 3beta (GSK3 beta). Moreover, small interfering RNA knockdown of Dexras1 enhances GSK3 beta expression and increases phosphorylation of Tau, a GSK3 beta substrate. Thus, Dexras1 functions as a suppressor of FE65-APP-mediated transcription, and FE65 tyrosine 547 phosphorylation enhances FE65-APP-mediated transcription, at least in part, by modulating the interaction between FE65 and Dexras1. These findings reveal a novel regulatory mechanism for FE65-APP-mediated signaling.
Collapse
Affiliation(s)
- Kwok-Fai Lau
- Department of Biochemistry and Molecular Biotechnology Programme, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Numb is an endocytic protein that is proposed to influence clathrin-coated pit assembly, although its mode of action and the mechanisms that regulate its activity are unknown. In this study, we show that Numb binds to and is phosphorylated by adaptor-associated kinase 1 (AAK1), a key endocytic kinase. We find that AAK1 redistributes Numb to perinuclear endosomes when overexpressed, while kinase depletion causes Numb to accumulate at the plasma membrane. Overexpression of a Numb point mutant (T102A) that lacks the AAK1 phosphorylation site potently disrupts transferrin and low-density lipoprotein internalization but does not impact EGF uptake. Consistent with Numb redistribution results, we find that T102A Numb no longer localizes to perinuclear endosomes. Instead, it is enriched at the plasma membrane where it shows elevated levels of colocalization with coated pit markers. Collectively, these observations demonstrate that Numb endocytic activity is regulated by AAK1 and that phosphorylation may be a critical step in promoting coated pit maturation.
Collapse
Affiliation(s)
- Erika B Sorensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
17
|
O'Farrell F, Esfahani SS, Engström Y, Kylsten P. Regulation of the Drosophila lin-41 homologue dappled by let-7 reveals conservation of a regulatory mechanism within the LIN-41 subclade. Dev Dyn 2008; 237:196-208. [PMID: 18069688 DOI: 10.1002/dvdy.21396] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drosophila Dappled (DPLD) is a member of the RBCC/TRIM superfamily, a protein family involved in numerous diverse processes such as developmental timing and asymmetric cell divisions. DPLD belongs to the LIN-41 subclade, several members of which are micro RNA (miRNA) regulated. We re-examined the LIN-41 subclade members and their relation to other RBCC/TRIMs and dpld paralogs, and identified a new Drosophila muscle specific RBCC/TRIM: Another B-Box Affiliate, ABBA. In silico predictions of candidate miRNA regulators of dpld identified let-7 as the strongest candidate. Overexpression of dpld led to abnormal eye development, indicating that strict regulation of dpld mRNA levels is crucial for normal eye development. This phenotype was sensitive to let-7 dosage, suggesting let-7 regulation of dpld in the eye disc. A cell-based assay verified let-7 miRNA down-regulation of dpld expression by means of its 3'-untranslated region. Thus, dpld seems also to be miRNA regulated, suggesting that miRNAs represent an ancient mechanism of LIN-41 regulation.
Collapse
Affiliation(s)
- Fergal O'Farrell
- Department of Natural Sciences, Södertörns Högskola, Huddinge, Sweden.
| | | | | | | |
Collapse
|
18
|
Kandachar V, Bai T, Chang HC. The clathrin-binding motif and the J-domain of Drosophila Auxilin are essential for facilitating Notch ligand endocytosis. BMC DEVELOPMENTAL BIOLOGY 2008; 8:50. [PMID: 18466624 PMCID: PMC2391152 DOI: 10.1186/1471-213x-8-50] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 05/08/2008] [Indexed: 11/24/2022]
Abstract
Background Ligand endocytosis plays a critical role in regulating the activity of the Notch pathway. The Drosophila homolog of auxilin (dAux), a J-domain-containing protein best known for its role in the disassembly of clathrin coats from clathrin-coated vesicles, has recently been implicated in Notch signaling, although its exact mechanism remains poorly understood. Results To understand the role of auxilin in Notch ligand endocytosis, we have analyzed several point mutations affecting specific domains of dAux. In agreement with previous work, analysis using these stronger dAux alleles shows that dAux is required for several Notch-dependent processes, and its function during Notch signaling is required in the signaling cells. In support of the genetic evidences, the level of Delta appears elevated in dAux deficient cells, suggesting that the endocytosis of Notch ligand is disrupted. Deletion analysis shows that the clathrin-binding motif and the J-domain, when over-expressed, are sufficient for rescuing dAux phenotypes, implying that the recruitment of Hsc70 to clathrin is a critical role for dAux. However, surface labeling experiment shows that, in dAux mutant cells, Delta accumulates at the cell surface. In dAux mutant cells, clathrin appears to form large aggregates, although Delta is not enriched in these aberrant clathrin-positive structures. Conclusion Our data suggest that dAux mutations inhibit Notch ligand internalization at an early step during clathrin-mediated endocytosis, before the disassembly of clathrin-coated vesicles. Further, the inhibition of ligand endocytosis in dAux mutant cells possibly occurs due to depletion of cytosolic pools of clathrin via the formation of clathrin aggregates. Together, our observations argue that ligand endocytosis is critical for Notch signaling and auxilin participates in Notch signaling by facilitating ligand internalization.
Collapse
Affiliation(s)
- Vasundhara Kandachar
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, Indiana 47907-2054, USA.
| | | | | |
Collapse
|
19
|
Eswaran J, Bernad A, Ligos JM, Guinea B, Debreczeni JE, Sobott F, Parker SA, Najmanovich R, Turk BE, Knapp S. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture. Structure 2008; 16:115-24. [PMID: 18184589 PMCID: PMC2194165 DOI: 10.1016/j.str.2007.10.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 10/11/2007] [Accepted: 10/18/2007] [Indexed: 11/30/2022]
Abstract
The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a β sheet and a large α-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-ϕ-H/Y-T∗-N/G-X-X-X (ϕ is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.
