1
|
Abe T, Yoshimoto Y, Matsuno S, Yoshimura A, Hirota K, Seki M. TIPIN is essential for chromosome stability and cell viability in BRCA1-deficient cells. Biochem Biophys Res Commun 2025; 752:151467. [PMID: 39955949 DOI: 10.1016/j.bbrc.2025.151467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
The mutations of breast cancer type 1 susceptibility gene (BRCA1) cause hereditary breast cancer. One of the medical revolutions of cancer therapy for BRCA1-mutated breast cancer is the drug approval of Poly (ADP-ribose) polymerase (PARP) inhibitors because of the synthetic lethal interaction between BRCA1 mutation and PARP inhibition. Here, we report another synthetic lethal interaction between BRCA1 and TIMELESS interacting protein (TIPIN), the latter of which encodes a protein involved in DNA replication, DNA damage checkpoint and sister chromatid cohesion. Cells deficient for both BRCA1 and TIPIN die due to elevated chromosomal aberrations including chromosomal breaks and radial chromosomes. The synthetic lethality of TIPIN/BRCA1-deficient cells is restored by the depletion of Tumor protein p53 binding protein 1 (53BP1), which prevents homologous recombination (HR) by its restricting DNA processing. Thus, spontaneous DNA lesions in TIPIN deficient cells could be preferentially repaired by BRCA1-mediated HR pathway. The viability of TIPIN/53BP1/BRCA1 triple mutant is lost by the depletion of Ring finger protein 8 (RNF8) E3-ubiquitin ligase, implicating that RNF8-mediated sub-HR pathway may work in a complementary manner of BRCA1 and 53BP1 pathway.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Yui Yoshimoto
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Seiya Matsuno
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Akari Yoshimura
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Masayuki Seki
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
2
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
4
|
Hu SH, Gao B, Li ZJ, Yuan YC. Whole‑exome sequencing insights into synchronous bilateral breast cancer with discordant molecular subtypes. Oncol Lett 2024; 28:595. [PMID: 39430730 PMCID: PMC11487496 DOI: 10.3892/ol.2024.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
The incidence of synchronous bilateral breast cancer (SBBC) is very low, and SBBC with discordant molecular subtypes is even more uncommon. As such, little is known about the pathogenesis of SBBC with discordant molecular subtypes, and reports about this entity are scarce. In the present study, the case of a 72-year-old female patient who presented with SBBC with discordant molecular subtypes is reported, with a stage IA hormone receptor negative {human epidermal growth factor receptor-2 [HER2(+)]} tumor in the left breast and a stage IIIA hormone sensitive tumor [HER2(-)] in the right breast. Whole-exome sequencing was performed to identify the differential genetic variations in the BBC tissues. A total of 8 key mutated cancer susceptibility genes (ALK, BRCA1, FAT1, HNF1A, KDR, PTCH1, SDHA and SETBP1) were screened, and mutations were found in 10 vital cancer driver genes, including BRCA1, EBF1, MET, NF2, NUMA1 RALGAPA1, ROBO2, SMYD4, UBR5 and ZNF844. The high-frequency mutated genes mainly contained missense mutations, among which single nucleotide variants were the most common mutations, with C > T and C > A as the main forms. The pathways associated with the high frequency mutated genes were further elucidated by functional category and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Heterogeneity in the hormone receptor and HER2 status of SBBC poses unique therapeutic challenges. Future studies should aim to identify the optimal management strategy for this disease.
Collapse
Affiliation(s)
- Shi-Han Hu
- Department of Pathology and Pathophysiology, College of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Bo Gao
- Department of Pathology and Pathophysiology, College of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Zheng-Jin Li
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Ya-Chen Yuan
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
5
|
Mishra S, Krawic C, Luczak MW, Zhitkovich A. Monoubiquitinated H2B, a Main Chromatin Target of Formaldehyde, Is Important for S-Phase Checkpoint Signaling and Genome Stability. Mol Carcinog 2024; 63:2414-2424. [PMID: 39254477 PMCID: PMC11567799 DOI: 10.1002/mc.23819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Formaldehyde (FA) is a human carcinogen with ubiquitous environmental exposures and significant endogenous formation. Genotoxic activity of FA stems from its reactivity with DNA-NH2 groups. Histone lysines are another source of aldehyde-reactive amino groups in chromatin, however, chromatin/histone damage responses to FA and their biological significance are poorly understood. We examined histone posttranslational modifications in FA-treated human lung cells and found that the majority of the most prominent small lysine modifications associated with active or inactive chromatin were unchanged. FA moderately decreased H3K9 and H3K27 acetylation and H2A-K119 monoubiquitination but caused surprisingly severe losses of H2B-K120 monoubiquitination, especially in primary and stem-like cells. H2Aub1 decreases reflected its slower ubiquitination linked to a lower ubiquitin availability due to K48-polyubiquitination of FA-damaged proteins. Depletion of H2Bub1 resulted from its rapid deubiquitination in part by ATXN7L3-associated deubiquitinases and was independent on DNA damage signaling, indicating a direct chromatin damage response. Manipulations of H2Bub1 abundance showed that it was important for robust ATM and ATR signaling, efficient S-phase checkpoint, and suppression of mitotic transmission of unreplicated DNA and formation of micronuclei. Our findings identified H2B deubiquitination as a major FA-induced chromatin damage response that regulates S-phase checkpoint signaling and genome stability.
Collapse
Affiliation(s)
- Sasmita Mishra
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| | - Casey Krawic
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| | | | - Anatoly Zhitkovich
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| |
Collapse
|
6
|
Fan Y, Liu Z, Chen Y, He Z. Homologous Recombination Repair Gene Mutations in Prostate Cancer: Prevalence and Clinical Value. Adv Ther 2024; 41:2196-2216. [PMID: 38767824 PMCID: PMC11133173 DOI: 10.1007/s12325-024-02844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 05/22/2024]
Abstract
Despite advances in our understanding of the molecular landscape of prostate cancer and the development of novel biomarker-driven therapies, the prognosis of patients with metastatic prostate cancer that is resistant to conventional hormonal therapy remains poor. Data suggest that a significant proportion of patients with metastatic castration-resistant prostate cancer (mCRPC) have mutations in homologous recombination repair (HRR) genes and may benefit from poly(ADP-ribose) polymerase (PARP) inhibitors. However, the adoption of HRR gene mutation testing in prostate cancer remains low, meaning there is a missed opportunity to identify patients who may benefit from targeted therapy with PARP inhibition, with or without novel hormonal agents. Here, we review the current knowledge regarding the clinical significance of HRR gene mutations in prostate cancer and discuss the efficacy of PARP inhibition in patients with mCRPC. This comprehensive overview aims to increase the clinical implementation of HRR gene mutation testing and inform future efforts in personalized treatment of prostate cancer.
Collapse
Affiliation(s)
- Yu Fan
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China
| | - Zhenhua Liu
- Global Medical Affairs, MSD China, Shanghai, China
| | - Yuke Chen
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China.
| |
Collapse
|
7
|
Yueh WT, Glass DJ, Johnson N. Brca1 Mouse Models: Functional Insights and Therapeutic Opportunities. J Mol Biol 2024; 436:168372. [PMID: 37979908 PMCID: PMC10882579 DOI: 10.1016/j.jmb.2023.168372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Brca1 mouse models were first reported in the mid-1990's shortly after cloning the human gene. Since then, many mouse models with a range of mutations have been generated, some mimic patient mutations, others are designed to probe specific protein domains and functions. In this review, we discuss early and recent studies using engineered Brca1 mouse alleles, and their implications for understanding Brca1 protein function in the context of DNA repair, tumorigenesis, and anti-cancer therapeutics.
Collapse
Affiliation(s)
- Wei-Ting Yueh
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David J Glass
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
8
|
Dueva R, Krieger LM, Li F, Luo D, Xiao H, Stuschke M, Metzen E, Iliakis G. Chemical Inhibition of RPA by HAMNO Alters Cell Cycle Dynamics by Impeding DNA Replication and G2-to-M Transition but Has Little Effect on the Radiation-Induced DNA Damage Response. Int J Mol Sci 2023; 24:14941. [PMID: 37834389 PMCID: PMC10573259 DOI: 10.3390/ijms241914941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Replication protein A (RPA) is the major single-stranded DNA (ssDNA) binding protein that is essential for DNA replication and processing of DNA double-strand breaks (DSBs) by homology-directed repair pathways. Recently, small molecule inhibitors have been developed targeting the RPA70 subunit and preventing RPA interactions with ssDNA and various DNA repair proteins. The rationale of this development is the potential utility of such compounds as cancer therapeutics, owing to their ability to inhibit DNA replication that sustains tumor growth. Among these compounds, (1Z)-1-[(2-hydroxyanilino) methylidene] naphthalen-2-one (HAMNO) has been more extensively studied and its efficacy against tumor growth was shown to arise from the associated DNA replication stress. Here, we study the effects of HAMNO on cells exposed to ionizing radiation (IR), focusing on the effects on the DNA damage response and the processing of DSBs and explore its potential as a radiosensitizer. We show that HAMNO by itself slows down the progression of cells through the cell cycle by dramatically decreasing DNA synthesis. Notably, HAMNO also attenuates the progression of G2-phase cells into mitosis by a mechanism that remains to be elucidated. Furthermore, HAMNO increases the fraction of chromatin-bound RPA in S-phase but not in G2-phase cells and suppresses DSB repair by homologous recombination. Despite these marked effects on the cell cycle and the DNA damage response, radiosensitization could neither be detected in exponentially growing cultures, nor in cultures enriched in G2-phase cells. Our results complement existing data on RPA inhibitors, specifically HAMNO, and suggest that their antitumor activity by replication stress induction may not extend to radiosensitization. However, it may render cells more vulnerable to other forms of DNA damaging agents through synthetically lethal interactions, which requires further investigation.
Collapse
Affiliation(s)
- Rositsa Dueva
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (L.M.K.); (F.L.); (D.L.); (H.X.)
