1
|
Bayat M, Nahid-Samiei R, Sadri Nahand J, Naghili B. Interferon and immunity: the role of microRNA in viral evasion strategies. Front Immunol 2025; 16:1567459. [PMID: 40416980 PMCID: PMC12101089 DOI: 10.3389/fimmu.2025.1567459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/26/2025] [Indexed: 05/27/2025] Open
Abstract
Interferons (IFNs) are indispensable innate antiviral cytokines that orchestrate the vertebrate immune response against viral incursions. Nearly every cell possesses the remarkable ability to release IFNs upon detecting viral threats, triggering a robust signaling cascade that alerts neighboring cells and halts viral propagation via paracrine communication. The intricate influence of IFNs is mediated by an extensive network of proteins activated through the Jak-STAT pathways, facilitating the swift transcription of over 300 interferon-stimulated genes (ISGs) that fortify cellular defenses against replication. However, the cunning nature of viruses has led to the evolution of sophisticated evasion strategies, notably through the manipulation of host microRNAs (miRNAs) that disrupt vital components of the IFN signaling machinery. This review delves into the intricate interplay between viral infections and both host- and viral-derived miRNAs, exploring their potent roles in modulating RIG-I-like receptors, Toll-like receptors, IFN receptors, and the JAK/STAT pathway, ultimately shaping the landscape of antiviral immunity.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahil Nahid-Samiei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Ishak CA, Marhon SA, Tchrakian N, Hodgson A, Loo Yau H, Gonzaga IM, Peralta M, Lungu IM, Gomez S, Liang SB, Shen SY, Chen R, Chen J, Chatterjee B, Wanniarachchi KN, Lee J, Zehrbach N, Hosseini A, Mehdipour P, Sun S, Solovyov A, Ettayebi I, Francis KE, He A, Wu T, Feng S, da Silva Medina T, Campos de Almeida F, Bayani J, Li J, MacDonald S, Wang Y, Garcia SS, Arthofer E, Diab N, Srivastava A, Austin PT, Sabatini PJB, Greenbaum BD, O'Brien CA, Shepherd TG, Tsao MS, Chiappinelli KB, Oza AM, Clarke BA, Rottapel R, Lheureux S, De Carvalho DD. Chronic Viral Mimicry Induction following p53 Loss Promotes Immune Evasion. Cancer Discov 2025; 15:793-817. [PMID: 39776167 DOI: 10.1158/2159-8290.cd-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE Our landmark discovery of viral mimicry characterized repetitive elements as immunogenic stimuli that cull cancer cells. If expressed repetitive elements cull cancer cells, why does every human cancer express repetitive elements? Our report offers an exciting advancement toward understanding this paradox and how to exploit this mechanism for cancer interception. See related commentary by Murayama and Cañadas, p. 670.
Collapse
Affiliation(s)
- Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Naïri Tchrakian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Anjelica Hodgson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Helen Loo Yau
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Isabela M Gonzaga
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Melanie Peralta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ilinca M Lungu
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Stephanie Gomez
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Sheng-Ben Liang
- Princess Margaret Cancer Biobank, University Health Network, Toronto, Canada
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jocelyn Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Biji Chatterjee
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kevin N Wanniarachchi
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junwoo Lee
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas Zehrbach
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amir Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Siyu Sun
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Solovyov
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ilias Ettayebi
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kyle E Francis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aobo He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Taiyi Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Shengrui Feng
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | - Jane Bayani
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Jason Li
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Spencer MacDonald
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Yadong Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sarah S Garcia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Elisa Arthofer
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Noor Diab
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Aneil Srivastava
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Paul Tran Austin
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Peter J B Sabatini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Benjamin D Greenbaum
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Trevor G Shepherd
- Department of Obstetrics and Gynaecology, Western University, London, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Blaise A Clarke
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Stephanie Lheureux
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Chen T, Ding L, Tu S, Sun H, Zou J, Ouyang A, Jiang M, Feng Y, Jin M, Chen H, Zhou H. BEND6 promotes RNA viruses' replication by inhibiting innate immune responses. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1073-1083. [PMID: 39821161 DOI: 10.1007/s11427-024-2698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/28/2024] [Indexed: 01/19/2025]
Abstract
Innate immunity serves as a crucial defense mechanism against invading pathogens, yet its negative regulatory network remains under explored. In this study, we identify BEN domain-containing protein 6 (BEND6) as a novel negative regulator of innate immunity through a genome-scale CRISPR knockout screen for host factors essential for viral replication. We show that BEND6 exhibits characteristics of an interferon-stimulated gene (ISG), with its mRNA and protein levels upregulated by RNA virus-induced IFN-β. BEND6 targets IRF3 and inhibits its recruitment by TBK1, thus preventing IRF3 phosphorylation and dimerization. Additionally, BEND6 directly binds to ISRE, thereby hindering the DNA binding activity of IRF3 and blocking the subsequent activation of IFN-β transcription. Taken together, our study reveals the mechanism of BEND6 in promoting the replication of various RNA viruses and provides a potential therapeutic target for RNA virus infection.
Collapse
Affiliation(s)
- Tong Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Ding
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huimin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aotian Ouyang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meijun Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Feng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
4
|
Martiáñez-Vendrell X, van Kasteren PB, Myeni SK, Kikkert M. HCoV-229E Mpro Suppresses RLR-Mediated Innate Immune Signalling Through Cleavage of NEMO and Through Other Mechanisms. Int J Mol Sci 2025; 26:1197. [PMID: 39940968 PMCID: PMC11818511 DOI: 10.3390/ijms26031197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
In order to detect and respond to invading pathogens, mammals have evolved a battery of pattern recognition receptors. Among these, RIG-I-like receptors (RLR) are cytosolic RNA sensors that play an essential role in the innate immune response against RNA viruses, including coronaviruses. In return, coronaviruses have acquired diverse strategies to impair RLR-mediated immune responses to enable productive infection. Viral innate immune evasion mechanisms have been well studied for highly pathogenic human coronaviruses (HCoVs), and often, these activities are thought to be linked to the severe symptoms these viruses can cause. Whether other coronaviruses, including human common cold coronaviruses, display similar activities has remained understudied. Here, we present evidence that the main protease (Mpro) of common cold HCoV-229E acts as an interferon (IFN) and NF-κB antagonist by disrupting RLR-mediated antiviral signalling. Furthermore, we show that HCoV-229E, HCoV-OC43 and MERS-CoV Mpros are able to directly cleave NEMO. We also show that HCoV-229E Mpro induces the cleavage and/or degradation of multiple other RLR pathway components, including MDA5, TBK1 and IKKε. Finally, we show that HCoV-229E infection leads to a delayed innate immune response that is accompanied by a decrease in NEMO protein levels. Our results suggest that NEMO degradation during HCoV-229E infection could be mediated, in part, by cellular degradation pathways, in addition to viral Mpro-mediated cleavage. Altogether, our research unveils innate immune evasion activities of the Mpros of low-pathogenic coronaviruses, which, despite their low pathogenicity, appear to share functionalities previously described for highly pathogenic HCoVs.
Collapse
Affiliation(s)
| | | | | | - Marjolein Kikkert
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (X.M.-V.)
| |
Collapse
|
5
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
6
|
Dodantenna N, Cha JW, Chathuranga K, Chathuranga WAG, Weerawardhana A, Ranathunga L, Kim Y, Jheong W, Lee JS. The African Swine Fever Virus Virulence Determinant DP96R Suppresses Type I IFN Production Targeting IRF3. Int J Mol Sci 2024; 25:2099. [PMID: 38396775 PMCID: PMC10889005 DOI: 10.3390/ijms25042099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
DP96R of African swine fever virus (ASFV), also known as uridine kinase (UK), encodes a virulence-associated protein. Previous studies have examined DP96R along with other genes in an effort to create live attenuated vaccines. While experiments in pigs have explored the impact of DP96R on the pathogenicity of ASFV, the precise molecular mechanism underlying this phenomenon remains unknown. Here, we describe a novel molecular mechanism by which DP96R suppresses interferon regulator factor-3 (IRF3)-mediated antiviral immune responses. DP96R interacts with a crucial karyopherin (KPNA) binding site within IRF3, disrupting the KPNA-IRF3 interaction and consequently impeding the translocation of IRF3 to the nucleus. Under this mechanistic basis, the ectopic expression of DP96R enhances the replication of DNA and RNA viruses by inhibiting the production of IFNs, whereas DP96R knock-down resulted in higher IFNs and IFN-stimulated gene (ISG) transcription during ASFV infection. Collectively, these findings underscore the pivotal role of DP96R in inhibiting IFN responses and increase our understanding of the relationship between DP96R and the virulence of ASFV.
Collapse
Affiliation(s)
- Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Ji-Won Cha
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - W. A. Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Lakmal Ranathunga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju 62407, Republic of Korea; (Y.K.); (W.J.)
| | - Weonhwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju 62407, Republic of Korea; (Y.K.); (W.J.)
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| |
Collapse
|
7
|
Espada CE, da Rocha EL, Ricciardi-Jorge T, dos Santos AA, Soares ZG, Malaquias G, Patrício DO, Gonzalez Kozlova E, dos Santos PF, Bordignon J, Sanford TJ, Fajardo T, Sweeney TR, Báfica A, Mansur DS. ISG15/USP18/STAT2 is a molecular hub regulating IFN I-mediated control of Dengue and Zika virus replication. Front Immunol 2024; 15:1331731. [PMID: 38384473 PMCID: PMC10879325 DOI: 10.3389/fimmu.2024.1331731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The establishment of a virus infection is the result of the pathogen's ability to replicate in a hostile environment generated by the host's immune system. Here, we found that ISG15 restricts Dengue and Zika viruses' replication through the stabilization of its binding partner USP18. ISG15 expression was necessary to control DV replication driven by both autocrine and paracrine type one interferon (IFN-I) signaling. Moreover, USP18 competes with NS5-mediated STAT2 degradation, a major mechanism for establishment of flavivirus infection. Strikingly, reconstitution of USP18 in ISG15-deficient cells was sufficient to restore the STAT2's stability and restrict virus growth, suggesting that the IFNAR-mediated ISG15 activity is also antiviral. Our results add a novel layer of complexity in the virus/host interaction interface and suggest that NS5 has a narrow window of opportunity to degrade STAT2, therefore suppressing host's IFN-I mediated response and promoting virus replication.
