1
|
Sergeeva KV, Tyganov SA, Zaripova KA, Bokov RO, Nikitina LV, Konstantinova TS, Kalamkarov GR, Shenkman BS. Mechanical and signaling responses of unloaded rat soleus muscle to chronically elevated β-myosin activity. Arch Biochem Biophys 2024; 754:109961. [PMID: 38492659 DOI: 10.1016/j.abb.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
It has been reported that muscle functional unloading is accompanied by an increase in motoneuronal excitability despite the elimination of afferent input. Thus, we hypothesized that pharmacological potentiation of spontaneous contractile soleus muscle activity during hindlimb unloading could activate anabolic signaling pathways and prevent the loss of muscle mass and strength. To investigate these aspects and underlying molecular mechanisms, we used β-myosin allosteric effector Omecamtiv Mekarbil (OM). We found that OM partially prevented the loss of isometric strength and intrinsic stiffness of the soleus muscle after two weeks of disuse. Notably, OM was able to attenuate the unloading-induced decrease in the rate of muscle protein synthesis (MPS). At the same time, the use of drug neither prevented the reduction in the markers of translational capacity (18S and 28S rRNA) nor activation of the ubiquitin-proteosomal system, which is evidenced by a decrease in the cross-sectional area of fast and slow muscle fibers. These results suggest that chemically-induced increase in low-intensity spontaneous contractions of the soleus muscle during functional unloading creates prerequisites for protein synthesis. At the same time, it should be assumed that the use of OM is advisable with pharmacological drugs that inhibit the expression of ubiquitin ligases.
Collapse
Affiliation(s)
- K V Sergeeva
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia.
| | - S A Tyganov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - K A Zaripova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - R O Bokov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - L V Nikitina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - T S Konstantinova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - G R Kalamkarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - B S Shenkman
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Tejeda-Munoz N, Azbazdar Y, Monka J, Binder G, Dayrit A, Ayala R, O'Brien N, De Robertis EM. The PMA phorbol ester tumor promoter increases canonical Wnt signaling via macropinocytosis. eLife 2023; 12:RP89141. [PMID: 37902809 PMCID: PMC10615368 DOI: 10.7554/elife.89141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here, we show that a macropinocytosis activator, the tumor promoter phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Munoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Oncology Science, Health Stephenson Cancer Center, University of Oklahoma Health Science CenterOklahoma CityUnited States
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Alex Dayrit
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Raul Ayala
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Neil O'Brien
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
3
|
Park R, Lee S, Chin H, Nguyen ATQ, Lee D. Tumor-Promoting Role of GNA14 in Colon Cancer Development. Cancers (Basel) 2023; 15:4572. [PMID: 37760541 PMCID: PMC10527020 DOI: 10.3390/cancers15184572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies have shown that mutations in members of the G-protein α family contribute to the onset and progression of cancer. However, the role of GNA14 in CRC remains unknown. In this study, we examined the effect of GNA14 on CRC through genetic approaches in vitro and in vivo. We found that GNA14 knockdown by small interfering RNA (siRNA) inhibited the proliferation of CRC cells SW403 and HT29. Gna14 knockout mice developed normally without obvious abnormalities. However, the number of polyps in the small intestine was significantly reduced in Gna14 knockout mice compared to control mice after mating with ApcMin mice, a representative CRC mouse model. In particular, deletion of the Gna14 inhibited polyp growth, especially in the distal end of the small intestine. Histological examination showed that Gna14 knockout mice suppressed malignant tumor progression due to decreased proliferation and increased apoptosis in polyps compared to controls. In addition, GNA14 knockdown in CRC cells resulted in downregulation of ERK phosphorylation and β-catenin and β-catenin phosphorylation at S675. Similarly, ERK phosphorylation and phospho-β-catenin phosphorylation at S675 were decreased in polyps of Gna14 knockout mice. Collectively, these analyses show that GNA14 may accelerate CRC cell proliferation and malignant tumor progression through ERK and β-catenin pathways.
Collapse
Affiliation(s)
| | | | | | | | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Tejeda-Muñoz N, Azbazdar Y, Monka J, Binder G, Dayrit A, Ayala R, O’Brien N, De Robertis EM. The PMA Phorbol Ester Tumor Promoter Increases Canonical Wnt Signaling Via Macropinocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543509. [PMID: 37333286 PMCID: PMC10274750 DOI: 10.1101/2023.06.02.543509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here we show that a macropinocytosis activator, the tumor promoter Phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
- Department of Oncology Science, Health Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- These authors contributed equally
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
- These authors contributed equally
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Alex Dayrit
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Raul Ayala
- Department of Medicine, David Geffen School of Medicine at UCLA
| | - Neil O’Brien
- Department of Medicine, David Geffen School of Medicine at UCLA
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| |
Collapse
|
5
|
Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, Haghdoost S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants (Basel) 2023; 12:1371. [PMID: 37507911 PMCID: PMC10376708 DOI: 10.3390/antiox12071371] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The coordinating role of nuclear factor erythroid-2-related factor 2 (Nrf2) in cellular function is undeniable. Evidence indicates that this transcription factor exerts massive regulatory functions in multiple signaling pathways concerning redox homeostasis and xenobiotics, macromolecules, and iron metabolism. Being the master regulator of antioxidant system, Nrf2 controls cellular fate, influencing cell proliferation, differentiation, apoptosis, resistance to therapy, and senescence processes, as well as infection disease success. Because Nrf2 is the key coordinator of cell defence mechanisms, dysregulation of its signaling has been associated with carcinogenic phenomena and infectious and age-related diseases. Deregulation of this cytoprotective system may also interfere with immune response. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during the initial phagocytosis of pathogens, which could lead to the successful establishment of infection and promote susceptibility to infectious diseases. There is still a knowledge gap to fill regarding the molecular mechanisms by which Nrf2 orchestrates such complex networks involving multiple pathways. This review describes the role of Nrf2 in non-pathogenic and pathogenic cells.
Collapse
Affiliation(s)
- Mira Hammad
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Mohammad Raftari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rute Cesário
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rima Salma
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Paulo Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Natural Resources Institute, University of Greenwich, London ME4 4TB, UK
| | - Siamak Haghdoost
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| |
Collapse
|
6
|
Effects of exercise and bryostatin-1 on functional recovery and posttranslational modification in the perilesional cortex after cerebral infarction. Neuroreport 2023; 34:267-272. [PMID: 36881749 DOI: 10.1097/wnr.0000000000001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Strokes can cause a variety of sequelae, such as paralysis, particularly in the early stages after stroke onset. Rehabilitation therapy atthis time often provides some degree of paralysis recovery. Neuroplasticity in the peri-infarcted cerebral cortex induced by exercise training may contribute to recovery of paralysis after cerebral infarction. However, the molecular mechanism of this process remains unclear. This study focused on brain protein kinase C (PKC), which is speculated to be involved in neuroplasticity. We evaluated the functional recovery of cerebral infarction model rats, by using rotarod test after running wheel training and with/without administration of bryostatin, a PKC activator. In addition, the expression of phosphorylated and unphosphorylated PKC subtypes, glycogen synthase kinase 3β (GSK3β), and collapsin response-mediator proteins 2 (CRMP2) were analyzed by Western blotting. In the rotarod test, bryostatin administration alone had no effect on gait duration, but the combination of training and this drug significantly prolonged gait duration compared with training alone. In protein expression analysis, the combination of training and bryostatin significantly increased phosphorylation of PKCα and PKCε isoforms, increased phosphorylation of GSK3β, which acts downstream of PKC, and decreased phosphorylation of CRMP2. The effect of bryostatin in combination with training appears to be mediated via PKC phosphorylation, with effects on functional recovery occurring through the downstream regulation of GSK3β and CRMP2 phosphorylation.
Collapse
|
7
|
Alteration of Cellular Energy Metabolism through LPAR2-Axin2 Axis in Gastric Cancer. Biomolecules 2022; 12:biom12121805. [PMID: 36551233 PMCID: PMC9775664 DOI: 10.3390/biom12121805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA), a multifunctional endogenous phospholipid, plays a vital role in cellular homeostasis and the malignant behavior of cancer cells through G-protein-coupled receptors. However, the role of LPA in β-catenin-mediated gastric cancer is unknown. Here, we have noted the high expression of LPAR2 in human gastric cancer tissues, and that LPA treatment significantly increased the proliferation, migration, and invasion of human gastric cancer cells. Results from our biochemical experiments showed that an LPA exposure increased the expression of β-catenin and its nuclear localization, increased the phosphorylation of glycogen synthase kinase 3β (GSK-3β), decreased the expression of Axin2, and increased the expression of the target genes of the β-catenin signaling pathway. The LPA2 receptor (LPAR2) antagonist significantly reduced the LPA-induced nuclear localization of β-catenin, the primary signaling event. The knockdown of LPAR2 in the gastric cancer cell lines robustly reduced the LPA-induced β-catenin activity. An LPA exposure increased the ATP production by both oxidative phosphorylation and glycolysis, and this effect was abrogated with the addition of an LPAR2 antagonist and XAV393, which stabilizes the Axin and inhibits the β-catenin signaling pathway. Based on our findings, the possibility that LPA contributes to gastric cancer initiation and progression through the β-catenin signaling pathway as well as by the dysregulation of the energy metabolism via the LPAR2 receptor and Axin2, respectively, provides a novel insight into the mechanism of and possible therapeutic targets of gastric cancer.