Collapse
Affiliation(s)
- Jeyanthy Eswaran
- Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Smith CA, Lau KM, Rahmani Z, Dho SE, Brothers G, She YM, Berry DM, Bonneil E, Thibault P, Schweisguth F, Le Borgne R, McGlade CJ. aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb. EMBO J 2007; 26:468-80. [PMID: 17203073 PMCID: PMC1783459 DOI: 10.1038/sj.emboj.7601495] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 11/14/2006] [Indexed: 01/09/2023] Open
Abstract
In Drosophila, the partition defective (Par) complex containing Par3, Par6 and atypical protein kinase C (aPKC) directs the polarized distribution and unequal segregation of the cell fate determinant Numb during asymmetric cell divisions. Unequal segregation of mammalian Numb has also been observed, but the factors involved are unknown. Here, we identify in vivo phosphorylation sites of mammalian Numb and show that both mammalian and Drosophila Numb interact with, and are substrates for aPKC in vitro. A form of mammalian Numb lacking two protein kinase C (PKC) phosphorylation sites (Numb2A) accumulates at the cell membrane and is refractory to PKC activation. In epithelial cells, mammalian Numb localizes to the basolateral membrane and is excluded from the apical domain, which accumulates aPKC. In contrast, Numb2A is distributed uniformly around the cell cortex. Mutational analysis of conserved aPKC phosphorylation sites in Drosophila Numb suggests that phosphorylation contributes to asymmetric localization of Numb, opposite to aPKC in dividing sensory organ precursor cells. These results suggest a model in which phosphorylation of Numb by aPKC regulates its polarized distribution in epithelial cells as well as during asymmetric cell divisions.
Collapse
Affiliation(s)
- Christian A Smith
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kimberly M Lau
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zohra Rahmani
- Ecole Normale Supérieure. CNRS UMR 8542, Paris Cedex, France
| | - Sascha E Dho
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Greg Brothers
- Advanced Protein Technology Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ye Min She
- Advanced Protein Technology Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Donna M Berry
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Quebec, Canada
| | | | | | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Cell Biology, Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada, M5G 1X8. Tel.: +416 813 8657; Fax: +416 813 8456; E-mail:
| |
Collapse
|
21
|
Avery AW, Figueroa C, Vojtek AB. UNC-51-like kinase regulation of fibroblast growth factor receptor substrate 2/3. Cell Signal 2007; 19:177-84. [PMID: 16887332 DOI: 10.1016/j.cellsig.2006.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 06/15/2006] [Indexed: 11/20/2022]
Abstract
UNC-51-like kinases (ULK) are members of an evolutionarily conserved sub-family of ubiquitously expressed serine/threonine-specific protein kinases. Here we report that fibroblast growth factor receptor substrate (FRS) 2/3 are novel ULK2 carboxy-terminal domain interacting proteins. FRS2/3 are homologs that function as adaptor proteins to mediate signaling of multiple receptor tyrosine kinases. ULK2 interacts with the phospho-tyrosine binding (PTB) domain of FRS2/3. We demonstrate that siRNA targeting ULK2 in mouse P19 cells results in elevated FGFR1 mediated FRS3 and SHP2 tyrosyl phosphorylation. In addition, RNAi-mediated decrease in ULK2 causes increased interaction between FGFR1 and FRS3. ULK2 phosphorylates FRS2/3 in vitro, suggesting that ULK2 mediated phosphorylation may be a mechanism of FRS2/3 regulation. The data presented support a model in which ULK2, by interaction with FRS2/3 and inhibition of SynGAP, functions to negatively regulate tyrosyl phosphorylation of signaling proteins downstream of FGFR1.
Collapse
Affiliation(s)
- Adam W Avery
- Department of Biological Chemistry, 3323 MSRB III Box 0606, University of Michigan, Ann Arbor, MI 48109-0606, USA
| | | | | |
Collapse
|
22
|
Smith MJ, Hardy WR, Murphy JM, Jones N, Pawson T. Screening for PTB domain binding partners and ligand specificity using proteome-derived NPXY peptide arrays. Mol Cell Biol 2006; 26:8461-74. [PMID: 16982700 PMCID: PMC1636785 DOI: 10.1128/mcb.01491-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Modular interaction domains that recognize peptide motifs in target proteins can impart selectivity in signaling pathways. Phosphotyrosine binding (PTB) domains are components of cytoplasmic docking proteins that bind cell surface receptors through NPXY motifs. We have employed a library of human proteome-derived NXXY sequences to explore PTB domain specificity and function. SPOTS peptide arrays were used to create a comprehensive matrix of receptor motifs that were probed with a set of 10 diverse PTB domains. This approach confirmed that individual PTB domains have selective and distinct recognition properties and provided a means to explore over 2,500 potential PTB domain-NXXY interactions. The results correlated well with previously known associations between full-length proteins and predicted novel interactions, as well as consensus binding data for specific PTB domains. Using the Ret, MuSK, and ErbB2 receptor tyrosine kinases, we show that interactions of these receptors with PTB domains predicted to bind by the NXXY arrays do occur in cells. Proteome-based peptide arrays can therefore identify networks of receptor interactions with scaffold proteins that may be physiologically relevant.
Collapse
Affiliation(s)
- Matthew J Smith
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | | | | | | | | |
Collapse
|
23
|
Abstract
A small number of signalling pathways are used iteratively to regulate cell fates, cell proliferation and cell death in development. Notch is the receptor in one such pathway, and is unusual in that most of its ligands are also transmembrane proteins; therefore signalling is restricted to neighbouring cells. Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.
Collapse
Affiliation(s)
- Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
24
|
Zhang CX, Engqvist-Goldstein AEY, Carreno S, Owen DJ, Smythe E, Drubin DG. Multiple roles for cyclin G-associated kinase in clathrin-mediated sorting events. Traffic 2006; 6:1103-13. [PMID: 16262722 DOI: 10.1111/j.1600-0854.2005.00346.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyclin G-associated kinase (GAK), also known as auxilin 2, is a potential regulator of clathrin-mediated membrane trafficking. It possesses a kinase domain at its N-terminus that can phosphorylate the clathrin adaptors AP-1 and AP-2 in vitro. The GAK C-terminus can act as a cochaperaone in vitro for Hsc70, a heat-shock protein required for clathrin uncoating. Here we show that the specificity of GAK is very similar to that of adaptor-associated kinase 1, another mammalian adaptor kinase. We used siRNA to investigate GAK's in vivo function. We discovered that early stages of clathrin-mediated endocytosis (CME) were partially inhibited when GAK expression was knocked down. This defect was specifically caused by GAK knockdown because it could be rescued by expressing a rat GAK gene that could not be silenced by one of the siRNAs. To identify the GAK activity required during CME, we mutated the kinase domain and the J domain of the rat gene. Only GAK with a functional J domain could rescue the defect, suggesting that GAK is important for clathrin uncoating. Furthermore, we demonstrated that GAK plays a role in the clathrin-dependent trafficking from the trans Golgi network.