Collapse
Affiliation(s)
- Constanza Eleonora Espada
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edroaldo Lummertz da Rocha
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Taissa Ricciardi-Jorge
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Adara Aurea dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Zamira Guerra Soares
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Malaquias
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Oliveira Patrício
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edgar Gonzalez Kozlova
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Paula Fernandes dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Instituto Carlos Chagas (ICC)/Fiocruz-PR, Curitiba, Brazil
| | - Thomas J. Sanford
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Teodoro Fajardo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Trevor R. Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Viral Gene Expression Group, The Pirbright Institute, Guildford, United Kingdom
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
8
|
Amniouel S, Jafri MS. High-accuracy prediction of colorectal cancer chemotherapy efficacy using machine learning applied to gene expression data. Front Physiol 2024; 14:1272206. [PMID: 38304289 PMCID: PMC10830836 DOI: 10.3389/fphys.2023.1272206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction: FOLFOX and FOLFIRI chemotherapy are considered standard first-line treatment options for colorectal cancer (CRC). However, the criteria for selecting the appropriate treatments have not been thoroughly analyzed. Methods: A newly developed machine learning model was applied on several gene expression data from the public repository GEO database to identify molecular signatures predictive of efficacy of 5-FU based combination chemotherapy (FOLFOX and FOLFIRI) in patients with CRC. The model was trained using 5-fold cross validation and multiple feature selection methods including LASSO and VarSelRF methods. Random Forest and support vector machine classifiers were applied to evaluate the performance of the models. Results and Discussion: For the CRC GEO dataset samples from patients who received either FOLFOX or FOLFIRI, validation and test sets were >90% correctly classified (accuracy), with specificity and sensitivity ranging between 85%-95%. In the datasets used from the GEO database, 28.6% of patients who failed the treatment therapy they received are predicted to benefit from the alternative treatment. Analysis of the gene signature suggests the mechanistic difference between colorectal cancers that respond and those that do not respond to FOLFOX and FOLFIRI. Application of this machine learning approach could lead to improvements in treatment outcomes for patients with CRC and other cancers after additional appropriate clinical validation.
Collapse
Affiliation(s)
- Soukaina Amniouel
- School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA, United States
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Xue Q, Zhu Z, Xue Z, Yang F, Cao W, Liu X, Liu H, Zheng H. NOG1 downregulates type I interferon production by targeting phosphorylated interferon regulatory factor 3. PLoS Pathog 2023; 19:e1011511. [PMID: 37410776 DOI: 10.1371/journal.ppat.1011511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
The innate immune system is the first line of the host's defense, and studying the mechanisms of the negative regulation of interferon (IFN) signaling is important for maintaining the balance of innate immune responses. Here, we found that the host GTP-binding protein 4 (NOG1) is a negative regulator of innate immune responses. Overexpression of NOG1 inhibited viral RNA- and DNA-mediated signaling pathways, and NOG1 deficiency promoted the antiviral innate immune response, resulting in the ability of NOG1 to promote viral replication. Vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1) infection induced a higher level of IFN-β protein in NOG1 deficient mice. Meanwhile, NOG1-deficient mice were more resistant to VSV and HSV-1 infection. NOG1 inhibited type I IFN production by targeting IRF3. NOG1 was also found to interact with phosphorylated IFN regulatory factor 3 (IRF3) to impair its DNA binding activity, thereby downregulating the transcription of IFN-β and downstream IFN-stimulated genes (ISGs). The GTP binding domain of NOG1 is responsible for this process. In conclusion, our study reveals an underlying mechanism of how NOG1 negatively regulates IFN-β by targeting IRF3, which uncovers a novel role of NOG1 in host innate immunity.
Collapse
Affiliation(s)
- Qiao Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoning Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
10
|
Guo Y, Pan L, Wang L, Wang S, Fu J, Luo W, Wang K, Li X, Huang C, Liu Y, Kang H, Zeng Q, Fu X, Huang Z, Li W, He Y, Li L, Peng T, Yang H, Li M, Xiao B, Cai M. Epstein-Barr Virus Envelope Glycoprotein gp110 Inhibits IKKi-Mediated Activation of NF-κB and Promotes the Degradation of β-Catenin. Microbiol Spectr 2023; 11:e0032623. [PMID: 37022262 PMCID: PMC10269791 DOI: 10.1128/spectrum.00326-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects host cells and establishes a latent infection that requires evasion of host innate immunity. A variety of EBV-encoded proteins that manipulate the innate immune system have been reported, but whether other EBV proteins participate in this process is unclear. EBV-encoded envelope glycoprotein gp110 is a late protein involved in virus entry into target cells and enhancement of infectivity. Here, we reported that gp110 inhibits RIG-I-like receptor pathway-mediated promoter activity of interferon-β (IFN-β) as well as the transcription of downstream antiviral genes to promote viral proliferation. Mechanistically, gp110 interacts with the inhibitor of NF-κB kinase (IKKi) and restrains its K63-linked polyubiquitination, leading to attenuation of IKKi-mediated activation of NF-κB and repression of the phosphorylation and nuclear translocation of p65. Additionally, gp110 interacts with an important regulator of the Wnt signaling pathway, β-catenin, and induces its K48-linked polyubiquitination degradation via the proteasome system, resulting in the suppression of β-catenin-mediated IFN-β production. Taken together, these results suggest that gp110 is a negative regulator of antiviral immunity, revealing a novel mechanism of EBV immune evasion during lytic infection. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous pathogen that infects almost all human beings, and the persistence of EBV in the host is largely due to immune escape mediated by its encoded products. Thus, elucidation of EBV's immune escape mechanisms will provide a new direction for the design of novel antiviral strategies and vaccine development. Here, we report that EBV-encoded gp110 serves as a novel viral immune evasion factor, which inhibits RIG-I-like receptor pathway-mediated interferon-β (IFN-β) production. Furthermore, we found that gp110 targeted two key proteins, inhibitor of NF-κB kinase (IKKi) and β-catenin, which mediate antiviral activity and the production of IFN-β. gp110 inhibited K63-linked polyubiquitination of IKKi and induced β-catenin degradation via the proteasome, resulting in decreased IFN-β production. In summary, our data provide new insights into the EBV-mediated immune evasion surveillance strategy.
Collapse
Affiliation(s)
- Yingjie Guo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Lingxia Pan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Liding Wang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jiangqin Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wenqi Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xiaoqing Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Chen Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yintao Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Haoran Kang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Qiyuan Zeng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Xiuxia Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Zejin Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wanying Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yingxin He
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Guangdong South China Vaccine, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Meili Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Mingsheng Cai
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
The diverse repertoire of ISG15: more intricate than initially thought. Exp Mol Med 2022; 54:1779-1792. [PMID: 36319753 PMCID: PMC9722776 DOI: 10.1038/s12276-022-00872-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein (UBL), which plays multifaceted roles not only as a free intracellular or extracellular molecule but also as a post-translational modifier in the process of ISG15 conjugation (ISGylation). ISG15 has only been identified in vertebrates, indicating that the functions of ISG15 and its conjugation are restricted to higher eukaryotes and have evolved with IFN signaling. Despite the highlighted complexity of ISG15 and ISGylation, it has been suggested that ISG15 and ISGylation profoundly impact a variety of cellular processes, including protein translation, autophagy, exosome secretion, cytokine secretion, cytoskeleton dynamics, DNA damage response, telomere shortening, and immune modulation, which emphasizes the necessity of reassessing ISG15 and ISGylation. However, the underlying mechanisms and molecular consequences of ISG15 and ISGylation remain poorly defined, largely due to a lack of knowledge on the ISG15 target repertoire. In this review, we provide a comprehensive overview of the mechanistic understanding and molecular consequences of ISG15 and ISGylation. We also highlight new insights into the roles of ISG15 and ISGylation not only in physiology but also in the pathogenesis of various human diseases, especially in cancer, which could contribute to therapeutic intervention in human diseases.
Collapse
|
12
|
RNA sequencing reveals dynamic expression of spleen lncRNAs and mRNAs in Beagle dogs infected by Toxocara canis. Parasit Vectors 2022; 15:279. [PMID: 35927758 PMCID: PMC9351231 DOI: 10.1186/s13071-022-05380-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Toxocara canis is a cosmopolitan parasite with a significant adverse impact on the health of humans and animals. The spleen is a major immune organ that plays essential roles in protecting the host against various infections. However, its role in T. canis infection has not received much attention. METHODS We performed sequencing-based transcriptome profiling of long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression in the spleen of Beagle puppies at 24 h post-infection (hpi), 96 hpi and 36 days post-infection (dpi). Deep sequencing of RNAs isolated from the spleen of six puppies (three infected and three control) at each time point after infection was conducted. RESULTS Our analysis revealed 614 differentially expressed (DE) lncRNAs and 262 DEmRNAs at 24 hpi; 726 DElncRNAs and 878 DEmRNAs at 96 hpi; and 686 DElncRNAs and 504 DEmRNAs at 36 dpi. Of those, 35 DElncRNA transcripts and 11 DEmRNAs were detected at all three time points post-infection. Many DE genes were enriched in immune response, such as ifit1, ifit2 and rorc. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that some genes (e.g. prkx and tnfrsf11a) were involved in the T cell receptor signaling pathway, calcium signaling pathway, Ras signaling pathway and NF-κB signaling pathway. CONCLUSIONS The findings of this study show marked alterations in the expression profiles of spleen lncRNAs and mRNAs, with possible implications in the pathophysiology of toxocariasis.
Collapse
|
13
|
The RNA helicase DDX3 promotes IFNB transcription via enhancing IRF-3/p300 holocomplex binding to the IFNB promoter. Sci Rep 2022; 12:3967. [PMID: 35273248 PMCID: PMC8913847 DOI: 10.1038/s41598-022-07876-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
The human DEAD-box protein 3 (DDX3) has been reported as a positive regulator and functions in the induction of type I interferon signaling. We elucidated the function of DDX3 in the positive regulation of IFNB production in non-pDC cells. We found that DDX3 regulates virus-induced activation of IFNB at the level of IRF-3. However, it does not affect conventional innate signaling, including IRF-3 phosphorylation, dimerization, or nuclear translocation of IRF-3, but has some downstream events after IRF-3 phosphorylation. Co-immunoprecipitation analyses revealed that DDX3 interacts with IRF-3 through its DNA-binding domain and promotes IRF-3-mediated IFNB promoter activation. DDX3 does not affect the formation of the IRF-3/p300/CBP complex. Instead, ChIP and EMSA assay revealed that DDX3 promotes the recruitment of IRF-3 and transcriptional co-activator p300/CBP to the IFNB promoter. The ATP binding pocket of DDX3 is involved in this association and is essential for the transcriptional activation. Taken together, our study demonstrates that DDX3 plays an important role in guiding a transcription factor complex formed by antiviral signaling to the target gene promoter.