Collapse
|
8
|
Natural products as novel scaffolds for the design of glycogen synthase kinase 3β inhibitors. Expert Opin Drug Discov 2022; 17:377-396. [PMID: 35262427 DOI: 10.1080/17460441.2022.2043845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The different and relevant roles of GSK-3 are of critical importance since they deal with development, metabolic homeostasis, cell polarity and fate, neuronal growth and differentiation as well as modulation of apoptotic potential. Given their involvement with different diseases, many investigations have been undertaken with the aim of discovering new and promising inhibitors for this target. In this context, atural products represent an invaluable source of active molecules. AREAS COVERED In order to overcome issues such as poor pharmacokinetic properties or efficacy, frequently associated with natural compounds, different GSK-3β inhibitors belonging to alkaloid or flavonoid classes have been subjected to structural modifications in order to obtain more potent and safer compounds. Herein, the authors report the results obtained from studies where natural compounds have been used as hits with the aim of providing new kinase inhibitors endowed with a better inhibitory profile. EXPERT OPINION Structurally modification of natural scaffolds is a proven approach taking advantage of their pharmacological characteristics. Indeed, whatever the strategy adopted is and, despite the limitations associated with the structural complexity of natural products, the authors recommend the use of natural scaffolds as a promising strategy for the discovery of novel and potent GSK-3β inhibitors.
Collapse
|
9
|
Agbaegbu Iweka C, Hussein RK, Yu P, Katagiri Y, Geller HM. The lipid phosphatase-like protein PLPPR1 associates with RhoGDI1 to modulate RhoA activation in response to axon growth inhibitory molecules. J Neurochem 2021; 157:494-507. [PMID: 33320336 DOI: 10.1111/jnc.15271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
Phospholipid Phosphatase-Related Protein Type 1 (PLPPR1) is a member of a family of lipid phosphatase related proteins, integral membrane proteins characterized by six transmembrane domains. This family of proteins is enriched in the brain and recent data indicate potential pleiotropic functions in several different contexts. An inherent ability of this family of proteins is to induce morphological changes, and we have previously reported that members of this family interact with each other and may function co-operatively. However, the function of PLPPR1 is not yet understood. Here we show that the expression of PLPPR1 reduces the inhibition of neurite outgrowth of cultured mouse hippocampal neurons by chondroitin sulfate proteoglycans and the retraction of neurites of Neuro-2a cells by lysophosphatidic acid (LPA). Further, we show that PLPPR1 reduces the activation of Ras homolog family member A (RhoA) by LPA in Neuro-2a cells, and that this is because of an association of PLPPR1with the Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI1). These results establish a novel signaling pathway for the PLPPR1 protein.
Collapse
Affiliation(s)
- Chinyere Agbaegbu Iweka
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA.,Department of Neuroscience, Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Rowan K Hussein
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
10
|
Potential of platinum-resensitization by Wnt signaling modulators as treatment approach for epithelial ovarian cancer. J Cancer Res Clin Oncol 2020; 146:2559-2574. [PMID: 32681294 PMCID: PMC7467966 DOI: 10.1007/s00432-020-03317-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Canonical Wnt/ β-catenin pathway is one mechanism being activated in platinum-resistant epithelial ovarian cancer (EOC). Detecting potential targets for Wnt pathway modulation as a putative future therapeutic approach was the aim of this study. METHODS Biological effects of different Wnt modulators (SB216763, XAV939 and triptolide) on the EOC cell lines A2780 and its platinum-resistant clone A2780cis were investigated via multiple functional tests. Immunohistochemistry (IHC) was carried out to compare the expression levels of Wnt marker proteins (β-catenin, snail/ slug, E-cadherin) in patient specimens and to correlate them with lifetime data. RESULTS We could show that activated Wnt signaling of the platinum-resistant EOC cell line A2780cis can be reversed by Wnt manipulators through SB216763 or XAV939. All Wnt manipulators tested consecutively decreased cell proliferation and cell viability. Apoptosis of A2780 and A2780cis was enhanced by triptolide in a dose-dependent manner, whereas cell migration was inhibited by SB216763 and triptolide. IHC analyses elucidated significantly different expression patterns for Wnt markers in the serous subtype. Herein, higher plasmatic snail/ slug expression is associated with improved progression-free (PFS) and overall survival (OS). CONCLUSION According to the described effects on EOC biology, all three Wnt manipulators seem to have the potential to augment the impact of a platinum-based chemotherapy in EOC. This is promising as a dominance of this pathway was confirmed in serous histology.
Collapse
|
11
|
Cores Á, Piquero M, Villacampa M, León R, Menéndez JC. NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules 2020; 10:E904. [PMID: 32545924 PMCID: PMC7356958 DOI: 10.3390/biom10060904] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
NRF2 acts by controlling gene expression, being the master regulator of the Phase II antioxidant response, and also being key to the control of neuroinflammation. NRF2 activity is regulated at several levels, including protein degradation by the proteasome, transcription, and post-transcription. The purpose of this review is to offer a concise and critical overview of the main mechanisms of NRF2 regulation and their actual or potential use as targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Marta Piquero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| |
Collapse
|
12
|
Glycogen Synthase Kinase-3β Facilitates Cytokine Production in 12-O-Tetradecanoylphorbol-13-Acetate/Ionomycin-Activated Human CD4 + T Lymphocytes. Cells 2020; 9:cells9061424. [PMID: 32521784 PMCID: PMC7348852 DOI: 10.3390/cells9061424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/02/2022] Open
Abstract
Cytokines are the major immune regulators secreted from activated CD4+ T lymphocytes that activate adaptive immunity to eradicate nonself cells, including pathogens, tumors, and allografts. The regulation of glycogen synthase kinase (GSK)-3β, a serine/threonine kinase, controls cytokine production by regulating transcription factors. The artificial in vitro activation of CD4+ T lymphocytes by a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin, the so-called T/I model, led to an inducible production of cytokines, such as interferon-γ, tumor necrosis factor-α, and interleukin-2. As demonstrated by the approaches of pharmacological targeting and genetic knockdown of GSK-3β, T/I treatment effectively caused GSK-3β activation followed by GSK-3β-regulated cytokine production. In contrast, pharmacological inhibition of the proline-rich tyrosine kinase 2 and calcineurin signaling pathways blocked cytokine production, probably by deactivating GSK-3β. The blockade of GSK-3β led to the inhibition of the nuclear translocation of T-bet, a vital transcription factor of T lymphocyte cytokines. In a mouse model, treatment with the GSK-3β inhibitor 6-bromoindirubin-3’-oxime significantly inhibited T/I-induced mortality and serum cytokine levels. In summary, targeting GSK-3β effectively inhibits CD4+ T lymphocyte activation and cytokine production.
Collapse
|
13
|
Kapoor R, Dhatwalia S, Kumar R, Rani S, Parsad D. Emerging role of dermal compartment in skin pigmentation: comprehensive review. J Eur Acad Dermatol Venereol 2020; 34:2757-2765. [DOI: 10.1111/jdv.16404] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- R. Kapoor
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - S.K. Dhatwalia
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - R. Kumar
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - S. Rani
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - D. Parsad
- Department of Dermatology PGIMER Chandigarh India
| |
Collapse
|
14
|
Lysophosphatidic Acid and Autotaxin-associated Effects on the Initiation and Progression of Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11070958. [PMID: 31323936 PMCID: PMC6678549 DOI: 10.3390/cancers11070958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium interacts dynamically with the immune system to maintain its barrier function to protect the host, while performing the physiological roles in absorption of nutrients, electrolytes, water and minerals. The importance of lysophosphatidic acid (LPA) and its receptors in the gut has been progressively appreciated. LPA signaling modulates cell proliferation, invasion, adhesion, angiogenesis, and survival that can promote cancer growth and metastasis. These effects are equally important for the maintenance of the epithelial barrier in the gut, which forms the first line of defense against the milieu of potentially pathogenic stimuli. This review focuses on the LPA-mediated signaling that potentially contributes to inflammation and tumor formation in the gastrointestinal tract.