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Lisa Marie Krieger
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (L.M.K.); (F.L.); (D.L.); (H.X.)
- Division of Experimental Radiation Biology, Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Fanghua Li
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (L.M.K.); (F.L.); (D.L.); (H.X.)
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany
| | - Daxian Luo
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (L.M.K.); (F.L.); (D.L.); (H.X.)
- Division of Experimental Radiation Biology, Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Huaping Xiao
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (L.M.K.); (F.L.); (D.L.); (H.X.)
- Division of Experimental Radiation Biology, Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Eric Metzen
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - George Iliakis
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (L.M.K.); (F.L.); (D.L.); (H.X.)
- Division of Experimental Radiation Biology, Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
9
|
Thapa I, Vahrenkamp R, Witus SR, Lightle C, Falkenberg O, Sellin Jeffries M, Klevit R, Stewart MD. Conservation of transcriptional regulation by BRCA1 and BARD1 in Caenorhabditis elegans. Nucleic Acids Res 2023; 51:2108-2116. [PMID: 36250637 PMCID: PMC10018340 DOI: 10.1093/nar/gkac877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 01/27/2023] Open
Abstract
The tumor-suppressor proteins BRCA1 and BARD1 function as an E3 ubiquitin ligase to facilitate transcriptional repression and DNA damage repair. This is mediated in-part through its ability to mono-ubiquitylate histone H2A in nucleosomes. Studies in Caenorhabditis elegans have been used to elucidate numerous functions of BRCA1 and BARD1; however, it has not been established that the C. elegans orthologs, BRC-1 and BRD-1, retain all the functions of their human counterparts. Here we explore the conservation of enzymatic activity toward nucleosomes which leads to repression of estrogen-metabolizing cytochrome P450 (cyp) genes in humans. Biochemical assays establish that BRC-1 and BRD-1 contribute to ubiquitylation of histone H2A in the nucleosome. Mutational analysis shows that while BRC-1 likely binds the nucleosome using a conserved interface, BRD-1 and BARD1 have evolved different modes of binding, resulting in a difference in the placement of ubiquitin on H2A. Gene expression analysis reveals that in spite of this difference, BRC-1 and BRD-1 also contribute to cyp gene repression in C. elegans. Establishing conservation of these functions in C. elegans allows for use of this powerful model organism to address remaining questions regarding regulation of gene expression by BRCA1 and BARD1.
Collapse
Affiliation(s)
- Ishor Thapa
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Russell Vahrenkamp
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Samuel R Witus
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Caitlin Lightle
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Owen Falkenberg
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | | | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Mikaela D Stewart
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| |
Collapse
|
10
|
Lodovichi S, Quadri R, Sertic S, Pellicioli A. PARylation of BRCA1 limits DNA break resection through BRCA2 and EXO1. Cell Rep 2023; 42:112060. [PMID: 36735534 DOI: 10.1016/j.celrep.2023.112060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
The nucleolytic processing (resection) of a DNA double-strand break (DSB) is a critical step to repair the lesion by homologous recombination (HR). PARylation, which is the attachment of poly(ADP-ribose) (PAR) units to specific targets by PAR polymerases (PARPs), regulates many steps of HR, including resection. Here, we show that preventing PARylation of the oncosuppressor BRCA1 induces hyper-resection of DSBs through BRCA2 and the EXO1 nuclease. Upon expression of the unPARylatable variant of BRCA1, we observe a reduced 53BP1-RIF1 barrier for resection accompanied by an increase in the recruitment of the RAD51 recombinase. Similar results are observed when cells are treated with the clinically approved PARP inhibitor olaparib. We propose that PARylation of BRCA1 is important to limit the formation of excessively extended DNA filaments, thereby reducing illegitimate chromosome rearrangements. Our results shed light on molecular aspects of HR and on the mechanisms of PARP inhibitor treatment.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy.
| |
Collapse
|
11
|
Choi E, Mun GI, Lee J, Lee H, Cho J, Lee YS. BRCA1 deficiency in triple-negative breast cancer: Protein stability as a basis for therapy. Biomed Pharmacother 2023; 158:114090. [PMID: 36493696 DOI: 10.1016/j.biopha.2022.114090] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in breast cancer-associated 1 (BRCA1) increase the lifetime risk of developing breast cancer by up to 51% over the risk of the general population. Many aspects of this multifunctional protein have been revealed, including its essential role in homologous recombination repair, E3 ubiquitin ligase activity, transcriptional regulation, and apoptosis. Although most studies have focused on BRCA1 deficiency due to mutations, only a minority of patients carry BRCA1 mutations. A recent study has suggested an expanded definition of BRCA1 deficiency with reduced BRCA1 levels, which accounts for almost half of all triple-negative breast cancer (TNBC) patients. Reduced BRCA1 levels can result from epigenetic modifications or increased proteasomal degradation. In this review, we discuss how this knowledge of BRCA1 function and regulation of BRCA1 protein stability can help overcome the challenges encountered in the clinic and advance current treatment strategies for BRCA1-related breast cancer patients, especially focusing on TNBC.
Collapse
Affiliation(s)
- Eun Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gil-Im Mun
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joohyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanhee Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
12
|
Identification of Novel Regulators of Radiosensitivity Using High-Throughput Genetic Screening. Int J Mol Sci 2022; 23:ijms23158774. [PMID: 35955908 PMCID: PMC9369104 DOI: 10.3390/ijms23158774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The biological impact of ionizing radiation (IR) on humans depends not only on the physical properties and absorbed dose of radiation but also on the unique susceptibility of the exposed individual. A critical target of IR is DNA, and the DNA damage response is a safeguard mechanism for maintaining genomic integrity in response to the induced cellular stress. Unrepaired DNA lesions lead to various mutations, contributing to adverse health effects. Cellular sensitivity to IR is highly correlated with the ability of cells to repair DNA lesions, in particular coding sequences of genes that affect that process and of others that contribute to preserving genomic integrity. However, accurate profiling of the molecular events underlying individual sensitivity requires techniques with sensitive readouts. Here we summarize recent studies that have used whole-genome analysis and identified genes that impact individual radiosensitivity. Whereas microarray and RNA-seq provide a snapshot of the transcriptome, RNA interference (RNAi) and CRISPR-Cas9 techniques are powerful tools that enable modulation of gene expression and characterizing the function of specific genes involved in radiosensitivity or radioresistance. Notably, CRISPR-Cas9 has altered the landscape of genome-editing technology with its increased readiness, precision, and sensitivity. Identifying critical regulators of cellular radiosensitivity would help tailor regimens that enhance the efficacy of therapeutic treatments and fast-track prediction of clinical outcomes. It would also contribute to occupational protection based on average individual sensitivity, as well as the formulation of countermeasures to the harmful effects of radiation.
Collapse
|
13
|
Askar MA, El-Nashar HA, Al-Azzawi MA, Rahman SSA, Elshawi OE. Synergistic Effect of Quercetin Magnetite Nanoparticles and Targeted Radiotherapy in Treatment of Breast Cancer. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2022; 16:11782234221086728. [PMID: 35359610 PMCID: PMC8961357 DOI: 10.1177/11782234221086728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/17/2022] [Indexed: 01/16/2023] Open
Abstract
Quercetin is a potent cancer therapeutic agent present in fruits and vegetables. The pharmaceutical uses of quercetin are limited due to many problems associated with low solubility, bioavailability, permeability, and instability. In addition, the high doses of quercetin show toxic effects in clinical and experimental studies. Therefore, a new strategy is warranted to overcome these problems without the use of toxic doses. The iron oxide nanoparticles can be used as a drug delivery system. This study aimed to prepare quercetin-conjugated magnetite nanoparticles (QMNPs) using biological simple nanoprecipitation and mediated by fungus Aspergillus oryzae. Also, we initiated in vitro and in vivo studies to determine whether QMNPs might sensitize breast cancer to radiotherapy treatment. The structural, morphological, and magnetic properties of the prepared nanoparticles were studied. The results indicated that QMNPs were spherical in shape and 40 nm in diameter. The in vitro studies showed that the incubation of MCF-7, HePG-2, and A459 cancer cells with QMNPs for 24 h effectively inhibited the growth of cancer cell lines in a concentration-dependent manner with IC50 values of 11, 77.5, and104 nmol/mL, respectively. The combination of QMNPs with irradiation (IR) potently blocked MCF-7 cancer cell proliferation and showed significant changes in the morphology of these cells as observed by bright-field inverted light microscopy. Focusing on the long-term toxicity of QMNPs (20 ml/kg), the assessment of hematological, hepatic, and renal markers indicated no toxic effect. Besides, QMNPs inhibited tumor growth and potently enhanced the lateral radiotherapy treatment in N-methyl-N-nitrosourea (MNU)-induced breast cancer in female white albino rats. These anticancer and radiosensitizing activities were ascribed to cytotoxicity, cell cycle arrest, immunomodulation, and efficiency through induction of apoptosis. In a conclusion, these observations suggest that the QMNPs combined with LRT could act as a potential targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Mostafa A Askar
- Department of Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Heba As El-Nashar
- Department of Pharmacognosy and Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mahmood A Al-Azzawi
- Department of Pathological Analysis Techniques, College of Medical & Health Technologies, Ahl Al Bayt University, Karbala, Iraq
| | - Sahar S Abdel Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Omama E Elshawi
- Department of Health and Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
14
|
Abstract
The breast and ovarian cancer susceptibility gene (BRCA1) is a tumor suppressor whose mutation has been associated with the development of breast, ovarian and, probably, other malignancies at young ages. The BRCA1 gene product participates in multiple biological pathways including the DNA damage response, transcriptional control, cell growth and apoptosis. Inactivating germline mutations of the BRCA1 gene can be detected in a substantial portion of families with inherited breast and/or ovarian cancer. While the genomic and cancer-related actions of BRCA1 have been extensively investigated, not much information exists regarding the cellular and circulating factors involved in regulation of BRCA1 expression and action. The present review article dissects the emerging role of BRCA1 as an important regulator of various endocrine and metabolic axes. Experimental and clinical evidence links BRCA1 with a number of peptide and steroid hormones. Furthermore, comprehensive analyses identified complex interactions between the insulin/insulin-like growth factor-1 (IGF1) signaling axis and BRCA1. The correlation between metabolic disorders, including diabetes and the metabolic syndrome, and BRCA1 mutations, are discussed in this article.