Collapse
|
14
|
Gong L, Ou X, Hu L, Zhong J, Li J, Deng S, Li B, Pan L, Wang L, Hong X, Luo W, Zeng Q, Zan J, Peng T, Cai M, Li M. The Molecular Mechanism of Herpes Simplex Virus 1 UL31 in Antagonizing the Activity of IFN-β. Microbiol Spectr 2022; 10:e0188321. [PMID: 35196784 PMCID: PMC8865407 DOI: 10.1128/spectrum.01883-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Virus infection triggers intricate signal cascade reactions to activate the host innate immunity, which leads to the production of type I interferon (IFN-I). Herpes simplex virus 1 (HSV-1), a human-restricted pathogen, is capable of encoding over 80 viral proteins, and several of them are involved in immune evasion to resist the host antiviral response through the IFN-I signaling pathway. Here, we determined that HSV-1 UL31, which is associated with nuclear matrix and is essential for the formation of viral nuclear egress complex, could inhibit retinoic acid-inducible gene I (RIG-I)-like receptor pathway-mediated interferon beta (IFN-β)-luciferase (Luc) and (PRDIII-I)4-Luc (an expression plasmid of IFN-β positive regulatory elements III and I) promoter activation, as well as the mRNA transcription of IFN-β and downstream interferon-stimulated genes (ISGs), such as ISG15, ISG54, ISG56, etc., to promote viral infection. UL31 was shown to restrain IFN-β activation at the interferon regulatory factor 3 (IRF3)/IRF7 level. Mechanically, UL31 was demonstrated to interact with TANK binding kinase 1 (TBK1), inducible IκB kinase (IKKi), and IRF3 to impede the formation of the IKKi-IRF3 complex but not the formation of the IRF7-related complex. UL31 could constrain the dimerization and nuclear translocation of IRF3. Although UL31 was associated with the CREB binding protein (CBP)/p300 coactivators, it could not efficiently hamper the formation of the CBP/p300-IRF3 complex. In addition, UL31 could facilitate the degradation of IKKi and IRF3 by mediating their K48-linked polyubiquitination. Taken together, these results illustrated that UL31 was able to suppress IFN-β activity by inhibiting the activation of IKKi and IRF3, which may contribute to the knowledge of a new immune evasion mechanism during HSV-1 infection. IMPORTANCE The innate immune system is the first line of host defense against the invasion of pathogens. Among its mechanisms, IFN-I is an essential cytokine in the antiviral response, which can help the host eliminate a virus. HSV-1 is a double-stranded DNA virus that can cause herpes and establish a lifelong latent infection, due to its possession of multiple mechanisms to escape host innate immunity. In this study, we illustrate for the first time that the HSV-1-encoded UL31 protein has a negative regulatory effect on IFN-β production by blocking the dimerization and nuclear translocation of IRF3, as well as promoting the K48-linked polyubiquitination and degradation of both IKKi and IRF3. This study may be helpful for fully understanding the pathogenesis of HSV-1.
Collapse
Affiliation(s)
- Lan Gong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaowen Ou
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Hu
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayi Zhong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingjing Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shenyu Deng
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bolin Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingxia Pan
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liding Wang
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejun Hong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenqi Luo
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiyuan Zeng
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingsheng Cai
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meili Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Montoya-Cerrillo DM, Diaz-Perez JA, Velez-Torres JM, Montgomery EA, Rosenberg AE. Novel fusion genes in spindle cell rhabdomyosarcoma: The spectrum broadens. Genes Chromosomes Cancer 2021; 60:687-694. [PMID: 34184341 DOI: 10.1002/gcc.22978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) encompasses a heterogeneous group of tumors with striated muscle differentiation. RMSs are classified as alveolar, embryonal, spindle cell/sclerosing, and pleomorphic types and molecular analysis of these tumors has identified aberrations that are useful in their further subclassification. Spindle cell rhabdomyosarcoma (SpRMS) is uncommon and has been described with VGLL2 fusions, EWSR1/FUS-TFCP2 rearrangements, and myoD1 mutations-the mutations are associated with significantly different prognoses. In addition, the NCOA2-MEIS1 fusion gene was recently described in two primary intraosseous RMS that contained spindle cell components. Herein, we report three cases of SpRMS harboring different novel fusion genes, one possessing EP300-VGLL3, a second with NCOA2-MEIS1 and CAV1-MET, and the third case had HMGA2-NEGR1 and multiple amplified genes.
Collapse
Affiliation(s)
- Diego M Montoya-Cerrillo
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Julio A Diaz-Perez
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jaylou M Velez-Torres
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Elizabeth A Montgomery
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
16
|
Salman AA, Waheed MH, Ali-Abdulsahib AA, Atwan ZW. Low type I interferon response in COVID-19 patients: Interferon response may be a potential treatment for COVID-19. Biomed Rep 2021; 14:43. [PMID: 33786172 PMCID: PMC7995242 DOI: 10.3892/br.2021.1419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFN) are antiviral cytokines that mitigate the effects of invading viruses early on during the infection process. SARS-CoV and MERS induce weak IFN responses; hence, the clinical trials which included recombinant IFN accompanied with other antiviral drugs exhibited improved results in terms of shortening the duration of illness. The aim of the present study was to evaluate the type I IFN response in COVID-19 patients to determine whether it is sufficient to eliminate or reduce the severity of the infection, and whether it can be recommended as a potential therapy. Total RNA samples were converted to cDNA and used as templates to evaluate the gene expression levels of IFN regulatory factor (IRF)3 and IFN-β in COVID-19 patients or control. The results showed that IRF3 gene expression was upregulated ~250-fold compared with the negative samples. In contrast, IFN-β expression increased slightly in COVID-19 patients. Consistent with other coronaviruses, such as SARS-CoV and MERS, COVID-19 infection does not induce an efficient IFN response to reduce the severity of the virus. This may be attributed to an incomplete response of IRF3 in activating the IFN-β promoter in the infected patients. The results suggest IFN-β or α may be used as potential treatments.
Collapse
Affiliation(s)
| | | | | | - Zeenah Weheed Atwan
- Genetic Engineering Laboratory, Biology Department, College of Science, Basrah University, Basrah, Iraq
| |
Collapse
|
17
|
Song R, Gao Y, Dozmorov I, Malladi V, Saha I, McDaniel MM, Parameswaran S, Liang C, Arana C, Zhang B, Wakeland B, Zhou J, Weirauch MT, Kottyan LC, Wakeland EK, Pasare C. IRF1 governs the differential interferon-stimulated gene responses in human monocytes and macrophages by regulating chromatin accessibility. Cell Rep 2021; 34:108891. [PMID: 33761354 PMCID: PMC8300000 DOI: 10.1016/j.celrep.2021.108891] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Myeloid lineage cells use TLRs to recognize and respond to diverse microbial ligands. Although unique transcription factors dictate the outcome of specific TLR signaling, whether lineage-specific differences exist to further modulate the quality of TLR-induced inflammation remains unclear. Comprehensive analysis of global gene transcription in human monocytes, monocyte-derived macrophages, and monocyte-derived dendritic cells stimulated with various TLR ligands identifies multiple lineage-specific, TLR-responsive gene programs. Monocytes are hyperresponsive to TLR7/8 stimulation that correlates with the higher expression of the receptors. While macrophages and monocytes express similar levels of TLR4, macrophages, but not monocytes, upregulate interferon-stimulated genes (ISGs) in response to TLR4 stimulation. We find that TLR4 signaling in macrophages uniquely engages transcription factor IRF1, which facilitates the opening of ISG loci for transcription. This study provides a critical mechanistic basis for lineage-specific TLR responses and uncovers IRF1 as a master regulator for the ISG transcriptional program in human macrophages.
Collapse
Affiliation(s)
- Ran Song
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yajing Gao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Igor Dozmorov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Venkat Malladi
- Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Irene Saha
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Margaret M McDaniel
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chaoying Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos Arana
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Zhang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinchun Zhou
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Leah C Kottyan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
18
|
Shumaker S, Khatri B, Shouse S, Seo D, Kang S, Kuenzel W, Kong B. Identification of SNPs Associated with Stress Response Traits within High Stress and Low Stress Lines of Japanese Quail. Genes (Basel) 2021; 12:genes12030405. [PMID: 33809122 PMCID: PMC8000459 DOI: 10.3390/genes12030405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023] Open
Abstract
Mitigation of stress is of great importance in poultry production, as chronic stress can affect the efficiency of production traits. Selective breeding with a focus on stress responses can be used to combat the effects of stress. To better understand the genetic mechanisms driving differences in stress responses of a selectively bred population of Japanese quail, we performed genomic resequencing on 24 birds from High Stress (HS) and Low Stress (LS) lines of Japanese quail using Illumina HiSeq 2 × 150 bp paired end read technology in order to analyze Single Nucleotide Polymorphisms (SNPs) within the genome of each line. SNPs are common mutations that can lead to genotypic and phenotypic variations in animals. Following alignment of the sequencing data to the quail genome, 6,364,907 SNPs were found across both lines of quail. 10,364 of these SNPs occurred in coding regions, from which 2886 unique, non-synonymous SNPs with a SNP% ≥ 0.90 and a read depth ≥ 10 were identified. Using Ingenuity Pathway Analysis, we identified genes affected by SNPs in pathways tied to immune responses, DNA repair, and neurological signaling. Our findings support the idea that the SNPs found within HS and LS lines of quail could direct the observed changes in phenotype.