Collapse
Affiliation(s)
- Claire X Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Tang H, Rompani SB, Atkins JB, Zhou Y, Osterwalder T, Zhong W. Numb proteins specify asymmetric cell fates via an endocytosis- and proteasome-independent pathway. Mol Cell Biol 2005; 25:2899-909. [PMID: 15798180 PMCID: PMC1069617 DOI: 10.1128/mcb.25.8.2899-2909.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2004] [Revised: 12/20/2004] [Accepted: 01/10/2005] [Indexed: 12/25/2022] Open
Abstract
Numb proteins are evolutionarily conserved signaling molecules that make the daughter cells different after asymmetric divisions by segregating to only one daughter. They contain distinct binding motifs for alpha-adaptin (alpha-Ada) and proteins with Eps15 homology (EH) domains, which regulate endocytosis, and for E3 ubiquitin ligases, which target proteins for proteasome-mediated degradation. In Drosophila melanogaster, Numb acts by inhibiting Notch activity to cause a bias in Notch-mediated cell-cell communication. These findings have led to the hypothesis that Numb modulates Notch signaling by using endocytosis and proteasomes to directly reduce Notch protein levels at the cell surface. Here we show that two Drosophila EH proteins, Eps15 homologue 1 (EH1) and the dynamin-associated 160-kDa protein (Dap160), negatively regulate Notch signaling. However, neither elimination of the binding motifs for endocytic proteins nor simultaneous reduction of proteasome activity affects the activity of Numb proteins. Our findings indicate that an endocytosis- and proteasome-independent pathway may mediate Numb signaling in asymmetric cell fate specification.
Collapse
Affiliation(s)
- Haiyan Tang
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
26
|
Uhlik MT, Temple B, Bencharit S, Kimple AJ, Siderovski DP, Johnson GL. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J Mol Biol 2005; 345:1-20. [PMID: 15567406 DOI: 10.1016/j.jmb.2004.10.038] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 10/13/2004] [Accepted: 10/13/2004] [Indexed: 11/21/2022]
Abstract
Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.
Collapse
Affiliation(s)
- Mark T Uhlik
- Department of Pharmacology and University of North Carolina School of Medicine, 1108 Mary Ellen Jones Building, Campus Box 7365, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | |
Collapse
|
27
|
Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, Zurrida S, Maisonneuve P, Viale G, Di Fiore PP. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. ACTA ACUST UNITED AC 2004; 167:215-21. [PMID: 15492044 PMCID: PMC2172557 DOI: 10.1083/jcb.200406140] [Citation(s) in RCA: 374] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The biological antagonism between Notch and Numb controls the proliferative/differentiative balance in development and homeostasis. Although altered Notch signaling has been linked to human diseases, including cancer, evidence for a substantial involvement of Notch in human tumors has remained elusive. Here, we show that Numb-mediated control on Notch signaling is lost in ∼50% of human mammary carcinomas, due to specific Numb ubiquitination and proteasomal degradation. Mechanistically, Numb operates as an oncosuppressor, as its ectopic expression in Numb-negative, but not in Numb-positive, tumor cells inhibits proliferation. Increased Notch signaling is observed in Numb-negative tumors, but reverts to basal levels after enforced expression of Numb. Conversely, Numb silencing increases Notch signaling in normal breast cells and in Numb-positive breast tumors. Finally, growth suppression of Numb-negative, but not Numb-positive, breast tumors can be achieved by pharmacological inhibition of Notch. Thus, the Numb/Notch biological antagonism is relevant to the homeostasis of the normal mammary parenchyma and its subversion contributes to human mammary carcinogenesis.
Collapse
|
28
|
Szymkiewicz I, Shupliakov O, Dikic I. Cargo- and compartment-selective endocytic scaffold proteins. Biochem J 2004; 383:1-11. [PMID: 15219178 PMCID: PMC1134037 DOI: 10.1042/bj20040913] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 06/24/2004] [Indexed: 01/05/2023]
Abstract
The endocytosis of membrane receptors is a complex and tightly controlled process that is essential for maintaining cellular homoeostasis. The removal of receptors from the cell surface can be constitutive or ligand-induced, and occurs in a clathrin-dependent or -independent manner. The recruitment of receptors into specialized membrane domains, the formation of vesicles and the trafficking of receptors together with their ligands within endocytic compartments are regulated by reversible protein modifications, and multiple protein-protein and protein-lipid interactions. Recent reports describe a variety of multidomain molecules that facilitate receptor endocytosis and function as platforms for the assembly of protein complexes. These scaffold proteins typically act in a cargo-specific manner, recognizing one or more receptor types, or function at the level of endocytic cellular microcompartments by controlling the movement of cargo molecules and linking endocytic machineries to signalling pathways. In the present review we summarize present knowledge on endocytic scaffold molecules and discuss their functions.
Collapse
Key Words
- cargo
- endocytosis
- microcompartment
- scaffold
- alix, alg-2 (apoptosis-linked gene 2)-interacting protein x
- anth domain, ap180 n-terminal homology domain
- ap-2, adaptor protein-2
- arh, autosomal recessive hypercholesterolaemia
- bar domain, bin/amphiphysin/rvs domain
- cd2ap, cd2-associated protein
- cin85, cbl-interacting protein of 85 kda
- dab2, disabled-2
- eea1, early endosome antigen 1
- egfr, epidermal growth factor receptor
- eh domain, eps15 homology domain
- enth domain, epsin n-terminal homology domain
- escrt, endosomal sorting complexes required for transport
- fyve, fab1p, yotb, vac1p and eea1
- gap, gtpase-activating protein
- gpcr, g-protein-coupled receptor
- hrs, hepatocyte growth factor-regulated tyrosine kinase substrate
- lbpa, lysobiphosphatidic acid
- ldl, low-density lipoprotein
- lnx, ligand of numb protein x
- mvb, multivesicular body
- nak, numb-associated kinase
- nsf, n-ethylmaleimide-sensitive fusion protein
- pon, partner of numb
- ptb domain, phosphotyrosine-binding domain
- rtk, receptor tyrosine kinase
- sh3, src homology 3
- snare, soluble nsf attachment protein receptor
- stam, signal-transducing adaptor molecule
- tcr, t-cell receptor
Collapse
Affiliation(s)
- Iwona Szymkiewicz
- *Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| | - Oleg Shupliakov
- †Department of Neuroscience, CEDB, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Dikic
- *Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| |
Collapse
|
29
|
Nie J, Li SSC, McGlade CJ. A novel PTB-PDZ domain interaction mediates isoform-specific ubiquitylation of mammalian Numb. J Biol Chem 2004; 279:20807-15. [PMID: 14990566 DOI: 10.1074/jbc.m311396200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
LNX was originally cloned as a Numb PTB-binding molecule, and it was subsequently found to act as a RING finger-type E3 ubiquitin ligase for the ubiquitylation and degradation of mNumb. Numb is a PTB domain-containing protein that functions as an intrinsic determinant of cell fate in asymmetric cell division. In mammals, four protein isoforms arise from alternative mRNA splicing. Here we report that while all four protein isoforms bind to LNX, only p72 and p66 Numb isoforms are ubiquitylated and degraded. The p72 and p66 Numb proteins differ from the other two isoforms by the presence of an 11-amino acid sequence insert in the PTB domain (PTBi). We demonstrate that the isoform-specific ubiquitylation of mNumb is due to a novel interaction between the first PDZ domain (PDZ1) of LNX and the PTBi variant. Deletion of LNX PDZ1 domain resulted in loss of ubiquitylation and subsequent degradation of the PTBi form of Numb. Interestingly efficient PTBi ubiquitylation not only depends on association with the LNX PDZ1 domain but also requires binding to the canonical PTB-binding motif NPAY in LNX. Thus two distinct modes of PTBi-mediated interaction with LNX work in concert to allow the effective and specific degradation of the p72 and p66 isoforms of mNumb.