Collapse
|
15
|
Byrnes CC, Jia W, Alshamrani AA, Kuppa SS, Murph MM. miR-122-5p Expression and Secretion in Melanoma Cells Is Amplified by the LPAR3 SH3–Binding Domain to Regulate Wnt1. Mol Cancer Res 2018; 17:299-309. [DOI: 10.1158/1541-7786.mcr-18-0460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/16/2018] [Accepted: 09/11/2018] [Indexed: 11/16/2022]
|
16
|
Cerbón J, Baranda-Avila N, Falcón-Muñoz A, Camacho-Arroyo I, Cerbón M. Sphingolipid synthesis and role in uterine epithelia proliferation. Reproduction 2018; 156:173-183. [DOI: 10.1530/rep-17-0667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Sphingolipids are involved in the regulation of cell proliferation. It has been reported that diacylglycerol and sphingosine-1-phosphate generation, during the synthesis of phospho-sphingolipids, is necessary for both, G1-S transition of cell cycle during the sustained activation of protein kinase C in various cell models (MDCK,SaccharomycesandEntamoeba) and AKT pathway activation. During the estrous cycle of the rat, AKT signaling is the main pathway involved in the regulation of uterine cell proliferation. The aim of the present study was to investigate the role of sphingolipid synthesis during proliferation of uterine cells in the estrous cycle of the rat. On metestrus day, when both luminal and glandular uterine epithelia present the maximal BrdU-labeled cells (S phase cells), there was an increase in the relative abundance of total sphingomyelins, as compared to estrus day. Myriocin, a sphingolipid synthesis inhibitor administered on estrus day, before the new cell cycle of epithelial cells is initiated, decreased the abundance of sphingomyelin, accompanied by proliferation arrest in uterine epithelial cells on metestrus day. In order to study the sphingolipid signaling pathway affected by myriocin, we evaluated the activation of the PKC-AKT-GSK3b-Cyclin D3 pathway. We observed that total and phosphorylated protein kinase C diminished in uterine epithelial cells of myriocin treated animals. Interestingly, cyclin D3 nuclear localization was blocked by myriocin, concomitantly with a decrease in nuclear pRb expression. In conclusion, we demonstrate that sphingolipid synthesis and signaling are involved in uterine epithelial cell proliferation during the estrous cycle of the rat.
Collapse
|
17
|
Li K, Xu X, He Y, Tian Y, Pan W, Xu L, Ma Y, Gao Y, Gao J, Qi Y, Wei L, Zhang J. P21-activated kinase 7 (PAK7) interacts with and activates Wnt/β-catenin signaling pathway in breast cancer. J Cancer 2018; 9:1821-1835. [PMID: 29805709 PMCID: PMC5968771 DOI: 10.7150/jca.24934] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Breast cancer is the highest incidence of tumor in women, which seriously threaten women's health. The occurrence and progression of breast cancer is linked to inactivation or downregulation of tumor suppressors, and activation or upregulation of oncogenes. However, the mechanism of PAK7 involving in the occurrence and progression of breast cancer is not yet fully understood. Methods: PAK7 expression was analyzed by RT-qPCR and immunohistochemistry and correlated with clinicopatholgical parameters in breast cancer tissue microarray. The effects of PAK7 on breast cancer cells were detected by CCK-8 assay, colon formation assay, wound healing and transwell assays, and flow cytometry. The relationship between PAK7 and Wnt/β-catenin signaling pathway was determined by western blotting, TOP/FOP flash, co-Immunoprecipitation and co-localization assays. Results: PAK7 expression was significantly increased in breast cancer tissues and positively correlated with pathological differentiation and TNM stage of breast cancer. Overexpression of PAK7 could significantly promote proliferation and migration of breast cancer cells, and inhibit apoptosis. In contrast, PAK7 knockdown significantly inhibited the proliferation and migration of breast cancer cells and promoted apoptosis. In addition, PAK7 could activate Wnt/β-catenin signaling pathway in breast cancer cells. Further study found that PAK7 could directly bind to GSK3β and β-catenin, and regulate β-catenin degradation by phosphorylating GSK3β. Conclusions: Our study demonstrated that PAK7, as an oncogene, involved in breast cancer progression by activating the Wnt/β-catenin signaling pathway, suggesting that the potential applicability of PAK7 as a target for breast cancer treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Xiaolong Xu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yanqi He
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yihao Tian
- Department of Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Wenting Pan
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Liu Xu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yanbin Ma
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yang Gao
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan 430071, Hubei, China
| | - Jingbo Gao
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan 430071, Hubei, China
| | - Yuwen Qi
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan 430071, Hubei, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Jingwei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
18
|
Proteomic and genomic integration identifies kinase and differentiation determinants of kinase inhibitor sensitivity in leukemia cells. Leukemia 2018; 32:1818-1822. [PMID: 29626197 PMCID: PMC5949212 DOI: 10.1038/s41375-018-0032-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022]
|
19
|
Lu Y, Kim NM, Jiang YW, Zhang H, Zheng D, Zhu FX, Liang R, Li B, Xu HX. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol 2018; 175:1085-1099. [PMID: 29352742 PMCID: PMC5843713 DOI: 10.1111/bph.14150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Background and Purpose Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract, and an impaired immune response plays a critical role in IBD. The current drugs and therapies for IBD treatment are of limited use, therefore, there is a need to find novel drugs or therapies for this disease. We investigated the effect of cambogin in a mouse model of dextran sulphate sodium (DSS)‐induced colitis and whether cambogin attenuates inflammation via a Treg‐cell‐mediated effect on the immune response. Experimental Approach Chronic colitis was established in mice using 2% DSS, and cambogin (10 mg·kg−1, p.o.) was administered for 10 days. Body weight, colon length and colon histology were assessed. Cytokine production was measured using elisa and quantitative real‐time PCR. To evaluate the mechanism of cambogin, human CD4+CD25hiCD127lo Treg cells were isolated from peripheral blood mononuclear cells. Major signalling profiles involved in Treg cell stability were measured. Key Results Cambogin attenuated diarrhoea, colon shortening and colon histological injury and IL‐6, IFN‐γ and TNF‐α production in DSS‐treated mice. Cambogin also up‐regulated Treg cell numbers in both the spleen and mesenteric lymph nodes. Furthermore, cambogin (10 μM) prevented Foxp3 loss in human primary Treg cells in vitro, and promoted USP7‐mediated Foxp3 deubiquitination and increased Foxp3 protein expression in LPS‐treated cells. Conclusions and Implications The effect of cambogin on DSS‐induced colitis is expedited by a Treg‐cell‐mediated modification of the immune response, suggesting that cambogin could be applied as a novel agent for treating colitis and other Treg cell‐related diseases.
Collapse
Affiliation(s)
- Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na-Mi Kim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Wen Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fu-Xiang Zhu
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Liang
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin Li
- Unit of Molecular Immunology, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Hennequart M, Pilotte L, Cane S, Hoffmann D, Stroobant V, Plaen ED, Van den Eynde B. Constitutive IDO1 Expression in Human Tumors Is Driven by Cyclooxygenase-2 and Mediates Intrinsic Immune Resistance. Cancer Immunol Res 2017; 5:695-709. [PMID: 28765120 DOI: 10.1158/2326-6066.cir-16-0400] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/02/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
Tumors use various mechanisms to avoid immune destruction. Cyclooxygenase-2 (COX-2) expression may be a driver of immune suppression in melanoma, but the mechanisms involved remain elusive. Here, we show that COX-2 expression drives constitutive expression of indoleamine 2,3-dioxygenase 1 (IDO1) in human tumor cells. IDO1 is an immunosuppressive enzyme that degrades tryptophan. In a series of seven human tumor lines, constitutive IDO1 expression depends on COX-2 and prostaglandin E2 (PGE2), which, upon autocrine signaling through the EP receptor, activates IDO1 via the PKC and PI3K pathways. COX-2 expression itself depends on the MAPK pathway, which therefore indirectly controls IDO1 expression. Most of these tumors carry PI3K or MAPK oncogenic mutations, which may favor constitutive IDO1 expression. Celecoxib treatment promoted immune rejection of IDO1-expressing human tumor xenografts in immunodeficient mice reconstituted with human allogeneic lymphocytes. This effect was associated with a reduced expression of IDO1 in those ovarian SKOV3 tumors and an increased infiltration of CD3+ and CD8+ cells. Our results highlight the role of COX-2 in constitutive IDO1 expression by human tumors and substantiate the use of COX-2 inhibitors to improve the efficacy of cancer immunotherapy, by reducing constitutive IDO1 expression, which contributes to the lack of T-cell infiltration in "cold" tumors, which fail to respond to immunotherapy. Cancer Immunol Res; 5(8); 695-709. ©2017 AACR.
Collapse
Affiliation(s)
- Marc Hennequart
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Stefania Cane
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Delia Hoffmann
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium. .,de Duve Institute, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| |
Collapse
|
21
|
Kong N, Wu Y, Meng Q, Wang Z, Zuo Y, Pan X, Tong W, Zheng H, Li G, Yang S, Yu H, Zhou EM, Shan T, Tong G. Suppression of Virulent Porcine Epidemic Diarrhea Virus Proliferation by the PI3K/Akt/GSK-3α/β Pathway. PLoS One 2016; 11:e0161508. [PMID: 27560518 PMCID: PMC4999130 DOI: 10.1371/journal.pone.0161508] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 08/05/2016] [Indexed: 11/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has recently caused high mortality in suckling piglets with subsequent large economic losses to the swine industry. Many intracellular signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, are activated by viral infection. The PI3K/Akt pathway is an important cellular pathway that has been shown to be required for virus replication. In the present study, we found that the PEDV JS-2013 strain activated Akt in Vero cells at early (5-15 min) and late stages (8-10 h) of infection. Inhibiting PI3K, an upstream activator of Akt, enhanced PEDV replication. Inhibiting GSK-3α/β, one of the downstream effectors of PI3K/Akt pathway and regulated by Akt during PEDV infected Vero cells, also enhanced PEDV replication. Collectively, our data suggest that PI3K/Akt/GSK-3α/β signaling pathway is activated by PEDV and functions in inhibiting PEDV replication.