Collapse
Affiliation(s)
- Steven Shumaker
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Bhuwan Khatri
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Stephanie Shouse
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Dongwon Seo
- Department of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea;
| | - Seong Kang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Wayne Kuenzel
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Byungwhi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
- Correspondence:
| |
Collapse
|
19
|
Hare DN, Baid K, Dvorkin-Gheva A, Mossman KL. Virus-Intrinsic Differences and Heterogeneous IRF3 Activation Influence IFN-Independent Antiviral Protection. iScience 2020; 23:101864. [PMID: 33319181 PMCID: PMC7726339 DOI: 10.1016/j.isci.2020.101864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 11/20/2020] [Indexed: 02/09/2023] Open
Abstract
Type 1 interferon (IFN) plays a critical role in early antiviral defense and priming of adaptive immunity by signaling upregulation of host antiviral IFN-stimulated genes (ISGs). Certain stimuli trigger strong activation of IFN regulatory factor 3 (IRF3) and direct upregulation of ISGs in addition to IFN. It remains unclear why some stimuli are stronger activators of IRF3 and how this leads to IFN-independent antiviral protection. We found that UV-inactivated human cytomegalovirus (HCMV) particles triggered an IFN-independent ISG signature that was absent in cells infected with UV-inactivated Sendai virus particles. HCMV particles triggered mostly uniform activation of IRF3 and low-level IFN-β production within the population while SeV particles triggered a small fraction of cells producing abundant IFN-β. These findings suggest that population-level activation of IRF3 and antiviral protection emerges from a diversity of responses occurring simultaneously in single cells. Moreover, this occurs in the absence of virus replication. The antiviral response to virus particles requires low levels of interferon Cells respond differently to HCMV or SeV particles Heterogeneous IRF3 activation influences the response to virus
Collapse
Affiliation(s)
- David N Hare
- Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Kaushal Baid
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Anna Dvorkin-Gheva
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Karen L Mossman
- Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada.,Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S4L8, Canada
| |
Collapse
|
20
|
Variations of Histone Acetyltransferase 300 in Patients with Human Papillomavirus Type 6-Associated Anogenital Warts. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.52547/mlj.14.6.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Sarohan AR. COVID-19: Endogenous Retinoic Acid Theory and Retinoic Acid Depletion Syndrome. Med Hypotheses 2020; 144:110250. [PMID: 33254555 PMCID: PMC7481114 DOI: 10.1016/j.mehy.2020.110250] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/01/2020] [Accepted: 09/04/2020] [Indexed: 01/08/2023]
Abstract
This study presents two new concepts and definitions to the medical literature. One of those is "endogenous retinoic acid theory" and the other "retinoic acid depletion syndrome". A new classification will be provided for the immune system: "retinoic acid-dependent component" and "retinoic acid non-dependent component". If this theory is verified, all the diseases where the retinoic acid metabolism is defective and retinoic acid levels are low will be identified and new approaches will be developed fortreating such diseases. When the need for retinoic acids increases, such as acute infection, high fever, severe catabolic process, or chronic antigenic stimulation, cytochrome oxidase enzymes are inhibited by drugs or internal mechanisms. Metabolism and excretion of retinoic acids stored in the liver are prevented. In this way, retinoic acid levels in the blood are raised to therapeutic levels. This is called "Endogenous Retinoic Acid Theory". Retinoic acids also manage their metabolism through feedback mechanisms. Despite compensatory mechanisms, causes such as high fever, serious catabolic process and excessively large viral genome (SARS-CoV-2), excessive use of RIG-I and Type I interferon synthesis pathway using retinoic acid causes emptying of retinoic acid stores. As a result, the RIG-I pathway becomes ineffective, Type I IFN synthesis stops, and the congenital immune system collapses. Then the immune mechanism passes to TLR3, TLR7, TLR8, TLR9, MDA5 and UPS pathways in the monocyte, macrophage, neutrophil and dendritic cells of the adaptive immune defense system that do not require retinoic acid. This leads to excessive TNFα and cytokine discharge from the pathway. With the depletion of retinoic acid stores as a result of this overuse, the immune defense mechanism switches from the congenital immune system to the adaptive immune system, where retinoic acids cannot be used. As a result of this depletion of retinoic acids, the shift of the immune system to the NFκB arm, which causes excessive cytokine release, is called "retinoic acid depletion syndrome". COVID-19 and previously defined sepsis, SIRS and ARDS are each retinoic acid depletion syndrome. We claim that retinoic acid metabolism is defective in most inflammatory diseases, particularly COVID-19 (cytokine storm) sepsis, SIRS and ARDS. Finding a solution to this mechanism will bring a new perspective and treatment approach to such diseases.
Collapse
|
22
|
Hu J, Kong M, Cui Z, Gao Z, Ma C, Hu Z, Jiao X, Liu X. PA-X protein of H5N1 avian influenza virus inhibits NF-kappaB activity, a potential mechanism for PA-X counteracting the host innate immune responses. Vet Microbiol 2020; 250:108838. [PMID: 33045633 DOI: 10.1016/j.vetmic.2020.108838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
PA-X is a fusion protein of influenza virus which plays a crucial role in modulating influenza virus-induced host innate immune response and subsequent pathogenicity. However, the potential mechanism of PA-X regulation of the host innate immune response remains largely unknown. It is well known that NF-κB signal pathway is crucial for the immediate early step of immune responses activation, while the specific role of PA-X in NF-κB transcriptional activity is totally unknown. In this study, we initially showed that PA-X inhibits NF-κB transcription that stimulated by poly(I:C). We then further determined that the inhibitory effect on NF-κB activation mediated by PA-X was characterized by restricting NF-κB p65 nuclear translocation and nuclear NF-κB p65 activity but not by impeding the phosphorylation of NF-κB p65. Correspondingly, PA-X decreases the amount of NF-κB signaling pathway-associated genes, including TNF-α, Nos2, IL-6 and IL-2. Moreover, PA-X also suppresses both the mRNA and protein expression level of IFN-β, suggesting the direct contribution of PA-X to the inhibition of NF-κB-regulated IFN-β expression. Together, our study sheds light on the potential molecular mechanisms underlying the regulation of host NF-κB activity by PA-X and also identifies a novel functional role for PA-X in counteracting the host innate immune response. However, further exploration of the more elaborate mechanism of PA-X-mediated inhibition of NF-κB activity and the associated signaling pathway may help to elucidate its precise mechanism of evading and subverting the host immune response.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ming Kong
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhu Cui
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
23
|
Schwanke H, Stempel M, Brinkmann MM. Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Viruses 2020; 12:E733. [PMID: 32645843 PMCID: PMC7411613 DOI: 10.3390/v12070733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
24
|
Witteveldt J, Ivens A, Macias S. Inhibition of Microprocessor Function during the Activation of the Type I Interferon Response. Cell Rep 2019; 23:3275-3285. [PMID: 29898398 PMCID: PMC6019736 DOI: 10.1016/j.celrep.2018.05.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 11/26/2022] Open
Abstract
Type I interferons (IFNs) are central components of the antiviral response. Most cell types respond to viral infections by secreting IFNs, but the mechanisms that regulate correct expression of these cytokines are not completely understood. Here, we show that activation of the type I IFN response regulates the expression of miRNAs in a post-transcriptional manner. Activation of IFN expression alters the binding of the Microprocessor complex to pri-miRNAs, reducing its processing rate and thus leading to decreased levels of a subset of mature miRNAs in an IRF3-dependent manner. The rescue of Microprocessor function during the antiviral response downregulates the levels of IFN-β and IFN-stimulated genes. All these findings support a model by which the inhibition of Microprocessor activity is an essential step to induce a robust type I IFN response in mammalian cells.
Collapse
Affiliation(s)
- Jeroen Witteveldt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| |
Collapse
|
25
|
Ramos I, Smith G, Ruf-Zamojski F, Martínez-Romero C, Fribourg M, Carbajal EA, Hartmann BM, Nair VD, Marjanovic N, Monteagudo PL, DeJesus VA, Mutetwa T, Zamojski M, Tan GS, Jayaprakash C, Zaslavsky E, Albrecht RA, Sealfon SC, García-Sastre A, Fernandez-Sesma A. Innate Immune Response to Influenza Virus at Single-Cell Resolution in Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1. J Virol 2019; 93:e00559-19. [PMID: 31375585 PMCID: PMC6798124 DOI: 10.1128/jvi.00559-19] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022] Open
Abstract
Early interactions of influenza A virus (IAV) with respiratory epithelium might determine the outcome of infection. The study of global cellular innate immune responses often masks multiple aspects of the mechanisms by which populations of cells work as organized and heterogeneous systems to defeat virus infection, and how the virus counteracts these systems. In this study, we experimentally dissected the dynamics of IAV and human epithelial respiratory cell interaction during early infection at the single-cell level. We found that the number of viruses infecting a cell (multiplicity of infection [MOI]) influences the magnitude of virus antagonism of the host innate antiviral response. Infections performed at high MOIs resulted in increased viral gene expression per cell and stronger antagonist effect than infections at low MOIs. In addition, single-cell patterns of expression of interferons (IFN) and IFN-stimulated genes (ISGs) provided important insights into the contributions of the infected and bystander cells to the innate immune responses during infection. Specifically, the expression of multiple ISGs was lower in infected than in bystander cells. In contrast with other IFNs, IFN lambda 1 (IFNL1) showed a widespread pattern of expression, suggesting a different cell-to-cell propagation mechanism more reliant on paracrine signaling. Finally, we measured the dynamics of the antiviral response in primary human epithelial cells, which highlighted the importance of early innate immune responses at inhibiting virus spread.IMPORTANCE Influenza A virus (IAV) is a respiratory pathogen of high importance to public health. Annual epidemics of seasonal IAV infections in humans are a significant public health and economic burden. IAV also causes sporadic pandemics, which can have devastating effects. The main target cells for IAV replication are epithelial cells in the respiratory epithelium. The cellular innate immune responses induced in these cells upon infection are critical for defense against the virus, and therefore, it is important to understand the complex interactions between the virus and the host cells. In this study, we investigated the innate immune response to IAV in the respiratory epithelium at the single-cell level, providing a better understanding on how a population of epithelial cells functions as a complex system to orchestrate the response to virus infection and how the virus counteracts this system.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel Fribourg
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Edwin A Carbajal
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Boris M Hartmann
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nada Marjanovic
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paula L Monteagudo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Veronica A DeJesus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tinaye Mutetwa
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michel Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gene S Tan
- Infectious Diseases, J. Craig Venter Institute, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | | | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
26
|
LYAR Suppresses Beta Interferon Induction by Targeting Phosphorylated Interferon Regulatory Factor 3. J Virol 2019; 93:JVI.00769-19. [PMID: 31413131 DOI: 10.1128/jvi.00769-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
The innate immune response is vital for host defense and must be tightly controlled, but the mechanisms responsible for its negative regulation are not fully understood. The cell growth-regulating nucleolar protein LYAR was found to promote replication of multiple viruses in our previous study. Here, we report that LYAR acts as a negative regulator of innate immune responses. We found that LYAR expression is induced by beta interferon (IFN-β) during virus infection. Further studies showed that LYAR interacts with phosphorylated IFN regulatory factor 3 (IRF3) to impede the DNA binding capacity of IRF3, thereby suppressing the transcription of IFN-β and downstream IFN-stimulated genes (ISGs). In addition, LYAR inhibits nuclear factor-κB (NF-κB)-mediated expression of proinflammatory cytokines. In summary, our study reveals the mechanism of LYAR in modulating IFN-β-mediated innate immune responses by targeting phosphorylated IRF3, which not only helps us to better understand the mechanisms of LYAR-regulated virus replication but also uncovers a novel role of LYAR in host innate immunity.IMPORTANCE Type I interferon (IFN-I) plays a critical role in the antiviral innate immune responses that protect the host against virus infection. The negative regulators of IFN-I are important not only for fine-tuning the antiviral responses to pathogens but also for preventing excessive inflammation. Identification of negative regulators and study of their modulation in innate immune responses will lead to new strategies for the control of both viral and inflammatory diseases. Here, we report for the first time that the cell growth-regulating nucleolar protein LYAR behaves as a repressor of host innate immune responses. We demonstrate that LYAR negatively regulates IFN-β-mediated immune responses by inhibiting the DNA binding ability of IFN regulatory factor 3 (IRF3). Our study reveals a common mechanism of LYAR in promoting different virus replication events and improves our knowledge of host negative regulation of innate immune responses.