Collapse
Affiliation(s)
- Jing Nie
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children and Department of Medical Biophysics, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
30
|
Bedirian A, Baldwin C, Abe JI, Takano T, Lemay S. Pleckstrin Homology and Phosphotyrosine-binding Domain-dependent Membrane Association and Tyrosine Phosphorylation of Dok-4, an Inhibitory Adapter Molecule Expressed in Epithelial Cells. J Biol Chem 2004; 279:19335-49. [PMID: 14963042 DOI: 10.1074/jbc.m310689200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dok-like adapter molecules represent an expanding family of pleckstrin homology (PH) and phosphotyrosine-binding (PTB) domain-containing tyrosine kinase substrates with negative regulatory functions in hematopoietic cell signaling. In a search for nonhematopoietic counterparts to Dok molecules, we identified and characterized Dok-4, a recently cloned member of the family. dok-4 mRNA was strongly expressed in nonhematopoietic organs, particularly the intestine, kidney, and lung, whereas both mRNA and protein were expressed at high levels in cells of epithelial origin. In Caco-2 human colon cancer cells, endogenous Dok-4 underwent tyrosine phosphorylation in response to pervanadate stimulation. In transfected COS cells, Dok-4 was a substrate for the cytosolic tyrosine kinases Src and Fyn as well as for Jak2. Dok-4 could also be phosphorylated by the receptor tyrosine kinase Ret but not by platelet-derived growth factor receptor-beta or IGF-IR. In both mammalian cells and yeast, Dok-4 was constitutively localized at the membrane in a manner that required both its PH and PTB domains. The PH and PTB domains of Dok-4 were also required for tyrosine phosphorylation of Dok-4 by Fyn and Ret. Finally, wild type Dok-4 strongly inhibited activation of Elk-1 induced by either Ret or Fyn. The attenuation of this inhibitory effect by deletion of the PH domain and its restoration by the addition of a myristoylation signal suggested an important role for constitutive membrane localization of Dok-4. In summary, Dok-4 is a constitutively membrane-localized adapter molecule that may function as an inhibitor of tyrosine kinase signaling in epithelial cells.
Collapse
Affiliation(s)
- Arda Bedirian
- Department of Medicine, Division of Nephrology, McGill University Health Centre, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
31
|
Qin H, Percival-Smith A, Li C, Jia CYH, Gloor G, Li SSC. A novel transmembrane protein recruits numb to the plasma membrane during asymmetric cell division. J Biol Chem 2003; 279:11304-12. [PMID: 14670962 DOI: 10.1074/jbc.m311733200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Numb, an evolutionarily conserved cell fate-determining factor, plays a pivotal role in the development of Drosophila and vertebrate nervous systems. Despite lacking a transmembrane segment, Numb is associated with the cell membrane during the asymmetric cell division of Drosophila neural precursor cells and is selectively partitioned to one of the two progeny cells from a binary cell division. Numb contains an N-terminal phosphotyrosine-binding (PTB) domain that is essential for both the asymmetric localization and the fate specification function of Numb. We report here the isolation and characterization of a novel PTB domain-binding protein, NIP (Numb-interacting protein). NIP is a multipass transmembrane protein that contains two PTB domain-binding, NXXF motifs required for the interaction with Numb. In dividing Drosophila neuroblasts, NIP is colocalized to the cell membrane with Numb in a basal cortical crescent. Expression of NIP in Cos-7 cells recruited Numb from the cytosol to the plasma membrane. This recruitment of Numb to membrane by NIP was dependent on the presence of at least one NXXF site. In Drosophila Schneider 2 cells, NIP and Numb were colocalized at the plasma membrane. Inhibition of NIP expression by RNA interference released Numb to the cytosol. These results suggest that a direct protein-protein interaction between NIP and Numb is necessary and sufficient for the recruitment of Numb to the plasma membrane. Recruitment of Numb to a basal cortical crescent in a dividing neuroblast is essential for Numb to function as an intrinsic cell fate determinant.
Collapse
Affiliation(s)
- Hanjuan Qin
- Department of Biochemistry and Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Li HS, Wang D, Shen Q, Schonemann MD, Gorski JA, Jones KR, Temple S, Jan LY, Jan YN. Inactivation of Numb and Numblike in Embryonic Dorsal Forebrain Impairs Neurogenesis and Disrupts Cortical Morphogenesis. Neuron 2003; 40:1105-18. [PMID: 14687546 DOI: 10.1016/s0896-6273(03)00755-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Numb and Numblike, conserved homologs of Drosophila Numb, have been implicated in cortical neurogenesis; however, analysis of their involvement in later stages of cortical development has been hampered by early lethality of double mutants in previous studies. Using Emx1(IREScre) to induce more restricted inactivation of Numb in the dorsal forebrain of numblike null mice beginning at E9.5, we have generated viable double mutants that displayed striking brain defects. It was thus possible to examine neurogenesis during the later peak phase (E12.5-E16.5). Loss of Numb and Numblike in dorsal forebrain resulted in neural progenitor hyperproliferation, delayed cell cycle exit, impaired neuronal differentiation, and concomitant defects in cortical morphogenesis. These findings reveal novel and essential function of Numb and Numblike during the peak period of cortical neurogenesis. Further, these double mutant mice provide an unprecedented viable animal model for severe brain malformations due to defects in neural progenitor cells.