Collapse
Affiliation(s)
- Ning Kong
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongguang Wu
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qiong Meng
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of zoology, College of Life Science, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Zhongze Wang
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yewen Zuo
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xi Pan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Hao Zheng
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Guoxin Li
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shen Yang
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai Yu
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - En-min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- * E-mail: (GZT); (TLS)
| | - Guangzhi Tong
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- * E-mail: (GZT); (TLS)
| |
Collapse
|
22
|
Miller WP, Mihailescu ML, Yang C, Barber AJ, Kimball SR, Jefferson LS, Dennis MD. The Translational Repressor 4E-BP1 Contributes to Diabetes-Induced Visual Dysfunction. Invest Ophthalmol Vis Sci 2016; 57:1327-37. [PMID: 26998719 PMCID: PMC4811182 DOI: 10.1167/iovs.15-18719] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The translational repressor 4E-BP1 interacts with the mRNA cap-binding protein eIF4E and thereby promotes cap-independent translation of mRNAs encoding proteins that contribute to diabetic retinopathy. Interaction of 4E-BP1 with eIF4E is enhanced in the retina of diabetic rodents, at least in part, as a result of elevated 4E-BP1 protein expression. In the present study, we examined the role of 4E-BP1 in diabetes-induced visual dysfunction, as well as the mechanism whereby hyperglycemia promotes 4E-BP1 expression. Methods Nondiabetic and diabetic wild-type and 4E-BP1/2 knockout mice were evaluated for visual function using a virtual optomotor test (Optomotry). Retinas were harvested from nondiabetic and type 1 diabetic mice and analyzed for protein abundance and posttranslational modifications. Similar analyses were performed on cells in culture exposed to hyperglycemic conditions or an O-GlcNAcase inhibitor (Thiamet G [TMG]). Results Diabetes-induced visual dysfunction was delayed in mice deficient of 4E-BP1/2 as compared to controls. 4E-BP1 protein expression was enhanced by hyperglycemia in the retina of diabetic rodents and by hyperglycemic conditions in retinal cells in culture. A similar elevation in 4E-BP1 expression was observed with TMG. The rate of 4E-BP1 degradation was significantly prolonged by either hyperglycemic conditions or TMG. A PEST motif in the C-terminus of 4E-BP1 regulated polyubiquitination, turnover, and binding of an E3 ubiquitin ligase complex containing CUL3. Conclusions The findings support a model whereby elevated 4E-BP1 expression observed in the retina of diabetic rodents is the result of O-GlcNAcylation of 4E-BP1 within its PEST motif.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Maria L Mihailescu
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Chen Yang
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Alistair J Barber
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States 2Department of Ophthalmology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Leonard S Jefferson
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
23
|
Seo HH, Lee CY, Lee J, Lim S, Choi E, Park JC, Lee S, Hwang KC. The role of nuclear factor of activated T cells during phorbol myristate acetate-induced cardiac differentiation of mesenchymal stem cells. Stem Cell Res Ther 2016; 7:90. [PMID: 27405982 PMCID: PMC4942985 DOI: 10.1186/s13287-016-0348-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 11/16/2022] Open
Abstract
Background We previously reported that phorbol 12-myristate 13-acetate (PMA) treatment can induce the cardiac differentiation of mesenchymal stem cells (MSCs). In the present study, we investigated how PMA induces cardiac differentiation of MSCs, focusing on its effect on the transcription factors responsible for increased cardiac marker gene expression. Methods Human MSCs (hMSCs) were treated with 1 μM PMA for 9 days. The expression of MSC markers and cardiac markers in the PMA-treated hMSC, as well as the nuclear translocation of transcription factors, nuclear factor of activated T cells (NFAT), and myogenic differentiation 1 (MyoD), was examined. Transcriptional activity of NFAT was examined by utilizing a green fluorescent protein (GFP) vector containing NFAT motif of human interleukin-2 promoter. The effect of PMA on the expression of key cell cycle regulators was examined. Results PMA induces the transcriptional activity of NFAT and MyoD, which have been associated with increased expression of cardiac troponin T (cTnT) and myosin heavy chain (MHC), respectively. Our data suggested that protein kinase C (PKC) mediates the effect of PMA on NFAT activation. Furthermore, PMA treatment increased cell-cycle regulator p27kip1 expression, suggesting that PMA triggers the cardiac differentiation program in MSCs by regulating key transcription factors and cell cycle regulators. Conclusions The results of this study demonstrate the importance of NFAT activation during PMA-induced MSC differentiation and help us to better understand the underlying mechanisms of small molecule-mediated MSC differentiation so that we can develop a strategy for synthesizing novel and improved differentiation-inducing small molecules. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0348-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Soyeon Lim
- Institute for Bio-medical Convergence, Catholic Kwandong University, Incheon, South Korea
| | - Eunhyun Choi
- Institute for Bio-medical Convergence, Catholic Kwandong University, Incheon, South Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, South Korea
| | - Seahyoung Lee
- Institute for Bio-medical Convergence, Catholic Kwandong University, Incheon, South Korea. .,Department of Biomedical Sciences, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, South Korea.
| | - Ki-Chul Hwang
- Institute for Bio-medical Convergence, Catholic Kwandong University, Incheon, South Korea. .,Department of Biomedical Sciences, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, South Korea.
| |
Collapse
|
24
|
BCR signaling inhibitors differ in their ability to overcome Mcl-1–mediated resistance of CLL B cells to ABT-199. Blood 2016; 127:3192-201. [DOI: 10.1182/blood-2015-10-675009] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/10/2016] [Indexed: 12/22/2022] Open
Abstract
Key Points
BCR signals induce ABT-199 resistance in CLL cells by upregulating Mcl-1. SYK inhibitors prevent BCR-mediated Mcl-1 induction more effectively than BTK or PI3Kδ inhibitors.
Collapse
|
25
|
Tajeddine N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochim Biophys Acta Gen Subj 2016; 1860:1079-88. [DOI: 10.1016/j.bbagen.2016.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
26
|
Lu C, Cardoso RC, Puttabyatappa M, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess and Insulin Signaling Disruptions in Female Sheep. Biol Reprod 2016; 94:113. [PMID: 27053365 PMCID: PMC4939741 DOI: 10.1095/biolreprod.115.136283] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/05/2016] [Indexed: 12/25/2022] Open
Abstract
Women with polycystic ovary syndrome often manifest insulin resistance. Using a sheep model of polycystic ovary syndrome-like phenotype, we explored the contribution of androgen and insulin in programming and maintaining disruptions in insulin signaling in metabolic tissues. Phosphorylation of AKT, ERK, GSK3beta, mTOR, and p70S6K was examined in the liver, muscle, and adipose tissue of control and prenatal testosterone (T)-, prenatal T plus androgen antagonist (flutamide)-, and prenatal T plus insulin sensitizer (rosiglitazone)-treated fetuses as well as 2-yr-old females. Insulin-stimulated phospho (p)-AKT was evaluated in control and prenatal T-, prenatal T plus postnatal flutamide-, and prenatal T plus postnatal rosiglitazone-treated females at 3 yr of age. GLUT4 expression was evaluated in the muscle at all time points. Prenatal T treatment increased mTOR, p-p70S6K, and p-GSK3beta levels in the fetal liver with both androgen antagonist and insulin sensitizer preventing the mTOR increase. Both interventions had partial effect in preventing the increase in p-GSK3beta. In the fetal muscle, prenatal T excess decreased p-GSK3beta and GLUT4. The decrease in muscle p-GSK3beta was partially prevented by insulin sensitizer cotreatment. Both interventions partially prevented the decrease in GLUT4. Prenatal T treatment had no effect on basal expression of any of the markers in 2-yr-old females. At 3 yr of age, prenatal T treatment prevented the insulin-stimulated increase in p-AKT in liver and muscle, but not in adipose tissue, and neither postnatal intervention restored p-AKT response to insulin stimulation. Our findings provide evidence that prenatal T excess changes insulin sensitivity in a tissue- and development-specific manner and that both androgens and insulin may be involved in the programming of these metabolic disruptions.
Collapse
Affiliation(s)
- Chunxia Lu
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Rodolfo C Cardoso
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | | |
Collapse
|
27
|
Guerra E, Trerotola M, Tripaldi R, Aloisi AL, Simeone P, Sacchetti A, Relli V, D'Amore A, La Sorda R, Lattanzio R, Piantelli M, Alberti S. Trop-2 Induces Tumor Growth Through AKT and Determines Sensitivity to AKT Inhibitors. Clin Cancer Res 2016; 22:4197-205. [PMID: 27022065 DOI: 10.1158/1078-0432.ccr-15-1701] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Inhibition of AKT is a key target area for personalized cancer medicine. However, predictive markers of response to AKT inhibitors are lacking. Correspondingly, the AKT-dependent chain of command for tumor growth, which will mediate AKT-dependent therapeutic responses, remains unclear. EXPERIMENTAL DESIGN Proteomic profiling was utilized to identify nodal hubs of the Trop-2 cancer growth-driving network. Kinase-specific inhibitors were used to dissect Trop-2-dependent from Trop-2-independent pathways. In vitro assays, in vivo preclinical models, and case series of primary human breast cancers were utilized to define the mechanisms of Trop-2-driven growth and the mode of action of Trop-2-predicted AKT inhibitors. RESULTS Trop-2 and AKT expression was shown to be tightly coordinated in human breast cancers, with virtual overlap with AKT activation profiles at T308 and S473, consistent with functional interaction in vivo AKT allosteric inhibitors were shown to only block the growth of Trop-2-expressing tumor cells, both in vitro and in preclinical models, being ineffective on Trop-2-null cells. Consistently, AKT-targeted siRNA only impacted on Trop-2-expressing cells. Lentiviral downregulation of endogenous Trop-2 abolished tumor response to AKT blockade, indicating Trop-2 as a mandatory activator of AKT. CONCLUSIONS Our findings indicate that the expression of Trop-2 is a stringent predictor of tumor response to AKT inhibitors. They also support the identification of target-activatory pathways, as efficient predictors of response in precision cancer therapy. Clin Cancer Res; 22(16); 4197-205. ©2016 AACR.