Collapse
|
27
|
Abstract
The host response to viral infection includes the induction of type I interferons and the subsequent upregulation of hundreds of interferon-stimulated genes. Ubiquitin-like protein ISG15 is an interferon-induced protein that has been implicated as a central player in the host antiviral response. Over the past 15 years, efforts to understand how ISG15 protects the host during infection have revealed that its actions are diverse and pathogen-dependent. In this Review, we describe new insights into how ISG15 directly inhibits viral replication and discuss the recent finding that ISG15 modulates the host damage and repair response, immune response and other host signalling pathways. We also explore the viral immune-evasion strategies that counteract the actions of ISG15. These findings are integrated with a discussion of the recent identification of ISG15-deficient individuals and a cellular receptor for ISG15 that provides new insights into how ISG15 shapes the host response to viral infection. Ubiquitin-like protein ISG15 is an interferon-induced protein that has been implicated as a central player in the host antiviral response. In this Review, Perng and Lenschow provide new insights into how ISG15 restricts and shapes the host response to viral infection and the viral immune-evasion strategies that counteract ISG15.
Collapse
Affiliation(s)
- Yi-Chieh Perng
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Deborah J Lenschow
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
28
|
Genetic polymorphism and transcriptional regulation of CREBBP gene in patient with diffuse large B-cell lymphoma. Biosci Rep 2019; 39:BSR20191162. [PMID: 31366566 PMCID: PMC6692565 DOI: 10.1042/bsr20191162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
In the present study, we aim to examine the relationship between genetic polymorphism and transcriptional expression of cyclic AMP response element binding protein (CREBBP) and the risk of diffuse large B-cell lymphoma (DLBCL). Two hundred and fifty healthy individuals and 248 DLBCL patients participated in the present study. The CREBBP rs3025684 polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The mRNA expression of CREBBP was tested by the real-time quantitative PCR (RT-qPCR). The allele A frequency of CREBBP rs3025684 in DLBCL patients was obviously higher than that of controls (P=0.01). No significant difference was detected between CREBBP rs3025684 polymorphism and clinical characteristics of DLBCL patients when subgrouped according to different parameters. The results demonstrated that the allele A of CREBBP rs3025684 increased the susceptibility to DLBCL (P=0.004), with a worse overall survival (OS) rate (P=0.002), a worse progression-free survival (PFS) rate (P=0.033) and poor prognosis (P=0.003) in DLCBL patients. Furthermore, the expression of CREBBP mRNA was considerably decreased in DLBCL patients as compared with controls (P<0.001), and the expression in patients with GG genotype was up-regulated in comparison with patients with GA and AA genotype (P=0.016 and P=0.001, respectively). However, no statistical differences were found in OS (P=0.201) and PFS (P=0.353) between the lower CREBBP mRNA level subgroup and higher CREBBP mRNA level subgroup. These data suggested that the CREBBP gene may be an important prognostic factor in DLBCL patients and perform an essential function in the development of DLBCL.
Collapse
|
29
|
Zhan FB, Jakovlić I, Wang WM. Identification, characterization and expression in response to Aeromonas hydrophila challenge of five interferon regulatory factors in Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2019; 86:204-212. [PMID: 30336285 DOI: 10.1016/j.fsi.2018.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Interferon regulatory factor (Irf) family represents one of the most important transcription factor families, with multiple biological roles. In this study, we characterized five Irf family members (irf4a, irf4b, irf6, irf8 and irf10) in Megalobrama amblycephala at the cDNA and (predicted) amino acid levels, analyzed them phylogenetically, and developed gene-specific primers for qPCR analysis. All five irfs were constitutively expressed in all examined tissues, but their transcription was significantly higher in lymphoid organs and tissues, such as kidney, spleen and intestine. Exceptions were irf8, which was expressed at a high level in heart and brain tissues, and irf6, expressed at low levels in most tissues. After a bacterial immune challenge with Aeromonas hydrophila, the expression of irfs in liver was up-regulated: mairf4a 8.12-fold, mairf4b 29.9-fold, mairf6 1.38-fold and mairf10 1.65-fold (mairf8 was an exception: 0.07-fold). In spleen, kidney, intestine and gills, transcript levels of studied irfs increased only at specific time-points. The results suggested that irfs are involved in the immune response to bacterial infection in M. amblycephala, which will help elucidate the biological functions of irfs in the immune system of teleost fish.
Collapse
Affiliation(s)
- Fan-Bin Zhan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
30
|
NSs Protein of Sandfly Fever Sicilian Phlebovirus Counteracts Interferon (IFN) Induction by Masking the DNA-Binding Domain of IFN Regulatory Factor 3. J Virol 2018; 92:JVI.01202-18. [PMID: 30232186 PMCID: PMC6232482 DOI: 10.1128/jvi.01202-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022] Open
Abstract
Sandfly fever Sicilian virus (SFSV) is one of the most widespread and frequently identified members of the genus Phlebovirus (order Bunyavirales, family Phenuiviridae) infecting humans. Being transmitted by Phlebotomus sandflies, SFSV causes a self-limiting, acute, often incapacitating febrile disease ("sandfly fever," "Pappataci fever," or "dog disease") that has been known since at least the beginning of the 20th century. We show that, similarly to other pathogenic phleboviruses, SFSV suppresses the induction of the antiviral type I interferon (IFN) system in an NSs-dependent manner. SFSV NSs interfered with the TBK1-interferon regulatory factor 3 (IRF3) branch of the RIG-I signaling pathway but not with NF-κB activation. Consistently, we identified IRF3 as a host interactor of SFSV NSs. In contrast to IRF3, neither the IFN master regulator IRF7 nor any of the related transcription factors IRF2, IRF5, and IRF9 were bound by SFSV NSs. In spite of this specificity for IRF3, NSs did not inhibit its phosphorylation, dimerization, or nuclear accumulation, and the interaction was independent of the IRF3 activation or multimerization state. In further studies, we identified the DNA-binding domain of IRF3 (amino acids 1 to 113) as sufficient for NSs binding and found that SFSV NSs prevented the association of activated IRF3 with the IFN-β promoter. Thus, unlike highly virulent phleboviruses, which either destroy antiviral host factors or sequester whole signaling chains into inactive aggregates, SFSV modulates type I IFN induction by directly masking the DNA-binding domain of IRF3.IMPORTANCE Phleboviruses are receiving increased attention due to the constant discovery of new species and the ongoing spread of long-known members of the genus. Outbreaks of sandfly fever were reported in the 19th century, during World War I, and during World War II. Currently, SFSV is recognized as one of the most widespread phleboviruses, exhibiting high seroprevalence rates in humans and domestic animals and causing a self-limiting but incapacitating disease predominantly in immunologically naive troops and travelers. We show how the nonstructural NSs protein of SFSV counteracts the upregulation of the antiviral interferon (IFN) system. SFSV NSs specifically inhibits promoter binding by IFN transcription factor 3 (IRF3), a molecular strategy which is unique among phleboviruses and, to our knowledge, among human pathogenic RNA viruses in general. This IRF3-specific and stoichiometric mechanism, greatly distinct from the ones exhibited by the highly virulent phleboviruses, correlates with the intermediate level of pathogenicity of SFSV.
Collapse
|
31
|
Gupta S, Ylä-Anttila P, Callegari S, Tsai MH, Delecluse HJ, Masucci MG. Herpesvirus deconjugases inhibit the IFN response by promoting TRIM25 autoubiquitination and functional inactivation of the RIG-I signalosome. PLoS Pathog 2018; 14:e1006852. [PMID: 29357390 PMCID: PMC5794190 DOI: 10.1371/journal.ppat.1006852] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/01/2018] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
The N-terminal domains of the herpesvirus large tegument proteins encode a conserved cysteine protease with ubiquitin- and NEDD8-specific deconjugase activity. The proteins are expressed during the productive virus cycle and are incorporated into infectious virus particles, being delivered to the target cells upon primary infection. Members of this viral enzyme family were shown to regulate different aspects of the virus life cycle and the innate anti-viral response. However, only few substrates have been identified and the mechanisms of these effects remain largely unknown. In order to gain insights on the substrates and signaling pathways targeted by the viral enzymes, we have used co-immunoprecipitation and mass spectrometry to identify cellular proteins that interact with the Epstein-Barr virus encoded homologue BPLF1. Several members of the 14-3-3-family of scaffold proteins were found amongst the top hits of the BPLF1 interactome, suggesting that, through this interaction, BPLF1 may regulate a variety of cellular signaling pathways. Analysis of the shared protein-interaction network revealed that BPLF1 promotes the assembly of a tri-molecular complex including, in addition to 14-3-3, the ubiquitin ligase TRIM25 that participates in the innate immune response via ubiquitination of cytosolic pattern recognition receptor, RIG-I. The involvement of BPLF1 in the regulation of this signaling pathway was confirmed by inhibition of the type-I IFN responses in cells transfected with a catalytically active BPLF1 N-terminal domain or expressing the endogenous protein upon reactivation of the productive virus cycle. We found that the active viral enzyme promotes the dimerization and autoubiquitination of TRIM25. Upon triggering of the IFN response, RIG-I is recruited to the complex but ubiquitination is severely impaired, which functionally inactivates the RIG-I signalosome. The capacity to bind to and functionally inactivate the RIG-I signalosome is shared by the homologues encoded by other human herpesviruses.
Collapse
Affiliation(s)
- Soham Gupta
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Päivi Ylä-Anttila
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Simone Callegari
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Han Tsai
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Qu Z, Gao F, Li L, Zhang Y, Jiang Y, Yu L, Zhou Y, Zheng H, Tong W, Li G, Tong G. Label-Free Quantitative Proteomic Analysis of Differentially Expressed Membrane Proteins of Pulmonary Alveolar Macrophages Infected with Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and Its Attenuated Strain. Proteomics 2017; 17. [PMID: 29052333 PMCID: PMC6084361 DOI: 10.1002/pmic.201700101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Significant differences exist between the highly pathogenic (HP) porcine reproductive and respiratory syndrome virus (PRRSV) and its attenuated pathogenic (AP) strain in the ability to infect host cells. The mechanisms by which different virulent strains invade host cells remain relatively unknown. In this study, pulmonary alveolar macrophages (PAMs) are infected with HP‐PRRSV (HuN4) and AP‐PRRSV (HuN4‐F112) for 24 h, then harvested and subjected to label‐free quantitative MS. A total of 2849 proteins are identified, including 95 that are differentially expressed. Among them, 26 proteins are located on the membrane. The most differentially expressed proteins are involved in response to stimulus, metabolic process, and immune system process, which mainly have the function of binding and catalytic activity. Cluster of differentiation CD163, vimentin (VIM), and nmII as well as detected proteins are assessed together by string analysis, which elucidated a potentially different infection mechanism. According to the function annotations, PRRSV with different virulence may mainly differ in immunology, inflammation, immune evasion as well as cell apoptosis. This is the first attempt to explore the differential characteristics between HP‐PRRSV and its attenuated PRRSV infected PAMs focusing on membrane proteins which will be of great help to further understand the different infective mechanisms of HP‐PRRSV and AP‐PRRSV.