Collapse
Affiliation(s)
- Hua Shun Li
- Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhou Y, Zhang J, King ML. Xenopus autosomal recessive hypercholesterolemia protein couples lipoprotein receptors with the AP-2 complex in oocytes and embryos and is required for vitellogenesis. J Biol Chem 2003; 278:44584-92. [PMID: 12944396 DOI: 10.1074/jbc.m308870200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ARH is required for normal endocytosis of the low density lipoprotein (LDL) receptor in liver and mutations within this gene cause autosomal recessive hypercholesterolemia in humans. xARH is a localized maternal RNA in Xenopus with an unknown function in oogenesis and embryogenesis. Like ARH, xARH contains a highly conserved phosphotyrosine binding domain and a clathrin box. To address the function of xARH, we examined its expression pattern in development and used pull-down experiments to assess interactions between xARH, lipoprotein receptors and proteins in embryo extracts. xARH was detected concentrated at the cell periphery as well as in the perinuclear region of oocytes and embryos. In pull-down experiments, the xARH phosphotyrosine binding domain interacted with the LDL and vitellogenin receptors found in Xenopus oocytes and embryos. Mutations within the receptor internalization signal specifically abolished this interaction. The xARH C-terminal region pulled-down several proteins from embryo extracts including alpha- and beta-adaptins, subunits of the AP-2 endocytic complex. Mutations within either of the two Dvarphi(F/W) motifs found in xARH abolished binding to alpha- and beta-adaptins. Expression of a dominant negative mutant of xARH missing the clathrin box and one functional Dvarphi(F/W) motif severely inhibited endocytosis of vitellogenin in cultured oocytes. The data indicate that xARH acts as an adaptor protein linking LDL and vitellogenin receptors directly with the AP-2 complex. In oocytes, we propose that xARH mediates the uptake of lipoproteins from the blood for storage in endosomes and later use in the embryo. Our findings point to an evolutionarily conserved function for ARH in lipoprotein uptake.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
34
|
Homayouni R, Magdaleno S, Keshvara L, Rice DS, Curran T. Interaction of Disabled-1 and the GTPase activating protein Dab2IP in mouse brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 115:121-9. [PMID: 12877983 DOI: 10.1016/s0169-328x(03)00176-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Reelin signaling pathway controls neuronal positioning during mammalian brain development by binding to the very low density lipoprotein receptor and apolipoprotein E receptor-2, and signaling through the intracellular adapter protein Disabled-1 (Dab1). To identify new components in the Reelin signaling pathway, we used a yeast two-hybrid screen to select Dab1-interacting proteins. Here, we report the characterization of a new mouse Dab1-interacting protein that is orthologous to rat Dab2IP, a Ras-GTPase activating protein previously shown to bind to Dab2/DOC. The interaction of Dab1 and Dab2IP was confirmed in biochemical assays and by co-immunoprecipitation from brain lysates. The site of interaction between Dab1 and Dab2IP was narrowed to the Dab1-PTB domain and the NPxY motif in Dab2IP. The deduced amino acid sequence of mouse Dab2IP encompasses 1,208 residues containing several protein interaction motifs as well as a Ras-like GAP-related domain. Northern blot analysis revealed at least two isoforms of Dab2IP mRNA in the brain, both of which exhibited increased expression during development. In situ hybridization analyses indicated that Dab2IP mRNA is diffusely expressed throughout the developing and the adult brain. Using a polyclonal antiserum specific for Dab2IP, we observed protein expression in the soma and processes of neurons in a variety of brain structures, including the developing cerebral cortex. Our findings suggest that Dab2IP may function as a downstream effector in the Reelin signaling pathway that influences Ras signaling during brain development.
Collapse
Affiliation(s)
- Ramin Homayouni
- Department of Neurology, University of Tennessee, 855 Monroe Avenue, 416 Link Building, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
35
|
Jones N, Chen SH, Sturk C, Master Z, Tran J, Kerbel RS, Dumont DJ. A unique autophosphorylation site on Tie2/Tek mediates Dok-R phosphotyrosine binding domain binding and function. Mol Cell Biol 2003; 23:2658-68. [PMID: 12665569 PMCID: PMC152553 DOI: 10.1128/mcb.23.8.2658-2668.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tie2/Tek is an endothelial cell receptor tyrosine kinase that induces signal transduction pathways involved in cell migration upon angiopoietin-1 (Ang1) stimulation. To address the importance of the various tyrosine residues of Tie2 in signal transduction, we generated a series of Tie2 mutants and examined their signaling properties. Using this approach in conjunction with a phosphorylation state-specific antibody, we identified tyrosine residue 1106 on Tie2 as an Ang1-dependent autophosphorylation site that mediates binding and phosphorylation of the downstream-of-kinase-related (Dok-R) docking protein. This tyrosine residue is contained within a unique interaction motif for the phosphotyrosine binding domain of Dok-R, and the pleckstrin homology domain of Dok-R further contributes to Tie2 binding in a phosphatidylinositol 3'-kinase-dependent manner. Introduction of a Tie2 mutant lacking tyrosine residue 1106 into endothelial cells interferes with Dok-R phosphorylation in response to Ang1. Furthermore, this mutant is unable to restore the migration potential of endothelial cells derived from mice lacking Tie2. Together, these findings demonstrate that tyrosine residue 1106 on Tie2 is critical for coupling downstream cell migration signal transduction pathways with Ang1 stimulation in endothelial cells.
Collapse
Affiliation(s)
- Nina Jones
- Division of Molecular and Cellular Biology Research, Sunnybrook and Women's College Research Institute, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Smythe E, Ayscough KR. The Ark1/Prk1 family of protein kinases. Regulators of endocytosis and the actin skeleton. EMBO Rep 2003; 4:246-51. [PMID: 12634840 PMCID: PMC1315904 DOI: 10.1038/sj.embor.embor776] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 01/22/2003] [Indexed: 11/09/2022] Open
Abstract
The Ark/Prk serine/threonine kinases initiate phosphorylation cycles that control the endocytic machinery in mammalian cells and in yeast, and the actin cytoskeleton in yeast. The members of this protein family are unified by homologies in their kinase domain, but are generally diverse in their other domains. The evolution of Ark/Prk family members in different organisms may have allowed the conserved role of the kinase domain, which is required for the phosphorylation of both endocytic and cytoskeletal components, to be coupled to other functional domains.