Collapse
|
15
|
Xu Y, Zhou C, Li J, Xu Y, He F. iTRAQ-based proteomic analysis reveals potential osteogenesis-promoted role of ATM in strontium-incorporated titanium implant. J Biomed Mater Res A 2021; 110:964-975. [PMID: 34897987 DOI: 10.1002/jbm.a.37345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/17/2021] [Accepted: 12/04/2021] [Indexed: 11/06/2022]
Abstract
The present study aims to reveal the osteogenic roles played by DNA damage response biomarkers through implementing isobaric tags for relative and absolute quantitation (iTRAQ) technique. First, sandblasted large-grit double acid-etched (SLA) titanium implant and strontium-incorporated (SLA-Sr) titanium implant were used for inserting in the tibiae of rats. iTRAQ technique was used to detect protein expression changes and identify differentially expressed proteins (DEPs). In total, 19,343 peptides and 4280 proteins were screened out. Among them, 91 and 138 DEPs were identified in the SLA-Sr group after implantation for 3 and 7 days, respectively. Ataxia-telangiectasia mutated (ATM) protein up-regulated on the 3rd day showed a trend of further up-regulation on the 7th day. Moreover, functional enrichment analyses were also conducted to explore the biological function of DEPs during the initial stage of osseointegration in vivo, which revealed that the biological functions of the DEPs on the 7th day were mainly related to "mismatch repair" and "mitotic G1 DNA damage checkpoint." Analysis of the Reactome signaling pathway showed that ATM was associated with TP53's regulation and activation. Finally, DNA damage repair related genes were selected for validation at mRNA and protein expression levels. Real-time reverse transcription-polymerase chain reaction and immunohistochemistry validation results demonstrated that mRNA expression level of ATM was higher in SLA-Sr group. In conclusion, SLA-Sr titanium implant could initiate DNA damage repair by activating expression levels of ATM. This study was striving to reveal new faces of better osseointegration and shedding light on the biological function and underlying mechanisms of this important procedure.
Collapse
Affiliation(s)
- Yuzi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Chuan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yangbo Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Putti S, Giovinazzo A, Merolle M, Falchetti ML, Pellegrini M. ATM Kinase Dead: From Ataxia Telangiectasia Syndrome to Cancer. Cancers (Basel) 2021; 13:5498. [PMID: 34771661 PMCID: PMC8583659 DOI: 10.3390/cancers13215498] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
ATM is one of the principal players of the DNA damage response. This protein exerts its role in DNA repair during cell cycle replication, oxidative stress, and DNA damage from endogenous events or exogenous agents. When is activated, ATM phosphorylates multiple substrates that participate in DNA repair, through its phosphoinositide 3-kinase like domain at the 3'end of the protein. The absence of ATM is the cause of a rare autosomal recessive disorder called Ataxia Telangiectasia characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility, and radiation sensitivity. There is a correlation between the severity of the phenotype and the mutations, depending on the residual activity of the protein. The analysis of patient mutations and mouse models revealed that the presence of inactive ATM, named ATM kinase-dead, is more cancer prone and lethal than its absence. ATM mutations fall into the whole gene sequence, and it is very difficult to predict the resulting effects, except for some frequent mutations. In this regard, is necessary to characterize the mutated protein to assess if it is stable and maintains some residual kinase activity. Moreover, the whole-genome sequencing of cancer patients with somatic or germline mutations has highlighted a high percentage of ATM mutations in the phosphoinositide 3-kinase domain, mostly in cancer cells resistant to classical therapy. The relevant differences between the complete absence of ATM and the presence of the inactive form in in vitro and in vivo models need to be explored in more detail to predict cancer predisposition of A-T patients and to discover new therapies for ATM-associated cancer cells. In this review, we summarize the multiple discoveries from humans and mouse models on ATM mutations, focusing into the inactive versus null ATM.
Collapse
Affiliation(s)
- Sabrina Putti
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Via Ercole Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (A.G.); (M.M.); (M.L.F.)
| | | | | | | | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Via Ercole Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (A.G.); (M.M.); (M.L.F.)
| |
Collapse
|
17
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
18
|
Wang L, Sun X, He J, Liu Z. Functions and Molecular Mechanisms of Deltex Family Ubiquitin E3 Ligases in Development and Disease. Front Cell Dev Biol 2021; 9:706997. [PMID: 34513839 PMCID: PMC8424196 DOI: 10.3389/fcell.2021.706997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a posttranslational modification of proteins that significantly affects protein stability and function. The specificity of substrate recognition is determined by ubiquitin E3 ligase during ubiquitination. Human Deltex (DTX) protein family, which functions as ubiquitin E3 ligases, comprises five members, namely, DTX1, DTX2, DTX3, DTX3L, and DTX4. The characteristics and functional diversity of the DTX family proteins have attracted significant attention over the last decade. DTX proteins have several physiological and pathological roles and are closely associated with cell signal transduction, growth, differentiation, and apoptosis, as well as the occurrence and development of various tumors. Although they have been extensively studied in various species, data on structural features, biological functions, and potential mechanisms of action of the DTX family proteins remain limited. In this review, recent research progress on each member of the DTX family is summarized, providing insights into future research directions and potential strategies in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Sun
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Foo TK, Vincelli G, Huselid E, Her J, Zheng H, Simhadri S, Wang M, Huo Y, Li T, Yu X, Li H, Zhao W, Bunting SF, Xia B. ATR/ATM-mediated phosphorylation of BRCA1 T1394 promotes homologous recombinational repair and G2/M checkpoint maintenance. Cancer Res 2021; 81:4676-4684. [PMID: 34301763 PMCID: PMC8448966 DOI: 10.1158/0008-5472.can-20-2723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
BRCA1 maintains genome integrity and suppresses tumorigenesis by promoting homologous recombination (HR)-mediated repair of DNA double strand breaks (DSB) and DNA damage-induced cell cycle checkpoints. Phosphorylation of BRCA1 by ATM, ATR, CHK2, CDK, and PLK1 kinases has been reported to regulate its functions. Here we show that ATR and ATM-mediated phosphorylation of BRCA1 on T1394, a highly conserved but functionally uncharacterized site, is a key modification for its function in the DNA damage response. Following DNA damage, T1394 phosphorylation ensured faithful repair of DSBs by promoting HR and preventing single strand annealing, a deletion-generating repair process. BRCA1 T1394 phosphorylation further safeguarded chromosomal integrity by maintaining the G2/M checkpoint. Moreover, multiple patient-derived BRCA1 variants of unknown significance were shown to affect T1394 phosphorylation. These results establish an important regulatory mechanism of BRCA1 function in the DNA damage response and may have implications in the development or prognosis of BRCA1-associated cancers.
Collapse
Affiliation(s)
- Tzeh K Foo
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| | | | - Eric Huselid
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | - Joonyoung Her
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | | | | | - Meiling Wang
- The University of Texas Health Science Center at San Antonio
| | - Yanying Huo
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| | - Tao Li
- Department of Medicine/Population Sciences, Rutgers Cancer Institute of New Jersey
| | | | - Hong Li
- Center for advanced proteomics, Rutgers, The State University of New Jersey
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | - Bing Xia
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
20
|
Ramya Sree PR, Thoppil JE. An overview on breast cancer genetics and recent innovations: Literature survey. Breast Dis 2021; 40:143-154. [PMID: 33867352 DOI: 10.3233/bd-201040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer is one of the leading cancers nowadays. The genetical mechanism behind breast cancer development is an intricate one. In this review, the genetical background of breast cancer, particularly BRCA 1 and BRCA 2 had been included. Moreover, to summarize the genetics of breast cancer, the recent and ongoing preclinical and clinical studies on the treatment of BRCA-associated breast cancer had also been included. A prime knowledge is that the BRCA gene is the basis of breast cancer risk. How it mediates cell proliferation and associated mechanisms are reviewed here. BRCA 1 gene can influence all phases of the cell cycle and regulate cell cycle progression. BRCA 1 gene can also respond to DNA damages and induce responsive mechanisms. The action of the BRCA gene on associated protein has a wide consideration in breast cancer development. Heterogeneity in breast cancer makes them a fascinating and challenging stream to diagnose and treat. Several clinical therapies are available for breast cancer treatments. Chemotherapy, endocrine therapy, radiation therapy and immunotherapy are the milestones in the cancer treatments. Ral binding protein 1 is a promising target for breast cancer treatment and the platinum-based chemotherapies are the other remarkable fields. In immunotherapy, the usage of anti-programmed death (PD)-1 antibody is a new class of cancer immunotherapy that hinders immune effecter inhibition and potentially expanding preexisting anticancer immune responses. Breast cancer genetics and treatment strategies are crucial in escalating survival rates.