Collapse
Affiliation(s)
- Zehui Qu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| |
Collapse
|
33
|
Ohsugi T, Yamaguchi K, Zhu C, Ikenoue T, Furukawa Y. Decreased expression of interferon-induced protein 2 (IFIT2) by Wnt/β-catenin signaling confers anti-apoptotic properties to colorectal cancer cells. Oncotarget 2017; 8:100176-100186. [PMID: 29245969 PMCID: PMC5725011 DOI: 10.18632/oncotarget.22122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Impaired Wnt signaling pathway plays a crucial role in the development of colorectal cancer through activation of the β-catenin/TCF7L2 complex. Although genes up-regulated by Wnt/β-catenin signaling have been intensively studied, the roles of down-regulated genes are poorly understood. In this study, we explored a global gene expression of colorectal cancer cells transfected with β-catenin siRNAs or a dominant negative form of TCF7L2 (dnTCF7L2), and identified a set of genes down-regulated by Wnt/β-catenin signaling. Among the genes, we focused here on IFIT2, a gene encoding interferon-induced protein with tetratricopeptide repeats. A reporter assay using plasmids containing a 5’-flanking region of the gene showed that the reporter activity was enhanced by either transduction of β-catenin siRNA or dnTCF7L2, suggesting that the region is involved in the transcriptional regulation as a downstream of the β-catenin/TCF7L2 complex. Consistent with this result, expression of IFIT2 was significantly lower in colorectal cancer tissues than that in normal tissues. Exogenous IFIT2 expression decreased cell proliferation and increased apoptosis of colorectal cancer cells. These data suggested that the down-regulation of IFIT2 by Wnt/β-catenin signaling may play a vital role in human colorectal carcinogenesis through the suppression of apoptosis.
Collapse
Affiliation(s)
- Tomoyuki Ohsugi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Chi Zhu
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
34
|
Li J, Ding N, Wang X, Mi L, Ping L, Jin X, Liu Y, Ying Z, Xie Y, Liu W, Song Y, Zhu J. EP300 single nucleotide polymorphism rs20551 correlates with prolonged overall survival in diffuse large B cell lymphoma patients treated with R-CHOP. Cancer Cell Int 2017; 17:70. [PMID: 28725161 PMCID: PMC5513029 DOI: 10.1186/s12935-017-0439-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022] Open
Abstract
Background Rituximab combined with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) is used as standard frontline regimen for diffuse large B-cell lymphoma (DLBCL). The landscape of somatic mutations in DLBCL revealed that inactivation of EP300 plays an important role in lymphomagenesis. A common EP300 single nucleotide polymorphism (SNP) rs20551 results in the substitution of valine for isoleucine at codon 997 close to the Bromodomain. However, the association between SNP rs20551 and clinical prognosis in DLBCL patients treated with R-CHOP is unknown. Methods In this study we analyzed the EP300 SNP rs20551 and prognosis of 226 DLBCL patients who treated with R-CHOP or R-CHOP-like regimes from 2002 to 2013. Determination of the EP300 SNP rs20551 from genomic DNA was obtained by Sanger chain termination sequencing. Result In this study, the frequency of the A and G allele of the EP300 SNP rs20551 in 226 patients were 92.5 and 7.5%, respectively. We did not observe obvious correlation between patients’ disease features and the EP300 SNP rs20551. But the patients with genotype AA had a higher 5-year overall survival rate than those with genotype GA (77.0% vs. 64.7%, p = 0.045). Furthermore, multivariate Cox regression analysis showed that the GA genotype of EP300 SNP rs20551 was an independent poor prognostic factor for DLBCL patients treated with Rituximab-chemotherapy (p = 0.009, HR 2.956, 95% CI 1.315–6.645). Conclusion This study suggests that EP300 SNP rs20551 might be a useful biomarker to predict the long-term outcome of R-CHOP in DLBCL patients.
Collapse
Affiliation(s)
- Jiao Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Ning Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Xiaogan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Lingyan Ping
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Xuan Jin
- Department of Internal Medicine Oncology, Peking University First Hospital, No. 1 Xishiku Road, Xicheng District, Beijing, 100034 People's Republic of China
| | - Yalu Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Zhitao Ying
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Yan Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Weiping Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| |
Collapse
|
35
|
Wang S, Sun X, Yi C, Zhang D, Lin X, Sun X, Chen H, Jin M. AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with CBP/p300. Front Cell Infect Microbiol 2017; 7:195. [PMID: 28589097 PMCID: PMC5438986 DOI: 10.3389/fcimb.2017.00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Viral infection triggers a series of signaling cascades and host innate immune responses, including interferon (IFN) production, which depends on coordinated activity of multiple transcription factors. IFN regulatory factor 3 (IRF3) and transcriptional coactivator CREB binding protein (CBP) and/or p300 are core factors that participate in transcriptional complex formation in the nucleus. In general, cells balance the production of IFNs through suppressive and stimulative mechanisms, but viral infections can disrupt such equilibrium. This study determined that H5N1 viral infection reduced the distribution of human argonaute 2 (AGO2) in A549 cell nucleus. AGO2 did not block phosphorylation, nuclear translocation, and DNA binding ability of IRF3 but inhibited its association with CBP. Therefore, this newly revealed mechanism shows that cellular response leads to transfer of AGO2 from cell nucleus and promotes IFN-β expression to increase host survival during viral infection.
Collapse
Affiliation(s)
- Shengyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiaomei Sun
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| |
Collapse
|
36
|
Inducible Rubicon facilitates viral replication by antagonizing interferon production. Cell Mol Immunol 2017; 14:607-620. [PMID: 28392573 DOI: 10.1038/cmi.2017.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022] Open
Abstract
The RUN domain Beclin-1-interacting cysteine-rich-containing (Rubicon) protein is involved in the maturation step of autophagy and the endocytic pathway as a Beclin-1-binding partner, but little is known regarding the role of Rubicon during viral infection. Here, we performed functional studies of the identified target in interferon (IFN) signaling pathways associated with Rubicon to elucidate the mechanisms of viral resistance to IFN. The Rubicon protein levels were elevated in peripheral blood mononuclear cells, sera and liver tissues from patients with hepatitis B virus (HBV) infection relative to those in healthy individuals. Assays of the overexpression and knockdown of Rubicon showed that Rubicon significantly promoted HBV replication. In addition, Rubicon knockdown resulted in the inhibition of enterovirus 71, influenza A virus and vesicular stomatitis virus. The expression o0f Rubicon led to the suppression of virus-induced type-I interferon (IFN-α and IFN-β) and type-III interferon (IFN-λ1). Translocation of activated IRF3 and IRF7 from the cytoplasm to the nucleus was involved in this process, and the NF-κB essential modulator (NEMO), a key factor in the IFN pathway, was the target with which Rubicon interacted. Our results reveal a previously unrecognized function of Rubicon as a virus-induced protein that binds to NEMO, leading to the inhibition of type-I interferon production. Rubicon thus functions as an important negative regulator of the innate immune response, enhances viral replication and may play a role in viral immune evasion.
Collapse
|
37
|
Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon β. Biochem J 2017; 474:1163-1174. [PMID: 28159912 PMCID: PMC5350611 DOI: 10.1042/bcj20160992] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/23/2017] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
The double-stranded RNA mimetic poly(I:C) and lipopolysaccharide (LPS) activate Toll-like receptors 3 (TLR3) and TLR4, respectively, triggering the activation of TANK (TRAF family member-associated NF-κB activator)-binding kinase 1 (TBK1) complexes, the phosphorylation of interferon regulatory factor 3 (IRF3) and transcription of the interferon β (IFNβ) gene. Here, we demonstrate that the TANK–TBK1 and optineurin (OPTN)–TBK1 complexes control this pathway. The poly(I:C)- or LPS-stimulated phosphorylation of IRF3 at Ser396 and production of IFNβ were greatly reduced in bone marrow-derived macrophages (BMDMs) from TANK knockout (KO) mice crossed to knockin mice expressing the ubiquitin-binding-defective OPTN[D477N] mutant. In contrast, IRF3 phosphorylation and IFNβ production were not reduced significantly in BMDM from OPTN[D477N] knockin mice and only reduced partially in TANK KO BMDM. The TLR3/TLR4-dependent phosphorylation of IRF3 and IFNβ gene transcription were not decreased in macrophages from OPTN[D477N] crossed to mice deficient in IκB kinase ε, a TANK-binding kinase related to TBK1. In contrast with the OPTN–TBK1 complex, TBK1 associated with OPTN[D477N] did not undergo phosphorylation at Ser172 in response to poly(I:C) or LPS, indicating that the interaction of ubiquitin chains with OPTN is required to activate OPTN–TBK1 in BMDM. The phosphorylation of IRF3 and IFNβ production induced by Sendai virus infection were unimpaired in BMDM from TANK KO × OPTN[D477N] mice, suggesting that other/additional TBK1 complexes control the RIG-I-like receptor-dependent production of IFNβ. Finally, we present evidence that, in human HACAT cells, the poly(I:C)-dependent phosphorylation of TBK1 at Ser172 involves a novel TBK1-activating kinase(s).
Collapse
|
38
|
Guinn Z, Lampe AT, Brown DM, Petro TM. Significant role for IRF3 in both T cell and APC effector functions during T cell responses. Cell Immunol 2016; 310:141-149. [PMID: 27641636 DOI: 10.1016/j.cellimm.2016.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022]
Abstract
Interferon Regulatory Factor (IRF)3 is a crucial transcription factor during innate immune responses. Here we show IRF3 also has a role in adaptive T cell immune responses. Expression of IFN-γ, IL-17, and Granzyme B (GrB) during in vitro T cell responses was impaired when either dendritic cells (DCs) or T cells were derived from IRF3KO mice. Unexpectedly, IRF3-dependent NK-activating molecule (INAM), which is an NK cell activating factor of the DC innate immune response, was induced during the T cell response. Additionally, supernatants from responding T cells induced ISG54 in the RAW264.7 macrophage cell line in an IRF3 dependent manner. Moreover, addition of anti-IFN-γ prevented supernatant induction of ISG54 and recombinant IFN-γ stimulated ISG54 expression. Thus, IRF3 in APCs and T cells is required for optimal T-cell effector function and the ability of T cells to influence innate immune function of APCs.