Collapse
Affiliation(s)
- Elizabeth Smythe
- Centre for Developmental Genetics, Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | |
Collapse
|
37
|
Yan KS, Kuti M, Yan S, Mujtaba S, Farooq A, Goldfarb MP, Zhou MM. FRS2 PTB domain conformation regulates interactions with divergent neurotrophic receptors. J Biol Chem 2002; 277:17088-94. [PMID: 11877385 DOI: 10.1074/jbc.m107963200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane-anchored adaptor proteins FRS2alpha/beta (also known as SNT-1/2) mediate signaling of fibroblast growth factor receptors (FGFRs) and neurotrophin receptors (TRKs) through their N-terminal phosphotyrosine binding (PTB) domains. The FRS2 PTB domain recognizes tyrosine-phosphorylated TRKs at an NPXpY (where pY is phosphotyrosine) motif, whereas its constitutive association with FGFR involves a receptor juxtamembrane region lacking Tyr and Asn residues. Here we show by isothermal titration calorimetry that the FRS2alpha PTB domain binding to peptides derived from TRKs or FGFR is thermodynamically different. TRK binding is largely enthalpy-driven, whereas the FGFR interaction is governed by a favorable entropic contribution to the free energy of binding. Furthermore, our NMR spectral analysis suggests that disruption of an unstructured region C-terminal to the PTB domain alters local conformation and dynamics of the residues at the ligand-binding site, and that structural disruption of the beta8-strand directly weakens the PTB domain association with the FGFR ligand. Together, our new findings support a molecular mechanism by which conformational dynamics of the FRS2alpha PTB domain dictates its association with either fibroblast growth factor or neurotrophin receptors in neuronal development.
Collapse
Affiliation(s)
- Kelley S Yan
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Anantharam A, Diversé-Pierluissi MA. Biochemical approaches to study interaction of calcium channels with RGS12 in primary neuronal cultures. Methods Enzymol 2002; 345:60-70. [PMID: 11665642 DOI: 10.1016/s0076-6879(02)45007-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Arun Anantharam
- Department of Pharmacology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
39
|
Jaffrey SR, Benfenati F, Snowman AM, Czernik AJ, Snyder SH. Neuronal nitric-oxide synthase localization mediated by a ternary complex with synapsin and CAPON. Proc Natl Acad Sci U S A 2002; 99:3199-204. [PMID: 11867766 PMCID: PMC122496 DOI: 10.1073/pnas.261705799] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The specificity of the reactions of nitric oxide (NO) with its neuronal targets is determined in part by the precise localizations of neuronal NO synthase (nNOS) within the cell. The targeting of nNOS is mediated by adapter proteins that interact with its PDZ domain. Here, we show that the nNOS adapter protein, CAPON, interacts with synapsins I, II, and III through an N-terminal phosphotyrosine-binding domain interaction, which leads to a ternary complex comprising nNOS, CAPON, and synapsin I. The significance of this ternary complex is demonstrated by changes in subcellular localization of nNOS in mice harboring genomic deletions of both synapsin I and synapsin II. These results suggest a mechanism for specific actions of NO at presynaptic sites.
Collapse
Affiliation(s)
- Samie R Jaffrey
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Protein phosphorylation provides molecular control of complex physiological events within cells. In many cases, phosphorylation on specific amino acids directly controls the assembly of multi-protein complexes by recruiting phospho-specific binding modules. Here, the function, structure, and cell biology of phosphotyrosine-binding domains is discussed.
Collapse
Affiliation(s)
- Michael B Yaffe
- Center for Cancer Research, E18-580, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
| |
Collapse
|
41
|
Abstract
Many of the signaling pathways and regulatory systems in eukaryotic cells are controlled by proteins with multiple interaction domains that mediate specific protein-protein and protein-phospholipid interactions, and thereby determine the biological output of receptors for external and intrinsic signals. Here, we discuss the basic features of interaction domains, and suggest that rather simple binary interactions can be used in sophisticated ways to generate complex cellular responses.
Collapse
Affiliation(s)
- Tony Pawson
- Samuel Lumenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1 X5.
| | | | | |
Collapse
|
42
|
Abstract
Phosphotyrosine binding (PTB) domains are structurally conserved modules found in proteins involved in numerous biological processes including signaling through cell-surface receptors and protein trafficking. While their original discovery is attributed to the recognition of phosphotyrosine in the context of NPXpY sequences -- a function distinct from that of the classical src homology 2 (SH2) domain -- recent studies show that these protein modules have much broader ligand binding specificities. These studies highlight the functional diversity of the PTB domain family as generalized protein interaction domains, and reinforce the concept that evolutionary changes of structural elements around the ligand binding site on a conserved structural core may endow these protein modules with the structural plasticity necessary for functional versatility.
Collapse
Affiliation(s)
- Kelley S Yan
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, 1425 Madison Avenue, P.O. Box 1677, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
43
|
Foltz DR, Nye JS. Hyperphosphorylation and association with RBP of the intracellular domain of Notch1. Biochem Biophys Res Commun 2001; 286:484-92. [PMID: 11511084 DOI: 10.1006/bbrc.2001.5421] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the intracellular domain of Notch1 is phosphorylated and it associates with members of the CSL family, the relationship of these events is poorly understood. Using in vivo [(32)P]orthophosphate labeling of cells expressing transfected Notch1, we observed that the furin cleaved Notch1 (TMIC) and the soluble intracellular forms (NICD), but not the full-length molecule were phosphorylated. Furthermore, transfected NICD molecules showed a significantly greater specific activity of phosphorylation, or hyperphosphorylation, compared to TMIC molecules. Hyperphosphorylation of NICD was also observed when NICD was generated by an endogenous intramembraneous cleavage of TMIC. However, TMIC molecules bearing a mutation that reduces intramembraneous cleavage (V1744K) did not show an enhanced incorporation of phosphate, suggesting that cleavage is required for hyperphosphorylation. Using deletion constructs to map the sites of phosphorylation, we observed that a domain of 93 amino acids downstream of the ankyrin repeats incorporated the majority of (32)P in vivo. This sequence was also required for activation of the HES-1 promoter. In addition, we observed that hyperphosphorylated forms of the intracellular domain were more likely to interact with the transcriptional coactivator RBP. However, dephosphorylation experiments showed that the interaction between RBP and the intracellular domain of Notch was not dependent upon Notch1IC phosphorylation. These studies reveal that phosphorylation of the intracellular domain of the Notch receptor is a dynamic process during the events of Notch signal transduction.