Collapse
Affiliation(s)
- Emanuela Guerra
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Marco Trerotola
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Romina Tripaldi
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Anna Laura Aloisi
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Pasquale Simeone
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Andrea Sacchetti
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Valeria Relli
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Antonella D'Amore
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Rossana La Sorda
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Rossano Lattanzio
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy. Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio,' Chieti, Italy
| | - Mauro Piantelli
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy. Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio,' Chieti, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy. Department of Neuroscience, Imaging and Clinical Sciences, Unit of Physiology and Physiopathology, University 'G. d'Annunzio,' Chieti, Italy.
| |
Collapse
|
28
|
hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci Rep 2016; 6:22999. [PMID: 26972480 PMCID: PMC4789638 DOI: 10.1038/srep22999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/26/2016] [Indexed: 11/08/2022] Open
Abstract
c-FLIP (cellular FLICE-inhibitory protein) is the pivotal regulator of TRAIL resistance in cancer cells, It is a short-lived protein degraded through the ubiquitin/proteasome pathway. The discovery of factors and mechanisms regulating its protein stability is important for the comprehension of TRAIL resistance by tumor cells. In this study, we show that, when H1299 lung adenocarcinoma cells are treated with TRAIL, hnRNPK is translocated from nucleus to cytoplasm where it interacts and co-localizes with GSK3β. We find that hnRNPK is able to inhibit the Ser9 phosphorylation of GSK3β by PKC. This has the effect of activating GSK3β and thereby stabilizing c-FLIP protein which contributes to the resistance to TRAIL in H1299 cells. Our immunohistochemical analysis using tissue microarray provides the clinical evidence of this finding by establishing a negative correlation between the level of hnRNPK expression and the Ser9 phosphorylation of GSK3β in both lung adenocarcinoma tissues and normal tissues. Moreover, in all cancer tissues examined, hnRNPK was found in the cytoplasm whereas it is exclusively nuclear in the normal tissues. Our study sheds new insights on the molecular mechanisms governing the resistance to TRAIL in tumor cells, and provides new clues for the combinatorial chemotherapeutic interventions with TRAIL.
Collapse
|
29
|
Glycogen Synthase Kinase 3β Is Positively Regulated by Protein Kinase Cζ-Mediated Phosphorylation Induced by Wnt Agonists. Mol Cell Biol 2015; 36:731-41. [PMID: 26711256 DOI: 10.1128/mcb.00828-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/04/2015] [Indexed: 02/01/2023] Open
Abstract
The molecular events that drive Wnt-induced regulation of glycogen synthase kinase 3β (GSK-3β) activity are poorly defined. In this study, we found that protein kinase Cζ (PKCζ) and GSK-3β interact mainly in colon cancer cells. Wnt stimulation induced a rapid GSK-3β redistribution from the cytoplasm to the nuclei in malignant cells and a transient PKC-mediated phosphorylation of GSK-3β at a different site from serine 9. In addition, while Wnt treatment induced a decrease in PKC-mediated phosphorylation of GSK-3β in nonmalignant cells, in malignant cells, this phosphorylation was increased. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of PKCζ abolished all of these effects, but unexpectedly, it also abolished the constitutive basal activity of GSK-3β. In vitro activity assays demonstrated that GSK-3β phosphorylation mediated by PKCζ enhanced GSK-3β activity. We mapped Ser147 of GSK-3β as the site phosphorylated by PKCζ, i.e., its mutation into alanine abolished GSK-3β activity, resulting in β-catenin stabilization and increased transcriptional activity, whereas phosphomimetic replacement of Ser147 by glutamic acid maintained GSK-3β basal activity. Thus, we found that PKCζ phosphorylates GSK-3β at Ser147 to maintain its constitutive activity in resting cells and that Wnt stimulation modifies the phosphorylation of Ser147 to regulate GSK-3β activity in opposite manners in normal and malignant colon cells.
Collapse
|
30
|
Chen HJ, Shen YC, Shiao YJ, Liou KT, Hsu WH, Hsieh PH, Lee CY, Chen YR, Lin YL. Multiplex Brain Proteomic Analysis Revealed the Molecular Therapeutic Effects of Buyang Huanwu Decoction on Cerebral Ischemic Stroke Mice. PLoS One 2015; 10:e0140823. [PMID: 26492191 PMCID: PMC4619651 DOI: 10.1371/journal.pone.0140823] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022] Open
Abstract
Stroke is the second-leading cause of death worldwide, and tissue plasminogen activator (TPA) is the only drug used for a limited group of stroke patients in the acute phase. Buyang Huanwu Decoction (BHD), a traditional Chinese medicine prescription, has long been used for improving neurological functional recovery in stroke. In this study, we characterized the therapeutic effect of TPA and BHD in a cerebral ischemia/reperfusion (CIR) injury mouse model using multiplex proteomics approach. After the iTRAQ-based proteomics analysis, 1310 proteins were identified from the mouse brain with <1% false discovery rate. Among them, 877 quantitative proteins, 10.26% (90/877), 1.71% (15/877), and 2.62% (23/877) of the proteins was significantly changed in the CIR, BHD treatment, and TPA treatment, respectively. Functional categorization analysis showed that BHD treatment preserved the integrity of the blood–brain barrier (BBB) (Alb, Fga, and Trf), suppressed excitotoxicity (Grm5, Gnai, and Gdi), and enhanced energy metabolism (Bdh), thereby revealing its multiple effects on ischemic stroke mice. Moreover, the neurogenesis marker doublecortin was upregulated, and the activity of glycogen synthase kinase 3 (GSK-3) and Tau was inhibited, which represented the neuroprotective effects. However, TPA treatment deteriorated BBB breakdown. This study highlights the potential of BHD in clinical applications for ischemic stroke.
Collapse
Affiliation(s)
- Hong-Jhang Chen
- National Research Institute of Chinese Medicine, Taipei, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Kuo-Tong Liou
- Department of Chinese Martial Arts and Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei, Taiwan
| | - Wei-Hsiang Hsu
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Pei-Hsuan Hsieh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Ying Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail: (YLL); (YRC)
| | - Yun-Lian Lin
- National Research Institute of Chinese Medicine, Taipei, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
- * E-mail: (YLL); (YRC)
| |
Collapse
|
31
|
Olianas MC, Dedoni S, Onali P. Antidepressants activate the lysophosphatidic acid receptor LPA(1) to induce insulin-like growth factor-I receptor transactivation, stimulation of ERK1/2 signaling and cell proliferation in CHO-K1 fibroblasts. Biochem Pharmacol 2015; 95:311-23. [PMID: 25888927 DOI: 10.1016/j.bcp.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Different lines of evidence indicate that the lysophosphatidic acid (LPA) receptor LPA1 is involved in neurogenesis, synaptic plasticity and anxiety-related behavior, but little is known on whether this receptor can be targeted by neuropsychopharmacological agents. The present study investigated the effects of different antidepressants on LPA1 signaling. We found that in Chinese hamster ovary (CHO)-K1 fibroblasts expressing endogenous LPA1 tricyclic and tetracyclic antidepressants and fluoxetine induced the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and CREB. This response was antagonized by either LPA1 blockade with Ki16425 and AM966 or knocking down LPA1 with siRNA. Antidepressants induced ERK1/2 phosphorylation in human embryonic kidney (HEK)-293 cells overexpressing LPA1, but not in wild-type cells. In PathHunter™ assay measuring receptor-β-arrestin interaction, amitriptyline, mianserin and fluoxetine failed to induce activation of LPA2 and LPA3 stably expressed in CHO-K1 cells. ERK1/2 stimulation by antidepressants and LPA was suppressed by pertussis toxin and inhibition of Src, phosphatidylinositol-3 kinase and insulin-like growth factor-I receptor (IGF-IR) activities. Antidepressants and LPA induced tyrosine phosphorylation of IGF-IR and insulin receptor-substrate-1 through LPA1 and Src. Prolonged exposure of CHO-K1 fibroblasts to either mianserin, mirtazapine or LPA enhanced cell proliferation as indicated by increased [(3)H]-thymidine incorporation and Ki-67 immunofluorescence. This effect was inhibited by blockade of LPA1- and ERK1/2 activity. These data provide evidence that different antidepressants induce LPA1 activation, leading to receptor tyrosine kinase transactivation, stimulation of ERK1/2 signaling and enhanced cell proliferation.