Collapse
Affiliation(s)
- Zacharey Guinn
- School of Biological Sciences, University of Nebraska-Lincoln, United States
| | - Anna T Lampe
- School of Biological Sciences, University of Nebraska-Lincoln, United States
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, United States; Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, United States.
| |
Collapse
|
39
|
Ramnath D, Powell EE, Scholz GM, Sweet MJ. The toll-like receptor 3 pathway in homeostasis, responses to injury and wound repair. Semin Cell Dev Biol 2016; 61:22-30. [PMID: 27552920 DOI: 10.1016/j.semcdb.2016.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022]
Abstract
In addition to their established roles in host defence, Toll-like Receptors (TLRs) have emerging roles in control of homeostasis, injury and wound repair. The dsRNA-sensing receptor, TLR3, has been particularly implicated in such processes in several different tissues including the skin, intestine and liver, as well as in the control of reparative mechanisms in the brain, heart and kidneys, following ischemia reperfusion injury. In this review, we provide an overview of TLR3 signalling and functions in inflammation, tissue damage and repair processes, as well as therapeutic opportunities that may arise in the future from knowledge of such pathways.
Collapse
Affiliation(s)
- Divya Ramnath
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Qld 4072, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Qld 4072, Australia; Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld 4102, Australia
| | - Glen M Scholz
- Melbourne Dental School and Oral Health Cooperative Research Centre, The University of Melbourne, Parkville 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3010, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Qld 4072, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Qld 4072, Australia; Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
40
|
Gates LT, Shisler JL. cFLIPL Interrupts IRF3-CBP-DNA Interactions To Inhibit IRF3-Driven Transcription. THE JOURNAL OF IMMUNOLOGY 2016; 197:923-33. [PMID: 27342840 DOI: 10.4049/jimmunol.1502611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/26/2016] [Indexed: 12/17/2022]
Abstract
Type I IFN induction is critical for antiviral and anticancer defenses. Proper downregulation of type I IFN is equally important to avoid deleterious imbalances in the immune response. The cellular FLIP long isoform protein (cFLIPL) controls type I IFN production, but opposing publications show it as either an inhibitor or inducer of type I IFN synthesis. Regardless, the mechanistic basis for cFLIPL regulation is unknown. Because cFLIPL is important in immune cell development and proliferation, and is a target for cancer therapies, it is important to identify how cFLIPL regulates type I IFN production. Data in this study show that cFLIPL inhibits IFN regulatory factor 3 (IRF3), a transcription factor central for IFN-β and IFN-stimulated gene expression. This inhibition occurs during virus infection, cellular exposure to polyinosinic-polycytidylic acid, or TBK1 overexpression. This inhibition is independent of capase-8 activity. cFLIPL binds to IRF3 and disrupts IRF3 interaction with its IFN-β promoter and its coactivator protein (CREB-binding protein). Mutational analyses reveal that cFLIPL nuclear localization is necessary and sufficient for inhibitory function. This suggests that nuclear cFLIPL prevents IRF3 enhanceosome formation. Unlike other cellular IRF3 inhibitors, cFLIPL did not degrade or dephosphorylate IRF3. Thus, cFLIPL represents a different cellular strategy to inhibit type I IFN production. This new cFLIPL function must be considered to accurately understand how cFLIPL affects immune system development and regulation.
Collapse
Affiliation(s)
- Lauren T Gates
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
41
|
Shah M, Anwar MA, Park S, Jafri SS, Choi S. In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response. Sci Rep 2015; 5:13446. [PMID: 26289783 PMCID: PMC4542336 DOI: 10.1038/srep13446] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/03/2015] [Indexed: 02/04/2023] Open
Abstract
The high-risk human papillomavirus E6 (hrHPV E6) protein has been widely studied due to its implication in cervical cancer. In response to viral threat, activated kinases phosphorylate the IRF3 autoinhibitory domain, inducing type1 interferon production. HPV circumvents the antiviral response through the possible E6 interaction with IRF3 and abrogates p53's apoptotic activity by recruiting E6-associated protein. However, the molecular mechanism of IRF3 inactivation by hrHPV E6 has not yet been delineated. Therefore, we explored this mechanism through in silico examination of protein-protein and protein-ligand docking, binding energy differences, and computational alanine mutagenesis. Our results suggested that the LxxLL motifs of IRF3 binds within the hydrophobic pocket of E6, precluding Ser-patch phosphorylation, necessary for IRF3 activation and interferon induction. This model was further supported by molecular dynamics simulation. Furthermore, protein-ligand docking and drug resistance modeling revealed that the polar patches in the pocket of E6, which are crucial for complex stability and ligand binding, are inconsistent among hrHPV species. Such variabilities pose a risk of treatment failure owing to point mutations that might render drugs ineffective, and allude to multi-drug therapy. Overall, this study reveals a novel perspective of innate immune suppression in HPV infections and suggests a plausible therapeutic intervention.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Seolhee Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Syyada Samra Jafri
- The Center of Excellence in Molecular Biology, University of the Punjab, Lahore, 54890, Pakistan
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| |
Collapse
|
42
|
Wang P, Zhao W, Zhao K, Zhang L, Gao C. TRIM26 negatively regulates interferon-β production and antiviral response through polyubiquitination and degradation of nuclear IRF3. PLoS Pathog 2015; 11:e1004726. [PMID: 25763818 PMCID: PMC4357427 DOI: 10.1371/journal.ppat.1004726] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 02/04/2015] [Indexed: 01/21/2023] Open
Abstract
Virus infection leads to the activation of transcription factor IRF3 and subsequent production of type I inteferons, which induce the transcription of various antiviral genes called interferon stimulated genes (ISGs) to eliminate viral infection. IRF3 activation requires phosphorylation, dimerization and nuclear translocation. However, the mechanisms for the termination of IRF3 activation in nucleus are elusive. Here we report the identification of TRIM26 to negatively regulate IFN-β production and antiviral response by targeting nuclear IRF3. TRIM26 bound to IRF3 and promoted its K48-linked polyubiquitination and degradation in nucleus. TRIM26 degraded WT IRF3 and the constitutive active mutant IRF3 5D, but not the phosphorylation deficient mutant IRF3 5A. Furthermore, IRF3 mutant in the Nuclear Localization Signal (NLS), which could not move into nucleus, was not degraded by TRIM26. Importantly, virus infection promoted TRIM26 nuclear translocation, which was required for IRF3 degradation. As a consequence, TRIM26 attenuated IFN-β promoter activation and IFN-β production downstream of TLR3/4, RLR and DNA sensing pathways. TRIM26 transgenic mice showed much less IRF3 activation and IFN-β production, while increased virus replication. Our findings delineate a novel mechanism for the termination of IRF3 activation in nucleus through TRIM26-mediated IRF3 ubiquitination and degradation.
Collapse
Affiliation(s)
- Peng Wang
- Department of Immunology & Key Laboratory of Infection and Immunity of Shandong Province, the School of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Department of Immunology & Key Laboratory of Infection and Immunity of Shandong Province, the School of Medicine, Shandong University, Jinan, Shandong, China
| | - Kai Zhao
- Department of Immunology & Key Laboratory of Infection and Immunity of Shandong Province, the School of Medicine, Shandong University, Jinan, Shandong, China
| | - Lei Zhang
- Department of Immunology & Key Laboratory of Infection and Immunity of Shandong Province, the School of Medicine, Shandong University, Jinan, Shandong, China
| | - Chengjiang Gao
- Department of Immunology & Key Laboratory of Infection and Immunity of Shandong Province, the School of Medicine, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
43
|
Promyelocytic Leukemia Protein Isoform II Promotes Transcription Factor Recruitment To Activate Interferon Beta and Interferon-Responsive Gene Expression. Mol Cell Biol 2015; 35:1660-72. [PMID: 25733689 PMCID: PMC4405644 DOI: 10.1128/mcb.01478-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/23/2015] [Indexed: 12/24/2022] Open
Abstract
To trigger type I interferon (IFN) responses, pattern recognition receptors activate signaling cascades that lead to transcription of IFN and IFN-stimulated genes (ISGs). The promyelocytic leukemia (PML) protein has been implicated in these responses, although its role has not been defined. Here, we show that PML isoform II (PML-II) is specifically required for efficient induction of IFN-β transcription and of numerous ISGs, acting at the point of transcriptional complex assembly on target gene promoters. PML-II associated with specific transcription factors NF-κB and STAT1, as well as the coactivator CREB-binding protein (CBP), to facilitate transcriptional complex formation. The absence of PML-II substantially reduced binding of these factors and IFN regulatory factor 3 (IRF3) to IFN-β or ISGs promoters and sharply reduced gene activation. The unique C-terminal domain of PML-II was essential for its activity, while the N-terminal RBCC motif common to all PML isoforms was dispensable. We propose a model in which PML-II contributes to the transcription of multiple genes via the association of its C-terminal domain with relevant transcription complexes, which promotes the stable assembly of these complexes at promoters/enhancers of target genes, and that in this way PML-II plays a significant role in the development of type I IFN responses.
Collapse
|
44
|
Xu P, Bailey-Bucktrout S, Xi Y, Xu D, Du D, Zhang Q, Xiang W, Liu J, Melton A, Sheppard D, Chapman HA, Bluestone JA, Derynck R. Innate antiviral host defense attenuates TGF-β function through IRF3-mediated suppression of Smad signaling. Mol Cell 2014; 56:723-37. [PMID: 25526531 PMCID: PMC4273650 DOI: 10.1016/j.molcel.2014.11.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/02/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023]
Abstract
TGF-β signaling is essential in many processes, including immune surveillance, and its dysregulation controls various diseases, including cancer, fibrosis, and inflammation. Studying the innate host defense, which functions in most cell types, we found that RLR signaling represses TGF-β responses. This regulation is mediated by activated IRF3, using a dual mechanism of IRF3-directed suppression. Activated IRF3 interacts with Smad3, thus inhibiting TGF-β-induced Smad3 activation and, in the nucleus, disrupts functional Smad3 transcription complexes by competing with coregulators. Consequently, IRF3 activation by innate antiviral signaling represses TGF-β-induced growth inhibition, gene regulation and epithelial-mesenchymal transition, and the generation of Treg effector lymphocytes from naive CD4(+) lymphocytes. Conversely, silencing IRF3 expression enhances epithelial-mesenchymal transition, TGF-β-induced Treg cell differentiation upon virus infection, and Treg cell generation in vivo. We present a mechanism of regulation of TGF-β signaling by the antiviral defense, with evidence for its role in immune tolerance and cancer cell behavior.