Collapse
Affiliation(s)
- D R Foltz
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
44
|
Pi H, Wu HJ, Chien CT. A dual function ofphyllopodinDrosophilaexternal sensory organ development: cell fate specification of sensory organ precursor and its progeny. Development 2001; 128:2699-710. [PMID: 11526076 DOI: 10.1242/dev.128.14.2699] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Drosophila external sensory organ development, one sensory organ precursor (SOP) arises from a proneural cluster, and undergoes asymmetrical cell divisions to produce an external sensory (es) organ made up of different types of daughter cells. We show that phyllopod (phyl), previously identified to be essential for R7 photoreceptor differentiation, is required in two stages of es organ development: the formation of SOP cells and cell fate specification of SOP progeny. Loss-of-function mutations in phyl result in failure of SOP formation, which leads to missing bristles in adult flies. At a later stage of es organ development, phyl mutations cause the first cell division of the SOP lineage to generate two identical daughters, leading to the fate transformation of neurons and sheath cells to hair cells and socket cells. Conversely, misexpression of phyl promotes ectopic SOP formation, and causes opposite fate transformation in SOP daughter cells. Thus, phyl functions as a genetic switch in specifying the fate of the SOP cells and their progeny. We further show that seven in absentia (sina), another gene required for R7 cell fate differentiation, is also involved in es organ development. Genetic interactions among phyl, sina and tramtrack (ttk) suggest that phyl and sina function in bristle development by antagonizing ttk activity, and ttk acts downstream of phyl. It has been shown previously that Notch (N) mutations induce formation of supernumerary SOP cells, and transformation from hair and socket cells to neurons. We further demonstrate that phyl acts epistatically to N. phyl is expressed specifically in SOP cells and other neural precursors, and its mRNA level is negatively regulated by N signaling. Thus, these analyses demonstrate that phyl acts downstream of N signaling in controlling cell fates in es organ development.
Collapse
Affiliation(s)
- H Pi
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529
| | | | | |
Collapse
|
45
|
Rusten TE, Cantera R, Urban J, Technau G, Kafatos FC, Barrio R. Spalt modifies EGFR-mediated induction of chordotonal precursors in the embryonic PNS of Drosophila promoting the development of oenocytes. Development 2001; 128:711-22. [PMID: 11171396 DOI: 10.1242/dev.128.5.711] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genes of the spalt family encode nuclear zinc finger proteins. In Drosophila melanogaster, they are necessary for the establishment of head/trunk identity, correct tracheal migration and patterning of the wing imaginal disc. Spalt proteins display a predominant pattern of expression in the nervous system, not only in Drosophila but also in species of fish, mouse, frog and human, suggesting an evolutionarily conserved role for these proteins in nervous system development. Here we show that Spalt works as a cell fate switch between two EGFR-induced cell types, the oenocytes and the precursors of the pentascolopodial organ in the embryonic peripheral nervous system. We show that removal of spalt increases the number of scolopodia, as a result of extra secondary recruitment of precursor cells at the expense of the oenocytes. In addition, the absence of spalt causes defects in the normal migration of the pentascolopodial organ. The dual function of spalt in the development of this organ, recruitment of precursors and migration, is reminiscent of its role in tracheal formation and of the role of a spalt homologue, sem-4, in the Caenorhabditis elegans nervous system.
Collapse
Affiliation(s)
- T E Rusten
- European Molecular Biology Laboratory, Meyerhofstrasse, D-69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Dhalluin C, Yan KS, Plotnikova O, Lee KW, Zeng L, Kuti M, Mujtaba S, Goldfarb MP, Zhou MM. Structural basis of SNT PTB domain interactions with distinct neurotrophic receptors. Mol Cell 2000; 6:921-9. [PMID: 11090629 PMCID: PMC5155437 DOI: 10.1016/s1097-2765(05)00087-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SNT adaptor proteins transduce activation of fibroblast growth factor receptors (FGFRs) and neurotrophin receptors (TRKs) to common signaling targets. The SNT-1 phosphotyrosine binding (PTB) domain recognizes activated TRKs at a canonical NPXpY motif and, atypically, binds to nonphosphorylated FGFRs in a region lacking tyrosine or asparagine. Here, using NMR and mutational analyses, we show that the PTB domain utilizes distinct sets of amino acid residues to interact with FGFRs or TRKs in a mutually exclusive manner. The FGFR1 peptide wraps around the beta sandwich structure of the PTB domain, and its binding is possibly regulated by conformational change of a unique C-terminal beta strand in the protein. Our results suggest mechanisms by which SNTs serve as molecular switches to mediate the essential interplay between FGFR and TRK signaling during neuronal differentiation.
Collapse
Affiliation(s)
- Christophe Dhalluin
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, New York 10029
| | - Kelley S. Yan
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, New York 10029
| | - Olga Plotnikova
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, New York 10029
| | - Kyung W. Lee
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York University, New York, New York 10029
| | - Lei Zeng
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, New York 10029
| | - Miklos Kuti
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, New York 10029
| | - Shiraz Mujtaba
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, New York 10029
| | - Mitchell P. Goldfarb
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York University, New York, New York 10029
| | - Ming-Ming Zhou
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, New York 10029
- To whom correspondence should be addressed ()
| |
Collapse
|
47
|
Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 2000; 28:183-93. [PMID: 11086993 DOI: 10.1016/s0896-6273(00)00095-7] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Because nitric oxide (NO) is a highly reactive signaling molecule, chemical inactivation by reaction with oxygen, superoxide, and glutathione competes with specific interactions with target proteins. NO signaling may be enhanced by adaptor proteins that couple neuronal NO synthase (nNOS) to specific target proteins. Here we identify a selective interaction of the nNOS adaptor protein CAPON with Dexras1, a brain-enriched member of the Ras family of small monomeric G proteins. We find that Dexras1 is activated by NO donors as well as by NMDA receptor-stimulated NO synthesis in cortical neurons. The importance of Dexras1 as a physiologic target of nNOS is established by the selective decrease of Dexras1 activation, but not H-Ras or four other Ras family members, in the brains of mice harboring a targeted genomic deletion of nNOS (nNOS-/-). We also find that nNOS, CAPON, and Dexras1 form a ternary complex that enhances the ability of nNOS to activate Dexras1. These findings identify Dexras1 as a novel physiologic NO effector and suggest that anchoring of nNOS to specific targets is a mechanism by which NO signaling is enhanced.