Collapse
Affiliation(s)
| | - John Ernest Thoppil
- Cell and Molecular Biology Division, Department of Botany, University of Calicut, Kerala, India
| |
Collapse
|
21
|
Tremi I, Spyratou E, Souli M, Efstathopoulos EP, Makropoulou M, Georgakilas AG, Sihver L. Requirements for Designing an Effective Metallic Nanoparticle (NP)-Boosted Radiation Therapy (RT). Cancers (Basel) 2021; 13:cancers13133185. [PMID: 34202342 PMCID: PMC8269428 DOI: 10.3390/cancers13133185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent advances in nanotechnology gave rise to trials with various types of metallic nanoparticles (NPs) to enhance the radiosensitization of cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. This work reviews the physical and chemical mechanisms leading to the enhancement of ionizing radiation’s detrimental effects on cells and tissues, as well as the plethora of experimental procedures to study these effects of the so-called “NPs’ radiosensitization”. The paper presents the need to a better understanding of all the phases of actions before applying metallic-based NPs in clinical practice to improve the effect of IR therapy. More physical and biological experiments especially in vivo must be performed and simulation Monte Carlo or mathematical codes based on more accurate models for all phases must be developed. Abstract Many different tumor-targeted strategies are under development worldwide to limit the side effects and improve the effectiveness of cancer therapies. One promising method is to enhance the radiosensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy using metallic nanoparticles (NPs). Radiotherapy with MV photons is more commonly available and applied in cancer clinics than high LET particle radiotherapy, so the addition of high-Z NPs has the potential to further increase the efficacy of photon radiotherapy in terms of NP radiosensitization. Generally, when using X-rays, mainly the inner electron shells are ionized, which creates cascades of both low and high energy Auger electrons. When using high LET particles, mainly the outer shells are ionized, which give electrons with lower energies than when using X-rays. The amount of the produced low energy electrons is higher when exposing NPs to heavy charged particles than when exposing them to X-rays. Since ions traverse the material along tracks, and therefore give rise to a much more inhomogeneous dose distributions than X-rays, there might be a need to introduce a higher number of NPs when using ions compared to when using X-rays to create enough primary and secondary electrons to get the desired dose escalations. This raises the questions of toxicity. This paper provides a review of the fundamental processes controlling the outcome of metallic NP-boosted photon beam and ion beam radiation therapy and presents some experimental procedures to study the biological effects of NPs’ radiosensitization. The overview shows the need for more systematic studies of the behavior of NPs when exposed to different kinds of ionizing radiation before applying metallic-based NPs in clinical practice to improve the effect of IR therapy.
Collapse
Affiliation(s)
- Ioanna Tremi
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece; (E.S.); (E.P.E.)
| | - Maria Souli
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece; (E.S.); (E.P.E.)
| | - Mersini Makropoulou
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
- Correspondence: (A.G.G.); (L.S.)
| | - Lembit Sihver
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Correspondence: (A.G.G.); (L.S.)
| |
Collapse
|
22
|
Leung E, Hazrati LN. Breast cancer type 1 and neurodegeneration: consequences of deficient DNA repair. Brain Commun 2021; 3:fcab117. [PMID: 34222870 PMCID: PMC8242133 DOI: 10.1093/braincomms/fcab117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous cellular processes, including toxic protein aggregation and oxidative stress, have been studied extensively as potential mechanisms underlying neurodegeneration. However, limited therapeutic efficacy targeting these processes has prompted other mechanisms to be explored. Previous research has emphasized a link between cellular senescence and neurodegeneration, where senescence induced by excess DNA damage and deficient DNA repair results in structural and functional changes that ultimately contribute to brain dysfunction and increased vulnerability for neurodegeneration. Specific DNA repair proteins, such as breast cancer type 1, have been associated with both stress-induced senescence and neurodegenerative diseases, however, specific mechanisms remain unclear. Therefore, this review explores DNA damage-induced senescence in the brain as a driver of neurodegeneration, with particular focus on breast cancer type 1, and its potential contribution to sex-specific differences associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Emily Leung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
23
|
Hauge S, Eek Mariampillai A, Rødland GE, Bay LTE, Landsverk HB, Syljuåsen RG. Expanding roles of cell cycle checkpoint inhibitors in radiation oncology. Int J Radiat Biol 2021; 99:941-950. [PMID: 33877959 DOI: 10.1080/09553002.2021.1913529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Radiation-induced activation of cell cycle checkpoints have been of long-standing interest. The WEE1, CHK1 and ATR kinases are key factors in cell cycle checkpoint regulation and are essential for the S and G2 checkpoints. Here, we review the rationale for why inhibitors of WEE1, CHK1 and ATR could be beneficial in combination with radiation. CONCLUSIONS Combined treatment with radiation and inhibitors of these kinases results in checkpoint abrogation and subsequent mitotic catastrophe. This might selectively radiosensitize tumor cells, as they often lack the p53-dependent G1 checkpoint and therefore rely more on the G2 checkpoint to repair DNA damage. Further affecting the repair of radiation damage, inhibition of WEE1, CHK1 or ATR also specifically suppresses the homologous recombination repair pathway. Moreover, inhibition of these kinases can induce massive replication stress during S phase of the cell cycle, likely contributing to eliminate radioresistant S phase cells. Intriguingly, recent findings suggest that cell cycle checkpoint inhibitors in combination with radiation can also enhance anti-tumor immune effects. Altogether, the expanding knowledge about the functional roles of WEE1, CHK1 and ATR inhibitors support that they are promising candidates for use in combination with radiation treatment.
Collapse
Affiliation(s)
- Sissel Hauge
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Adrian Eek Mariampillai
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Gro Elise Rødland
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Lilli T E Bay
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Helga B Landsverk
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Gong CM, Xu YF, Liang XS, Mo JL, Zhuang ZX. PARP-1 overexpression does not protect HaCaT cells from DNA damage induced by SiO 2 nanoparticles. Toxicol Res (Camb) 2021; 10:399-408. [PMID: 34141153 DOI: 10.1093/toxres/tfaa110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 11/12/2022] Open
Abstract
Nano-SiO2 is increasingly used in diagnostic and biomedical research because of its ease of production and relatively low cost and which is generally regarded as safe and has been approved for use as a food or animal feed ingredient. Although recent literature reveals that nano-SiO2 may present toxicity and DNA damage, however, the underlying mechanism remains poorly understood. Since in previous studies, we found that nano-SiO2 treatment down-regulated the expression of the poly(ADP-ribose) polymerases-1 (PARP-1), a pivotal DNA repair gene, in human HaCaT cells and PAPR-1 knockdown can aggravate DNA damage induced by nano-SiO2. Therefore, we speculate whether PARP-1 overexpression can protect DNA from damage induced by nano-SiO2. However, our data demonstrated that overexpression of PARP-1 in HaCaT cells slightly enhanced the cellular proliferation of undamaged cells, when compared with both empty vector control cells and parental cells, but had drastic consequences for cells treated with nano-SiO2. The PARP-1 overtransfected cells were sensitized to the cytotoxic effects and DNA damage of nano-SiO2 compared with control parental cells. Meanwhile, flow cytometric analysis of nano-SiO2 stimulated poly(ADP-ribose) synthesis revealed consistently larger fractions of cells positive for this polymer in the PARP-1 overexpression cells than in control clones. Combining our previous research on PARP-1 knockdown HaCaT cells, we hypothesize that an optimal level of cellular poly(ADP-ribose) accumulation exists for the cellular recovery from DNA damage.
Collapse
Affiliation(s)
- Chun-Mei Gong
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Yuan-Fei Xu
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Xiong-Shun Liang
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Jun-Luan Mo
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Zhi-Xiong Zhuang
- Shenzhen Center for Disease Control and Prevention, Longyuan Road 8, Shenzhen 518055, Nanshan, PR China
| |
Collapse
|
25
|
Kay JE, Corrigan JJ, Armijo AL, Nazari IS, Kohale IN, Torous DK, Avlasevich SL, Croy RG, Wadduwage DN, Carrasco SE, Dertinger SD, White FM, Essigmann JM, Samson LD, Engelward BP. Excision of mutagenic replication-blocking lesions suppresses cancer but promotes cytotoxicity and lethality in nitrosamine-exposed mice. Cell Rep 2021; 34:108864. [PMID: 33730582 PMCID: PMC8527524 DOI: 10.1016/j.celrep.2021.108864] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
N-Nitrosodimethylamine (NDMA) is a DNA-methylating agent that has been discovered to contaminate water, food, and drugs. The alkyladenine DNA glycosylase (AAG) removes methylated bases to initiate the base excision repair (BER) pathway. To understand how gene-environment interactions impact disease susceptibility, we study Aag-knockout (Aag-/-) and Aag-overexpressing mice that harbor increased levels of either replication-blocking lesions (3-methyladenine [3MeA]) or strand breaks (BER intermediates), respectively. Remarkably, the disease outcome switches from cancer to lethality simply by changing AAG levels. To understand the underlying basis for this observation, we integrate a suite of molecular, cellular, and physiological analyses. We find that unrepaired 3MeA is somewhat toxic, but highly mutagenic (promoting cancer), whereas excess strand breaks are poorly mutagenic and highly toxic (suppressing cancer and promoting lethality). We demonstrate that the levels of a single DNA repair protein tip the balance between blocks and breaks and thus dictate the disease consequences of DNA damage.
Collapse
Affiliation(s)
- Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Joshua J Corrigan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Amanda L Armijo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Ilana S Nazari
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Ishwar N Kohale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | | | | | - Robert G Croy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Dushan N Wadduwage
- The John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, MA 02138, USA; Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
| | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | | | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - John M Essigmann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA.
| |
Collapse
|
26
|
Minten EV, Kapoor-Vazirani P, Li C, Zhang H, Balakrishnan K, Yu DS. SIRT2 promotes BRCA1-BARD1 heterodimerization through deacetylation. Cell Rep 2021; 34:108921. [PMID: 33789098 PMCID: PMC8108010 DOI: 10.1016/j.celrep.2021.108921] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
The breast cancer type I susceptibility protein (BRCA1) and BRCA1-associated RING domain protein I (BARD1) heterodimer promote genome integrity through pleiotropic functions, including DNA double-strand break (DSB) repair by homologous recombination (HR). BRCA1-BARD1 heterodimerization is required for their mutual stability, HR function, and role in tumor suppression; however, the upstream signaling events governing BRCA1-BARD1 heterodimerization are unclear. Here, we show that SIRT2, a sirtuin deacetylase and breast tumor suppressor, promotes BRCA1-BARD1 heterodimerization through deacetylation. SIRT2 complexes with BRCA1-BARD1 and deacetylates conserved lysines in the BARD1 RING domain, interfacing BRCA1, which promotes BRCA1-BARD1 heterodimerization and consequently BRCA1-BARD1 stability, nuclear retention, and localization to DNA damage sites, thus contributing to efficient HR. Our findings define a mechanism for regulation of BRCA1-BARD1 heterodimerization through SIRT2 deacetylation, elucidating a critical upstream signaling event directing BRCA1-BARD1 heterodimerization, which facilitates HR and tumor suppression, and delineating a role for SIRT2 in directing DSB repair by HR. Minten et al. show that SIRT2, a sirtuin deacetylase and tumor suppressor protein, promotes BRCA1-BARD1 heterodimerization through deacetylation of BARD1 at conserved lysines within its RING domain. These findings elucidate a critical upstream signaling event directing BRCA1-BARD1 heterodimerization, which facilitates HR and tumor suppression.