Collapse
Affiliation(s)
- Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato Cagliari, Italy
| | - Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato Cagliari, Italy.
| |
Collapse
|
32
|
Guo L, He P, No YR, Yun CC. Krüppel-like factor 5 incorporates into the β-catenin/TCF complex in response to LPA in colon cancer cells. Cell Signal 2015; 27:961-8. [PMID: 25683913 DOI: 10.1016/j.cellsig.2015.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/26/2015] [Accepted: 02/07/2015] [Indexed: 11/24/2022]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid with potent mitogenic effects on various cells including colon cancer cells. LPA stimulates proliferation of colon cancer cells by activation of β-catenin or Krüppel-like factor 5 (KLF5), but the functional relationship between these two transcription factors is not clear. Hence, we sought to investigate the mechanism of β-catenin activation by LPA and the role of KLF5 in the regulation of β-catenin by LPA. We found that LPA and Wnt3 additively activated the β-catenin/TCF (T cell factor) reporter activity in HCT116 cells. In addition to phosphorylating glycogen synthase kinase 3β (GSK-3β) at Ser9, LPA resulted in phosphorylation of β-catenin at Ser552 and Ser675. Mutation of Ser552 and Ser675 ablated LPA-induced β-catenin/TCF transcriptional activity. Knockdown of KLF5 significantly attenuated activation of β-catenin/TCF reporter activity by LPA but not by Wnt3. However, nuclear accumulation of β-catenin by LPA was not altered by knockdown of KLF5. β-catenin, TCF, and KLF5 were present in a 250-300kDa macro-complex, and their presence was enhanced by LPA. LPA simulated the interaction of β-catenin with TCF4, and depletion of KLF5 decreased β-catenin-TCF4 association and the transcriptional activity. In summary, LPA activates β-catenin by multiple pathways involving phosphorylation of GSK-3 and β-catenin, and enhancing β-catenin interaction with TCF4. KLF5 plays a critical role in β-catenin activation by increasing the β-catenin-TCF4 interaction.
Collapse
Affiliation(s)
- Leilei Guo
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi Ran No
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
33
|
Lucke-Wold BP, Turner RC, Logsdon AF, Simpkins JW, Alkon DL, Smith KE, Chen YW, Tan Z, Huber JD, Rosen CL. Common mechanisms of Alzheimer's disease and ischemic stroke: the role of protein kinase C in the progression of age-related neurodegeneration. J Alzheimers Dis 2015; 43:711-724. [PMID: 25114088 PMCID: PMC4446718 DOI: 10.3233/jad-141422] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ischemic stroke and Alzheimer's disease (AD), despite being distinct disease entities, share numerous pathophysiological mechanisms such as those mediated by inflammation, immune exhaustion, and neurovascular unit compromise. An important shared mechanistic link is acute and chronic changes in protein kinase C (PKC) activity. PKC isoforms have widespread functions important for memory, blood-brain barrier maintenance, and injury repair that change as the body ages. Disease states accelerate PKC functional modifications. Mutated forms of PKC can contribute to neurodegeneration and cognitive decline. In some cases the PKC isoforms are still functional but are not successfully translocated to appropriate locations within the cell. The deficits in proper PKC translocation worsen stroke outcome and amyloid-β toxicity. Cross talk between the innate immune system and PKC pathways contribute to the vascular status within the aging brain. Unfortunately, comorbidities such as diabetes, obesity, and hypertension disrupt normal communication between the two systems. The focus of this review is to highlight what is known about PKC function, how isoforms of PKC change with age, and what additional alterations are consequences of stroke and AD. The goal is to highlight future therapeutic targets that can be applied to both the treatment and prevention of neurologic disease. Although the pathology of ischemic stroke and AD are different, the similarity in PKC responses warrants further investigation, especially as PKC-dependent events may serve as an important connection linking age-related brain injury.
Collapse
Affiliation(s)
- Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Aric F. Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - James W. Simpkins
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Daniel L. Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | - Kelly E. Smith
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Yi-Wen Chen
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Zhenjun Tan
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jason D. Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
34
|
Shin J, Jang H, Lin J, Lee SY. PKCβ positively regulates RANKL-induced osteoclastogenesis by inactivating GSK-3β. Mol Cells 2014; 37:747-52. [PMID: 25256217 PMCID: PMC4213766 DOI: 10.14348/molcells.2014.0220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Protein kinase C (PKC) family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. However, the role of PKC in receptor activator of NF-κB ligand (RANKL) signaling has remained elusive. We now demonstrate that PKCβ acts as a positive regulator which inactivates glycogen synthase kinase-3β (GSK-3β) and promotes NFATc1 induction during RANKL-induced osteoclastogenesis. Among PKCs, PKCβ expression is increased by RANKL. Pharmacological inhibition of PKCβ decreased the formation of osteoclasts which was caused by the inhibition of NFATc1 induction. Importantly, the phosphorylation of GSK-3β was decreased by PKCβ inhibition. Likewise, down-regulation of PKCβ by RNA interference suppressed osteoclast differentiation, NFATc1 induction, and GSK-3β phosphorylation. The administration of PKC inhibitor to the RANKL-injected mouse calvaria efficiently protected RANKL-induced bone destruction. Thus, the PKCβ pathway, leading to GSK-3β inactivation and NFATc1 induction, has a key role in the differentiation of osteoclasts. Our results also provide a further rationale for PKCβ's therapeutic targeting to treat inflammation-related bone diseases.
Collapse
Affiliation(s)
- Jihye Shin
- Department of Life Science and the Research Center for Cellular Home-ostasis, Ewha Womans University, Seoul 120-750,
Korea
| | - Hyunduk Jang
- Department of Life Science and the Research Center for Cellular Home-ostasis, Ewha Womans University, Seoul 120-750,
Korea
- Present address: Department of Neurology, Seoul National University Hospital, and College of Medicine and Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 110-749,
Korea
| | - Jingjing Lin
- Department of Life Science and the Research Center for Cellular Home-ostasis, Ewha Womans University, Seoul 120-750,
Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Home-ostasis, Ewha Womans University, Seoul 120-750,
Korea
| |
Collapse
|
35
|
Garrido P, Salehzadeh F, Duque-Guimaraes DE, Al-Khalili L. Negative regulation of glucose metabolism in human myotubes by supraphysiological doses of 17β-estradiol or testosterone. Metabolism 2014; 63:1178-87. [PMID: 25034385 DOI: 10.1016/j.metabol.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/20/2014] [Accepted: 06/07/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exposure of skeletal muscle to high levels of testosterone or estrogen induces insulin resistance, but evidence regarding the direct role of either sex hormone on metabolism is limited. Therefore, the aim of this study was to investigate the direct effect of acute sex hormone exposure on glucose metabolism in skeletal muscle. MATERIALS/METHODS Differentiated human skeletal myotubes were exposed to either 17β-estradiol or testosterone and metabolic characteristics were assessed. Glucose incorporation into glycogen, glucose oxidation, palmitate oxidation, and phosphorylation of key signaling proteins were determined. RESULTS Treatment of myotubes with either 17β-estradiol or testosterone decreased glucose incorporation into glycogen. Exposure of myotubes to 17β-estradiol reduced glucose oxidation under basal and insulin-stimulated conditions. However, testosterone treatment enhanced basal palmitate oxidation and prevented insulin action on glucose and palmitate oxidation. Acute stimulation of myotubes with testosterone reduced phosphorylation of S6K1 and p38 MAPK. Exposure of myotubes to either 17β-estradiol or testosterone augmented phosphorylation GSK3β(Ser9) and PKCδ(Thr505), two negative regulators of glycogen synthesis. Treatment of myotubes with a PKC specific inhibitor (GFX) restored the effect of either sex hormone on glycogen synthesis. PKCδ silencing restored glucose incorporation into glycogen to baseline in response to 17β-estradiol, but not testosterone treatment. CONCLUSION An acute exposure to supraphysiological doses of either 17β-estradiol or testosterone regulates glucose metabolism, possibly via PKC signaling pathways. Furthermore, testosterone treatment elicits additional alterations in serine/threonine kinase signaling, including the ribosomal protein S6K1 and p38 MAPK.
Collapse
Affiliation(s)
- Pablo Garrido
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Functional Biology, Physiology Area, University of Oviedo, Oviedo, Spain
| | - Firoozeh Salehzadeh
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Lubna Al-Khalili
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
36
|
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2014; 4:2834. [PMID: 24280772 PMCID: PMC3876736 DOI: 10.1038/ncomms3834] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022] Open
Abstract
Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (Mechanistic Target of Rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mouse model in which myeloid lineage specific deletion of Tsc1 (Tsc1Δ/Δ) leads to constitutive mTOR Complex 1 (mTORC1) activation, we find that Tsc1Δ/Δ macrophages are refractory to IL-4 induced M2 polarization, but produce increased inflammatory responses to proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signaling critically contributes to defective polarization. These findings highlight a key role for the mTOR pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic status could be “hard-wired” to control of macrophage function, with broad implications for regulation of Type 2 immunity, inflammation, and allergy.