Collapse
Affiliation(s)
- M Fang
- Department of Neuroscience, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
48
|
Zwahlen C, Li SC, Kay LE, Pawson T, Forman-Kay JD. Multiple modes of peptide recognition by the PTB domain of the cell fate determinant Numb. EMBO J 2000; 19:1505-15. [PMID: 10747019 PMCID: PMC310220 DOI: 10.1093/emboj/19.7.1505] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The phosphotyrosine-binding (PTB) domain of the cell fate determinant Numb is involved in the formation of multiple protein complexes in vivo and can bind a diverse array of peptide sequences in vitro. To investigate the structural basis for the promiscuous nature of this protein module, we have determined its solution structure by NMR in a complex with a peptide containing an NMSF sequence derived from the Numb-associated kinase (Nak). The Nak peptide was found to adopt a significantly different structure from that of a GPpY sequence-containing peptide previously determined. In contrast to the helical turn adopted by the GPpY peptide, the Nak peptide forms a beta-turn at the NMSF site followed by another turn near the C-terminus. The Numb PTB domain appears to recognize peptides that differ in both primary and secondary structures by engaging various amounts of the binding surface of the protein. Our results suggest a mechanism through which a single PTB domain might interact with multiple distinct target proteins to control a complex biological process such as asymmetric cell division.
Collapse
Affiliation(s)
- C Zwahlen
- Structural Biology and Biochemistry Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8
| | | | | | | | | |
Collapse
|
49
|
Ong SH, Guy GR, Hadari YR, Laks S, Gotoh N, Schlessinger J, Lax I. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol 2000; 20:979-89. [PMID: 10629055 PMCID: PMC85215 DOI: 10.1128/mcb.20.3.979-989.2000] [Citation(s) in RCA: 276] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The docking protein FRS2 was implicated in the transmission of extracellular signals from the fibroblast growth factor (FGF) or nerve growth factor (NGF) receptors to the Ras/mitogen-activated protein kinase signaling cascade. The two members of the FRS2 family, FRS2alpha and FRS2beta, are structurally very similar. Each is composed of an N-terminal myristylation signal, a phosphotyrosine-binding (PTB) domain, and a C-terminal tail containing multiple binding sites for the SH2 domains of the adapter protein Grb2 and the protein tyrosine phosphatase Shp2. Here we show that the PTB domains of both the alpha and beta isoforms of FRS2 bind directly to the FGF or NGF receptors. The PTB domains of the FRS2 proteins bind to a highly conserved sequence in the juxtamembrane region of FGFR1. While FGFR1 interacts with FRS2 constitutively, independent of ligand stimulation and tyrosine phosphorylation, NGF receptor (TrkA) binding to FRS2 is strongly dependent on receptor activation. Complex formation with TrkA is dependent on phosphorylation of Y490, a canonical PTB domain binding site that also functions as a binding site for Shc (NPXpY). Using deletion and alanine scanning mutagenesis as well as peptide competition assays, we demonstrate that the PTB domains of the FRS2 proteins specifically recognize two different primary structures in two different receptors in a phosphorylation-dependent or -independent manner. In addition, NGF-induced tyrosine phosphorylation of FRS2alpha is diminished in cells that overexpress a kinase-inactive mutant of FGFR1. This experiment suggests that FGFR1 may regulate signaling via NGF receptors by sequestering a common key element which both receptors utilize for transmitting their signals. The multiple interactions mediated by FRS2 appear to play an important role in target selection and in defining the specificity of several families of receptor tyrosine kinases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Binding Sites
- Cell Line
- GRB2 Adaptor Protein
- Humans
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Mutagenesis
- Phosphoproteins/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/metabolism
- Proteins/chemistry
- Proteins/metabolism
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/chemistry
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Nerve Growth Factor/chemistry
- Receptors, Nerve Growth Factor/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Sequence Alignment
- Sequence Deletion
- Sequence Homology, Amino Acid
- Signal Transduction/physiology
- Transfection
- src Homology Domains
Collapse
Affiliation(s)
- S H Ong
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | | | | | | | | | |
Collapse
|
50
|
Meyer D, Liu A, Margolis B. Interaction of c-Jun amino-terminal kinase interacting protein-1 with p190 rhoGEF and its localization in differentiated neurons. J Biol Chem 1999; 274:35113-8. [PMID: 10574993 DOI: 10.1074/jbc.274.49.35113] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Jun amino-terminal kinase (JNK) interacting protein-1 (JIP-1) was originally identified as a cytoplasmic inhibitor of JNK. More recently, JIP-1 was proposed to function as a scaffold protein by complexing specific components of the JNK signaling pathway, namely JNK, mitogen-activated protein kinase kinase 7, and mixed lineage kinase 3. We have identified the human homologue of JIP-1 that contains a phosphotyrosine binding (PTB) domain in addition to a JNK binding domain and an Src homology 3 domain. To identify binding targets for the hJIP-1 PTB domain, a mouse embryo cDNA library was screened using the yeast two-hybrid system. One clone encoded a 191-amino acid region of the neuronal protein rhoGEF, an exchange factor for rhoA. Overexpression of rhoGEF promotes cytoskeletal rearrangement and cell rounding in NIE-115 neuronal cells. The interaction of JIP-1 with rhoGEF was confirmed by coimmunoprecipitation of these proteins from lysates of transiently transfected HEK 293 cells. Using glutathione S-transferase rhoGEF fusion proteins containing deletion or point mutations, we identified a putative PTB binding site within rhoGEF. This binding site does not contain tyrosine, indicating that the JIP PTB domain, like that of Xll alpha and Numb, binds independently of phosphotyrosine. Several forms of endogenous JIP-1 protein can be detected in neuronal cell lines. Indirect immunofluorescence analysis localized endogenous JIP-1 to the tip of the neurites in differentiated NIE-115 and PC12 cells. The interaction of JIP-1 with rhoGEF and its subcellular localization suggests that JIP-1 may function to specifically localize a signaling complex in neuronal cells.
Collapse
Affiliation(s)
- D Meyer
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|