Collapse
Affiliation(s)
- Elizabeth V Minten
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chunyang Li
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Zhang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kamakshi Balakrishnan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
27
|
Friedman N, Jacob-Hirsch J, Drori Y, Eran E, Kol N, Nayshool O, Mendelson E, Rechavi G, Mandelboim M. Transcriptomic profiling and genomic mutational analysis of Human coronavirus (HCoV)-229E -infected human cells. PLoS One 2021; 16:e0247128. [PMID: 33630927 PMCID: PMC7906355 DOI: 10.1371/journal.pone.0247128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Human coronaviruses (HCoVs) cause mild to severe respiratory infection. Most of the common cold illnesses are caused by one of four HCoVs, namely HCoV-229E, HCoV-NL63, HCoV-HKU1 and HCoV-OC43. Several studies have applied global transcriptomic methods to understand host responses to HCoV infection, with most studies focusing on the pandemic severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV) and the newly emerging SARS-CoV-2. In this study, Next Generation Sequencing was used to gain new insights into cellular transcriptomic changes elicited by alphacoronavirus HCoV-229E. HCoV-229E-infected MRC-5 cells showed marked downregulation of superpathway of cholesterol biosynthesis and eIF2 signaling pathways. Moreover, upregulation of cyclins, cell cycle control of chromosomal replication, and the role of BRCA1 in DNA damage response, alongside downregulation of the cell cycle G1/S checkpoint, suggest that HCoV-229E may favors S phase for viral infection. Intriguingly, a significant portion of key factors of cell innate immunity, interferon-stimulated genes (ISGs) and other transcripts of early antiviral response genes were downregulated early in HCoV-229E infection. On the other hand, early upregulation of the antiviral response factor Apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B) was observed. APOBEC3B cytidine deaminase signature (C-to-T) was previously observed in genomic analysis of SARS-CoV-2 but not HCoV-229E. Higher levels of C-to-T mutations were found in countries with high mortality rates caused by SARS-CoV-2. APOBEC activity could be a marker for new emerging CoVs. This study will enhance our understanding of commonly circulating HCoVs and hopefully provide critical information about still-emerging coronaviruses.
Collapse
Affiliation(s)
- Nehemya Friedman
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jasmine Jacob-Hirsch
- Sheba Cancer Research Center (SCRC), Chaim Sheba Medical Center, Ramat Gan, Israel
- Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Yaron Drori
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eyal Eran
- Sheba Cancer Research Center (SCRC), Chaim Sheba Medical Center, Ramat Gan, Israel
- Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nitzan Kol
- Sheba Cancer Research Center (SCRC), Chaim Sheba Medical Center, Ramat Gan, Israel
- Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Omri Nayshool
- Sheba Cancer Research Center (SCRC), Chaim Sheba Medical Center, Ramat Gan, Israel
- Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Rechavi
- Sheba Cancer Research Center (SCRC), Chaim Sheba Medical Center, Ramat Gan, Israel
- Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
28
|
Waddington T, Mambetsariev I, Pharaon R, Fricke J, Baroz AR, Romo H, Ghanem B, Gray S, Salgia R. Therapeutic Potential of Olaparib in Combination With Pembrolizumab in a Young Patient With a Maternally Inherited BRCA2 Germline Variant: A Research Report. Clin Lung Cancer 2021; 22:e703-e707. [PMID: 33640299 DOI: 10.1016/j.cllc.2021.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas Waddington
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, City of Hope National Medical Center, Duarte, CA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA
| | - Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA
| | - Jeremy Fricke
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA
| | - Angel Ray Baroz
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA
| | - Hannah Romo
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA
| | - Bassam Ghanem
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA
| | - Stacy Gray
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA.
| |
Collapse
|
29
|
Awate S, Sommers JA, Datta A, Nayak S, Bellani MA, Yang O, Dunn CA, Nicolae CM, Moldovan GL, Seidman MM, Cantor SB, Brosh RM. FANCJ compensates for RAP80 deficiency and suppresses genomic instability induced by interstrand cross-links. Nucleic Acids Res 2020; 48:9161-9180. [PMID: 32797166 DOI: 10.1093/nar/gkaa660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.
Collapse
Affiliation(s)
- Sanket Awate
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sumeet Nayak
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher A Dunn
- Flow Cytometry Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
30
|
Sadeghi F, Asgari M, Matloubi M, Ranjbar M, Karkhaneh Yousefi N, Azari T, Zaki-Dizaji M. Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: review of radiosensitivity assays. Biol Proced Online 2020; 22:23. [PMID: 33013205 PMCID: PMC7528506 DOI: 10.1186/s12575-020-00133-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND DNA repair pathways, cell cycle arrest checkpoints, and cell death induction are present in cells to process DNA damage and prevent genomic instability caused by various extrinsic and intrinsic ionizing factors. Mutations in the genes involved in these pathways enhances the ionizing radiation sensitivity, reduces the individual's capacity to repair DNA damages, and subsequently increases susceptibility to tumorigenesis. BODY BRCA1 and BRCA2 are two highly penetrant genes involved in the inherited breast cancer and contribute to different DNA damage pathways and cell cycle and apoptosis cascades. Mutations in these genes have been associated with hypersensitivity and genetic instability as well as manifesting severe radiotherapy complications in breast cancer patients. The genomic instability and DNA repair capacity of breast cancer patients with BRCA1/2 mutations have been analyzed in different studies using a variety of assays, including micronucleus assay, comet assay, chromosomal assay, colony-forming assay, γ -H2AX and 53BP1 biomarkers, and fluorescence in situ hybridization. The majority of studies confirmed the enhanced spontaneous & radiation-induced radiosensitivity of breast cancer patients compared to healthy controls. Using G2 micronucleus assay and G2 chromosomal assay, most studies have reported the lymphocyte of healthy carriers with BRCA1 mutation are hypersensitive to invitro ionizing radiation compared to non-carriers without a history of breast cancer. However, it seems this approach is not likely to be useful to distinguish the BRCA carriers from non-carrier with familial history of breast cancer. CONCLUSION In overall, breast cancer patients are more radiosensitive compared to healthy control; however, inconsistent results exist about the ability of current radiosensitive techniques in screening BRCA1/2 carriers or those susceptible to radiotherapy complications. Therefore, developing further radiosensitivity assay is still warranted to evaluate the DNA repair capacity of individuals with BRCA1/2 mutations and serve as a predictive factor for increased risk of cancer mainly in the relatives of breast cancer patients. Moreover, it can provide more evidence about who is susceptible to manifest severe complication after radiotherapy.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Institute, Digestive Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Asgari
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Mojdeh Matloubi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Ranjbar
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karkhaneh Yousefi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Azari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
L ARP7 Is a BRCA1 Ubiquitinase Substrate and Regulates Genome Stability and Tumorigenesis. Cell Rep 2020; 32:107974. [DOI: 10.1016/j.celrep.2020.107974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/05/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
|
32
|
Chao HH, Karagounis IV, Thomas C, François NB, Facciabene A, Koumenis C, Maity A. Combination of CHEK1/2 inhibition and ionizing radiation results in abscopal tumor response through increased micronuclei formation. Oncogene 2020; 39:4344-4357. [PMID: 32335582 PMCID: PMC7260113 DOI: 10.1038/s41388-020-1300-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022]
Abstract
We explore a novel strategy of activating immune signaling through increased micronuclei formation utilizing a cell cycle checkpoint inhibitor to drive cell cycle progression following ionizing radiation. The Chk1/2 inhibitor AZD7762 is used to abrogate radiation therapy (RT)-induced G2/M cell cycle arrest in multiple cell lines and, we find that this therapeutic combination promotes increased micronuclei formation in vitro and subsequently drives increased type I interferon signaling and cytotoxic T-cell activation. In vivo studies using B16-F10 melanoma cancer cells implanted in C57/BL6 mice demonstrate improved rates of tumor control at the abscopal (unirradiated) site, located outside of the radiation field, only in the AZD7762+RT group, with a corresponding reduction in mean tumor volume, increase in the CD8 T-cell population, and immune activated gene signaling. Our results demonstrate that targeted inhibition of cell cycle checkpoint activation following ionizing radiation drives increased production of immunogenic micronuclei, leading to systemic tumor response with potential future clinical benefit.