Collapse
Affiliation(s)
- Vanessa Byles
- 1] Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA [2]
| | | | | | | | | | | | | |
Collapse
|
37
|
Trazzi S, Fuchs C, De Franceschi M, Mitrugno VM, Bartesaghi R, Ciani E. APP-dependent alteration of GSK3β activity impairs neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2014; 67:24-36. [DOI: 10.1016/j.nbd.2014.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/02/2014] [Indexed: 12/31/2022] Open
|
38
|
Watcharasit P, Suntararuks S, Visitnonthachai D, Thiantanawat A, Satayavivad J. β-catenin involvement in arsenite-induced VEGF expression in neuroblastoma SH-SY5Y cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:672-678. [PMID: 22859221 DOI: 10.1002/tox.21794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/28/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Abstract
Arsenic is a widespread contaminant in the environment especially in drinking water. Although it is a known carcinogen in human, the mechanism by which arsenic induces carcinogenesis is not well understood. Among several effects of arsenic, it has been suggested that arsenic-induced vascular endothelial growth factor (VEGF) expression plays a critical role in arsenic carcinogenesis. In the present study, we demonstrated that arsenite induced VEGF expression in neuroblastoma SH-SY5Y cells without induction of HIF-1α, a well-known transcriptional activator for VEGF suggesting that arsenite-induced VEGF expression in SH-SY5Y cells may not require HIF-1α activation. It has been reported that VEGF expression is regulated by multiple transcription factors including β-catenin. We therefore investigated whether β-catenin was involved in arsenite-induced VEGF expression in SH-SY5Y cells. Treatment of arsenite caused β-catenin accumulation in the nucleus. Additionally, arsenite treatment decreased the activity of GSK3, an enzyme that phosphorylates and targets β-catenin for degradation by proteasome, without activation of its upstream kinase, Akt. Inhibition of PI3K/Akt which negatively regulates GSK3 activity by LY294002 resulted in a decrease in arsenite-mediated β-catenin nuclear accumulation, and VEGF expression. These results suggested that β-catenin plays a role in arsenite-induced VEGF in SH-SY5Y cells, and the induction of β-catenin by arsenite is mediated by inhibition of GSK3 without activating its upstream kinase Akt.
Collapse
Affiliation(s)
- Piyajit Watcharasit
- Laboratory of Pharmacology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Rd, Bangkok 10210, Thailand; Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Rd, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Higher Education Commission, Thailand
| | | | | | | | | |
Collapse
|
39
|
Masnadi-Shirazi M, Maurya MR, Subramaniam S. Time-varying causal inference from phosphoproteomic measurements in macrophage cells. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2014; 8:74-86. [PMID: 24681921 PMCID: PMC4631079 DOI: 10.1109/tbcas.2013.2288035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cellular signaling circuitry in eukaryotes can be studied by analyzing the regulation of protein phosphorylation and its impact on downstream mechanisms leading to a phenotype. A primary role of phosphorylation is to act as a switch to turn "on" or "off" a protein activity or a cellular pathway. Specifically, protein phosphorylation is a major leit motif for transducing molecular signals inside the cell. Errors in transferring cellular information can alter the normal function and may lead to diseases such as cancer; an accurate reconstruction of the "true" signaling network is essential for understanding the molecular machinery involved in normal and pathological function. In this study, we have developed a novel framework for time-dependent reconstruction of signaling networks involved in the activation of macrophage cells leading to an inflammatory response. Several signaling pathways have been identified in macrophage cells, but the time-varying causal relationship that can produce a dynamic directed graph of these molecules has not been explored in detail. Here, we use the notion of Granger causality, and apply a vector autoregressive model to phosphoprotein time-course data in RAW 264.7 macrophage cells. Through the reconstruction of the phosphoprotein network, we were able to estimate the directionality and the dynamics of information flow. Significant interactions were selected through statistical hypothesis testing ( t-test) of the coefficients of a linear model and were used to reconstruct the phosphoprotein signaling network. Our approach results in a three-stage phosphoprotein network that represents the evolution of the causal interactions in the intracellular signaling pathways.
Collapse
Affiliation(s)
- Maryam Masnadi-Shirazi
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 USA
| | - Mano Ram Maurya
- San Diego Supercomputer Center and the Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093 USA
| | - Shankar Subramaniam
- Department of Bioengineering, Departments of Chemistry and Biochemistry, Cellular and Molecular Medicine and the Graduate Program in Bioinformatics, University of California, San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
40
|
Mitra R, Müller P, Ji Y, Zhu Y, Mills G, Lu Y. A Bayesian hierarchical model for inference across related reverse phase protein arrays experiments. J Appl Stat 2014; 41:2483-2492. [PMID: 26246652 DOI: 10.1080/02664763.2014.920776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We consider inference for functional proteomics experiments that record protein activation over time following perturbation under different dose levels of several drugs. The main inference goal is the dependence structure of the selected proteins. A critical challenge is the lack of sufficient data under any one drug and dose level to allow meaningful inference on dependence structure. We propose a hierarchical model to implement the desired inference. The key element of the model is a shared dependence structure on (latent) binary indicators of protein activation.
Collapse
Affiliation(s)
- Riten Mitra
- ICES, University of Texas at Austin, Austin, TX, USA
| | - Peter Müller
- Department of Mathematics, University of Texas at Austin, Austin, USA
| | - Yuan Ji
- CCRI, Northshore University HealthSystem, Chicago, IL, USA
| | - Yitan Zhu
- CCRI, Northshore University HealthSystem, Chicago, IL, USA
| | - Gordon Mills
- Department of Systems Biology, UT MD Anderson Cancer Centre, Houston, TX, USA
| | - Yiling Lu
- Department of Systems Biology, UT MD Anderson Cancer Centre, Houston, TX, USA
| |
Collapse
|
41
|
The role of glycogen synthase kinase 3-β in immunity and cell cycle: implications in esophageal cancer. Arch Immunol Ther Exp (Warsz) 2013; 62:131-44. [PMID: 24276788 DOI: 10.1007/s00005-013-0263-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 11/06/2013] [Indexed: 01/01/2023]
Abstract
Esophageal cancer (EC) is one of the most aggressive gastrointestinal malignancies, possessing an insidious onset and a poor prognosis. Numerous transcription factors and inflammatory mediators have been reported to play a pivotal role in the initiation and progression of this cancer. However, the specifics of the signaling network responsible for said factors, especially which elements are the critical regulators, are still being elucidated. Glycogen synthesis kinases 3 (GSK3)β was originally regarded as a kinase regulating glucose metabolism. Accumulating evidence demonstrated that it also played an essential role in a variety of cellular processes including proliferation, differentiation, inflammation, motility, and survival by regulating various transcription factors such as c-Jun, AP-1, β-catenin, CREB, and NF-κB. Aberrant regulation of GSK3β has been shown to promote cell growth in some cancers, while suppressing it in others, and thus may play an important role in the development of EC. This review will discuss our current understanding of GSK3β signaling, and its control of the expression and activation of various transcription factors that mediate the inflammatory response. We will also explore some of the known mediators of EC progression, and based on current literature, elucidate the potential roles and implications of GSK3 in this disease.
Collapse
|
42
|
Morgan-Fisher M, Couchman JR, Yoneda A. Phosphorylation and mRNA splicing of collapsin response mediator protein-2 determine inhibition of rho-associated protein kinase (ROCK) II function in carcinoma cell migration and invasion. J Biol Chem 2013; 288:31229-40. [PMID: 24036111 DOI: 10.1074/jbc.m113.505602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II interaction is controlled, we further mapped the ROCK II interaction site of CRMP-2 and examined whether phosphorylation states of CRMP-2 affected the interaction. Here, we show that an N-terminal fragment of the long CRMP-2 splice variant (CRMP-2L) alone binds ROCK II and inhibits colon carcinoma cell migration and invasion. Furthermore, the interaction of CRMP-2 and ROCK II is partially regulated by glycogen synthase kinase (GSK)-3 phosphorylation of CRMP-2, downstream of PI3K. Inhibition of PI3K reduced interaction of CRMP-2 with ROCK II, an effect rescued by simultaneous inhibition of GSK3. Inhibition of PI3K also reduced colocalization of ROCK II and CRMP-2 at the cell periphery in human breast carcinoma cells. Mimicking GSK3 phosphorylation of CRMP-2 significantly reduced CRMP-2 binding of recombinant full-length and catalytic domain of ROCK II. These data implicate GSK3 in the regulation of ROCK II-CRMP-2 interactions. Using phosphorylation-mimetic and -resistant CRMP-2L constructs, it was revealed that phosphorylation of CRMP-2L negatively regulates its inhibitory function in ROCK-dependent haptotactic cell migration, as well as invasion of human colon carcinoma cells. Collectively, the presented data show that CRMP-2-dependent regulation of ROCK II activity is mediated through interaction of the CRMP-2L N terminus with the ROCK II catalytic domain as well as by GSK3-dependent phosphorylation of CRMP-2.