Collapse
Affiliation(s)
- Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA.
| | - Samantha Bailey-Bucktrout
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Ying Xi
- Department of Medicine and Cardiovascular Research Institute, University of California at San Francisco, CA 94143, USA
| | - Daqi Xu
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Dan Du
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA
| | - Qian Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weiwen Xiang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Liu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA
| | - Andrew Melton
- Lung Biology Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Dean Sheppard
- Lung Biology Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Harold A Chapman
- Department of Medicine and Cardiovascular Research Institute, University of California at San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Rik Derynck
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Gu M, Zhang T, lin W, Liu Z, Lai R, Xia D, Huang H, Wang X. Protein phosphatase PP1 negatively regulates the Toll-like receptor- and RIG-I-like receptor-triggered production of type I interferon by inhibiting IRF3 phosphorylation at serines 396 and 385 in macrophage. Cell Signal 2014; 26:2930-9. [PMID: 25239187 DOI: 10.1016/j.cellsig.2014.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/23/2022]
Abstract
The production of type I interferon must be tightly regulated, and the aberrant production of this protein is harmful or even fatal to the host. The transcription factor IRF3 phosphorylation is a central regulator of type I interferon meditated antiviral response. Protein phosphatase-1 (PP1) has been reported to be important in many cell functions, including development, differentiation, and tumorigenesis. However, the roles of PP1 in Toll-like receptor (TLR)- or retinoic acid-inducible gene I like receptor (RLR)-triggered IRF-3 activation remain unclear. Here, we show that the activity of PP1 is downregulated in macrophages upon stimulation with TLR or RLR ligands, including lipopolysaccharide, and poly(I:C), or vesicular stomatitis virus (VSV), respectively. The overexpression of PP1 selectively inhibits TLR- and VSV-induced interferon regulatory factor 3 (IRF3) activation but has no substantial effect on TANK-binding kinase 1 (TBK1),ΚB kinase ε (IKKε) activation. Conversely, RNA interference of PP1 significantly promotes IRF3 activation. Consistently, The overexpression of PP1 inhibits TLR- and VSV-triggered IFN-β production while PP1 knockdown significantly increases the production of IFN-β in macrophages. We further demonstrate that PP1 directly interacts with IRF3 and dephosphorylates IRF3 at Ser385 and Ser396, resulting in the suppression of TLR- and RLR-triggered IFN-β production. Thus, PP1 functions as a negative feedback regulator of TLR- and RLR-triggered antiviral immune responses by acting as an IRF3 phosphatase.
Collapse
Affiliation(s)
- Meidi Gu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ting Zhang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenlong lin
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhiyong Liu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rongrong Lai
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Dajing Xia
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - He Huang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaojian Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Santiago FW, Covaleda LM, Sanchez-Aparicio MT, Silvas JA, Diaz-Vizarreta AC, Patel JR, Popov V, Yu XJ, García-Sastre A, Aguilar PV. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol 2014; 88:4572-85. [PMID: 24478431 PMCID: PMC3993744 DOI: 10.1128/jvi.03021-13] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/20/2014] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Recognition of viral pathogens by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family results in the activation of type I interferon (IFN) responses. To avoid this response, most viruses have evolved strategies that target different essential steps in the activation of host innate immunity. In this study, we report that the nonstructural protein NSs of the newly described severe fever with thrombocytopenia syndrome virus (SFTSV) is a potent inhibitor of IFN responses. The SFTSV NSs protein was found to inhibit the activation of the beta interferon (IFN-β) promoter induced by viral infection and by a RIG-I ligand. Astonishingly, we found that SFTSV NSs interacts with and relocalizes RIG-I, the E3 ubiquitin ligase TRIM25, and TANK-binding kinase 1 (TBK1) into SFTSV NSs-induced cytoplasmic structures. Interestingly, formation of these SFTSV NSs-induced structures occurred in the absence of the Atg7 gene, a gene essential for autophagy. Furthermore, confocal microscopy studies revealed that these SFTSV NSs-induced structures colocalize with Rab5 but not with Golgi apparatus or endoplasmic reticulum markers. Altogether, the data suggest that sequestration of RIG-I signaling molecules into endosome-like structures may be the mechanism used by SFTSV to inhibit IFN responses and point toward a novel mechanism for the suppression of IFN responses. IMPORTANCE The mechanism by which the newly described SFTSV inhibits host antiviral responses has not yet been fully characterized. In this study, we describe the redistribution of RIG-I signaling components into virus-induced cytoplasmic structures in cells infected with SFTSV. This redistribution correlates with the inhibition of host antiviral responses. Further characterization of the interplay between the viral protein and components of the IFN responses could potentially provide targets for the rational development of therapeutic interventions.
Collapse
Affiliation(s)
- Felix W. Santiago
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lina M. Covaleda
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maria T. Sanchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jesus A. Silvas
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Jenish R. Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xue-jie Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
47
|
Huang B, Huang WS, Nie P. Cloning and expression analyses of interferon regulatory factor (IRF) 3 and 7 genes in European eel, Anguilla anguilla with the identification of genes involved in IFN production. FISH & SHELLFISH IMMUNOLOGY 2014; 37:239-247. [PMID: 24565894 DOI: 10.1016/j.fsi.2014.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
Interferon regulatory factor (IRF) 3 and IRF7 have been identified as regulators of type I interferon (IFN) gene expression in mammals. In the present study, the two genes were cloned and characterized in the European eel, Anguilla anguilla. The full-length cDNA sequence of IRF3 and IRF7 in the European eel, named as AaIRF3 and AaIRF7 consists of 2879 and 2419 bp respectively. Multiple alignments showed that the two IRFs have a highly conserved DNA binding domain (DBD) in the N terminus, with the characteristic motif containing five tryptophan residues, which is a feature present in their mammalian homologues. But, IRF7 has only four of the five residues in other species of fish. The expression of AaIRF3 and AaIRF7 both displayed an obvious dose-dependent manner following polyinosinic:polycytidylic acid (PolyI:C) challenge. In vivo expression analysis showed that the mRNA level of AaIRF3 and AaIRF7 was significantly up-regulated in response to PolyI:C stimulation in all examined tissues/organs except in muscle, with a lower level of increase observed in response to lipopolysaccharide (LPS) challenge and Edwardsiella tarda infection, indicating that AaIRF3 and AaIRF7 may be more likely involved in antiviral immune response. In addition, some pattern recognition receptors genes related with the production of type I IFNs and those genes in response to type I IFNs were identified in the European eel genome database, indicating a relatively conserved system in the production of type I IFN and its signalling in the European eel.
Collapse
Affiliation(s)
- Bei Huang
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province 361021, China
| | - Wen Shu Huang
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province 361021, China
| | - P Nie
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province 361021, China.
| |
Collapse
|
48
|
Zhu LH, Gao S, Jin R, Zhuang LL, Jiang L, Qiu LZ, Xu HG, Zhou GP. Repression of interferon regulatory factor 3 by the Epstein-Barr virus immediate-early protein Rta is mediated through E2F1 in HeLa cells. Mol Med Rep 2014; 9:1453-9. [PMID: 24535579 DOI: 10.3892/mmr.2014.1957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 02/10/2014] [Indexed: 11/06/2022] Open
Abstract
Interferon regulatory factor 3 (IRF-3), an essential transcriptional regulator of the interferon (IFN) genes, is important in the host defense against viral and microbial infection. Epstein-Barr virus (EBV) immediate-early protein replication and transcription activator (Rta) and the transcription factor E2F1 are two important inhibitive factors, which repress IRF-3 expression. Numerous studies have identified that Rta can directly bind to the Rta-response element in promoters of its target genes and regulate their expression. In the present study, we demonstrated that Rta represses the expression of IRF-3 by E2F1 rather than through its traditional way. Transient transfection analysis and chromatin immunoprecipitation (ChIP) assays revealed that the overexpression of Rta elevated the expression of E2F1 and increased the binding of E2F1 to the promoter of IRF-3. The mutation of the E2F1‑binding site and the knocking down of E2F1 by small interfering RNA (siRNA) can eradicate the inhibitory effect of Rta. These results suggested that Rta represses IRF-3 expression by increasing E2F1 binding to the IRF-3 promoter.
Collapse
Affiliation(s)
- Liang-Hua Zhu
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shan Gao
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Jiang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ling-Zhi Qiu
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hua-Guo Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
49
|
Cole JE, Mitra AT, Monaco C. Treating atherosclerosis: the potential of Toll-like receptors as therapeutic targets. Expert Rev Cardiovasc Ther 2014; 8:1619-35. [DOI: 10.1586/erc.10.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Primary macrophages rely on histone deacetylase 1 and 2 expression to induce type I interferon in response to gammaherpesvirus infection. J Virol 2013; 88:2268-78. [PMID: 24335310 DOI: 10.1128/jvi.03278-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type I interferon is induced shortly following viral infection and represents a first line of host defense against a majority of viral pathogens. Not surprisingly, both replication and latency of gammaherpesviruses, ubiquitous cancer-associated pathogens, are attenuated by type I interferon, although the mechanism of attenuation remains poorly characterized. Gammaherpesviruses also target histone deacetylases (HDACs), a family of pleiotropic enzymes that modify gene expression and several cell signaling pathways. Specifically, we have previously shown that a conserved gammaherpesvirus protein kinase interacts with HDAC1 and -2 to promote gammaherpesvirus replication in primary macrophages. In the current study, we have used genetic approaches to show that expression of HDAC1 and -2 is critical for induction of a type I interferon response following gammaherpesvirus infection of primary macrophages. Specifically, expression of HDAC1 and -2 was required for phosphorylation of interferon regulatory factor 3 (IRF3) and accumulation of IRF3 at the beta interferon promoter in gammaherpesvirus-infected primary macrophages. To our knowledge, this is the first demonstration of a specific role for HDAC1 and -2 in the induction of type I interferon responses in primary immune cells following virus infection. Furthermore, because HDAC1 and -2 are overexpressed in several types of cancer, our findings illuminate potential side effects of HDAC1- and -2-specific inhibitors that are currently under development as cancer therapy agents. IMPORTANCE Gammaherpesviruses establish chronic infection in a majority of the adult population and are associated with several malignancies. Infected cells counteract gammaherpesvirus infection via innate immune signaling mediated primarily through type I interferon. The induction of type I interferon expression proceeds through several stages using molecular mechanisms that are still incompletely characterized. In this study, we show that expression of HDAC1 and -2 by macrophages is required to mount a type I interferon response to incoming gammaherpesvirus. The involvement of HDAC1 and -2 in the type I interferon response highlights the pleiotropic roles of these enzymes in cellular signaling. Interestingly, HDAC1 and -2 are deregulated in cancer and are attractive targets of new cancer therapies. Due to the ubiquitous and chronic nature of gammaherpesvirus infection, the role of HDAC1 and -2 in the induction of type I interferon responses should be considered during the clinical development of HDAC1- and -2-specific inhibitors.
Collapse
|