Collapse
Affiliation(s)
- Hann-Hsiang Chao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiation Oncology, McGuire VA Medical Center, Richmond, VA, USA
| | - Ilias V Karagounis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoforos Thomas
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Noëlle B François
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Wang Z, Zuo W, Zeng Q, Li Y, Lu T, Bu Y, Hu G. The Homologous Recombination Repair Pathway is Associated with Resistance to Radiotherapy in Nasopharyngeal Carcinoma. Int J Biol Sci 2020; 16:408-419. [PMID: 32015678 PMCID: PMC6990897 DOI: 10.7150/ijbs.37302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy plays a major role in the management of nasopharyngeal carcinoma (NPC). However, the radioresistant cells limit its efficiency and drive recurrence inside the irradiated tumor volume leading to poor outcome for patients. To illuminate the signal pathway involved in the radioresistance and evaluate the potential for predicting NPC response to radiotherapy, we established the radioresistant NPC cell line (CNE2-RR) derived from NPC cell line CNE2 by gradually increased the radiation dose (total 60 Gy), and the radioresistance of CNE2-RR cells was evaluated by the colony formation, FCM and comet assays. Furthermore, comparison of established CNE2-RR cell line to parental cell line found the homologous recombination repair (HRR) proteins differences involved in NPC radioresistance. In addition, the differentially expressed proteins were further validated by western blotting, immunofluorescence and IHC in tumor xenografs and radioresistant NPC tissues. Furthermore, the correlation of HRR proteins expression levels with NPC radioresistance were evaluated. The results showed that the upregulation of HRR proteins were significantly correlated with NPC radioresistance. In addition, using the Youden Index cutoff value, a panel of the HRR proteins analyses revealed a sensitivity of 70%, specificity of 72%. Furthermore, silencing NFBD1 enhanced the radiosensitivity of CNE2-RR cells by impairing IR-inducing γ-H2AX and HR proteins foci formation. These results suggest that controlling the HRR signaling pathway may hold promise to overcome NPC radioresistance.
Collapse
Affiliation(s)
- Zhihai Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenqi Zuo
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Quan Zeng
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanshi Li
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tao Lu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
34
|
Giotti B, Chen SH, Barnett MW, Regan T, Ly T, Wiemann S, Hume DA, Freeman TC. Assembly of a parts list of the human mitotic cell cycle machinery. J Mol Cell Biol 2019; 11:703-718. [PMID: 30452682 PMCID: PMC6788831 DOI: 10.1093/jmcb/mjy063] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
The set of proteins required for mitotic division remains poorly characterized. Here, an extensive series of correlation analyses of human and mouse transcriptomics data were performed to identify genes strongly and reproducibly associated with cells undergoing S/G2-M phases of the cell cycle. In so doing, 701 cell cycle-associated genes were defined and while it was shown that many are only expressed during these phases, the expression of others is also driven by alternative promoters. Of this list, 496 genes have known cell cycle functions, whereas 205 were assigned as putative cell cycle genes, 53 of which are functionally uncharacterized. Among these, 27 were screened for subcellular localization revealing many to be nuclear localized and at least three to be novel centrosomal proteins. Furthermore, 10 others inhibited cell proliferation upon siRNA knockdown. This study presents the first comprehensive list of human cell cycle proteins, identifying many new candidate proteins.
Collapse
Affiliation(s)
- Bruno Giotti
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
- Biosciences and Biotechnology Institute, EDyP Department, CEA Grenoble, 17 rue des Martyrs, Grenoble, France
| | - Sz-Hau Chen
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Tim Regan
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Swann Building, Edinburgh EH9 3BF, Scotland, UK
| | - Stefan Wiemann
- Molecular Genome Analysis (B050), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, Heidelberg, Germany
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
- Mater Research Institute, University of Queensland, Level 3, Aubigny Place, Raymond Terrace, South Brisbane, Qld,Australia
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| |
Collapse
|
35
|
Bergstrand S, O'Brien EM, Farnebo M. The Cajal Body Protein WRAP53β Prepares the Scene for Repair of DNA Double-Strand Breaks by Regulating Local Ubiquitination. Front Mol Biosci 2019; 6:51. [PMID: 31334247 PMCID: PMC6624377 DOI: 10.3389/fmolb.2019.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Proper repair of DNA double-strand breaks is critical for maintaining genome integrity and avoiding disease. Modification of damaged chromatin has profound consequences for the initial signaling and regulation of repair. One such modification involves ubiquitination by E3 ligases RNF8 and RNF168 within minutes after DNA double-strand break formation, altering chromatin structure and recruiting factors such as 53BP1 and BRCA1 for repair via non-homologous end-joining (NHEJ) and homologous recombination (HR), respectively. The WD40 protein WRAP53β plays an essential role in localizing RNF8 to DNA breaks by scaffolding its interaction with the upstream factor MDC1. Loss of WRAP53β impairs ubiquitination at DNA lesions and reduces downstream repair by both NHEJ and HR. Intriguingly, WRAP53β depletion attenuates repair of DNA double-strand breaks more than depletion of RNF8, indicating functions other than RNF8-mediated ubiquitination. WRAP53β plays key roles with respect to the nuclear organelles Cajal bodies, including organizing the genome to promote associated transcription and collecting factors involved in maturation of the spliceosome and telomere elongation within these organelles. It is possible that similar functions may aid also in DNA repair. Here we describe the involvement of WRAP53β in Cajal bodies and DNA double-strand break repair in detail and explore whether and how these processes may be linked. We also discuss the possibility that the overexpression of WRAP53β detected in several cancer types may reflect its normal participation in the DNA damage response rather than oncogenic properties.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Snow A, Ricker C, In GK. Two synchronous malignancies: nodular melanoma and renal cell carcinoma in a patient with an underlying germline BRCA2 mutation. BMJ Case Rep 2019; 12:12/6/e227625. [PMID: 31227566 DOI: 10.1136/bcr-2018-227625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Modernised genetic testing among patients with cancer has led to an increasing wealth of knowledge regarding cancer biology and aetiology. Furthermore, some germline mutations have the potential to direct therapeutic approaches as well. While BRCA1/2 mutations are well-established risk factors for breast and ovarian cancers, their impact on other cancers is less understood. We describe a patient with a germline BRCA2 mutation who developed synchronous melanoma and renal cell carcinoma, but responded well to treatment and is now cancer free.
Collapse
Affiliation(s)
- Anson Snow
- Department of Medicine, Los Angeles County University of Southern California Medical Center, Los Angeles, California, USA
| | - Charite Ricker
- Department of Medicine, Division of Medical Oncology, University of Southern California - Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Gino K In
- Department of Dermatology, University of Southern California - Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
37
|
Belli C, Duso BA, Ferraro E, Curigliano G. Homologous recombination deficiency in triple negative breast cancer. Breast 2019; 45:15-21. [PMID: 30818144 DOI: 10.1016/j.breast.2019.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 01/09/2023] Open
Abstract
Triple negative breast cancer (TNBC) represents a heterogeneous subtype of breast cancer characterized by an unfavorable prognosis due to its aggressive biology. The median overall survival (OS) for patients with metastatic TNBC is around 9-12 months with conventional cytotoxic agents. Considering this suboptimal outcome, which is induced despite of medical treatment, new therapeutic strategies would be urgently needed. The ultimate goal of precision medicine is to identify specific molecular alterations that permit considering effective targeted drug(s). Germline BRCA mutations occur in 10-20% of TNBC patients while somatic mutations occur in 3-5% of them. Alterations in the homologous recombination (HR) system are typical of BRCA mutant tumors, but can also be identified in tumors that do not carry this mutation, defining a subgroup of patients referred to as BRCAness. In this review, we focus on the role of homologous recombination deficiency (HRD) as both predictive and prognostic factor in different settings of TNBC patients treated with DNA damaging drugs and poly ADP ribose polymerase (PARP) inhibitors.
Collapse
Affiliation(s)
- Carmen Belli
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, via Ripamonti 435, 20141, Milan, Italy.
| | - Bruno Achutti Duso
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, via Ripamonti 435, 20141, Milan, Italy
| | - Emanuela Ferraro
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, via Ripamonti 435, 20141, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, via Ripamonti 435, 20141, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
38
|
Simhadri S, Vincelli G, Huo Y, Misenko S, Foo TK, Ahlskog J, Sørensen CS, Oakley GG, Ganesan S, Bunting SF, Xia B. PALB2 connects BRCA1 and BRCA2 in the G2/M checkpoint response. Oncogene 2018; 38:1585-1596. [PMID: 30337689 PMCID: PMC6408219 DOI: 10.1038/s41388-018-0535-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/13/2018] [Accepted: 09/21/2018] [Indexed: 01/07/2023]
Abstract
The G2/M checkpoint inhibits mitotic entry upon DNA damage thereby preventing segregation of broken chromosomes and preserving genome stability. The tumor suppressor proteins BRCA1, PALB2 and BRCA2 constitute a BRCA1-PALB2-BRCA2 axis that is essential for homologous recombination (HR)-based DNA double strand break repair. Besides HR, BRCA1 has been implicated in both the initial activation and the maintenance of the G2/M checkpoint, while BRCA2 and PALB2 have been shown to be critical for its maintenance. Here we show that all 3 proteins can play a significant role in both checkpoint activation and checkpoint maintenance, depending on cell type and context, and that PALB2 links BRCA1 and BRCA2 in checkpoint response. The BRCA1-PALB2 interaction can be important for checkpoint activation, whereas the PALB2-BRCA2 complex formation appears to be more critical for checkpoint maintenance. Interestingly, the function of PALB2 in checkpoint response appears to be independent of CHK1 and CHK2 phosphorylation. Following ionizing radiation, cells with disengaged BRCA1-PALB2 interaction show greatly increased chromosomal abnormalities due apparently to combined defects in HR and checkpoint control. These findings provide new insights into DNA damage checkpoint control and further underscore the critical importance of the proper cooperation of the BRCA and PALB2 proteins in genome maintenance.