Collapse
Affiliation(s)
- Marie Morgan-Fisher
- From the Department of Biomedical Sciences, Faculty of Health and Medical Sciences, and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, 2200, Denmark and
| | | | | |
Collapse
|
43
|
Expression and regulation of glycogen synthase kinase 3 in human neutrophils. Int J Biochem Cell Biol 2013; 45:2660-5. [PMID: 24035907 DOI: 10.1016/j.biocel.2013.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase involved in the regulation of cellular processes ranging from glycogen metabolism to cell cycle regulation. Its two known isoforms, α and β, are differentially expressed in tissues throughout the body and exert distinct but often overlapping functions. GSK-3 is typically active in resting cells, inhibition by phosphorylation of Ser21 (GSK-3α) or Ser9 (GSK-3β) being the most common regulatory mechanism. GSK-3 activity has been linked recently with immune system function, yet little is known about the role of this enzyme in neutrophils, the most abundant leukocyte type. In the present study, we examined GSK-3 expression and regulation in human neutrophils. GSK-3α was found to be the predominant isoform, it was constitutively expressed and cell stimulation with different agonists did not alter its expression. Stimulation by fMLP, LPS, GM-CSF, Fcγ receptor engagement, or adenosine A2A receptor engagement all resulted in phosphorylation of Ser21. The use of metabolic inhibitors revealed that combinations of Src kinase, PKC, PI3K/AKT, ERK/RSK and PKA signaling pathways could mediate phosphorylation, depending on the agonist. Neither PLC nor p38 were involved. We conclude that GSK-3α is the main isoform expressed in neutrophils and that many different pathways can converge to inhibit GSK-3α activity via Ser21-phosphorylation. GSK-3α thus might be a hub of cellular regulation.
Collapse
|
44
|
van Oosterwijk JG, van Ruler MAJH, Briaire-de Bruijn IH, Herpers B, Gelderblom H, van de Water B, Bovée JVMG. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells. Br J Cancer 2013; 109:1214-22. [PMID: 23922104 PMCID: PMC3778302 DOI: 10.1038/bjc.2013.451] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. METHODS We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. RESULTS Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). CONCLUSION These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations.
Collapse
Affiliation(s)
- J G van Oosterwijk
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - M A J H van Ruler
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - I H Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - B Herpers
- Division of Toxicology, Leiden/Amsterdam Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - H Gelderblom
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - B van de Water
- Division of Toxicology, Leiden/Amsterdam Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - J V M G Bovée
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
45
|
Obesity Promotes Liver Carcinogenesis via Mcl-1 Stabilization Independent of IL-6Rα Signaling. Cell Rep 2013; 4:669-80. [DOI: 10.1016/j.celrep.2013.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/19/2013] [Accepted: 07/17/2013] [Indexed: 02/07/2023] Open
|
46
|
Alonso E, Vale C, Vieytes MR, Botana LM. Translocation of PKC by yessotoxin in an in vitro model of Alzheimer's disease with improvement of tau and β-amyloid pathology. ACS Chem Neurosci 2013; 4:1062-70. [PMID: 23527608 DOI: 10.1021/cn400018y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yessotoxin is a marine phycotoxin that induces motor alterations in mice after intraperitoneal injection. In primary cortical neurons, yessotoxin treatment induced a caspase-independent cell death with an IC50 of 4.27 nM. This neurotoxicity was enhanced by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and partially blocked by amiloride. Unlike previous studies, yessotoxin did not increase cyclic adenosine monophosphate levels or produce any change in phosphodiesterase 4 steady state expression in triple transgenic neurons. Since phosphodiesterases (PDEs) are engaged in learning and memory, we studied the in vitro effect of the toxin against Alzheimer's disease hallmarks and observed that pretreatment of cortical 3xTg-AD neurons with a low nanomolar concentration of yessotoxin showed a decrease expression of hyperphosphorylated tau isoforms and intracellular accumulation of amyloid-beta. These effects were accompanied with an increase in the level of the inactive isoform of the glycogen synthase kinase 3 and also by a translocation of protein kinase C from cytosol to membrane, pointing to its activation. In fact, inhibition of protein kinase C with GF109203X blocked the effect of yessotoxin over tau protein. The data presented here shows that 1 nM yessotoxin activates protein kinase C with beneficial effects over the main Alzheimer's disease hallmarks, tau and Aβ, in a cellular model obtained from 3xTg-AD fetuses.
Collapse
Affiliation(s)
- Eva Alonso
- Departamento de Farmacología and ‡Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003 Lugo,
Spain
| | - Carmen Vale
- Departamento de Farmacología and ‡Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003 Lugo,
Spain
| | - Mercedes R. Vieytes
- Departamento de Farmacología and ‡Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003 Lugo,
Spain
| | - Luis M. Botana
- Departamento de Farmacología and ‡Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003 Lugo,
Spain
| |
Collapse
|
47
|
Saba NS, Levy LS. Protein kinase C-beta inhibition induces apoptosis and inhibits cell cycle progression in acquired immunodeficiency syndrome-related non-hodgkin lymphoma cells. J Investig Med 2013; 60:29-38. [PMID: 21997316 DOI: 10.2310/jim.0b013e318237eb55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Acquired immunodeficiency syndrome (AIDS)-related non-Hodgkin lymphoma (NHL) constitutes an aggressive variety of lymphomas characterized by increased extranodal involvement, relapse rate, and resistance to chemotherapy. Protein kinase C-beta (PKCβ) targeting showed promising results in preclinical and clinical studies involving a wide variety of cancers, but studies describing the role of PKCβ in AIDS-NHL are primitive if not lacking. METHODS In the present study, 3 AIDS-NHL cell lines were examined: 2F7 (AIDS-Burkitt lymphoma), BCBL-1 (AIDS-primary effusion lymphoma), and UMCL01-101 (AIDS-diffuse large B-cell lymphoma). RESULTS Immunoblot analysis demonstrated expression of PKCβ1 and PKCβ2 in 2F7 and UMCL01-101 cells, and PKCβ1 alone in BCBL-1 cells. The viability of 2F7 and BCBL-1 cells decreased significantly in the presence of PKCβ-selective inhibitor at half-maximal inhibitory concentration of 14 and 15 μmol/L, respectively, as measured by tetrazolium dye reduction assay. In contrast, UMCL01-101 cells were relatively resistant. As determined using flow cytometric deoxynucleotidyl transferase dUTP nick-end labeling assay with propidium iodide staining, the responsiveness of sensitive cells was associated with apoptotic induction and cell cycle inhibition. Protein kinase C-beta-selective inhibition was observed not to affect AKT phosphorylation but to induce a rapid and sustained reduction in the phosphorylation of glycogen synthase kinase-3 beta, ribosomal protein S6, and mammalian target of rapamycin in sensitive cell lines. CONCLUSIONS The results indicate that PKCβ plays an important role in AIDS-related NHL survival and suggest that PKCβ targeting should be considered in a broader spectrum of NHL. The observations in BCBL-1 were unexpected in the absence of PKCβ2 expression and implicate PKCβ1 as a regulator in those cells.
Collapse
Affiliation(s)
- Nakhle S Saba
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
48
|
Abstract
Lithium has been used for the treatment of mood disorders for over 60 years, yet the exact mechanisms by which it exerts its therapeutic effects remain unclear. Two enzymatic chains or pathways emerge as targets for lithium: inositol monophosphatase within the phosphatidylinositol signalling pathway and the protein kinase glycogen synthase kinase 3. Lithium inhibits these enzymes through displacing the normal cofactor magnesium, a vital regulator of numerous signalling pathways. Here we provide an overview of evidence, supporting a role for the inhibition of glycogen synthase kinase 3 and inositol monophosphatase in the pharmacodynamic actions of lithium. We also explore how inhibition of these enzymes by lithium can lead to downstream effects of clinical relevance, both for mood disorders and neurodegenerative diseases. Establishing a better understanding of lithium's mechanisms of action may allow the development of more effective and more tolerable pharmacological agents for the treatment of a range of mental illnesses, and provide clearer insight into the pathophysiology of such disorders.
Collapse
Affiliation(s)
- Kayleigh M Brown
- Institute of Psychiatry, King's College London, PO Box 63, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | | |
Collapse
|
49
|
Abstract
GSK-3 is a multifunctional kinase that is located in the cytosol, nucleus, and mitochondria of all cell types, and it is involved in the pathogenesis of a variety of diseases. In cancer, GSK-3 modulates the response of the cell death machinery to stress stimuli, including chemotherapeutics. Mitochondria are at the heart of the integration between survival and noxious signals; therefore, modulation of the mitochondrial functions carried out by GSK-3 is profoundly involved in the apoptosis escape capabilities that hallmark neoplasms. This review briefly covers the mechanistic interactions among oncogenic kinase pathways, GSK-3 activity and subsequent modulation of mitochondrial functions that shape the pro-survival phenotype of cancer cells, such as control of redox homeostasis and inhibition of the mitochondrial permeability transition pore.
Collapse
Affiliation(s)
- Federica Chiara
- Department of Molecular Medicine, University of Padova Padova, Italy
| | | |
Collapse
|
50
|
Protein kinase C regulates human pluripotent stem cell self-renewal. PLoS One 2013; 8:e54122. [PMID: 23349801 PMCID: PMC3549959 DOI: 10.1371/journal.pone.0054122] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/10/2012] [Indexed: 12/26/2022] Open
Abstract
Background The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells. Methodology/Principal Findings In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP) activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC), GF109203X (GFX), increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2) synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells. Conclusions/Significance Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K)/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK), PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long-term stable undifferentiated state of hPS cells even though hPS cells were dissociated into single cells for passage. This study untangles the cross-talk between molecular mechanisms regulating self-renewal and differentiation of hPS cells.
Collapse
|