Collapse
Affiliation(s)
- Srilatha Simhadri
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Gabriele Vincelli
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Sarah Misenko
- Department of Molecular Biology and Biochemistry, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tzeh Keong Foo
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Johanna Ahlskog
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Claus S Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Gregory G Oakley
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA. .,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
39
|
Choi EK, Lim JA, Kim JK, Jang MS, Kim SE, Baek HJ, Park EJ, Kim TH, Deng CX, Wang RH, Kim SS. Cyclin B1 stability is increased by interaction with BRCA1, and its overexpression suppresses the progression of BRCA1-associated mammary tumors. Exp Mol Med 2018; 50:1-16. [PMID: 30327455 PMCID: PMC6191436 DOI: 10.1038/s12276-018-0169-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Germline BRCA1 mutations predispose women to breast and ovarian cancer. BRCA1, a large protein with multiple functional domains, interacts with numerous proteins involved in many important biological processes and pathways. However, to date, the role of BRCA1 interactions at specific stages in the progression of mammary tumors, particularly in relation to cell cycle regulation, remains elusive. Here, we demonstrate that BRCA1 interacts with cyclin B1, a crucial cell cycle regulator, and that their interaction is modulated by DNA damage and cell cycle phase. In DNA-damaged mitotic cells, BRCA1 inhibits cytoplasmic transportation of cyclin B1, which prevents cyclin B1 degradation. Moreover, restoration of cyclin B1 in BRCA1-deficient cells reduced cell survival in association with induction of apoptosis. We further demonstrate that treatment of Brca1-mutant mammary tumors with vinblastine, which induces cyclin B1, significantly reduced tumor progression. In addition, a correlation analysis of vinblastine responses and gene expression profiles in tumors at baseline revealed 113 genes that were differentially expressed between tumors that did and did not respond to vinblastine treatment. Further analyses of protein–protein interaction networks revealed gene clusters related to vinblastine resistance, including nucleotide excision repair, epigenetic regulation, and the messenger RNA surveillance pathway. These findings enhance our understanding of how loss of BRCA1 disrupts mitosis regulation through dysregulation of cyclin B1 and provide evidence suggesting that targeting cyclin B1 may be useful in BRCA1-associated breast cancer therapy. The role of disrupted activity of the protein BRCA1 in the progression of breast cancer has been clarified, suggesting that targeting another protein with which it interacts could offer a new route to treatment. Mutations of BRCA1 are known to predispose women to both breast and ovarian cancers. Researchers led by Sang Soo Kim (National Cancer Center, South Korea) and Rui-Hong Wang (University of Macau, China) studied the interaction with a protein called cyclin B1 that controls cell growth and division. They found that, in mitosis, BRCA1 interacts with and stabilizes cyclin B1, explaining why the loss of BRCA1 can disrupt the G2/M cell cycle control and accumulate the genetic instability. Treatment of Brca1-mutant mammary tumors with vinblastine, which alters cyclin B1 level, significantly reduced tumor progression with reduction of survival and induction of apoptosis.
Collapse
Affiliation(s)
- Eun Kyung Choi
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Jeong-A Lim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Jong Kwang Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Moon Sun Jang
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Sun Eui Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Hye Jung Baek
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Eun Jung Park
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Tae Hyun Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Rui-Hong Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, 999078, China.
| | - Sang Soo Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
40
|
Zhao L, Jiang L, He L, Wei Q, Bi J, Wang Y, Yu L, He M, Zhao L, Wei M. Identification of a novel cell cycle-related gene signature predicting survival in patients with gastric cancer. J Cell Physiol 2018; 234:6350-6360. [PMID: 30238991 DOI: 10.1002/jcp.27365] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC) is one of the most fatal cancers in the world. Thousands of biomarkers have been explored that might be related to survival and prognosis via database mining. However, the prediction effect of single gene biomarkers is not specific enough. Increasing evidence suggests that gene signatures are emerging as a possible better alternative. We aimed to develop a novel gene signature to improve the prognosis prediction of GC. Using the messenger RNA (mRNA)-mining approach, we performed mRNA expression profiling in a large GC cohort (n = 375) from The Cancer Genome Atlas (TCGA) database. Gene Set Enrichment Analysis (GSEA) was performed, and we recovered genes related to the G2/M checkpoint, which we identified with a Cox proportional regression model. We identified a set of five genes (MARCKS, CCNF, MAPK14, INCENP, and CHAF1A), which were significantly associated with overall survival (OS) in the test series. Based on this five-gene signature, the test series patients could be classified into high-risk or low-risk subgroups. Multivariate Cox regression analysis indicated that the prognostic power of this five-gene signature was independent of clinical features. In conclusion, we developed a five-gene signature related to the cell cycle that can predict survival for GC. Our findings provide novel insight that is useful for understanding cell cycle mechanisms and for identifying patients with GC with poor prognoses.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Linxiu He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
41
|
Ayaz F, Kheeree R, Isse QA, Ersan RH, Algul O. DNA Base Bioisosteres, Bis-benzoxazoles, Exert Anti-proliferative Effect on Human Prostate and Breast Cancer Cells. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.429504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
42
|
Rodriguez-Berriguete G, Granata G, Puliyadi R, Tiwana G, Prevo R, Wilson RS, Yu S, Buffa F, Humphrey TC, McKenna WG, Higgins GS. Nucleoporin 54 contributes to homologous recombination repair and post-replicative DNA integrity. Nucleic Acids Res 2018; 46:7731-7746. [PMID: 29986057 PMCID: PMC6125679 DOI: 10.1093/nar/gky569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/25/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022] Open
Abstract
The nuclear pore complex (NPC) machinery is emerging as an important determinant in the maintenance of genome integrity and sensitivity to DNA double-strand break (DSB)-inducing agents, such as ionising radiation (IR). In this study, using a high-throughput siRNA screen, we identified the central channel NPC protein Nup54, and concomitantly its molecular partners Nup62 and Nup58, as novel factors implicated in radiosensitivity. Nup54 depletion caused an increase in cell death by mitotic catastrophe after IR, and specifically enhanced both the duration of the G2 arrest and the radiosensitivity of cells that contained replicated DNA at the time of IR exposure. Nup54-depleted cells also exhibited increased formation of chromosome aberrations arisen from replicated DNA. Interestingly, we found that Nup54 is epistatic with the homologous recombination (HR) factor Rad51. Moreover, using specific DNA damage repair reporters, we observed a decreased HR repair activity upon Nup54 knockdown. In agreement with a role in HR repair, we also demonstrated a decreased formation of HR-linked DNA synthesis foci and sister chromatid exchanges after IR in cells depleted of Nup54. Our study reveals a novel role for Nup54 in the response to IR and the maintenance of HR-mediated genome integrity.
Collapse
Affiliation(s)
- Gonzalo Rodriguez-Berriguete
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Giovanna Granata
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Rathi Puliyadi
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Gaganpreet Tiwana
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Remko Prevo
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Rhodri S Wilson
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Sheng Yu
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Francesca Buffa
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Timothy C Humphrey
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - W Gillies McKenna
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Geoff S Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
43
|
Higelin J, Catanese A, Semelink-Sedlacek LL, Oeztuerk S, Lutz AK, Bausinger J, Barbi G, Speit G, Andersen PM, Ludolph AC, Demestre M, Boeckers TM. NEK1 loss-of-function mutation induces DNA damage accumulation in ALS patient-derived motoneurons. Stem Cell Res 2018; 30:150-162. [PMID: 29929116 DOI: 10.1016/j.scr.2018.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/22/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022] Open
Abstract
Mutations in genes coding for proteins involved in DNA damage response (DDR) and repair, such as C9orf72 and FUS (Fused in Sarcoma), are associated with neurodegenerative diseases and lead to amyotrophic lateral sclerosis (ALS). Heterozygous loss-of-function mutations in NEK1 (NIMA-related kinase 1) have also been recently found to cause ALS. NEK1 codes for a multifunctional protein, crucially involved in mitotic checkpoint control and DDR. To resolve pathological alterations associated with NEK1 mutation, we compared hiPSC-derived motoneurons carrying a NEK1 mutation with mutant C9orf72 and wild type neurons at basal level and after DNA damage induction. Motoneurons carrying a C9orf72 mutation exhibited cell specific signs of increased DNA damage. This phenotype was even more severe in NEK1c.2434A>T neurons that showed significantly increased DNA damage at basal level and impaired DDR after induction of DNA damage in an maturation-dependent manner. Our results provide first mechanistic insight in pathophysiological alterations induced by NEK1 mutations and point to a converging pathomechanism of different gene mutations causative for ALS. Therefore, our study contributes to the development of novel therapeutic strategies to reduce DNA damage accumulation in neurodegenerative diseases and ALS.
Collapse
Affiliation(s)
- Julia Higelin
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany; International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Alberto Catanese
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany; International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | | | - Sertap Oeztuerk
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany; International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | | | - Gotthold Barbi
- Institute for Human Genetics, University Ulm, Ulm, Germany
| | - Günter Speit
- Institute for Human Genetics, University Ulm, Ulm, Germany
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umea University, Umea, Sweden
| | | | - Maria Demestre
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.
| |
Collapse
|
44
|
Misenko SM, Patel DS, Her J, Bunting SF. DNA repair and cell cycle checkpoint defects in a mouse model of 'BRCAness' are partially rescued by 53BP1 deletion. Cell Cycle 2018; 17:881-891. [PMID: 29620483 PMCID: PMC6056228 DOI: 10.1080/15384101.2018.1456295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/13/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022] Open
Abstract
'BRCAness' is a term used to describe cancer cells that behave similarly to tumors with BRCA1 or BRCA2 mutations. The BRCAness phenotype is associated with hypersensitivity to chemotherapy agents including PARP inhibitors, which are a promising class of recently-licensed anti-cancer treatments. This hypersensitivity arises because of a deficiency in the homologous recombination (HR) pathway for DNA double-strand break repair. To gain further insight into how genetic modifiers of HR contribute to the BRCAness phenotype, we created a new mouse model of BRCAness by generating mice that are deficient in BLM helicase and the Exo1 exonuclease, which are involved in the early stages of HR. We find that cells lacking BLM and Exo1 exhibit a BRCAness phenotype, with diminished HR, and hypersensitivity to PARP inhibitors. We further tested how 53BP1, an important regulator of HR, affects repair efficiency in our BRCAness model. We find that deletion of 53BP1 can relieve several of the repair deficiencies observed in cells lacking BLM and Exo1, just as it does in cells lacking BRCA1. These results substantiate the importance of BRCAness as a concept for classification of cancer cases, and further clarify the role of 53BP1 in regulation of DNA repair pathway choice in mammalian cells.
Collapse
Affiliation(s)
- Sarah M. Misenko
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Dharm S. Patel
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Joonyoung Her
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Samuel F. Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
45
|
Yang Q, Lin W, Liu Z, Zhu J, Huang N, Cui Z, Han Z, Pan Q, Goel A, Sun F. RAP80 is an independent prognosis biomarker for the outcome of patients with esophageal squamous cell carcinoma. Cell Death Dis 2018; 9:146. [PMID: 29396516 PMCID: PMC5833679 DOI: 10.1038/s41419-017-0177-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most popular pathology of esophageal cancer (EC) in China, especially in Henan province, mid-east of China. Presently, targeting DNA damage repair (DDR) factors is a promising approach for cancer therapy. Our group has been focusing on exploring the DDR factors overexpressed in ESCC tissues to provide potential targets for therapies for many years. RAP80/UIMC1 (ubiquitin interaction motif containing 1), one of those DDR factors we tested, was highly overexpressed in ESCC tissues compared with adjacent normal tissues. Moreover, the RAP80 mRNA level was validated to be an independent prognosis biomarker for the overall survival time of ESCC patients. The following biological assays revealed that it promoted cell proliferation both in vitro and in vivo, inhibited cell apoptosis at both early and late stages, and participated in G2/M checkpoint regulation. Even though studies have reported that ATM phosphorylates RAP80 at different serine sites upon DNA damage, the reversal regulation of RAP80 on the activity of ATM has never been investigated. In the study, mechanism explorations revealed that RAP80 positively regulated the ATM activity via proteasome–ubiquitination pathway to promote the transition of G2/M phase in cell cycle. By examining a number of E3 ubiquitination ligases (Ub) and deubiquitination (DUb) enzymes, we found that RAP80 positively regulated the stability of USP13 to promote cell proliferation of EC cells. Moreover, inhibition of RAP80 greatly sensitized EC cells to ATM inhibitor KU-55933, triggering a potential combination of RAP80 inhibitors and ATM inhibitors to enhance the therapeutic efficiency of ESCC patients for the clinicians.
Collapse
Affiliation(s)
- Qingyuan Yang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Wanrun Lin
- Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Zhiwei Liu
- Department of Laboratory, Central Hospital of Panyu, Guangzhou, Guangdong, China
| | - Jiabei Zhu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhongqi Cui
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zeping Han
- Department of Laboratory, Central Hospital of Panyu, Guangzhou, Guangdong, China
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.
| |
Collapse
|
46
|
Gong C, Yang L, Zhou J, Guo X, Zhuang Z. Possible role of PAPR-1 in protecting human HaCaT cells against cytotoxicity of SiO2 nanoparticles. Toxicol Lett 2017; 280:213-221. [DOI: 10.1016/j.toxlet.2017.07.213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
|
47
|
Koch B, Maser E, Hartwig A. Low concentrations of antimony impair DNA damage signaling and the repair of radiation-induced DSB in HeLa S3 cells. Arch Toxicol 2017; 91:3823-3833. [PMID: 28612261 DOI: 10.1007/s00204-017-2004-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Antimony is utilized in a large variety of industrial applications, leading to significant environmental and occupational exposure. Mainly based on animal experiments, the IARC and MAK Commission have classified antimony and its inorganic compounds as Group 2B or 2 carcinogens, respectively. However, the underlying mode(s) of action are still largely unknown. In the present study, we investigated the impact of non-cytotoxic up to cytotoxic concentrations of SbCl3 on DNA DSB repair and cell cycle control in HeLa S3 cells. We induced DSB by γ-irradiation and analyzed inhibitory actions of antimony on potential molecular targets of the DSB repair machinery. Antimony disturbed cell cycle control, affecting phosphorylation of Chk1. Furthermore, the repair of DSB was impaired in the presence of antimony, as monitored by pulsed-field gel electrophoresis and γH2AX foci formation of cells in G1 and G2 phase. Specifically, BRCA1 and RAD51 were identified as molecular targets. Our results point towards an interference with both non-homologous end-joining (NHEJ) and homologous recombination (HR), and inhibitory effects may be explained by interactions with critical cysteine groups; this needs to be further investigated. Altogether, the results provide further evidence for the impairment of DNA repair processes as one underlying mechanism in antimony-induced carcinogenicity.
Collapse
Affiliation(s)
- Barbara Koch
- Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Elena Maser
- Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Andrea Hartwig
- Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
48
|
Jabareen A, Abu-Jaafar A, Abou-Kandil A, Huleihel M. Effect of TPA and HTLV-1 Tax on BRCA1 and ERE controlled genes expression. Cell Cycle 2017; 16:1336-1344. [PMID: 28594273 DOI: 10.1080/15384101.2017.1327491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Interference with the expression and/or functions of the multifunctional tumor suppressor BRCA1 leads to a high risk of breast and ovarian cancers. BRCA1 expression is usually activated by the estrogen (E2) liganded ERα receptor. Activated ERα is considered as a potent transcription factor which activates various genes expression by 2 pathways. A classical pathway, ERα binds directly to E2-responsive elements (EREs) in the promoters of the responsive genes and a non-classical pathway where ERα indirectly binds with the appropriate gene promoter. In our previous study, HTLV-1Tax was found to strongly inhibit ERα induced BRCA1 expression while stimulating ERα induced ERE dependent genes. TPA is a strong PKC activator which found to induce the expression of HTLV-1. Here we examined the effect of TPA on the expression of BRCA1 and genes controlled by ERE region in MCF-7 cells and on Tax activity on these genes. Our results showed strong stimulatory effect of TPA on both BRCA1 and ERE expression without treatment with E2. Tax did not show any significant effect on these TPA activities. It seems that TPA activation of BRCA1 and ERE expression is dependent on PKC activity but not through the NFκB pathway. However, 53BP1 may be involved in this TPA activity because its overexpression significantly reduced the TPA stimulatory effect on BRCA1 and ERE expression. Additionally, our Chip assay results probably exclude possible involvement of ERα pathway in this TPA activity because TPA did not interfere with the binding of ERα to both BRCA1 promoter and ERE region.
Collapse
Affiliation(s)
- Azhar Jabareen
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Aya Abu-Jaafar
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Ammar Abou-Kandil
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Mahmoud Huleihel
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| |
Collapse
|
49
|
Moazzeni H, Najafi A, Khani M. Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol Cell Probes 2017; 34:45-52. [PMID: 28546132 DOI: 10.1016/j.mcp.2017.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/05/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
Abstract
Some microRNAs have carcinogenic or tumor suppressive effects in breast cancer, which is the most common cancer in women worldwide. MiR-7 and miR-9 are tumor suppressor microRNAs, which induce apoptosis and inhibit proliferation in breast cancer cells. Moreover, miR-96 and miR-182 are onco-microRNAs that increase proliferation, migration, and tumorigenesis in breast cancer cells. This study aimed to identify the direct target genes of these four microRNAs in the human breast cancer cell lines MCF-7 and MDA-MB-231. Initially, bioinformatics tools were used to identify the target genes that have binding sites for miR-7, MiR-9, MiR-96, and miR-182 and are also associated with breast cancer. Subsequently, the findings of the bioinformatics analysis relating to the effects of these four microRNAs on the 3'-UTR activity of the potential target genes were confirmed using the dual luciferase assay in MCF-7 and MDA-MB-231 cells co-transfected with the vectors containing 3'-UTR segments of the target genes downstream of a luciferase coding gene and each of the microRNAs. Finally, the effects of microRNAs on the endogenous expression of potential target genes were assessed by the overexpression of each of the four microRNAs in MCF-7 and MDA-MB-231 cells. Respectively, three, three, three, and seven genes were found to have binding sites for miR-7, miR-9, miR-96, and miR-182 and were associated with breast cancer. The results of empirical studies including dual luciferase assays and real-time PCR confirmed that miR-7 regulates the expression of BRCA1 and LASP1; MiR-9 regulates the expression of AR; miR-96 regulates the expression of ABCA1; and miR-182 regulates the expression of NBN, TOX3, and LASP1. Taken together, our results suggest that the tumor suppressive effects of miR-7 may be mediated partly by regulating the expression of BRCA1 as a tumor suppressor gene in breast cancer. In addition, this microRNA and miR-182 may have effects on the nodal-positivity and tumor size of breast carcinoma through the regulation of LASP1. The tumor suppressive functions of miR-9 may be mediated partly by suppressing the expression of AR-an oncogene in breast cancer. Moreover, miR-96 may play an oncogenic role in breast cancer by suppressing the apoptosis through the regulation of ABCA1.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
50
|
Hollis RL, Churchman M, Gourley C. Distinct implications of different BRCA mutations: efficacy of cytotoxic chemotherapy, PARP inhibition and clinical outcome in ovarian cancer. Onco Targets Ther 2017; 10:2539-2551. [PMID: 28546758 PMCID: PMC5436779 DOI: 10.2147/ott.s102569] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Approximately a fifth of ovarian carcinoma (OC) is associated with inherited germline mutations, most commonly in the DNA repair genes BRCA1 or BRCA2 (BRCA). BRCA1- and BRCA2-associated OCs have historically been described as a single subgroup of OC that displays a distinct set of characteristics termed the "BRCAness" phenotype. The hallmarks of this phenotype are superior clinical outcome and hypersensitivity to platinum-based chemotherapy and poly-(ADP-ribose) polymerase (PARP) inhibitors. However, growing evidence suggests that BRCA1- and BRCA2-associated OCs display distinct characteristics, most notably in long-term patient survival. Furthermore, recent data indicate that the site of BRCA1 mutation is important with regard to platinum and PARP inhibitor sensitivity. Here, we summarize the body of research describing the BRCAness phenotype and highlight the differential implications of different BRCA mutations with regard to clinicopathologic features, therapy sensitivity and clinical outcome in OC.
Collapse
Affiliation(s)
- Robert L Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Edinburgh Cancer Research UK Centre, MRC IGMM, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Michael Churchman
- Nicola Murray Centre for Ovarian Cancer Research, Edinburgh Cancer Research UK Centre, MRC IGMM, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Edinburgh Cancer Research UK Centre, MRC IGMM, Western General Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|